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@ ABSTRACT
- Accurate passenger flow prediction is important in intelligent transportation systems (ITS).

This work is licensed It is widely known that introducing external factors, such as weather and air quality data,
under a Creative can enhance the feature representation of passenger flow data, which has a certain positive
Commons Attribution 4.0 impact on improving prediction performance. However, if there is no effective denoising,
International License. the more external factors introduced, the lower the prediction performance. Therefore, there
Publisher: are few studies that incorporate external factors into modelling. To this end, we propose an
Faculty of Transport Adaptive Denoising Spatio-Temporal Attention Network (ADSTA-Net) that integrates
and Traffic Sciences, external factors for passenger flow prediction. The core of the model is to fully consider

University of Zagreb the impact of external factors on passenger flow. Specifically, in the initial stage of

ADSTA-Net, multiple external factors are combined with passenger flow. Then, the
adaptive learning parameter matrix (ALPM) and fast Fourier transform (FFT) are applied
to perform adaptive denoising for the fused features at different times and locations.
Finally, a simplified Graph Multi-Attention Network (GMAN) with only-one layer ST-
Attention block is used to learn global spatio-temporal dependencies. Extensive
experiments are conducted on two real-world passenger flow datasets. The results
demonstrate that ADSTA-Net has superior performance, particularly in making more
accurate predictions under bad weather conditions.

KEYWORDS
passenger flow prediction; external factors; attention mechanism; adaptive denoising.

1. INTRODUCTION

Accurate passenger flow prediction can help solve some practical traffic problems, such as effectively easing
road congestion, allocating resource, and so on [1-3]. Given the significant impact of historical passenger flow
on prediction performance, most existing studies tend to map a correlation between historical and future flow.
However, there are many different types of external factors, such as weather, holidays and air quality. Although
their impact on prediction results may not be as significant as that of historical passenger flow, they still play
a positive role in improving the model’s performance. For example, Figure 1 shows the passenger flow at
Caitang Station of Xiamen bus rapid transit (BRT) during the same period but under different weather
conditions over two consecutive weeks. It can be observed that during the same time period from 14:00 to
15:00 on different days, passenger flow exhibits different trends under two different weather conditions: rainy
and non-rainy. Obviously, the changes in passenger flow are influenced by weather factors. Therefore,
reasonably incorporating external factors is of great significance for improving the performance of models. To
distinguish from external factors, we define traffic flow as internal factors.
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Figure I — Impact of rainfall on passenger flow at Caitang Station of Xiamen BRT

However, there are few studies that incorporate external factors into modelling. The possible reasons are

summarised as follows: (1) It is often difficult to ensure that the obtained external factors have the same time
granularity as the internal factors, which leads to the problem of time mismatch between internal and external
factors. (2) Not all external factors have a positive impact on prediction performance. If too many useless
external factors are directly introduced, it is easy to mix in a large amount of noise and reduce performance.

To better explore the impact of external factors on traffic flow prediction, we review the representative

literature and list them in Table 1. In the literature, [4—6] use passenger flow, [7, 8] use vehicle flow, [5, 6, 9—
11] use taxi trajectory, [9, 11] use bicycle trajectory, [11] uses bicycle flow. Their characteristics and existing
problems are summarised as follows.

Table 1 — Summary of representative literature using external factors

External factor Weather indicator
Mode! Weather| Holiday [POIs| lgi"rty C\:)Vrfgittri‘ggs Temperature | Wind | Rainfall | Visibility | Humidity | Air Structure
MS-Net [5] y v v v \ \ \ \ (a)
MCB+ATT[6]] N N v v @)
SAE+RBF [8]| J J V J (a)
ST-ResNet [9]| v \ \ (a)
STRN [10] Y v S S (b)
ResLSTM[4]| v S S S \ (b)
MVGCN [11]| N S \ (b)
DMSTSAF [7]] \ J ()

1

2)

In terms of the diversity of external factors, the most widely used external factors are weather, holiday,
points of interest (POIs) and air quality. For weather indicators, weather conditions, temperature and wind
are the most commonly used in these models [5, 7, 8, 9-11]. Obviously, there is still a certain degree of
subjectivity in deciding which external factors should be included in the model. In addition, to minimise
noise, these models use no more than five weather indicators [4, 7, 10, 11] or a single categorical indicator
of weather conditions, hoping to improve prediction performance by introducing as few weather indicators
as possible [5, 7, 8, 9-11].

In terms of the structures of models, they are roughly divided into three types: (a) the first type shown in
Figure 2a 1S t0 extract features from external factors through a feature network, while extracting spatio-
temporal features from internal factors through another branch of a spatio-temporal feature extraction
model (STFEM). Then, a fully connected layer (FC) is typically used to simply concatenate the features
extracted from the two branches to construct a prediction model [5, 6, 8, 9]. (b) The second type shown in
Figure 2b 1S 10 extract features from internal and external factors through two independent feature networks,
respectively. Then, the features extracted from the two branches are fused together and the fused features
are performed for further feature extraction through STFEM [4, 10, 11]. (c) The third one shown in Figure
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2¢ fuses the internal and external factors in the initial stage and then feeds them into STFEM for spatio-
temporal features extraction [7]. Compared with the first two types of models, the third type of model fully
considers the fusion of internal and external factors in an earlier stage. However, this type of model is not
commonly used. The possible reason is that the earlier the fusion occurs, the greater the negative impact
of introduced noise on the effectiveness of feature extraction, which may reduce prediction performance.
3) Interms of adaptive denoising [12, 13], there is limited research on both integrating internal and external
data and adaptively denoising the fused features in traffic flow prediction. For example, the typical model
[7], which represents the third type, applies a spatial and temporal attention mechanism to adaptively
integrate the internal and external factors, but it does not effectively denoise the fused features. Fortunately,
traffic flow prediction is an important branch of time series prediction. Currently, there are some effective
methods, such as the Bayesian [14], wavelet transform [15], fast Fourier transform (FFT) [16], autoencoder
[17], semi-supervised learning [18] and unsupervised learning [19], which are successfully used for
denoising time series data. It is worth mentioning that FFT converts signals from the time domain to the
frequency domain and reduces noise by filtering out high-frequency signals. Its high accuracy, ease of
implementation and wide applicability have made it widely used in time series prediction and achieved
good results [16]. For example, Frequency improved Legendre Memory (FiLM) is proposed to use Fourier
transform to reduce noise in six time series data [16]. However, it is only used to reduce noise of individual
time series data and not for denoising fused features. Furthermore, to the best of our knowledge, there is
relatively little research on adaptive denoising in the field of time series prediction, especially in passenger
flow prediction. The related study [20] only uses an adaptive parameter matrix for weight matching to
consider the impact of sudden traffic flows at different times and regions on predictions, rather than the

adaptive parameter matrix for adaptive denoising of fused features.
Internal External Internal Internal External
‘ factors factors factors L factors factors J

Feature Feature )

[ STFEM ] [ If;i\t,g;i ] { network ] [ network ] L""‘_"‘J‘
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Figure 2 — Three types of models for internal and external factors fusing: (a) the first type; (b) the second type; (c) the third type

External
factors

Therefore, the key to improving the performance of passenger flow prediction models that fuse external
factors lies in how to fuse the internal and external factors and adaptively denoise the fused features. Given the
shortcomings of the existing research, an Adaptive Denoising Spatio-Temporal Attention Network (ADSTA-Net)
fused with external factors is proposed. The main contributions are summarised as follows:

1) A spatio-temporal information distillation module is designed for effective fusion of internal and external
factors and adaptive denoising on the fused features. As opposed to previous studies, we integrate various
external factors with historical passenger flow to obtain the fused features in the initial stage of ADSTA-
Net, with the aim to enhance the feature representation of passenger flow data. Then, adaptive learning
parameter matrix (ALPM) and FFT are used to adaptively denoise the fused features at different times and
locations. In this way, the impact of external factors on passenger flow can be fully considered, which
helps to improve the predictive performance.

2) To globally extract the useful features from the fused features, we use the Graph Multi-Attention Network
(GMAN) [21] as the backbone and simplify it into a new network with a single-layer ST-Attention block
to ensure the prediction performance while reducing the complexity of the model. Furthermore, layer
normalization is added to the ST-Attention block and Wing loss is handpicked as the loss function, both
of which can further improve the training capability of ADSTA-Net.
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3) We evaluate the proposed ADSTA-Net on two real-world passenger flow datasets. The experimental
results demonstrate that ADSTA-Net outperforms the existing models, particularly in making accurate
predictions under the bad weather conditions.

This paper is organised as follows: Section 2 describes the details of ADSTA-Net. Section 3 analyses the
experimental results. Finally, Section 4 summarises the paper and discusses the future research directions.

2. METHODOLOGY

2.1 Overall architecture

Figure 3a shows the architecture of ADSTA-Net, which is mainly composed of four parts: (1) the data fusion
block (DFB) is designed to fuse external factors and passenger flow; (2) the adaptive denoising block (ADB)
is designed to adaptively denoise the fused features, which mainly includes ALPM and FFT shown in Figure
3b; (3) the spatio-temporal embedding (STE) is devised to embed the dynamic spatio-temporal correlations for
further feature extraction, which is shown in Figure 3c; (4) the spatio-temporal attention block (STAB) is
proposed to extract global spatio-temporal dependencies for prediction, which is shown in Figure 3d.

In ADSTA-Net, the DFB first concatenates historical passenger flow X and external factors Ex to form the
concatenated features Xg,, and then performs the dimensional transformation on X, mainly through a linear
layer and FC to obtain Xj,;,, . The ADB is used to adaptively denoise Xz, through an ALPM and FFT in
sequence, thereby obtaining X,p5. X7 is derived by adding spatial and temporal embedding. Then, X,z and
Xsrp are both used as the input to the STAB, and feature extraction is further performed through spatial and
temporal attentions. After that, the global spatio-temporal dependencies X¢; 45 Will be obtained through a gated
fusion mechanism and layer normalization. Finally, the predicted passenger flow ¥ will be obtained through a
FC. During the procedure, Wing loss [22] is handpicked as the loss function. The details of each block are
shown in the following Section 2.2 and Section 2.3.

_________________________________________________ Wing loss
E Spatio-temporal information distillation module

STE :
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Figure 3 — The overall architecture of ADSTA-Net

2.2 Spatio-temporal information distillation module

As shown in Figure 3a, the spatio-temporal information distillation module mainly consists of three parts:
the DFB, ADB and STE. As described in Section 1, Xg, contains a lot of noise. Although X, goes through a
series of linear transformations to get Xy,;,, in the DFB, Xz, Still contains an amount of noise. Therefore,
it is not appropriate to directly input Xy, into the STAB without any processing. To design a more
competitive prediction model, we specifically design the ADB to adaptively denoise the features in Xz, ;y, -
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Data fusion block

There are two inputs X € RP*N and Ex € RP*E in the DFB. X and Ex are firstly concatenated as Xg, €
RPX(N*E) hased on Equation 1.

Xgyx = Concat(X,Ex) ()
Then, a linear layer is used to transform X, t0 Xp,,cion € RP*N for feature extraction based on Equation 2:
Xrusion = XgxW + b (2)

where W and b are learnable parameters.

In order to effectively extract the global spatio-temporal dependencies in the subsequent STAB, we use FC
to further transform the dimension of Xg,sion ShOWN in Equation 3. FC uses the convolution with kernel size=1
for linear conversion and ReLU as the activation function. After that, the dimension of Xz,;,r 1S €xtended to
PxNxD , and Xz,;,, € RF*N*D js obtained as the output of the DFB:

XFusion' = ReLU(XFuSionW + b) (3)
where W and b are learnable parameters. D is a new extended dimension of Xp,;o, -

Adaptive denoising block

Xrusion Will be continue to be input into the ADB for adaptive denoising. The dimension transformation in
the ADB is shown in Figure 4. In the initial stage of the ADB, we perform dimension swapping on XFusion/ to
obtain Xp,0, € RV*PXP In this way, we can easily perform FFT on Xz, since the temporal dimension P
has been swapped to the last dimension. Considering that the dimension of P in Xz, "is small, we use a

"

linear layer to extend its dimension from P to M based on Equation 4, where M>>P. As a result, Xr,5;,, €
RN*P*M g obtained:
XFusiun "= XFusion”W +b (4)

"

where W and b are learnable parameters. M is an extended dimension of Xz, -

Figure 4 — Dimension transformation in the ADB

"

Then, we randomly initialise the weights in ALPM, whose dimension is consistent with that of Xg,,, -
The weights in ALPM are all updated along with the other parameters. After the inner product between Xz,
and ALPM, we obtain X,; pp; € RV*P*M i Equation 5. In this way, we can adaptively assign higher weights to
the key features and lower weights to the unimportant features for Xz, through the ALPM:

Xarpm = Xrusion OALPM (5)

where © represents the inner product.

M
Next, X4;pp 1s sent to FFT for denoising. FFT is realised based on Equation 6, and Xgpr € RV*P*GHD g

the obtained result. We select the first K sine wave signals with the lowest frequencies argtopyg (Xppr) from
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Xrpr as denoised features in the frequency domain signal, and then convert argtopg (Xgrr) back into the time
domain signal X;ppr € RV*P*M via inverse fast Fourier transform (IFFT) shown in Equation 7. Compared to
Xa1pm»> Xippr represents the features after adaptive denosing by ALPM and FFT, which is more suitable for
feature extraction in the subsequent STAB:

M-1

2T
Xprr = z Xarpm e W (6)
m=0
M-1
1 jz—”wn
Xirrr = M Z [argtopk (Xprr)] - €N (7
w=0

2T
where Xppr is the frequency domain signal, e /m“™ is used to convert the signal from time domain to

L2TC
frequency domain, X;gpr is the time domain signal and e’ ¥“™ is used to convert the signal from frequency
domain back to time domain.
Finally, we use a linear layer to change the dimension of X;zrr from N X D X M to N X D X P based on
Equation 8, obtaining Xjzpr' € RN*DPXP:

Xiprr' = XipprW + b (8)

where W and b are learnable parameters.

Then we continue to perform dimension swapping on X7 and obtain the final output X,,5 € RF*NXD
of the ADB. Through dimension swapping, we can make the dimension of X, the same as that of Xy, -
Compared to Xr,ion |, Xapp is the result of adaptive denoising of Xz, i

Spatio-temporal embedding

The STE has two inputs: the graph of the traffic network ¢=(%, e) and a series of indexes of P + Q time
StePS (X¢—pt1s s Xts X415 s Xt 40 index> €-&- 2019-03-01 06:30:00. N and e represent the number of nodes
and edges between nodes, respectively. P and Q are the step size of input and predicted flow, respectively.

The main function of the STE is to embed ¢ and (X¢_pi1, -, Xe) Xp 41, oos X1 )index t0 €° and el
respectively. Dimension transformation in the STE is shown in Figure 5. The STE is divided into two parts:
spatial embedding and temporal embedding, whose architecture is the same with the STE in GMAN [21].
Specifically, spatial embedding uses node2vec to generate a vector representation of N nodes in the traffic
network, and its result is represented as e5 € RV*P, Temporal embedding uses one-hot encoding to encode
(Xt—ps1s s Xt )index A0 (Xe41, o) Xe40)index Sequentially, and its result is represented as e’ € R(P+Q)*D

After that, we add eS and e together and obtain the output Xgpz € RE+OXNXDof the STE.

()

Spatial
embedding &
=

7 @ e X STE
)

Temporal | Big
embedding
== P+Q

¢ =

(Xtmpt1s oor Xty v Xp4Q)index =

Figure 5 — Dimension transformation in the STE

2.3 Spatio-temporal attention block

As shown in Figure 3a, the STAB has two inputs: Xsr; and X, 5. The main function of the STAB is to further
extract global spatio-temporal dependencies from both X7 and X, through a parallel attention mechanism.
The dimension transformation in the STAB is shown in Figure 6. It contains spatial attention, temporal attention,
gated fusion, layer normalization and residual connection. The processing is defined in Equations 9-12.
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Figure 6 — Dimension transformation in the STAB

Hg = Attentions(Xapg, Xs75) €)
Hp = Attentiony (Xapp, Xsre) (10)
Hgr = Gated(Hg Hr) (11)
Xsrap = Norm(Hsr) + Her (12)

In ADSTA-Net, the processing procedure of the STAB is mostly similar to that of the ST-Attention Block
in GMAN [21]. However, the first difference is to add the layer normalization on Hgy € RO*N*P which makes
gradients smoother, trains faster and has better generalization ability [23] in ADSTA-Net. In addition, the query,
key and value are also different. Specifically, in order to reduce the complexity of ADSTA-Net and
comprehensively take into account the impact of X¢r on X,pp, we only use single-layer ST-Attention Block
in the STAB instead of the three-layer ST-Attention Block in GMAN, and project STEp € RP*N*D ag key,
STE, € RO*NXD a5 query, and the concatenation of X, and STEp as value. STEp, and STE, are
decomposed from X based on the historical P and future Q time steps, respectively. Then the final output
Xorap € RONXD of the STAB is obtained.

It is worth mentioning that the proposed ADSTA-Net uses Wing loss [22] as the loss function, which helps
to capture the small-size errors between the ground truth and predicted result, making the model training
smoother. The specific definition is shown in Equation 13:

. _(win(1+|x|/e), if|x| < w
wing(x) = {le -C, otherwise (13)
where x is the error between the ground truth and predicted result, @ limits the range of the nonlinear part, &
limits the curvature of the nonlinear region and € = w — w In(1 + w/¢) is a constant.

3. EXPERIMENTS

3.1 Datasets

We conduct the experiments on two real-world datasets, which are summarised in Table 2: (1) XMBRT is a
passenger flow dataset collected from the Automatic Fare Collection (AFC) in Xiamen BRT, with 44 stations
covering 92 days from 1 March 2019 to 31 May 2019, including weekdays and weekends. Its time interval is
5 minutes, and the daily service hours are from 6:30 to 22:10, which generates 12x15+8=188 samples per day.
Therefore, there are a total of 188x92=17,296 samples. (2) BJMetro is a passenger flow dataset collected from
the Beijing subway, with 276 stations covering five consecutive weeks from 29 February 2016 to 3 April 2016,
only including weekdays. Its time interval is 10 minutes, and the daily service hours are from 5:00 to 23:00,
which generates 6x18=108 samples per day. Therefore, there are a total of 108x25=2,700 samples. On both
datasets, we apply Z-Score Standardization to the data to accelerate the convergence of the model.
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Table 2 — Dataset description

Description XMBRT BJMetro
Stations 44 276
Time span 1 March 2019 — 31 May 2019 29 February 2016 — 3 April 2016
Including weekends Yes No
Days 92 25
Time interval Passenger flow: 5 minutes, Passenger flow: IQ minqtes,
Weather: 1 hour Weather: half an hour, Air quality: 1 hour
Samples 17,296 2,700
External factors 11 weather indicators 4 weather indicators and 7 air quality indicators

In terms of external factors, we use 11 weather indicators on XMBRT provided by China Meteorological
Administration [24], including pressure (hPa), temperature (°C), relative humidity (%), rainfall in the past hour
(mm), average wind direction in 2 minutes (degree), average wind speed in 2 minutes (m/s), wind direction in
maximum wind speed (degree), maximum wind speed (m/s), wind direction in extreme wind speed (degree),
extreme wind speed (m/s) and ground temperature (°C), with the time interval of one hour. To maintain
consistency between passenger flow and weather data for effective fusion, we reused the 12 identical hourly
weather data and pre-process them using Min-Max Normalization.

We directly use the preprocessed public dataset of BIMetro [4], which already include the aligned passenger
flow data and external factor data. Herein, we only use the inflow with a 10-minute interval, four weather
indicators with a half-hour interval, including temperature (°C), dew point temperature (°C), relative humidity
(%) and wind speed (m/s), as well as seven air quality indicators with a 1-hour interval, including real-time air
quality index, PM2.5, PM10, SO,, NO», CO and Os.

3.2 Baselines

In this paper, we compare ADSTA-Net with four types of models: (1) graph convolution network (GCN)-
based models, including Spatio-Temporal Synchronous Graph Convolutional Networks (STSGCN) [25], (2)
Recurrent Neural Network (RNN) and GCN (RNN+GCN)-based models, including Temporal Graph
Convolutional Network (TGCN) [26], Adaptive Graph Convolutional Recurrent Network (AGCRN) [27] and
Meta-Graph Convolutional Recurrent Network (MegaCRN) [28], (3) attention (ATT)-based models, including
Attention Based Spatial-Temporal Graph Convolutional Network (ASTGCN) [29], Spatio-Temporal
Transformer Networks (STTNs) [30], Attention Based Spatial-Temporal Graph Neural Network (ASTGNN)
[31], Dynamic Spatial-Temporal Aware Graph Neural Network (DSTAGNN) [32], GMAN [21] and
Propagation Delay-Aware Dynamic Long-Range Transformer (PDFormer) [33], (4) the model considering
external factors (Ex), including a deep learning architecture combining the Residual Network, GCN and Long
Short-Term Memory (ResLSTM) [4].

3.3 Evaluation metric

We use mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error
(MAPE) for evaluation, and their definitions are shown in Equations 14-16:

n
1
MAE == |9, -y (14)
t=1

RMSE = (15)

~

Ve — YVt

X 100% (16)

n
1
MAPE = —Z
n
t=1

where 7 is the number of testing samples. y; is the prediction result and y; is the ground truth.

Yt
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3.4 Hyperparameter settings

Table 3 lists the hyperparameter settings in ADSTA-Net. We split the datasets into training, validating and
testing sets with a ratio of 7:1:2. On XMBRT, we use historical one hour passenger flow, corresponding to
P=12 time steps, to predict the flow of future 15, 30 and 60 minutes, corresponding to O=3, 6 and 12 time
steps, respectively. The number of stations is N=44, and the number of external factors is E=11.

On BJMetro, we use historical one hour passenger flow, corresponding to P=6 time steps, to predict the
flow of future 10, 30 and 60 minutes, corresponding to O=1, 3 and 6 time steps, respectively. Compared with
XMBRT, its number of stations is N=276, which is more complex. The number of external factors is £=11.

In the DFB, the extended dimension of XFuS,-(m’ is D=64 on both datasets. In the ADB, the extended
dimension of Xp,ion  is M=256 on both datasets, and the value of K=[P /2] in Equation 7 is followed by Zhou
et al. [16], which is set to 6 on XMBRT and 3 on BJMetro, respectively. In the STE, L is the total number of
daily time steps, which is 12x15+8=188 and 6x18=108 on XMBRT and BJMetro, respectively. In the STAB,
the settings of hyperparameters are referenced from the ST-Attention Block in GMAN [21]. In Wing loss, we
set w to 5 and ¢ to 3, respectively.

All experiments are conducted on a server running Windows Server 2022, which is equipped with a CPU
of Intel 19-13900K and a GPU of NVIDIA RTX 4090. We use the Adam optimiser with an initial learning rate
of 0.001, batch size of 64 and dropout of 0.1. On the XMBRT dataset, the number of epochs is set to 200. If
there is no performance improvement within 50 consecutive epochs, the optimizer will stop the training early.
On the BJMetro dataset, the number of epochs is set to 1000. If there is no performance improvement within
100 consecutive epochs, the optimizer will stop the training early. In addition, all baselines except for
ResLSTM [4] use solely passenger flow as their inputs. The experimental results shown in Tuble 4 are obtained
by running their open-source codes. Furthermore, in ResLSTM [4], P and O on BJMetro are set to 5 and 1,
respectively. For a fair comparison, we reproduce ResLSTM in our paper and adjust Pto 6 and Q to 1, 3 and
6, ensuring consistency with the inputs and predicted results of all models.

Table 3 — Hyperparameter settings

Block XMBRT BJMetro
P=12 P=6
0=3,6,12 0=1,3,6
Dataset
N=44 N=276
E=11 E=11
DFB D=64 D=64
M=256 M=256
ADB
K=6 K=3
STE L=188 L=108
Wing loss w=5, =3 w=5, =3

3.5 Main results

The main results on XMBRT and BJMetro are summarised in 7able 4. Across all time step predictions on
XMBRT, ADSTA-Net consistently achieves a slightly lower MAPE than GMAN. For the 30-minute prediction
on BJMetro, ADSTA-Net achieves a slightly lower MAE than MegaCRN, and for the 60-minute prediction on
BJMetro it achieves a slightly lower MAE than PDFormer. In other cases, ADSTA-Net performs better.

On the XMBRT, MegaCRN outperforms other baselines for 15-minute and 30-minute predictions, while
PDFormer performs achieves the best performance for 60-minute prediction. This is due to the fact that
MegaCRN employs a meta learning bank to learn traffic patterns of different types of nodes and PDFormer
takes into account the time delay on propagation, thus improving prediction performance. STSGCN performs
poorly, possibly due to its weak ability to simultaneously learn spatio-temporal dependencies using only GCN.
Among the RNN+GCN models, AGCRN featuring an adaptive graph convolution network outperforms
TGCN, which relies on stacked GRUs to expand the receptive field. This indicates that using an adaptive
adjacency matrix can more effectively capture dynamic spatio-temporal features. In the ATT model, STTNs,
ASTGNN and DSTAGNN achieve competitive results on most metrics. This is mainly contributed to the
combination of the advanced attention mechanisms and GCN, which enables them to better extract spatio-
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temporal dependencies. The ASTGCN only employs the traditional attention mechanism to extract features,
which limits its ability. The GMAN shows poor performance due to its reliance on using a stack of simple
attention mechanisms for spatio-temporal modelling. The ResLSTM uses the second structure shown in Figure
2b to fuse external factors, but due to its inability to enhance the feature expression of passenger flow data, its
prediction results are unsatisfactory. This strongly proves that the fusion of internal and external factors in the
initial stage helps improve the model’s performance.

On the BJMetro dataset, MegaCRN and PDFormer continue to outperform other baselines, while STTNs
and ASTGNN achieve competitive results across most metrics. Compared with XMBRT, GMAN shows
improved results on the BJMetro datatset. This could be attributed to the fact that, with more stations, the
attention mechanism can better capture global spatio-temporal features.

In contrast, ADSTA-Net employs a single layer of parallel attention mechanisms to extract global spatio-
temporal features, with better results than the models that combine both the attention mechanism and GCN.

This strongly proves that adaptive denoising of fused features, integrating both internal and external factors
via ALPM and FFT can enhance the feature representation of passenger flow data, thus improving prediction
performance.

Table 4 — Main results on the XMBRT and BJMetro dataset, Marked: 1* place, 2" place

15-min 30-min 60-min
MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE RMSE | MAPE
GCN STSGCN 6.54 10.59 |44.04% | 6.97 11.48 |45.28% | 7.86 13.40 |49.15%

Dataset Model

TGCN 6.69 10.05 |41.56% | 6.68 10.11 [41.61% | 7.23 11.07 | 63.61%

RNN+GCN| AGCRN 5.82 9.23 |37.75% | 5.88 933 |3797% | 5.97 9.51 38.31%

MegaCRN 5.44 8.39 |35.78% | 5.49 8.52 |3598% | 5.61 8.79 36.50%

ASTGCN 6.36 10.17 | 38.73% | 6.52 1046 |39.82% | 6.93 11.25  |42.22%

STTNs 5.70 897 |3598% | 5.94 9.53 |3643% | 6.62 11.07 | 37.54%
XMBRT ASTGNN 5.57 8.78 |36.63% | 5.66 898 |37.07% | 5.84 9.39 37.72%
ATT DSTAGNN 5.67 8.86 |[36.46% | 5.66 8.88 [3595% | 5.82 9.21 37.29%
GMAN 6.08 9.46 |30.79% | 6.41 10.03 |30.53% | 7.19 11.80 [32.40%
PDFormer 5.53 8.53 |3540% | 5.53 8.54 |35.63% | 5.55 8.56 35.98%
ResLSTM 6.42 9.90 |36.36% | 6.20 9.48 |38.67% | 6.48 9.89 40.29%
B ADSTA-Net 5.29 8.13 |34.03% | 5.32 8.19 |35.82% | 5.34 8.20 34.10%
(Ours)
Dataset Model 10-min 30-min 60-min
MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE
GCN STSGCN 30.40 | 49.68 |87.39% | 32.24 | 55.82 |87.01% | 36.32 69.50 |90.55%
TGCN 7291 | 138.26 (143.30%| 87.67 | 161.78 |224.67%| 108.35 | 193.81 [333.06%
RNN+GCN| AGCRN 27.05 | 90.09 |20.40% | 26.28 | 84.93 |20.76% | 27.05 86.66 |22.18%
MegaCRN 16.33 | 28.59 |19.75% | 16.51 | 28.93 |20.33% | 17.12 30.66 |23.87%
ASTGCN 29.74 | 80.16 |32.26% | 31.74 | 82.84 |34.04% | 36.10 92.37 {40.20%
STTNs 17.12 | 30.18 [19.95% | 17.88 | 3221 |21.17% | 19.05 35.01 [23.97%
BJMetro

ASTGNN 18.49 | 3251 |24.70% | 19.28 | 34.16 |25.45% | 20.83 37.79 |30.59%
ATT

DSTAGNN | 2145 | 49.84 |21.10% | 20.77 | 4537 |21.23% | 21.24 45.56 | 22.88%

GMAN 17.09 | 29.07 [20.71% | 23.49 | 43.61 |23.79% | 34.14 65.90 |26.39%

PDFormer 16.75 | 29.66 |19.16% | 16.81 | 29.74 |19.13% | 17.10 30.28 |19.38%

ResLSTM 19.39 | 3245 |23.22% | 18.75 | 31.11 |22.83% | 20.39 34.68 |23.82%

Ex
AD(%E‘?S';\H 16.04 | 27.62 |17.06% | 16.69 | 28.67 [17.61% | 17.12 | 2939 |18.64%
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3.6 Ablation study

To verify the effectiveness and efficiency of each component in ADSTA-Net, we generate a series of
variants and conduct a computational cost analysis for the tasks of future one hour passenger flow prediction
on XMBRT and BJMetro. The seven variants of ADSTA-Net are summarised in Table 5. (1) w/o Ex: External
factors have been removed; (2) w/o ALPM: Adaptive learning parameter matrix has been removed; (3) w/o
FFT: FFT and IFFT have been removed; (4) w/o ALPM+FFT: Adaptive learning parameter matrix, FFT and
IFFT have been simultaneously removed. (5) w/o Ex+tALPM+FFT: External factors, adaptive learning
parameter matrix, FFT and IFFT have been simultaneously removed; (6) ADSTA-G: Replacing STAB with
the architecture of GMAN and using the batch size of 32 on BJMetro; (7) ADSTA-L: Replacing FFT and IFFT
with two linear layers in the ADB.

Table 5 — Ablation study on two datasets, marked: 1% place

XMBRT BJMetro
Variant Training | Inference Training | Inference
MAE | RMSE | MAPE | time time MAE | RMSE | MAPE time time

(s/epoch) (s) (s/epoch) (s)

w/o Ex 5.46 847 |3721% / / 17.43 | 30.84 |19.26% / /
w/o ALPM 5.39 8.32 | 35.08% 14.7 0.4 17.49 | 30.62 |20.48% 13.7 0.3
w/o FFT 5.42 8.38 | 35.09% 10.8 0.3 17.69 | 31.06 |19.79% 8.4 0.2
w/o ALPM+FFT 5.45 840 |39.54% 8.4 0.3 18.04 | 31.92 |19.82% 5.7 0.2

w/o Ex+*ALPM+FFT| 5.53 8.55 136.83% / / 18.17 | 32.76 |21.76% / /
ADSTA-G 5.87 9.13 |38.07% | 33.7 0.6 17.3 30.22 |17.40% 32.7 0.7
ADSTA-L 5.38 8.28 |35.00% 12.0 0.4 17.61 | 31.81 |20.24% 9.5 0.3
ADSTA-Net (Ours) | 5.34 820 (34.10%| 16.1 0.4 17.12 | 29.39 | 18.64% 15.6 0.4

Based on the results in 7able 5, we can draw the following conclusions.

1) On XMBRT, observing the results of ‘w/o Ex’, ‘w/o ALPM’ and ‘w/o FFT’, we find that ‘w/o Ex’ yields the
worst performance. This confirms our hypothesis that adding the weather indicators is indeed capable of
improving the prediction accuracy. The ‘w/o FFT’ variant exhibits the second-lowest performance. It indicates
that FFT can effectively reduce the noises for the fused features, which also has a certain impact on improving
the performance. Although ‘w/o ALPM’ contributes the least to ADSTA-Net, ALPM can adaptively capture
important features at different times and locations, which can improve the performance of ADSTA-Net to a
certain extent.

2) On BIMetro, the results of ‘w/o Ex’ are not as poor as those observed on XMBRT. This may be because the data
sample size of BJMetro is relatively smaller, so the impact of incorporating external factors is not as pronounced
as that on XMBRT. Additionally, the MAE and RMSE of ‘w/o FFT’ are worse than those of ‘w/o Ex’ and ‘w/o
ALPM’. One possible reason is that the traffic network of BJMetro is more complex, making the role of FFT
more pronounced. This fully demonstrates the effectiveness of applying FFT for denoising the fused features.

3) On both datasets, we conduct the variants by removing multiple components. Except for the MAPE on
XMBRT, ‘w/o Ex+ALPM+FFT’ not only performs worse than the three variants with a single component
removed, but also falls behind the variant ‘w/o ALPM+FFT’ with two components removed. These results
once again strongly confirm that incorporating external factors can significantly enhance ADSTA-Net’s
performance. The more the components are removed, the poorer results become.

4) To more comprehensively explore the effectiveness and efficiency of ADSTA-Net, we conduct ablation study
on two variants of ADSTA-G and ADSTA-L. Except for the MAPE on BJMetro, the results of ADSTA-G are
not as good as those of ADSTA-Net on both datasets, which proves the effectiveness of simplifying the GMAN’s
architecture. Additionally, the MAE and RMSE performance of ADSTA-G on BJMetro slightly decreases,
possibly due to its more complex transportation network, where adding appropriate attention layers has a
relatively small impact on model’s performance. On XMBRT, the decrease in ADSTA-L’s results is not
significant, potentially due to the simplicity of the dataset with fewer stations, resulting in almost no difference
in the denoising effect of using FFT or linear layers for fused features. From the perspective of training and
inference time, ADSTA-G runs much slower compared to other variants and ADSTA-Net, proving that
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simplifying GMAN can effectively improve computational efficiency. When conducting experiments on
BJMetro with more stations in ADSTA-G, the batch size needs to be changed from 64 to 32, which strongly
proves that using a multi-layer attention mechanism will significantly increase the complexity of the model.
Therefore, it is necessary to simplify GMAN’s architecture.

3.7 Performance and hyperparameter sensitivity analysis in Wing loss

We validate the effectiveness of Wing loss in ADSTA-Net by analysing the impact of Wing loss and three
other commonly used loss functions on ADSTA-Net. All the results are future one hour prediction results on
XMBRT, which is shown in Table 6. Evidently, Wing loss achieves the best performance across all metrics,
thanks to its greater focus on small-size errors, which in turn makes the training process smoother.
Consequently, we select Wing loss as the loss function used in ADSTA-Net.

In addition, Wing loss has two important hyperparameters: ¢ and w. In Figure 7, ¢ is firstly set to 2 to
determine the best value of w. Figures 7a-7c are the results of the MAE, RMSE and MAPE, respectively The
best results for MAE and RMSE are achieves when w=2 or 5, while the MAPE performs better when w=5
compared to w=2. Therefore, w is set to 5. Similarly, based on the results in Figures 74-7f, we set € to 3.

Table 6 — Performance comparison of the four loss functions on XMBRT, Marked: 1* place

Loss function MAE RMSE MAPE Loss function MAE RMSE | MAPE
Huber loss 5.35 8.23 34.26% MAE loss 5.35 8.24 37.05%
MSE loss 5.40 8.29 38.39% Wing loss 5.34 8.20 34.10%
5.40 830 = 40.00
538 8.26 38.00
ES.}() I| %‘58.2.’! EJ(,_O() |
w~ 2 =
“Lill | -1l ||I
532 :34<b7x9|0 8143856780910 32.00 334(!72!10
@ ® ©
5.36 = 830 o 40.00 o=3
5.35 8.26 38.00
25‘34 III I | gs.z: g 36.00 | I II
533 8.18 340ul I I
532 l; . q!7!!]0 1472345678910 RU0L2 54 5678910
(d) (e)

Figure 7 — Hyperparameter sensitivity analysis in Wing loss: (a) The impact of @ on MAE when e=2;
(b) The impact of w on RMSE when =2, (c) The impact of @ on MAPE when =2, (d) The impact of ¢ on MAE when w=5;
(e) The impact of € on RMSE when =15, (f) The impact of ¢ on MAPE when w=35

3.8 Generalization analysis of the adaptive denoising

In this section, we incorporate the 11 weather indicators from XMBRT and the ADB of ADSTA-Net into
the baselines STSGCN and ASTGCN to examine the impact of adding external factors on their prediction
performance. Additionally, we aim to further verify the generalization ability of the adaptive denoising through
ALPM and FFT within the ADB of ADSTA-Net. Tuble 7 shows the comparisons of the results for the next one
hour passenger flow prediction on XMBRT in the two baselines. Here, ‘w/o Weather’ refers to the variant
without any weather indicators, while ‘w/ Weather’ represents the variant that includes the 11 weather
indicators. We use the ratio of the absolute difference between ‘w/ Weather’ and ‘w/o Weather’ divided by
‘w/o Weather’ to represent the performance improvement of the two baselines after adding weather indicators
and the ADB.

As shown in Table 7, in terms of the horizontal comparison of the results, the performance of both STSGCN
and ASTGCN has been improved to a certain extent. In terms of the vertical comparison of the results, the
poorer the performance of the two baselines, the more significant the improvement. Furthermore, these results
also verify the generalization of the adaptive denoising.
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Table 7 — Performance improvement by adding weather into the two baselines on XMBRT

w/o Weather w/ Weather Improved

Baseline
MAE RMSE MAPE MAE RMSE MAPE | MAE RMSE | MAPE

STSGCN 7.86 13.40 49.15% 6.75 11.00 42.12% | 14.12% | 17.91% | 14.30%

ASTGCN 6.93 11.25 42.22% 6.26 10.01 40.44% | 9.66% | 11.02% | 4.21%

3.9 Case study

To further validate ADSTA-Net under different weather conditions, we conduct a case study on XMBRT
for the future one hour passenger flow prediction. Firstly, we calculate the Pearson Correlation Coefficient
between the 11 weather indicators and passenger flow to identify which indicators are more significant in
influencing passenger flow on XMBRT. We then choose them to classify the weather conditions. As shown in
Figure 8, more than half of the values are less than 0.04, indicating that most weather indicators exhibit weak
correlations with passenger flow. Clearly, it is crucial to effectively denoise the fused features.

In Figure 8, the numbers marked in the leftmost column represent the ranking of the correlation values
between each weather indicator and passenger flow. These correlations are based only on absolute values,
without considering whether they are positive or negative values. Obviously, the four weather indicators most
closely correlated with passenger flow are ground temperature, temperature, relative humidity and extreme
wind speed.

Firstly, due to the physical similarity between ground temperature and temperature, and the fact that
temperature is a more commonly used indicator in our daily life, temperature is selected. Secondly, the
correlation coefficient of relative humidity ranks third and is closely related to rainfall in the past hour.
Therefore, both rainfall in the past hour and relative humidity are selected. Finally, the fourth-ranked indicator,
extreme wind speed, which differs from the previous three types of indicators, is also selected.

In summary, the final selected weather indicators are temperature, rainfall in the past hour, relative humidity
and extreme wind speed.
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Figure 8 — Pearson correlation coefficient between the passenger flow and 11 weather indicators
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As shown in Table 8, according to the four selected weather indicators, we categorise the weather conditions
for weekdays and weekends into two main categories: Case 1 represents bad weather conditions, whereas Case
2 represents good weather conditions. Compared to weekends, the impact of weather conditions on travel is
relatively smaller on weekdays, as weekdays are primarily dedicated to commuting for most people. Therefore,
there are slight differences in the classification standards for weather conditions between weekdays and
weekends, with weekdays applying stricter standards compared to weekends. Specifically, for weekdays in
Case 1, the thresholds for the four weather indicators are as follows: (1) Temperature is 30°C or above. This
threshold is determined by increasing the average temperature value in the testing dataset by 5°C; (2) Relative
humidity is 99% or higher. This threshold is directly obtained from the testing dataset; (3) Rainfall in the past
hour is 9mm/h or more; (4) Extreme wind speed is 11m/s or higher. These two thresholds are respectively
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determined according to rainfall and wind speed classification standards established by the China
Meteorological Administration [24]. For weekends in Case 1, we only select rainfall in the past hour as the
core classification criterion for weather conditions. When rainfall reaches 2mm/h or above, it is regarded as a
bad weather condition. In Case 2, the weather indicator thresholds for both weekdays and weekends are
reversed compared to those in Case 1.

Table 8 — Weather condition classification on XMBRT

Indicator . . . . .
c Temperature | Relative humidity | Rainfall in the past hour | Extreme wind speed
ase

Weekdays >30°C >9mm/h >99% >11m/s

Case 1
Weekends \ >2mm/h \ \
Weekdays <30°C <9mm/h <99% <llm/s

Case 2
Weekends \ <2mm/h \ \

To simplify the analysis, we integrate the testing data of weekdays and weekends under two different
weather conditions. Namely, Case 1 includes all weekdays and weekends data under bad weather conditions
and Case 2 includes all weekdays and weekends data under good weather conditions. The comparison of the
predicted passenger flow for the next hour on XMBRT is shown in Table 9. The MAE and RMSE of Case 1 are
not only better than those of Case 2, but also exceed the results of ADSTA-Net. This indicates that ADSTA-
Net can predict passenger flow well even under a bad weather condition, effectively proving the robustness of
ADSTA-Net. Excitingly, even when employing 11 different weather indicators without any subjective
filtering, ADSTA-Net still delivers satisfactory prediction performance. The MAPEs of Case 1 is lower than
those of Case 2 and ADSTA-Net. The possible reason is that the passenger flow in a bad weather condition
may be smaller compared to good weather conditions. According to Equation 16, Smaller true values can lead to
larger MAPE. In addition, we remove the weather data from ADSTA-Net for a horizontal comparison. It is
evident that in both cases, the results of ‘w/o Weather’ are worse than those of ‘w/ Weather’, further confirming
that adding weather data significantly improves prediction performance. It also quantitatively demonstrates
that changes in passenger flow are closely links to weather, thereby confirming that effectively incorporating
external factors can improve the model’s performance.

Table 9 — Comparison of prediction performance under the two weather conditions on XMBRT

w/ Weather w/o Weather
Case
MAE RMSE MAPE MAE RMSE MAPE
Case 1 5.08 7.93 40.32% 5.37 8.45 41.66%
Case 2 5.38 8.30 34.70% 5.50 8.53 35.69%
ADSTA-Net (Ours) 5.34 8.20 34.10% 5.46 8.46 36.09%

4. CONCLUSION

In this paper, we propose an adaptive denoising spatio-temporal attention network fused with external
factors tailored for passenger flow prediction. Initially, we design a spatio-temporal information distillation
module for adaptively denoising the fused features by integrating the multiple external factors with passenger
flow in the initial stage of ADSTA-Net. Then, we use ALPM and FFT to achieve adaptive denoising for the
fused features at different times and locations. After that, we simplify the GMAN by using only single layer
ST-Attention block to further extract the global spatio-temporal features. In this way, we can simplify the
complexity of the attention mechanism while guaranteeing prediction performance and reducing
computational cost. Wing loss is handpicked as the loss function with the aim to better train ADSTA-Net.
Extensive experiments are conducted on two real-world passenger flow datasets and the results confirm that
ADSTA-Net has superior performance, particularly in making accurate predictions under bad weather
conditions.
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In the future, we can explore applying ADSTA-Net to other practical applications, such as optimising
vehicle scheduling based on the impact of weather on passenger flow. Furthermore, we can collect additional
external factor data, such as POIs and weather data corresponding to larger transportation networks, to validate
the feasibility of the proposed ADSTA-Net. Additionally, we can explore more efficient methods for multi-
source data fusing and denoising.

ACKNOWLEDGEMENTS

This research is partly supported by the National Natural Science Foundation of China (No. 62103345), and
partly supported by Key Laboratory of Fujian Universities for Virtual Reality and 3D Visualization.

REFERENCES

[1] Cao XD, Shi Q, Chen YK, Chen CC. Short-term traffic flow uncertainty prediction based on novel GM(Z,1).
Promet-Traffic&Transportation. 2024;36(3):450-462. DOI: 10.7307/ptt.v36i3.497.

[2] LiLC, etal. Day-ahead traffic flow forecasting based on a deep belief network optimized by the multi-objective
particle swarm algorithm. Knowledge-Based Systems. 2019;172:1-14. DOI: 10.1016/j.knosys.2019.01.015.

[3] LiLC,etal. A hybrid method coupling empirical mode decomposition and a long short-term memory network to
predict missing measured signal data of SHM systems. Structural Health Monitoring-an International Journal.
2020;20(4): 1778-1793. DOI: 10.1177/1475921720932813.

[4] Zhang JL, et al. Deep learning architecture for short-term passenger flow forecasting in urban rail transit. IEEE
Transactions on Intelligent Transportation Systems. 2021;22(11):7004-7014. DOI: 10.1109/TITS.2020.3000761.

[5] Fang S, et al. MS-Net: Multi-source spatio-temporal network for traffic flow prediction. IEEE Transactions on
Intelligent Transportation Systems. 2022;23(7):7142—7155. DOI: 10.1016/j.neunet.2023.106093.

[6] Qin XA. Traffic flow prediction based on two-channel multi-modal fusion of MCB and attention. IEEE Access.
2023;11:58745-58753. DOI: 10.1109/ACCESS.2023.3280068.

[7]1 Yu X, Bao YX, Shi Q. Dynamic multiple-graph spatial-temporal synchronous aggregation framework for traffic
prediction in intelligent transportation systems. PeerJ Computer Science. 2024;10:e1913. DOI: 10.7717/peerj-
€s.1913.

[8] Hou Y, Deng ZY, Cui HK. Short-term traffic flow prediction with weather conditions: Based on deep learning
algorithms and data fusion. Complexity. 2021;2021:6662959. DOI: 10.1155/2021/6662959.

[91 Zhang JB, Zheng Y, Qi DK. Deep spatio-temporal residual networks for citywide crowd flows prediction.
Proceedings of the AAAI Conference on Artificial Intelligence 2017, 4-9 Feb. 2017, San Francisco, California,
USA. 2017. p. 1655-1661. DOI: 10.1609/aaai.v31i1.10735.

[10] Liang YX, et al. Fine-grained urban flow prediction. Proceedings of the Web Conference 2021, 19-23 Apr. 2021,
Ljubljana, Slovenia. 2021. p. 1833-1845. DOI: 10.1145/3442381.3449792.

[11] SunJK, et al. Predicting citywide crowd flows in irregular regions using multi-view graph convolutional networks.
IEEE  Transactions on Knowledge and Data  Engineering.  2022;34(5):2348-2359. DOI:
10.1109/TKDE.2020.3008774.

[12] LiLC, etal. Travel time prediction for highway network based on the ensemble empirical mode decomposition
and random vector functional link network. Applied Soft Computing. 2018;73:921-932. DOI:
10.1016/j.as0c.2018.09.023.

[13] LinCM, DuBW, Sun LL, Li LC. Hierarchical context representation and self-adaptive thresholding for multivariate
anomaly detection. IEEE Transactions on Knowledge and Data Engineering. 2024;36(7):3139-3150. DOI:
10.1109/TKDE.2024.3360640.

[14] Chen XY, Sun LJ. Bayesian temporal factorization for multidimensional time series prediction. IEEE Transactions
on Pattern Analysis and Machine Intelligence. 2022;44(9):4659-4673. DOI: 10.1109/TPAMI.2021.3066551.

[15] Kumar A, et al. Stationary wavelet transform based ECG signal denoising method. ISA Transactions.
2021;114(24):251-262. DOI: 10.1016/j.isatra.2020.12.029.

[16] Zhou T, et al. FiLM: Frequency improved legendre memory model for long-term time series forecasting.
Proceedings of the 36th International Conference on Neural Information Processing Systems 2022, 28 Nov-9 Dec.
2022, New Orleans, LA USA. 2022. p. 12677-12690.

[17] Kim SM, Kim YS. Enhancing sound-based anomaly detection using deep denoising autoencoder. IEEE Access.
2024;12:84323-84332. DOI: 10.1109/ACCESS.2024.3414435.

1592



Promet — Traffic&Transportation. 2025;37(6):1578-1593. Data Analysis and Modeling

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

Liu Z, Ma QL, Ma PT, Wang LH. Temporal-frequency co-training for time series semi-supervised learning.
Proceedings of the AAAI Conference on Artificial Intelligence 2023, 7-14 Feb. 2023, Washington DC, USA. 2023.
p. 8923-8931. DOI: 10.1609/aaai.v37i7.26072.

llias L, et al. Unsupervised domain adaptation methods for photovoltaic power forecasting. Applied Soft Computing.
2023;149:110979. DOI: 10.1016/j.as0¢.2023.110979.

Guo SN, et al. Deep spatio-temporal 3D convolutional neural networks for traffic flow prediction. IEEE
Transactions on Intelligent Transportation Systems. 2019;20(10):3913-3926. DOI: 10.1109/T1TS.2019.2906365.

Zheng CP, Fan XL, Wang C, Qi JZ. GMAN: A graph multi-attention network for traffic prediction. Proceedings of
the AAAI Conference on Artificial Intelligence 2020, 7-12 Feb. 2020, Hilton Midtown, New York, USA. 2020. p.
1234-1241. DOI: 10.1609/aaai.v34i01.5477.

Feng ZH, et al. Wing loss for robust facial landmark localization with convolutional neural networks. IEEE
Conference on Computer Vision and Pattern Recognition 2018, 18-23 Jun. 2018, Salt Lake City, UT, USA. 2018.
p. 2235-2245. DOI: 10.1109/CVPR.2018.00238.

Xu JJ, et al. Understanding and improving layer normalization. Proceedings of the 33rd International Conference
on Neural Information Processing Systems 2019, 8-14 Dec. 2019, Vancouver, Canada. 2019. p. 4381-4391.

China Meteorological Administration, 2024. https://www.cma.gov.cn/en/.

Song C, Lin YF, Guo SN, Wan HY. Spatial-temporal synchronous graph convolutional networks: A new framework
for spatial-temporal network data forecasting. Proceedings of the AAAI Conference on Artificial Intelligence 2020,
7-12 Feb. 2020, Hilton Midtown, New York, USA. 2020. p. 914-921. DOI: 10.1609/aaai.v34i01.5438.

Zhao L, et al. T-GCN: A temporal graph convolutional network for traffic prediction. IEEE Transactions on
Intelligent Transportation Systems. 2020;21(9):3848-3858. DOI: 10.1109/T1TS.2019.2935152.

Bai L, et al. Adaptive graph convolutional recurrent network for traffic forecasting. Proceedings of the 34th
International Conference on Neural Information Processing Systems 2020, 6-12 Dec. 2020, Vancouver, Canada.
2020. p. 17804-17815.

Jiang RH, et al. Spatio-temporal meta-graph learning for traffic forecasting. Proceedings of the AAAI Conference
on Artificial Intelligence 2023, 7-14 Feb. 2023, Washington DC, USA. 2023. p. 8078-8086. DOI:
10.1609/aaai.v37i7.25976.

Guo SN, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting.
Proceedings of the AAAI Conference on Artificial Intelligence 2019, 27 Jan-1 Feb. 2019, Honolulu Hawaii, USA.
2019. p. 922-929. DOI: 10.1609/aaai.v33i01.3301922.

Xu MX, et al. Spatial-temporal Transformer networks for traffic flow forecasting. Arxiv Preprint, 2020. DOI:
10.48550/arXiv.2001.02908.

Guo SN, et al. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE
Transactions on Knowledge and Data Engineering. 2021;34(11):5415-5428. DOI: 10.1109/TKDE.2021.3056502.

Lan SY, et al. DSTAGNN: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting.
Proceedings of the 39th International Conference on Machine Learning 2022, 17-23 Jul. 2022, Baltimore,
Maryland USA. 2022. p. 11906-11917.

Jiang JW, Han CK, Zhao WX, Wang JY. PDFormer: Propagation delay-aware dynamic long-range Transformer for

traffic flow prediction. Proceedings of the AAAI Conference on Artificial Intelligence 2023, 7-14 Feb. 2023,
Washington DC, USA. 2023. p. 4365-4373. DOI: 10.1609/aaai.v37i4.25556.

1593


https://www.cma.gov.cn/en/

