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ABSTRACT 

Accurate passenger flow prediction is important in intelligent transportation systems (ITS). 

It is widely known that introducing external factors, such as weather and air quality data, 

can enhance the feature representation of passenger flow data, which has a certain positive 

impact on improving prediction performance. However, if there is no effective denoising, 

the more external factors introduced, the lower the prediction performance. Therefore, there 

are few studies that incorporate external factors into modelling. To this end, we propose an 

Adaptive Denoising Spatio-Temporal Attention Network (ADSTA-Net) that integrates 

external factors for passenger flow prediction. The core of the model is to fully consider 

the impact of external factors on passenger flow. Specifically, in the initial stage of 

ADSTA-Net, multiple external factors are combined with passenger flow. Then, the 

adaptive learning parameter matrix (ALPM) and fast Fourier transform (FFT) are applied 

to perform adaptive denoising for the fused features at different times and locations. 

Finally, a simplified Graph Multi-Attention Network (GMAN) with only-one layer ST-

Attention block is used to learn global spatio-temporal dependencies. Extensive 

experiments are conducted on two real-world passenger flow datasets. The results 

demonstrate that ADSTA-Net has superior performance, particularly in making more 

accurate predictions under bad weather conditions. 
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1. INTRODUCTION 

Accurate passenger flow prediction can help solve some practical traffic problems, such as effectively easing 

road congestion, allocating resource, and so on [1–3]. Given the significant impact of historical passenger flow 

on prediction performance, most existing studies tend to map a correlation between historical and future flow. 

However, there are many different types of external factors, such as weather, holidays and air quality. Although 

their impact on prediction results may not be as significant as that of historical passenger flow, they still play 

a positive role in improving the model’s performance. For example, Figure 1 shows the passenger flow at 

Caitang Station of Xiamen bus rapid transit (BRT) during the same period but under different weather 

conditions over two consecutive weeks. It can be observed that during the same time period from 14:00 to 

15:00 on different days, passenger flow exhibits different trends under two different weather conditions: rainy 

and non-rainy. Obviously, the changes in passenger flow are influenced by weather factors. Therefore, 

reasonably incorporating external factors is of great significance for improving the performance of models. To 

distinguish from external factors, we define traffic flow as internal factors.  
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Figure 1 – Impact of rainfall on passenger flow at Caitang Station of Xiamen BRT 

However, there are few studies that incorporate external factors into modelling. The possible reasons are 

summarised as follows: (1) It is often difficult to ensure that the obtained external factors have the same time 

granularity as the internal factors, which leads to the problem of time mismatch between internal and external 

factors. (2) Not all external factors have a positive impact on prediction performance. If too many useless 

external factors are directly introduced, it is easy to mix in a large amount of noise and reduce performance. 

To better explore the impact of external factors on traffic flow prediction, we review the representative 

literature and list them in Table 1. In the literature, [4–6] use passenger flow, [7, 8] use vehicle flow, [5, 6, 9–

11] use taxi trajectory, [9, 11] use bicycle trajectory, [11] uses bicycle flow. Their characteristics and existing 

problems are summarised as follows. 

Table 1 – Summary of representative literature using external factors 

Model 

External factor Weather indicator 

Structure 
Weather Holiday POIs 

Air 

quality 

Weather 

Conditions 
Temperature Wind Rainfall Visibility Humidity Air 

MS-Net [5] √ √ √  √ √ √ √ √   (a) 

MCB+ATT [6] √     √ √ √   √ (a) 

SAE+RBF [8] √    √ √ √  √ √  (a) 

ST-ResNet [9] √ √   √ √ √     (a) 

STRN [10] √ √ √  √ √ √     (b) 

ResLSTM [4] √   √  √ √   √ √ (b) 

MVGCN [11] √ √   √ √ √     (b) 

DMSTSAF [7] √    √ √ √     (c) 

 

1) In terms of the diversity of external factors, the most widely used external factors are weather, holiday, 

points of interest (POIs) and air quality. For weather indicators, weather conditions, temperature and wind 

are the most commonly used in these models [5, 7, 8, 9–11]. Obviously, there is still a certain degree of 

subjectivity in deciding which external factors should be included in the model. In addition, to minimise 

noise, these models use no more than five weather indicators [4, 7, 10, 11] or a single categorical indicator 

of weather conditions, hoping to improve prediction performance by introducing as few weather indicators 

as possible [5, 7, 8, 9–11]. 

2) In terms of the structures of models, they are roughly divided into three types: (a) the first type shown in 

Figure 2a is to extract features from external factors through a feature network, while extracting spatio-

temporal features from internal factors through another branch of a spatio-temporal feature extraction 

model (STFEM). Then, a fully connected layer (FC) is typically used to simply concatenate the features 

extracted from the two branches to construct a prediction model [5, 6, 8, 9]. (b) The second type shown in 

Figure 2b is to extract features from internal and external factors through two independent feature networks, 

respectively. Then, the features extracted from the two branches are fused together and the fused features 

are performed for further feature extraction through STFEM [4, 10, 11]. (c) The third one shown in Figure 
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2c fuses the internal and external factors in the initial stage and then feeds them into STFEM for spatio-

temporal features extraction [7]. Compared with the first two types of models, the third type of model fully 

considers the fusion of internal and external factors in an earlier stage. However, this type of model is not 

commonly used. The possible reason is that the earlier the fusion occurs, the greater the negative impact 

of introduced noise on the effectiveness of feature extraction, which may reduce prediction performance. 

3) In terms of adaptive denoising [12, 13], there is limited research on both integrating internal and external 

data and adaptively denoising the fused features in traffic flow prediction. For example, the typical model 

[7], which represents the third type, applies a spatial and temporal attention mechanism to adaptively 

integrate the internal and external factors, but it does not effectively denoise the fused features. Fortunately, 

traffic flow prediction is an important branch of time series prediction. Currently, there are some effective 

methods, such as the Bayesian [14], wavelet transform [15], fast Fourier transform (FFT) [16], autoencoder 

[17], semi-supervised learning [18] and unsupervised learning [19], which are successfully used for 

denoising time series data. It is worth mentioning that FFT converts signals from the time domain to the 

frequency domain and reduces noise by filtering out high-frequency signals. Its high accuracy, ease of 

implementation and wide applicability have made it widely used in time series prediction and achieved 

good results [16]. For example, Frequency improved Legendre Memory (FiLM) is proposed to use Fourier 

transform to reduce noise in six time series data [16]. However, it is only used to reduce noise of individual 

time series data and not for denoising fused features. Furthermore, to the best of our knowledge, there is 

relatively little research on adaptive denoising in the field of time series prediction, especially in passenger 

flow prediction. The related study [20] only uses an adaptive parameter matrix for weight matching to 

consider the impact of sudden traffic flows at different times and regions on predictions, rather than the 

adaptive parameter matrix for adaptive denoising of fused features. 

 
Figure 2 – Three types of models for internal and external factors fusing: (a) the first type; (b) the second type; (c) the third type 

Therefore, the key to improving the performance of passenger flow prediction models that fuse external 

factors lies in how to fuse the internal and external factors and adaptively denoise the fused features. Given the 

shortcomings of the existing research, an Adaptive Denoising Spatio-Temporal Attention Network (ADSTA-Net) 

fused with external factors is proposed. The main contributions are summarised as follows: 
1) A spatio-temporal information distillation module is designed for effective fusion of internal and external 

factors and adaptive denoising on the fused features. As opposed to previous studies, we integrate various 

external factors with historical passenger flow to obtain the fused features in the initial stage of ADSTA-

Net, with the aim to enhance the feature representation of passenger flow data. Then, adaptive learning 

parameter matrix (ALPM) and FFT are used to adaptively denoise the fused features at different times and 

locations. In this way, the impact of external factors on passenger flow can be fully considered, which 

helps to improve the predictive performance. 

2) To globally extract the useful features from the fused features, we use the Graph Multi-Attention Network 

(GMAN) [21] as the backbone and simplify it into a new network with a single-layer ST-Attention block 

to ensure the prediction performance while reducing the complexity of the model. Furthermore, layer 

normalization is added to the ST-Attention block and Wing loss is handpicked as the loss function, both 

of which can further improve the training capability of ADSTA-Net. 



Promet – Traffic&Transportation. 2025;37(6):1578-1593.    Data Analysis and Modeling 

1581 

3) We evaluate the proposed ADSTA-Net on two real-world passenger flow datasets. The experimental 

results demonstrate that ADSTA-Net outperforms the existing models, particularly in making accurate 

predictions under the bad weather conditions. 

This paper is organised as follows: Section 2 describes the details of ADSTA-Net. Section 3 analyses the 

experimental results. Finally, Section 4 summarises the paper and discusses the future research directions. 

2. METHODOLOGY 

2.1 Overall architecture 

Figure 3a shows the architecture of ADSTA-Net, which is mainly composed of four parts: (1) the data fusion 

block (DFB) is designed to fuse external factors and passenger flow; (2) the adaptive denoising block (ADB) 

is designed to adaptively denoise the fused features, which mainly includes ALPM and FFT shown in Figure 

3b; (3) the spatio-temporal embedding (STE) is devised to embed the dynamic spatio-temporal correlations for 

further feature extraction, which is shown in Figure 3c; (4) the spatio-temporal attention block (STAB) is 

proposed to extract global spatio-temporal dependencies for prediction, which is shown in Figure 3d.  

In ADSTA-Net, the DFB first concatenates historical passenger flow 𝑋 and external factors 𝐸𝑥 to form the 

concatenated features 𝑋𝐸𝑥, and then performs the dimensional transformation on 𝑋𝐸𝑥 mainly through a linear 

layer and FC to obtain XFusion
'. The ADB is used to adaptively denoise XFusion

' through an ALPM and FFT in 

sequence, thereby obtaining 𝑋𝐴𝐷𝐵. 𝑋𝑆𝑇𝐸 is derived by adding spatial and temporal embedding. Then, 𝑋𝐴𝐷𝐵 and 

𝑋𝑆𝑇𝐸 are both used as the input to the STAB, and feature extraction is further performed through spatial and 

temporal attentions. After that, the global spatio-temporal dependencies 𝑋𝑆𝑇𝐴𝐵 will be obtained through a gated 

fusion mechanism and layer normalization. Finally, the predicted passenger flow 𝑌̂ will be obtained through a 

FC. During the procedure, Wing loss [22] is handpicked as the loss function. The details of each block are 

shown in the following Section 2.2 and Section 2.3. 

 
Figure 3 – The overall architecture of ADSTA-Net 

2.2 Spatio-temporal information distillation module 

As shown in Figure 3a, the spatio-temporal information distillation module mainly consists of three parts: 

the DFB, ADB and STE. As described in Section 1, 𝑋𝐸𝑥 contains a lot of noise. Although 𝑋𝐸𝑥 goes through a 

series of linear transformations to get XFusion
' in the DFB, XFusion

' still contains an amount of noise. Therefore, 

it is not appropriate to directly input XFusion
'  into the STAB without any processing. To design a more 

competitive prediction model, we specifically design the ADB to adaptively denoise the features in XFusion
'. 
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Data fusion block 

There are two inputs 𝑋 ∈ ℝ𝑃×𝑁 and 𝐸𝑥 ∈ ℝ𝑃×𝐸 in the DFB. 𝑋 and 𝐸𝑥 are firstly concatenated as 𝑋𝐸𝑥 ∈
ℝ𝑃×(𝑁+𝐸) based on Equation 1.  

𝑋𝐸𝑥 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑋, 𝐸𝑥)  (1) 

Then, a linear layer is used to transform 𝑋𝐸𝑥 to 𝑋𝐹𝑢𝑠𝑖𝑜𝑛 ∈ ℝ𝑃×𝑁 for feature extraction based on Equation 2: 

𝑋𝐹𝑢𝑠𝑖𝑜𝑛 = 𝑋𝐸𝑥𝑊 + 𝑏 (2) 

where W and b are learnable parameters. 

In order to effectively extract the global spatio-temporal dependencies in the subsequent STAB, we use FC 

to further transform the dimension of 𝑋𝐹𝑢𝑠𝑖𝑜𝑛 shown in Equation 3. FC uses the convolution with kernel size=1 

for linear conversion and 𝑅𝑒𝐿𝑈 as the activation function. After that, the dimension of 𝑋𝐹𝑢𝑠𝑖𝑜𝑛 is extended to 

P×N×D , and XFusion
' ∈ ℝ𝑃×𝑁×𝐷 is obtained as the output of the DFB: 

XFusion
' = 𝑅𝑒𝐿𝑈(𝑋𝐹𝑢𝑠𝑖𝑜𝑛𝑊 + 𝑏) (3) 

where 𝑊 and 𝑏 are learnable parameters.D is a new extended dimension of XFusion
'. 

Adaptive denoising block 

XFusion
' will be continue to be input into the ADB for adaptive denoising. The dimension transformation in 

the ADB is shown in Figure 4. In the initial stage of the ADB, we perform dimension swapping on XFusion
' to 

obtain XFusion
'' ∈ ℝ𝑁×𝐷×𝑃. In this way, we can easily perform FFT on XFusion

''since the temporal dimension P 

has been swapped to the last dimension. Considering that the dimension of P in XFusion
'' is small, we use a 

linear layer to extend its dimension from P to M based on Equation 4, where M>>P. As a result, XFusion
''' ∈

ℝ𝑁×𝐷×𝑀 is obtained: 

XFusion
''' = XFusion

''𝑊 + 𝑏 (4) 

where 𝑊 and 𝑏 are learnable parameters. M is an extended dimension of XFusion
'''. 

 
Figure 4 – Dimension transformation in the ADB 

Then, we randomly initialise the weights in ALPM, whose dimension is consistent with that of XFusion
'''. 

The weights in ALPM are all updated along with the other parameters. After the inner product between XFusion
''' 

and ALPM, we obtain 𝑋𝐴𝐿𝑃𝑀 ∈ ℝ𝑁×𝐷×𝑀 in Equation 5. In this way, we can adaptively assign higher weights to 

the key features and lower weights to the unimportant features for XFusion
''' through the ALPM:  

where ⨀ represents the inner product. 

Next, 𝑋𝐴𝐿𝑃𝑀 is sent to FFT for denoising. FFT is realised based on Equation 6, and 𝑋𝐹𝐹𝑇 ∈ ℝ𝑁×𝐷×(
𝑀

2
+1)

 is 

the obtained result. We select the first K sine wave signals with the lowest frequencies 𝑎𝑟𝑔𝑡𝑜𝑝𝐾(𝑋𝐹𝐹𝑇) from 

𝑋𝐴𝐿𝑃𝑀 = XFusion
'''⨀𝐴𝐿𝑃𝑀 (5) 
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𝑋𝐹𝐹𝑇 as denoised features in the frequency domain signal, and then convert 𝑎𝑟𝑔𝑡𝑜𝑝𝐾(𝑋𝐹𝐹𝑇) back into the time 

domain signal 𝑋𝐼𝐹𝐹𝑇 ∈ ℝ𝑁×𝐷×𝑀 via inverse fast Fourier transform (IFFT) shown in Equation 7. Compared to 

𝑋𝐴𝐿𝑃𝑀, 𝑋𝐼𝐹𝐹𝑇 represents the features after adaptive denosing by ALPM and FFT, which is more suitable for 

feature extraction in the subsequent STAB: 

𝑋𝐹𝐹𝑇 = ∑ 𝑋𝐴𝐿𝑃𝑀 ∙ 𝑒−𝑗
2𝜋
𝑁

𝜔𝑛

𝑀−1

𝑚=0

 (6) 

𝑋𝐼𝐹𝐹𝑇 =
1

𝑀
∑ [𝑎𝑟𝑔𝑡𝑜𝑝𝐾(𝑋𝐹𝐹𝑇)] ∙ 𝑒𝑗

2𝜋
𝑁

𝜔𝑛

𝑀−1

𝜔=0

 (7) 

where 𝑋𝐹𝐹𝑇  is the frequency domain signal, 𝑒−𝑗
2𝜋

𝑁
𝜔𝑛

  is used to convert the signal from time domain to 

frequency domain, 𝑋𝐼𝐹𝐹𝑇 is the time domain signal and 𝑒𝑗
2𝜋

𝑁
𝜔𝑛

 is used to convert the signal from frequency 

domain back to time domain. 

Finally, we use a linear layer to change the dimension of 𝑋𝐼𝐹𝐹𝑇 from 𝑁 × 𝐷 × 𝑀 to 𝑁 × 𝐷 × 𝑃 based on 

Equation 8, obtaining XIFFT' ∈ ℝ𝑁×𝐷×𝑃: 

XIFFT' = 𝑋𝐼𝐹𝐹𝑇𝑊 + 𝑏 (8) 

where 𝑊 and 𝑏 are learnable parameters. 

Then we continue to perform dimension swapping on XIFFT' and obtain the final output 𝑋𝐴𝐷𝐵 ∈ ℝ𝑃×𝑁×𝐷 

of the ADB. Through dimension swapping, we can make the dimension of 𝑋𝐴𝐷𝐵 the same as that of XFusion
'. 

Compared to XFusion
', 𝑋𝐴𝐷𝐵 is the result of adaptive denoising of XFusion

'. 

Spatio-temporal embedding 

The STE has two inputs: the graph of the traffic network 𝜍=(N, e) and a series of indexes of 𝑃 + 𝑄 time 
steps (𝑥𝑡−𝑃+1, … , 𝑥𝑡 , 𝑥𝑡+1, … , 𝑥𝑡+𝑄)𝑖𝑛𝑑𝑒𝑥, e.g. 2019-03-01 06:30:00. N and e represent the number of nodes 
and edges between nodes, respectively. P and Q are the step size of input and predicted flow, respectively. 

The main function of the STE is to embed 𝜍  and (𝑥𝑡−𝑃+1, … , 𝑥𝑡 , 𝑥𝑡+1, … , 𝑥𝑡+𝑄)𝑖𝑛𝑑𝑒𝑥  to 𝑒𝑆  and 𝑒𝑇 , 

respectively. Dimension transformation in the STE is shown in Figure 5. The STE is divided into two parts: 

spatial embedding and temporal embedding, whose architecture is the same with the STE in GMAN [21]. 

Specifically, spatial embedding uses node2vec to generate a vector representation of N nodes in the traffic 

network, and its result is represented as 𝑒𝑆 ∈ ℝ𝑁×𝐷. Temporal embedding uses one-hot encoding to encode 

(𝑥𝑡−𝑃+1, … , 𝑥𝑡)𝑖𝑛𝑑𝑒𝑥  and (𝑥𝑡+1, … , 𝑥𝑡+𝑄)𝑖𝑛𝑑𝑒𝑥  sequentially, and its result is represented as 𝑒𝑇 ∈ ℝ(𝑃+𝑄)×𝐷 . 

After that, we add 𝑒𝑆 and 𝑒𝑇 together and obtain the output 𝑋𝑆𝑇𝐸 ∈ ℝ(𝑃+𝑄)×𝑁×𝐷of the STE. 

   
Figure 5 – Dimension transformation in the STE 

2.3 Spatio-temporal attention block 

As shown in Figure 3a, the STAB has two inputs: 𝑋𝑆𝑇𝐸  and 𝑋𝐴𝐷𝐵. The main function of the STAB is to further 

extract global spatio-temporal dependencies from both 𝑋𝑆𝑇𝐸 and 𝑋𝐴𝐷𝐵 through a parallel attention mechanism. 

The dimension transformation in the STAB is shown in Figure 6. It contains spatial attention, temporal attention, 

gated fusion, layer normalization and residual connection. The processing is defined in Equations 9–12. 
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Figure 6 – Dimension transformation in the STAB 

𝐻𝑆 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑆(𝑋𝐴𝐷𝐵, 𝑋𝑆𝑇𝐸) (9) 

𝐻𝑇 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑇(𝑋𝐴𝐷𝐵, 𝑋𝑆𝑇𝐸) (10) 

𝐻𝑆𝑇 = 𝐺𝑎𝑡𝑒𝑑(𝐻𝑠,𝐻𝑇) (11) 

𝑋𝑆𝑇𝐴𝐵 = 𝑁𝑜𝑟𝑚(𝐻𝑆𝑇) + 𝐻𝑆𝑇 (12) 

 

In ADSTA-Net, the processing procedure of the STAB is mostly similar to that of the ST-Attention Block 

in GMAN [21]. However, the first difference is to add the layer normalization on 𝐻𝑆𝑇 ∈ ℝ𝑄×𝑁×𝐷, which makes 

gradients smoother, trains faster and has better generalization ability [23] in ADSTA-Net. In addition, the query, 

key and value are also different. Specifically, in order to reduce the complexity of ADSTA-Net and 

comprehensively take into account the impact of 𝑋𝑆𝑇𝐸 on 𝑋𝐴𝐷𝐵, we only use single-layer ST-Attention Block 

in the STAB instead of the three-layer ST-Attention Block in GMAN, and project 𝑆𝑇𝐸𝑃 ∈ ℝ𝑃×𝑁×𝐷 as key, 

𝑆𝑇𝐸𝑄 ∈ ℝ𝑄×𝑁×𝐷  as query, and the concatenation of 𝑋𝐴𝐷𝐵  and 𝑆𝑇𝐸𝑃  as value. 𝑆𝑇𝐸𝑃  and 𝑆𝑇𝐸𝑄  are 

decomposed from 𝑋𝑆𝑇𝐸 based on the historical P and future Q time steps, respectively. Then the final output 

𝑋𝑆𝑇𝐴𝐵 ∈ ℝ𝑄×𝑁×𝐷 of the STAB is obtained. 

It is worth mentioning that the proposed ADSTA-Net uses Wing loss [22] as the loss function, which helps 

to capture the small-size errors between the ground truth and predicted result, making the model training 

smoother. The specific definition is shown in Equation 13: 

𝑤𝑖𝑛𝑔(𝑥) = {
𝜔 𝑙𝑛(1 + |𝑥|/𝜀) , 𝑖𝑓|𝑥| < 𝜔

|𝑥| − 𝐶,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13) 

where 𝑥 is the error between the ground truth and predicted result, ω limits the range of the nonlinear part, ε 

limits the curvature of the nonlinear region and 𝐶 = 𝜔 − 𝜔 𝑙𝑛(1 + 𝜔/𝜀) is a constant. 

3. EXPERIMENTS 

3.1 Datasets 

We conduct the experiments on two real-world datasets, which are summarised in Table 2: (1) XMBRT is a 

passenger flow dataset collected from the Automatic Fare Collection (AFC) in Xiamen BRT, with 44 stations 

covering 92 days from 1 March 2019 to 31 May 2019, including weekdays and weekends. Its time interval is 

5 minutes, and the daily service hours are from 6:30 to 22:10, which generates 12×15+8=188 samples per day. 

Therefore, there are a total of 188×92=17,296 samples. (2) BJMetro is a passenger flow dataset collected from 

the Beijing subway, with 276 stations covering five consecutive weeks from 29 February 2016 to 3 April 2016, 

only including weekdays. Its time interval is 10 minutes, and the daily service hours are from 5:00 to 23:00, 

which generates 6×18=108 samples per day. Therefore, there are a total of 108×25=2,700 samples. On both 

datasets, we apply Z-Score Standardization to the data to accelerate the convergence of the model. 
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Table 2 – Dataset description 

Description XMBRT BJMetro 

Stations 44 276 

Time span 1 March 2019 – 31 May 2019 29 February 2016 – 3 April 2016 

Including weekends Yes No 

Days 92 25 

Time interval 
Passenger flow: 5 minutes,  

Weather: 1 hour 

Passenger flow: 10 minutes, 

Weather: half an hour, Air quality: 1 hour 

Samples 17,296 2,700 

External factors 11 weather indicators 4 weather indicators and 7 air quality indicators 

In terms of external factors, we use 11 weather indicators on XMBRT provided by China Meteorological 

Administration [24], including pressure (hPa), temperature (℃), relative humidity (%), rainfall in the past hour 

(mm), average wind direction in 2 minutes (degree), average wind speed in 2 minutes (m/s), wind direction in 

maximum wind speed (degree), maximum wind speed (m/s), wind direction in extreme wind speed (degree), 

extreme wind speed (m/s) and ground temperature (℃ ), with the time interval of one hour. To maintain 

consistency between passenger flow and weather data for effective fusion, we reused the 12 identical hourly 

weather data and pre-process them using Min-Max Normalization. 

We directly use the preprocessed public dataset of BJMetro [4], which already include the aligned passenger 

flow data and external factor data. Herein, we only use the inflow with a 10-minute interval, four weather 

indicators with a half-hour interval, including temperature (℃), dew point temperature (℃), relative humidity 

(%) and wind speed (m/s), as well as seven air quality indicators with a 1-hour interval, including real-time air 

quality index, PM2.5, PM10, SO2, NO2, CO and O3. 

3.2 Baselines 

In this paper, we compare ADSTA-Net with four types of models: (1) graph convolution network (GCN)-

based models, including Spatio-Temporal Synchronous Graph Convolutional Networks (STSGCN) [25], (2) 

Recurrent Neural Network (RNN) and GCN (RNN+GCN)-based models, including Temporal Graph 

Convolutional Network (TGCN) [26], Adaptive Graph Convolutional Recurrent Network (AGCRN) [27] and 

Meta-Graph Convolutional Recurrent Network (MegaCRN) [28], (3) attention (ATT)-based models, including 

Attention Based Spatial-Temporal Graph Convolutional Network (ASTGCN) [29], Spatio-Temporal 

Transformer Networks (STTNs) [30], Attention Based Spatial-Temporal Graph Neural Network (ASTGNN) 

[31], Dynamic Spatial-Temporal Aware Graph Neural Network (DSTAGNN) [32], GMAN [21] and 

Propagation Delay-Aware Dynamic Long-Range Transformer (PDFormer) [33], (4) the model considering 

external factors (Ex), including a deep learning architecture combining the Residual Network, GCN and Long 

Short-Term Memory (ResLSTM) [4]. 

3.3 Evaluation metric 

We use mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error 

(MAPE) for evaluation, and their definitions are shown in Equations 14–16: 

where n is the number of testing samples. 𝑦̂𝑡 is the prediction result and 𝑦𝑡 is the ground truth. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦̂𝑡 − 𝑦𝑡|

𝑛

𝑡=1

 (14) 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦̂𝑡 − 𝑦𝑡)

𝑛

𝑡=1

2

 (15) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦̂𝑡 − 𝑦𝑡

𝑦𝑡
| × 100%

𝑛

𝑡=1

 (16) 
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3.4 Hyperparameter settings 

Table 3 lists the hyperparameter settings in ADSTA-Net. We split the datasets into training, validating and 

testing sets with a ratio of 7:1:2. On XMBRT, we use historical one hour passenger flow, corresponding to 

P=12 time steps, to predict the flow of future 15, 30 and 60 minutes, corresponding to Q=3, 6 and 12 time 

steps, respectively. The number of stations is N=44, and the number of external factors is E=11.  

On BJMetro, we use historical one hour passenger flow, corresponding to P=6 time steps, to predict the 

flow of future 10, 30 and 60 minutes, corresponding to Q=1, 3 and 6 time steps, respectively. Compared with 

XMBRT, its number of stations is N=276, which is more complex. The number of external factors is E=11.  

In the DFB, the extended dimension of XFusion
'  is D=64 on both datasets. In the ADB, the extended 

dimension of XFusion
''' is M=256 on both datasets, and the value of K=⌈𝑃/2⌉ in Equation 7 is followed by Zhou 

et al. [16], which is set to 6 on XMBRT and 3 on BJMetro, respectively. In the STE, L is the total number of 

daily time steps, which is 12×15+8=188 and 6×18=108 on XMBRT and BJMetro, respectively. In the STAB, 

the settings of hyperparameters are referenced from the ST-Attention Block in GMAN [21]. In Wing loss, we 

set ω to 5 and ε to 3, respectively. 

All experiments are conducted on a server running Windows Server 2022, which is equipped with a CPU 

of Intel i9-13900K and a GPU of NVIDIA RTX 4090. We use the Adam optimiser with an initial learning rate 

of 0.001, batch size of 64 and dropout of 0.1. On the XMBRT dataset, the number of epochs is set to 200. If 

there is no performance improvement within 50 consecutive epochs, the optimizer will stop the training early. 

On the BJMetro dataset, the number of epochs is set to 1000. If there is no performance improvement within 

100 consecutive epochs, the optimizer will stop the training early. In addition, all baselines except for 

ResLSTM [4] use solely passenger flow as their inputs. The experimental results shown in Table 4 are obtained 

by running their open-source codes. Furthermore, in ResLSTM [4], P and Q on BJMetro are set to 5 and 1, 

respectively. For a fair comparison, we reproduce ResLSTM in our paper and adjust P to 6 and Q to 1, 3 and 

6, ensuring consistency with the inputs and predicted results of all models. 

Table 3 – Hyperparameter settings 

Block XMBRT BJMetro 

Dataset 

P=12 P=6 

Q=3, 6, 12 Q=1, 3, 6 

N=44 N=276 

E=11 E=11 

DFB D=64 D=64 

ADB 
M=256 M=256 

K=6 K=3 

STE L=188 L=108 

Wing loss ω=5, ε=3 ω=5, ε=3 

3.5 Main results 

The main results on XMBRT and BJMetro are summarised in Table 4. Across all time step predictions on 

XMBRT, ADSTA-Net consistently achieves a slightly lower MAPE than GMAN. For the 30-minute prediction 

on BJMetro, ADSTA-Net achieves a slightly lower MAE than MegaCRN, and for the 60-minute prediction on 

BJMetro it achieves a slightly lower MAE than PDFormer. In other cases, ADSTA-Net performs better. 

On the XMBRT, MegaCRN outperforms other baselines for 15-minute and 30-minute predictions, while 

PDFormer performs achieves the best performance for 60-minute prediction. This is due to the fact that 

MegaCRN employs a meta learning bank to learn traffic patterns of different types of nodes and PDFormer 

takes into account the time delay on propagation, thus improving prediction performance. STSGCN performs 

poorly, possibly due to its weak ability to simultaneously learn spatio-temporal dependencies using only GCN. 

Among the RNN+GCN models, AGCRN featuring an adaptive graph convolution network outperforms 

TGCN, which relies on stacked GRUs to expand the receptive field. This indicates that using an adaptive 

adjacency matrix can more effectively capture dynamic spatio-temporal features. In the ATT model, STTNs, 

ASTGNN and DSTAGNN achieve competitive results on most metrics. This is mainly contributed to the 

combination of the advanced attention mechanisms and GCN, which enables them to better extract spatio-
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temporal dependencies. The ASTGCN only employs the traditional attention mechanism to extract features, 

which limits its ability. The GMAN shows poor performance due to its reliance on using a stack of simple 

attention mechanisms for spatio-temporal modelling. The ResLSTM uses the second structure shown in Figure 

2b to fuse external factors, but due to its inability to enhance the feature expression of passenger flow data, its 

prediction results are unsatisfactory. This strongly proves that the fusion of internal and external factors in the 

initial stage helps improve the model’s performance. 

On the BJMetro dataset, MegaCRN and PDFormer continue to outperform other baselines, while STTNs 

and ASTGNN achieve competitive results across most metrics. Compared with XMBRT, GMAN shows 

improved results on the BJMetro datatset. This could be attributed to the fact that, with more stations, the 

attention mechanism can better capture global spatio-temporal features. 
In contrast, ADSTA-Net employs a single layer of parallel attention mechanisms to extract global spatio-

temporal features, with better results than the models that combine both the attention mechanism and GCN.  

This strongly proves that adaptive denoising of fused features, integrating both internal and external factors 

via ALPM and FFT can enhance the feature representation of passenger flow data, thus improving prediction 

performance. 

Table 4 – Main results on the XMBRT and BJMetro dataset, Marked: 1st place, 2nd place 

Dataset Model 
15-min 30-min 60-min 

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

XMBRT 

GCN STSGCN 6.54 10.59 44.04% 6.97 11.48 45.28% 7.86 13.40 49.15% 

RNN+GCN 

TGCN 6.69 10.05 41.56% 6.68 10.11 41.61% 7.23 11.07 63.61% 

AGCRN 5.82 9.23 37.75% 5.88 9.33 37.97% 5.97 9.51 38.31% 

MegaCRN 5.44 8.39 35.78% 5.49 8.52 35.98% 5.61 8.79 36.50% 

ATT 

ASTGCN 6.36 10.17 38.73% 6.52 10.46 39.82% 6.93 11.25 42.22% 

STTNs 5.70 8.97 35.98% 5.94 9.53 36.43% 6.62 11.07 37.54% 

ASTGNN 5.57 8.78 36.63% 5.66 8.98 37.07% 5.84 9.39 37.72% 

DSTAGNN 5.67 8.86 36.46% 5.66 8.88 35.95% 5.82 9.21 37.29% 

GMAN 6.08 9.46 30.79% 6.41 10.03 30.53% 7.19 11.80 32.40% 

PDFormer 5.53 8.53 35.40% 5.53 8.54 35.63% 5.55 8.56 35.98% 

Ex 

ResLSTM 6.42 9.90 36.36% 6.20 9.48 38.67% 6.48 9.89 40.29% 

ADSTA-Net 

(Ours) 
5.29 8.13 34.03% 5.32 8.19 35.82% 5.34 8.20 34.10% 

Dataset Model 
10-min 30-min 60-min 

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

BJMetro 

GCN STSGCN 30.40 49.68 87.39% 32.24 55.82 87.01% 36.32 69.50 90.55% 

RNN+GCN 

TGCN 72.91 138.26 143.30% 87.67 161.78 224.67% 108.35 193.81 333.06% 

AGCRN 27.05 90.09 20.40% 26.28 84.93 20.76% 27.05 86.66 22.18% 

MegaCRN 16.33 28.59 19.75% 16.51 28.93 20.33% 17.12 30.66 23.87% 

ATT 

ASTGCN 29.74 80.16 32.26% 31.74 82.84 34.04% 36.10 92.37 40.20% 

STTNs 17.12 30.18 19.95% 17.88 32.21 21.17% 19.05 35.01 23.97% 

ASTGNN 18.49 32.51 24.70% 19.28 34.16 25.45% 20.83 37.79 30.59% 

DSTAGNN 21.45 49.84 21.10% 20.77 45.37 21.23% 21.24 45.56 22.88% 

GMAN 17.09 29.07 20.71% 23.49 43.61 23.79% 34.14 65.90 26.39% 

PDFormer 16.75 29.66 19.16% 16.81 29.74 19.13% 17.10 30.28 19.38% 

Ex 

ResLSTM 19.39 32.45 23.22% 18.75 31.11 22.83% 20.39 34.68 23.82% 

ADSTA-Net 

(Ours) 
16.04 27.62 17.06% 16.69 28.67 17.61% 17.12 29.39 18.64% 
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3.6 Ablation study 

To verify the effectiveness and efficiency of each component in ADSTA-Net, we generate a series of 

variants and conduct a computational cost analysis for the tasks of future one hour passenger flow prediction 

on XMBRT and BJMetro. The seven variants of ADSTA-Net are summarised in Table 5. (1) w/o Ex: External 

factors have been removed; (2) w/o ALPM: Adaptive learning parameter matrix has been removed; (3) w/o 

FFT: FFT and IFFT have been removed; (4) w/o ALPM+FFT: Adaptive learning parameter matrix, FFT and 

IFFT have been simultaneously removed. (5) w/o Ex+ALPM+FFT: External factors, adaptive learning 

parameter matrix, FFT and IFFT have been simultaneously removed; (6) ADSTA-G: Replacing STAB with 

the architecture of GMAN and using the batch size of 32 on BJMetro; (7) ADSTA-L: Replacing FFT and IFFT 

with two linear layers in the ADB. 

Table 5 – Ablation study on two datasets, marked: 1st place 

Variant 

XMBRT BJMetro 

MAE RMSE MAPE 

Training 

time 

(s/epoch) 

Inference 

time 

(s) 

MAE RMSE MAPE 

Training 

time 

(s/epoch) 

Inference 

time 

(s) 

w/o Ex 5.46 8.47 37.21% / / 17.43 30.84 19.26% / / 

w/o ALPM 5.39 8.32 35.08% 14.7 0.4 17.49 30.62 20.48% 13.7 0.3 

w/o FFT 5.42 8.38 35.09% 10.8 0.3 17.69 31.06 19.79% 8.4 0.2 

w/o ALPM+FFT 5.45 8.40 39.54% 8.4 0.3 18.04 31.92 19.82% 5.7 0.2 

w/o Ex+ALPM+FFT 5.53 8.55 36.83% / / 18.17 32.76 21.76% / / 

ADSTA-G 5.87 9.13 38.07% 33.7 0.6 17.3 30.22 17.40% 32.7 0.7 

ADSTA-L 5.38 8.28 35.00% 12.0 0.4 17.61 31.81 20.24% 9.5 0.3 

ADSTA-Net (Ours) 5.34 8.20 34.10% 16.1 0.4 17.12 29.39 18.64% 15.6 0.4 

 

Based on the results in Table 5, we can draw the following conclusions. 
1) On XMBRT, observing the results of ‘w/o Ex’, ‘w/o ALPM’ and ‘w/o FFT’, we find that ‘w/o Ex’ yields the 

worst performance. This confirms our hypothesis that adding the weather indicators is indeed capable of 

improving the prediction accuracy. The ‘w/o FFT’ variant exhibits the second-lowest performance. It indicates 

that FFT can effectively reduce the noises for the fused features, which also has a certain impact on improving 

the performance. Although ‘w/o ALPM’ contributes the least to ADSTA-Net, ALPM can adaptively capture 

important features at different times and locations, which can improve the performance of ADSTA-Net to a 

certain extent. 
2) On BJMetro, the results of ‘w/o Ex’ are not as poor as those observed on XMBRT. This may be because the data 

sample size of BJMetro is relatively smaller, so the impact of incorporating external factors is not as pronounced 

as that on XMBRT. Additionally, the MAE and RMSE of ‘w/o FFT’ are worse than those of ‘w/o Ex’ and ‘w/o 

ALPM’. One possible reason is that the traffic network of BJMetro is more complex, making the role of FFT 

more pronounced. This fully demonstrates the effectiveness of applying FFT for denoising the fused features. 

3) On both datasets, we conduct the variants by removing multiple components. Except for the MAPE on 

XMBRT, ‘w/o Ex+ALPM+FFT’ not only performs worse than the three variants with a single component 

removed, but also falls behind the variant ‘w/o ALPM+FFT’ with two components removed. These results 

once again strongly confirm that incorporating external factors can significantly enhance ADSTA-Net’s 

performance. The more the components are removed, the poorer results become. 
4) To more comprehensively explore the effectiveness and efficiency of ADSTA-Net, we conduct ablation study 

on two variants of ADSTA-G and ADSTA-L. Except for the MAPE on BJMetro, the results of ADSTA-G are 

not as good as those of ADSTA-Net on both datasets, which proves the effectiveness of simplifying the GMAN’s 

architecture. Additionally, the MAE and RMSE performance of ADSTA-G on BJMetro slightly decreases, 

possibly due to its more complex transportation network, where adding appropriate attention layers has a 

relatively small impact on model’s performance. On XMBRT, the decrease in ADSTA-L’s results is not 

significant, potentially due to the simplicity of the dataset with fewer stations, resulting in almost no difference 

in the denoising effect of using FFT or linear layers for fused features. From the perspective of training and 

inference time, ADSTA-G runs much slower compared to other variants and ADSTA-Net, proving that 
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simplifying GMAN can effectively improve computational efficiency. When conducting experiments on 

BJMetro with more stations in ADSTA-G, the batch size needs to be changed from 64 to 32, which strongly 

proves that using a multi-layer attention mechanism will significantly increase the complexity of the model. 

Therefore, it is necessary to simplify GMAN’s architecture.  

3.7 Performance and hyperparameter sensitivity analysis in Wing loss 

We validate the effectiveness of Wing loss in ADSTA-Net by analysing the impact of Wing loss and three 

other commonly used loss functions on ADSTA-Net. All the results are future one hour prediction results on 

XMBRT, which is shown in Table 6. Evidently, Wing loss achieves the best performance across all metrics, 

thanks to its greater focus on small-size errors, which in turn makes the training process smoother. 

Consequently, we select Wing loss as the loss function used in ADSTA-Net. 

In addition, Wing loss has two important hyperparameters: ε and ω. In Figure 7, ε is firstly set to 2 to 

determine the best value of ω. Figures 7a–7c are the results of the MAE, RMSE and MAPE, respectively The 

best results for MAE and RMSE are achieves when ω=2 or 5, while the MAPE performs better when ω=5 

compared to ω=2. Therefore, ω is set to 5. Similarly, based on the results in Figures 7d–7f, we set 𝜀 to 3. 

Table 6 – Performance comparison of the four loss functions on XMBRT, Marked: 1st place 

Loss function MAE RMSE MAPE Loss function MAE RMSE MAPE 

Huber loss 5.35 8.23 34.26% MAE loss 5.35 8.24 37.05% 

MSE loss 5.40 8.29 38.39% Wing loss 5.34 8.20 34.10% 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 7 – Hyperparameter sensitivity analysis in Wing loss: (a) The impact of ω on MAE when ε=2;  

(b) The impact of ω on RMSE when ε=2; (c) The impact of ω on MAPE when ε=2; (d) The impact of ε on MAE when ω=5;  

(e) The impact of ε on RMSE when ω=5; (f) The impact of ε on MAPE when ω=5 

3.8 Generalization analysis of the adaptive denoising 

In this section, we incorporate the 11 weather indicators from XMBRT and the ADB of ADSTA-Net into 

the baselines STSGCN and ASTGCN to examine the impact of adding external factors on their prediction 

performance. Additionally, we aim to further verify the generalization ability of the adaptive denoising through 

ALPM and FFT within the ADB of ADSTA-Net. Table 7 shows the comparisons of the results for the next one 

hour passenger flow prediction on XMBRT in the two baselines. Here, ‘w/o Weather’ refers to the variant 

without any weather indicators, while ‘w/ Weather’ represents the variant that includes the 11 weather 

indicators. We use the ratio of the absolute difference between ‘w/ Weather’ and ‘w/o Weather’ divided by 

‘w/o Weather’ to represent the performance improvement of the two baselines after adding weather indicators 

and the ADB. 

As shown in Table 7, in terms of the horizontal comparison of the results, the performance of both STSGCN 

and ASTGCN has been improved to a certain extent. In terms of the vertical comparison of the results, the 

poorer the performance of the two baselines, the more significant the improvement. Furthermore, these results 

also verify the generalization of the adaptive denoising. 
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Table 7 – Performance improvement by adding weather into the two baselines on XMBRT 

Baseline 
w/o Weather w/ Weather Improved 

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

STSGCN 7.86 13.40 49.15% 6.75 11.00 42.12% 14.12% 17.91% 14.30% 

ASTGCN 6.93 11.25 42.22% 6.26 10.01 40.44% 9.66% 11.02% 4.21% 

3.9 Case study 

To further validate ADSTA-Net under different weather conditions, we conduct a case study on XMBRT 

for the future one hour passenger flow prediction. Firstly, we calculate the Pearson Correlation Coefficient 

between the 11 weather indicators and passenger flow to identify which indicators are more significant in 

influencing passenger flow on XMBRT. We then choose them to classify the weather conditions. As shown in 

Figure 8, more than half of the values are less than 0.04, indicating that most weather indicators exhibit weak 

correlations with passenger flow. Clearly, it is crucial to effectively denoise the fused features. 

In Figure 8, the numbers marked in the leftmost column represent the ranking of the correlation values 

between each weather indicator and passenger flow. These correlations are based only on absolute values, 

without considering whether they are positive or negative values. Obviously, the four weather indicators most 

closely correlated with passenger flow are ground temperature, temperature, relative humidity and extreme 

wind speed. 

Firstly, due to the physical similarity between ground temperature and temperature, and the fact that 

temperature is a more commonly used indicator in our daily life, temperature is selected. Secondly, the 

correlation coefficient of relative humidity ranks third and is closely related to rainfall in the past hour. 

Therefore, both rainfall in the past hour and relative humidity are selected. Finally, the fourth-ranked indicator, 

extreme wind speed, which differs from the previous three types of indicators, is also selected. 

In summary, the final selected weather indicators are temperature, rainfall in the past hour, relative humidity 

and extreme wind speed. 

 
Figure 8 – Pearson correlation coefficient between the passenger flow and 11 weather indicators 

As shown in Table 8, according to the four selected weather indicators, we categorise the weather conditions 

for weekdays and weekends into two main categories: Case 1 represents bad weather conditions, whereas Case 

2 represents good weather conditions. Compared to weekends, the impact of weather conditions on travel is 

relatively smaller on weekdays, as weekdays are primarily dedicated to commuting for most people. Therefore, 

there are slight differences in the classification standards for weather conditions between weekdays and 

weekends, with weekdays applying stricter standards compared to weekends. Specifically, for weekdays in 

Case 1, the thresholds for the four weather indicators are as follows: (1) Temperature is 30°C or above. This 

threshold is determined by increasing the average temperature value in the testing dataset by 5°C; (2) Relative 

humidity is 99% or higher. This threshold is directly obtained from the testing dataset; (3) Rainfall in the past 

hour is 9mm/h or more; (4) Extreme wind speed is 11m/s or higher. These two thresholds are respectively 
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determined according to rainfall and wind speed classification standards established by the China 

Meteorological Administration [24]. For weekends in Case 1, we only select rainfall in the past hour as the 

core classification criterion for weather conditions. When rainfall reaches 2mm/h or above, it is regarded as a 

bad weather condition. In Case 2, the weather indicator thresholds for both weekdays and weekends are 

reversed compared to those in Case 1. 

Table 8 – Weather condition classification on XMBRT 

Indicator 

Case 
Temperature Relative humidity Rainfall in the past hour Extreme wind speed 

Case 1 
Weekdays ≥30℃ ≥9mm/h ≥99% ≥11m/s 

Weekends \ ≥2mm/h \ \ 

Case 2 
Weekdays <30℃ <9mm/h <99% <11m/s 

Weekends \ <2mm/h \ \ 

 

To simplify the analysis, we integrate the testing data of weekdays and weekends under two different 

weather conditions. Namely, Case 1 includes all weekdays and weekends data under bad weather conditions 

and Case 2 includes all weekdays and weekends data under good weather conditions. The comparison of the 

predicted passenger flow for the next hour on XMBRT is shown in Table 9. The MAE and RMSE of Case 1 are 

not only better than those of Case 2, but also exceed the results of ADSTA-Net. This indicates that ADSTA-

Net can predict passenger flow well even under a bad weather condition, effectively proving the robustness of 

ADSTA-Net. Excitingly, even when employing 11 different weather indicators without any subjective 

filtering, ADSTA-Net still delivers satisfactory prediction performance. The MAPEs of Case 1 is lower than 

those of Case 2 and ADSTA-Net. The possible reason is that the passenger flow in a bad weather condition 

may be smaller compared to good weather conditions. According to Equation 16, smaller true values can lead to 

larger MAPE. In addition, we remove the weather data from ADSTA-Net for a horizontal comparison. It is 

evident that in both cases, the results of ‘w/o Weather’ are worse than those of ‘w/ Weather’, further confirming 

that adding weather data significantly improves prediction performance. It also quantitatively demonstrates 

that changes in passenger flow are closely links to weather, thereby confirming that effectively incorporating 

external factors can improve the model’s performance. 

Table 9 – Comparison of prediction performance under the two weather conditions on XMBRT 

Case 
w/ Weather w/o Weather 

MAE RMSE MAPE MAE RMSE MAPE 

Case 1 5.08 7.93 40.32% 5.37 8.45 41.66% 

Case 2 5.38 8.30 34.70% 5.50 8.53 35.69% 

ADSTA-Net (Ours) 5.34 8.20 34.10% 5.46 8.46 36.09% 

4. CONCLUSION  

In this paper, we propose an adaptive denoising spatio-temporal attention network fused with external 

factors tailored for passenger flow prediction. Initially, we design a spatio-temporal information distillation 

module for adaptively denoising the fused features by integrating the multiple external factors with passenger 

flow in the initial stage of ADSTA-Net. Then, we use ALPM and FFT to achieve adaptive denoising for the 

fused features at different times and locations. After that, we simplify the GMAN by using only single layer 

ST-Attention block to further extract the global spatio-temporal features. In this way, we can simplify the 

complexity of the attention mechanism while guaranteeing prediction performance and reducing 

computational cost. Wing loss is handpicked as the loss function with the aim to better train ADSTA-Net. 

Extensive experiments are conducted on two real-world passenger flow datasets and the results confirm that 

ADSTA-Net has superior performance, particularly in making accurate predictions under bad weather 

conditions. 
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In the future, we can explore applying ADSTA-Net to other practical applications, such as optimising 

vehicle scheduling based on the impact of weather on passenger flow. Furthermore, we can collect additional 

external factor data, such as POIs and weather data corresponding to larger transportation networks, to validate 

the feasibility of the proposed ADSTA-Net. Additionally, we can explore more efficient methods for multi-

source data fusing and denoising. 
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