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ABSTRACT 

Speeding is the major reason for road traffic crashes and deaths in India. The other driver’s 

faults include driving under the influence, using mobile phones while driving and driving on 

the wrong side of the road. Therefore, this study attempts to predict and investigate the driver 

injury severity (DIS) in speeding-related crashes. A total of 793 police-reported single-

vehicle and two-vehicle crash data from Imphal City, India, collected between 2011–2020, 

were analysed and modelled. For DIS prediction, eleven supervised machine learning (ML) 

models were implemented using 5-fold and 10-fold cross-validation (FCVs) and trained at 

train ratio (TR) values of 0.5, 0.6, 0.7 and 0.8 in each FCV. The top ML model for the DIS 

prediction was selected based on the best combination of recall, accuracy, F1 score, area 

under the curve (AUC) and precision metrics. Feature importance analysis (FIA) was 

conducted to determine the impactful factors in DIS prediction. The gradient boosting tree 

(GBT), stochastic gradient descent, decision tree and lasso-LARS models were identified as 

the top-performing ML models for the DIS prediction at TR = 0.5, 0.6, 0.7 and 0.8, 

respectively, in 5-FCV. The light GBM (TR = 0.5 and 0.7), GBT (TR = 0.6) and lasso-LARS 

(TR = 0.8) were the best-performing ML models in 10-FCV. The FIA results indicated that 

vehicle type (two-wheeler), nature of crash (head-on collision) and time of crash (12 PM–6 

PM and 6 AM–12 PM) variables were the most impactful variables on the DIS prediction in 

Imphal speeding-related crashes. These ML models can be employed in hilly areas for the 

accurate prediction of DIS. The study results can help transportation planners in designing 

road safety measures and strategies to lessen DIS in speeding-related crashes. 

KEYWORDS 
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1. INTRODUCTION 

Road traffic accidents (RTAs) continue to pose a serious public health challenge in India, contributing to 

one out of every ten road traffic fatalities worldwide [1]. The country has shared 11% of worldwide RTA 

fatalities, imposing an economic burden approximately equal to 3% of the country’s gross domestic product 

[2]. Though India initiated many road safety programs in the past decades, approximately 0.15 million people 

die on Indian roads annually, which translates, on average, into 1,130 crashes and fatalities every day or 47 

crashes and 18 deaths per hour [2]. This figure will further increase unless effective road safety 

countermeasures are taken by the Government of India because the country’s population, road construction 

and number of vehicles are increasing day by day. Moreover, over-speeding was reported to be the major 

reason for road crashes and deaths in India [2]. In the year 2021, around 74.4% of crashes and 72.2% of deaths 

were recorded due to speeding. The other major factors that cause RTAs and fatalities due to the driver’s fault 

include driving under the influence of alcohol/drugs, mobile phone usage, driving on the wrong side and 
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jumping a red light [2]. Based on this information, examination of driver injury severity (DIS) in speeding-

related crashes in India is of considerable importance. 

Methodologically, in recent years, many researchers in the field of crash severity prediction and analysis 

have favoured machine learning (ML) technologies over classic statistical methods (logistic regression, 

ordered logit and ordered probit models) because the statistical models typically rely on predefined 

assumptions (e.g. linearity, normality, homoscedasticity) and often focus on capturing simpler relationships 

between variables. Moreover, these models struggle with large datasets or high-dimensional data. In addition, 

these models fail to explicitly account for unobserved heterogeneity (factors that influence outcomes but are 

not directly measured in the data) [3–5]. This leads to biased results and inaccurate conclusions. As a result, 

ML methods are often preferred in situations where predictive accuracy, no pre-defined assumptions, 

flexibility and the ability to model complex interactions are crucial [6]. To overcome the black box 

characteristic of the ML methods, several recent studies have employed the Shapley Additive exPlanations 

(SHAP) approach in crash severity prediction [7, 8]. SHAP is an application of cooperative game theory, 

specifically its solution concept known as Shapley values. SHAP does this by giving each feature in the input 

data point its score based on how much that feature contributes to the model’s final prediction compared to the 

mean or average prediction made using all subsets of that feature across the dataset. This allows for a detailed, 

consistent and fair explanation of how each feature impacts the final prediction [9]. 

Therefore, the ML method is used in the present study to predict the DIS in speeding-related crashes and 

simultaneously to explore the impacts of influential factors on DIS prediction using feature importance analysis 

(FIA). The structure of the article is as follows: Section 2 provides a review of pertinent literature. The study 

data and methodology are elaborated in Section 3. Results and discussion of DIS prediction and FIA are 

presented in Section 4. Section 5 presents the summary and conclusions of the study, along with limitations 

and future studies. 

2. LITERATURE REVIEW 

Various ML methods have been used for the analysis and prediction of crash severity and DIS in several 

previous studies. These include random forest (RF) [10], decision tree (DT) [11], support vector machine 

(SVM) [12], extra tree (ET) [13], light gradient-boosting machine (light GBM) [14], eXtreme gradient boosting 

(XGBoost) [15], AdaBoost [16], k-nearest neighbours (KNN) [17], naive Bayes (NB) [18], artificial neural 

network (ANN) [19] and multi-layer perceptron (MLP) [20]. The following subsections outline the review of 

(1) ML-based studies on crash severity prediction, (2) ML-based studies on DIS prediction and (3) ML and 

statistical-based studies on speeding-related crashes.  

2.1 Machine learning-based studies on the crash severity prediction 

In many studies, the predictive performance of the DT model was superior to other ML models in the crash 

injury severity prediction. For example, Cai et al. [21] reported that the DT model had better performance than 

the RF, logistic regression (LR), ANN and SVM models for crash severity prediction in the United States. This 

result was in agreement with the findings of Olutayo & Eludire [22] in Nigeria, Pakgohar et al. [23] in Iran 

and Taamneh et al. [24] in the United Arab Emirates. 

Several past research studies conducted in the United States [25, 26], China [27, 28] and India [12, 29] 

reported the SVM model as the best-performing ML model compared to other statistical and ML models.  

In China, Zhang et al. [30] compared the predictive performance of NB, KNN, XGBoost and binary logistic 

regression (BLR) models for the prediction of single-vehicle and multi-vehicle crash severity using five-year 

(2015–2019) data. They found that the XGBoost model outperformed the KNN, NB and BLR models in the 

injury severity prediction. The comparison results of the study were quite consistent with those reported by 

Mousa et al. [31] in the United States and Jamal et al. [32] in Saudi Arabia. 

Many studies conducted in different countries have reported the superiority of the RF model over other ML 

models for crash severity prediction, such as Beshah et al. [33] in Ethiopia, Umer et al. [34] in the United 

States, Gang & Weng [35] in China, Wahab & Jiang [36] in Ghana, Chen & Chen [37] in Taiwan, Al-Mistarehi 

et al. [38] in Jordan and Bokaba et al. [10] in South Africa. 

In China, Wei et al. [39] analysed and predicted the factors contributing to crash severity using six ML 

methods (light GBM, LR, SVM, KNN, XGBoost and DT). The result revealed that the light GBM model was 

considered the best ML model with accuracy = 92.6%, F1-score = 92.8% and the area under the curve (AUC) 

= 0.986. This result was consistent with the findings of [40] and [41]. Yang et al. [41] compared the 



Promet – Traffic&Transportation. 2025;37(6):1612-1627.  Safety and Security  

1614 

performance of the RF, light GBM and ANN models to identify the influential factors in driver-distracted 

crashes in the United States. They found that the light GBM model outperformed the other trained models.  

The ANN, KNN, LR, ET, AdaBoost and MLP models were reported to be the top ML models for the 

prediction of crash injury severity in the studies of Alkheder et al. [19], Beshah & Hill [33], Fiorentini & Losa 

[42], Birfir et al. [13], Labib et al. [16] and Cicek et al. [5], respectively. 

2.2 Machine learning-based studies on the driver injury severity prediction 

In China, Zhou et al. [43] reported the XGBoost model as the superior model in the prediction of truck and 

car DIS when compared to the multinomial logit (MNL), NB, classification and regression tree (CART) and 

SVM models. A similar outcome was reported by Mokoatle et al. [15] in South Africa and Lee and Li [44] in 

South Korea. Mokoatle et al. [15] reported that the XGBoost model (above 80% accuracy) outperformed the 

multivariate logistic regression (MLR) model (around 60% accuracy). 

The SVM-polynomial kernel model was the most accurate ML model for DIS prediction in a United States 

study [45]. The FIA results of the study revealed that driving under the influence of alcohol or drugs, seatbelt 

use, time of crash and crash location were significantly associated with DIS. 

In the United States, Abdel-Aty & Abdelwahab [17] reported that the MLP model (accuracy = 73.5%) 

outperformed the fuzzy adaptive resonance theory neural network (70.6%) and ordered probit (OP) (61.7%) 

models in predicting DIS. Also, seat belt usage, driver gender, speed of vehicle, vehicle type, impact point and 

type of area were the influencing variables for the DIS.  

Krishnaveni & Hemalatha [46] evaluated the predictive performance of NB, DT, AdaBoost and RF models 

for the DIS in India. The authors observed that the RF model showed a better performance among all trained 

ML models. By applying the RF model, Zhu et al. [47] examined the DIS patterns using the three-year 

Washington state data and found that truck vehicles, lack of restraint, female drivers, driver distraction and 

impairment, rollover type crash, time of crash and overtake operations were the main influential variables to 

the DIS in a single-vehicle run-off-road crash. In the United States, Mafi et al. [48] reported that the RF model 

showed superiority over the instance-based and DT models in the DIS prediction. A similar result was reported 

in a Spanish study [49], in which the authors found that the RF+CART model outperformed the SVM and 

binomial logit models in the prediction of the DIS. 

Using police-reported six-year (1995–2000) crash data, Chong et al. [50] evaluated the performance of four 

ML models (DT, SVM, ANN and hybrid DT-ANN) for DIS prediction in the United States. They reported in 

their study that the hybrid DT-ANN model outperformed the SVM, ANN and DT models. The results of the 

CART indicated that vehicle type, drinking while driving, crash location, nature of crash, seatbelt use and 

number of vehicles involved were the main contributors to the DIS in truck crashes in Taiwan [51].  

2.3 Machine learning and statistically-based studies on speeding-related crashes  

In Taiwan, Tseng et al. [52] examined the contributory factors to truck DIS in speeding-related crashes 

using the BLR model. The study results implied that driver age and education, driving status and sleep quality 

factors were statistically significant in the speeding offences. 

In Singapore, Zhou & Chin [53] investigated the various contributing factors to DIS in out-of-control 

single-vehicle crashes by applying the OP model. The results implied that age (≥ 65 years), drinking while 

driving, left and right turn manoeuvres and midnight driving were associated with higher rider and DIS. 

Focusing on speeding-related crashes, Islam & Mannering [54] studied the gender and temporal instability 

effect in the DIS using a mixed logit model in Florida. The model results revealed that male and female drivers 

had significant differences in injury levels and that the effect of contributing factors to the DIS varied 

significantly over time. 

In a cross-sectional study, Rashmi & Marisamynathan [55] examined the risk factors that lead to speeding-

related crashes among long-haul truck Indian drivers using the BLR and ML models. The authors reported that 

the RF model demonstrated better performance in the prediction of speeding behaviour than the BLR, DT, 

AdaBoost and XGBoost models.  

Zhang et al. [56] applied the geographically weighted neural network (GWNN) model to establish the 

relationships between contributing factors and injury severity of speeding-related crashes. They noted 

important spatial variability for several factors associated with injury severity in speeding-related crashes. 

These include driver condition, vehicle type, crash type, speed limit, weather, time and location of the crash, 

road configuration and volume of road traffic. 
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Previous studies have studied the influence of speeding (as an independent variable) on crash injury 

severity/driver injury severity using traditional statistical models [57–59]. 

From the above reviews, it is observed that many researchers have focused their studies on the analysis and 

prediction of crash severity or DIS using statistical models. Studies on speeding-related crashes were also 

carried out using these traditional methods. However, none of them have applied ML methods for the 

prediction of the DIS in speeding-related crashes. Moreover, most of these studies have been conducted in the 

United States and other developed nations, and limited literature from developing countries is available, 

particularly India. To address these gaps, the current study aims to predict DIS in speeding-related crashes by 

comparing the predictive performance of the ML models using a coding-free platform and analysing feature 

importance ratings of various contributing factors from the best ML model results using the SHAP approach.  

3. DATA AND METHODS 

3.1 Data and variables description 

This study was conducted using a police-reported speeding-related crash dataset collected between 2011 

and 2020 from Imphal, the capital of Manipur, India. According to the Imphal police report, a crash was 

classified as speeding-related if police officials confirmed that the crash occurred due to over-speeding 

(exceeding the assigned speed limit) or because the vehicle was out of control. After data pre-processing, a 

total of 793 single- and two-vehicle crash observations (individual drivers involved in a crash) were available 

for analysis and modelling. There were two levels of driver injury severity (DIS) for all crash observations in 

the dataset: non-fatal (not resulting in death within one month of the crash) and fatal (resulting in death within 

one month of the crash). Out of the 793 observations, 471 (68%) involved non-fatal injuries and 222 (32%) 

involved fatal injuries. The independent variables established from the dataset were driver age, gender, time 

of crash, vehicle type and nature of crash. The categorical variables of these five independent variables were 

“four age groups” (below 18, 18–24, 25–40 and above 40-year age group), “two genders” (male and female), 

“three vehicle types” (two-wheeler, light motor vehicle and heavy motor vehicle), “four times of crash” (12 

AM–6 AM, 6 AM–12 PM, 12 PM–6 PM and 6 PM–12 AM), and “seven natures of crashes” (head-on collision, 

side-collision, rear collision, hit object, hit pedestrian, overturn and other). A statistical description of these 

categorical variables is provided in Table 1. 

Table 1 – Descriptive statistics for categorical variables 

Variables Category Non-fatal Fatal Total Total (%) 
Injury level (%) 

Non-fatal Fatal 

Age (A) 

Below 18 29 14 43 5.42 67.44 32.56 

18-24 131 40 171 21.56 76.61 23.39 

25-40 372 96 468 59.02 79.49 20.51 

Above 40 91 20 111 14.00 81.98 18.02 

Gender (G) 
Male 559 152 711 89.66 78.62 21.38 

Female 64 18 82 10.34 78.05 21.95 

Vehicle type 

(VT) 

Two-wheeler 243 95 338 42.62 71.89 28.11 

LMV 333 70 403 50.82 82.63 17.37 

HMV 47 5 52 6.56 90.38 9.62 

 

Time of crash 

(T) 

12 AM-6 AM 23 13 36 4.54 63.89 36.11 

6AM-12PM 125 22 147 18.54 85.03 14.97 

12 PM-6 PM 235 62 297 37.45 79.12 20.88 

6 PM-12 AM 240 73 313 39.47 76.68 23.32 

Nature of 

crash (N) 

Head-on collision 169 54 223 28.12 75.78 24.22 

Side collision 144 33 177 22.32 81.36 18.64 

Rear-end collision 128 26 154 19.42 83.12 16.88 

Hit object 64 24 88 11.10 72.73 27.27 

Hit pedestrian 64 18 82 10.34 78.05 21.95 

Overturn 38 14 52 6.56 73.08 26.92 

Other 16 1 17 2.14 94.12 5.88 
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3.2 Methods 

The study flowchart for the prediction and investigation of DIS in speeding-related crashes is presented in 

Figure 1. Since the target variable (DIS) was binary (fatal and non-fatal), the classification approach was the 

most appropriate data mining technique for the present study. Eleven supervised ML algorithms used in this 

study were the gradient boosting tree (GBT), lasso-LARS, RF, XGBoost, DT, ET, stochastic gradient descent 

(SGD), KNN, light GBM, single-layer perceptron (SLP) and SVM (readers are requested to refer to the 

following article: Sorum & Pal [60] for a description of these algorithms). All ML algorithms were used with 

their default settings as available in the Dataiku platform, a coding-free platform for data science [61]. All 

variables in the dataset were transformed into integer values using the “Prepare” button in Dataiku. All the 

models were validated using stratified k-fold cross-validation (k-FCV), which is one of the most effective 

approaches, especially when dealing with unbalanced datasets. In this technique, the dataset was randomly 

divided into k folds of equal size, and the model was trained k times, with k-1 folds used for training and the 

remaining fold for validation. In this study, all models were implemented using 5- and 10-FCV with train ratios 

(TRs) of 0.5, 0.6, 0.7 and 0.8 in each FCV (train ratio is defined as the percentage of the data that is allocated 

to the training set when the data are divided into a training set and a test set). Five performance metrics (PMs)- 

area under the curve (AUC), F1 score, accuracy, recall and precision – were employed to compare the 

performance of the ML models for the DIS prediction. Accuracy, precision, recall and F1 score metrics can be 

determined using equations 1, 2, 3 and 4, respectively. The AUC represents the area under the receiver 

operating characteristic (ROC) curve with a maximum value of one, signifying a model with perfect 

classification. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

where, TP = true positive, TN = true negative, FN = false negative and FP = false positive. 

The FIA was carried out based on the top ML models of all four TR values (0.5, 0.6, 0.7 and 0.8) under 5- 

and 10-FCVs. 

 
Figure 1 – Flowchart of the study methodology 
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4. RESULTS AND DISCUSSION 

4.1 For 5-fold cross-validation 

The PM values for TR = 0.5 are presented in Table 2. The SLP model is found to be the most accurate ML 

model among all trained models. More specifically, the accuracy of the SLP model is 60.3%, whereas the GBT 

model achieves the second-highest accuracy of 56.4%. The SGD model shows the lowest performance, with 

an accuracy of 22.1%. In terms of the precision metric, the results in Table 2 indicate that the GBT and SLP 

models provide the highest precision (28.6%) and outperform the remaining nine ML models. With the lowest 

precision value (22.1%), the SGD model is the poorest-performing model. The recall results (from Table 2) 

show that the XGBoost and SGD models (100%) achieve the best performance in DIS prediction, followed by 

the RF model, which has a recall value of 97.7%. The SLP model has the lowest recall value (53.5%) compared 

to the other trained models. The GBT model obtains the highest F1 score of 39.7%, followed by the RF model 

(39.3%). The SGD model ranks last in DIS prediction, with an F1 score of 36.1%. Based on the AUC metric, 

the GBT model (0.601) performs better overall than the other models, followed by the ET model with an AUC 

value of 0.587. The SGD model shows the worst predictive performance based on the AUC value. 

Table 2 – Values of performance metrics at 5-FCV for TR = 0.5 

SL. ML algorithm TR 
Imphal at 5-FCV 

Accuracy Precision Recall F1 score AUC 

1 RF 

0.5 

33.3 24.6 97.7 39.3 0.586 

2 GBT 56.4 28.6 65.1 39.7 0.601 

3 Light GBM 38.2 23.9 82.6 37.1 0.556 

4 XGBoost 29.7 23.9 100.0 38.6 0.579 

5 DT 30.8 23.6 95.3 37.8 0.580 

6 KNN 46.7 24.8 69.8 36.6 0.566 

7 ET 34.6 24.6 95.3 39.1 0.587 

8 SLP 60.3 28.6 53.5 37.2 0.549 

9 SVM 46.9 25.3 72.1 37.5 0.569 

10 Lasso-LARS 47.7 24.8 67.4 36.2 0.567 

11 SGD 22.1 22.1 100.0 36.1 0.427 

Note: Values of accuracy, precision, recall and F1 score are in %. 

In terms of accuracy and precision metrics reported in Table 3, the SGD model performs well, obtaining 

60.1% and 28.9%, followed by the GBT model (52.7% and 27.1%). The SLP model has very low accuracy 

and precision values (21.8%) compared to the other models. The recall results reveal that the SLP model 

exhibits the best performance for DIS prediction, with a recall value of 100%. The XGBoost model provides 

the second-highest recall value of 96.9%, while the KNN and SGD models generate the lowest recall value 

(56.9%). The light GBM model performs slightly better than the other models, as its F1 score is 39.5%, slightly 

higher than that of the GBT model (39.0%). The KNN model ranks last, with an F1 score of 31.8%. The GBT 

model achieves the highest AUC value of 0.619, followed by the SGD model (0.601). The KNN model, with 

an AUC value of 0.527, shows the worst performance for DIS prediction. In contrast, Beshah & Hill [33] 

reported that the KNN model was the most efficient model for the prediction of crash severity in Ethiopia. 

Table 3 – Values of performance metrics at 5-FCV for TR = 0.6 

SL. ML algorithm TR 
Imphal at 5-FCV 

Accuracy Precision Recall F1 score AUC 

1 RF 

0.6 

38.9 24.9 89.2 38.9 0.576 

2 GBT 52.7 27.1 69.2 39.0 0.619 

3 Light GBM 36.2 24.9 95.4 39.5 0.594 

4 XGBoost 32.2 24.0 96.9 38.4 0.575 

5 DT 28.9 22.5 92.3 36.1 0.574 

6 KNN 46.6 22.0 56.9 31.8 0.527 

7 ET 36.6 24.6 92.3 38.8 0.579 

8 SLP 21.8 21.8 100.0 35.8 0.536 

9 SVM 47.3 25.5 73.8 37.9 0.583 

10 Lasso-LARS 45.6 24.6 72.3 36.7 0.576 

11 SGD 60.1 28.9 56.9 38.3 0.601 
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The study results reported in Table 4 reveal that the DT model has the highest accuracy and precision values 

(69.1% and 31.1%), followed by the SGD model (56.4% and 26.2%). These findings are consistent with those 

reported by [50] and [62]. The lowest accuracy and precision values are produced by the XGBoost model (25% 

and 21.4%). Based on the recall metric, the RF and XGBoost models (100%) achieve the best results for DIS 

prediction. This aligns with the results reported by [36], which found that the RF model outperformed the DT 

and instance-based learning models in terms of recall and accuracy metrics. This was further confirmed by 

[35], which reported that the RF model had an advantage over the DT and AdaBoost models. The present study 

results indicate that the ET and DT models generate the second-highest and lowest recall values, at 97.8% and 

42.2%, respectively. However, a previous study considered the ET model to be the best ML model for 

predicting bicyclist injury severity based on the recall metric [13]. The F1 score results indicate that the GBT 

model, with an F1 score of 37.8%, performs better than the other ML models, followed by the RF and lasso-

LARS models (37.3%). The KNN model performs the worst, with the lowest F1 score of 33.3%. The AUC 

values reported in Table 4 confirm the excellent classification performance of the lasso-LARS model (0.603). 

Table 4 – Values of performance metrics at 5-FCV for TR = 0.7 

SL. ML algorithm TR 
Imphal at 5-FCV 

Accuracy Precision Recall F1 score AUC 

1 RF 

0.7 

31.4 23.0 100.0 37.3 0.581 

2 GBT 37.3 23.7 93.3 37.8 0.598 

3 Light GBM 44.5 23.8 77.8 36.5 0.575 

4 XGBoost 25.0 21.4 100.0 35.3 0.512 

5 DT 69.1 31.1 42.2 35.8 0.576 

6 KNN 45.5 22.2 66.7 33.3 0.537 

7 ET 31.8 22.8 97.8 37.0 0.563 

8 SLP 49.5 24.2 68.9 35.8 0.568 

9 SVM 44.1 23.3 75.6 35.6 0.561 

10 Lasso-LARS 54.1 25.9 66.7 37.3 0.603 

11 SGD 56.4 26.2 62.2 36.8 0.583 

 

For the 5-FCV case with TR = 0.8, the highest accuracy value is associated with the lasso-LARS model 

(59.6%), indicating that it outperforms other models in DIS prediction (Table 5). The KNN model ranks second, 

with an accuracy of 42.9%. The poorest performance based on the accuracy metric is demonstrated by the SLP 

and SVM models (18%). In terms of precision, the lasso-LARS model again delivers the best performance, 

achieving the highest precision value of 23.5%, followed by the GBT model (20.6%). The lowest precision 

values are observed in the SVM and SLP models (18%). The recall results indicate that four ML models (RF, 

XGBoost, SLP and SVM) achieve a perfect recall of 100%. The ET model follows in second place with a 

recall of 96.6%, while the lasso-LARS model ranks last with 55.2%. The highest F1 score (33.5%) is shared 

by the GBT and light GBM models, followed closely by the RF model (33.3%). The SGD model demonstrates 

the best performance based on the AUC metric, achieving a value of 0.597. The second-best AUC score is 

shared by the lasso-LARS and light GBM models (0.546), which slightly outperform the DT model (0.528). 

Table 5 – Values of performance metrics at 5-FCV for TR = 0.8 

SL. ML algorithm TR 
Imphal at 5-FCV 

Accuracy Precision Recall F1 score AUC 

1 RF 

0.8 

28.0 20.0 100.0 33.3 0.511 

2 GBT 36.0 20.6 89.7 33.5 0.517 

3 Light GBM 33.5 20.5 93.1 33.5 0.546 

4 XGBoost 25.5 19.5 100.0 32.6 0.482 

5 DT 26.7 19.3 96.6 32.2 0.528 

6 KNN 42.9 18.2 62.1 28.1 0.494 

7 ET 28.6 19.7 96.6 32.7 0.512 

8 SLP 18.0 18.0 100.0 30.5 0.492 

9 SVM 18.0 18.0 100.0 30.5 0.457 

10 Lasso-LARS 59.6 23.5 55.2 33.0 0.546 

11 SGD 31.7 19.5 89.7 32.1 0.597 
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Overall, from the above discussion, it is observed that the GBT model provides the best combination of 

PMs and can be considered the top ML model for DIS prediction when TR = 0.5 under 5-FCV. Similarly, for 

TR = 0.6, 0.7 and 0.8, the SGD, DT and lasso-LARS models, respectively, can be selected as the top ML 

models for DIS prediction in Imphal speeding-related crashes. These findings are summarised in Table 6. 

Table 6 – Summary of the top model performance for 5-FCV 

k-fold TR Top model 
Performance metrics 

Accuracy Precision Recall F1 score AUC 

5 

0.5 GBT 56.4 28.6 65.1 39.7 0.601 

0.6 SGD 60.1 28.9 56.9 38.3 0.601 

0.7 DT 69.1 31.1 42.2 35.8 0.576 

0.8 Lasso-LARS 59.6 23.5 55.2 33.0 0.546 

4.2 For 10-fold cross-validation 

The PM values for TR = 0.5 under 10-FCV are tabulated in Table 7. The SLP model achieves the highest 

accuracy (60.3%) among all trained ML models, making it the most accurate predictive model. This is followed 

by the GBT model, with an accuracy of 56.4%. The XGBoost model (28.7%) ranks last in the comparison. 

The GBT and SLP models (28.6%) exhibit the best performance in terms of precision. The SGD model ranks 

second, with a precision value of 26.2%, indicating strong predictive performance. The lowest precision values 

are observed in two models (XGBoost and DT). However, the XGBoost model achieves a 100% recall value, 

followed by the RF model (97.7%), which aligns with the findings of [44], [15] and [18]. The SLP model 

demonstrates the worst predictive performance in terms of recall, with a value of 53.5%. The F1 score results 

reported in Table 7 indicate that the light GBM model provides the highest F1 score (40.2%) among all other 

models. Wen et al. [11] reported a similar finding in their study, stating that the light GBM outperformed the 

XGBoost. The GBT model ranks second, with a slightly higher F1 score (39.7%) than the RF (39.3%) and ET 

(39.1%) models. The lasso-LARS model has the lowest F1 score (36.2%). Furthermore, all trained ML models 

showed reasonable prediction ability in terms of AUC, with the light GBM covering the largest area (0.620). 

The second-highest and lowest areas covered under the ROC curve are associated with the SGD (0.602) and 

SLP (0.549) models, respectively. 

Table 7 – Values of performance metrics at 10-FCV for TR 0.5 

SL. ML algorithm TR 
Imphal at 10-FCV 

Accuracy Precision Recall F1 score AUC 

1 RF 

0.5 

33.3 24.6 97.7 39.3 0.586 

2 GBT 56.4 28.6 65.1 39.7 0.601 

3 Light GBM 37.4 25.5 95.3 40.2 0.620 

4 XGBoost 28.7 23.6 100.0 38.2 0.566 

5 DT 30.8 23.6 95.3 37.8 0.580 

6 KNN 46.7 24.8 69.8 36.6 0.566 

7 ET 34.6 24.6 95.3 39.1 0.587 

8 SLP 60.3 28.6 53.5 37.2 0.549 

9 SVM 47.7 25.4 70.9 37.4 0.569 

10 Lasso-LARS 47.7 24.8 67.4 36.2 0.567 

11 SGD 49.0 26.2 72.1 38.4 0.602 

 

The comparison results from Table 8 show that the SVM model has the highest accuracy and precision values 

(62.8% and 29.1%), followed by the SGD model (60.1% and 28.9%). A similar result was reported by [42]. 

The SLP model demonstrates the poorest predictive performance with the lowest accuracy (21.8%) and 

precision (21.8%). In terms of the recall metric, the XGBoost and SLP models exhibit the best performance 

with a 100% value. These are followed by the DT and ET models (92.3%). The SVM model has the lowest 

recall value (49.2%). The highest F1 score value (39.0%) is shared by the GBT and light GBM models, 

indicating them as the most efficient predictive-performing models. The RF and KNN models occupy the 
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second and last positions, respectively, with F1 score values of 38.9% and 31.8%. In comparison, the GBT 

model demonstrates the highest predictive capability, with an AUC value of 0.619, followed by the light GBM 

model (AUC = 0.603). The KNN model covers the minimum area under the ROC curve (AUC = 0.527). 

Table 8 – Values of performance metrics at 10-FCV for TR 0.6 

SL. ML algorithm TR 
Imphal at 10-FCV 

Accuracy Precision Recall F1 score AUC 

1 RF 

0.6 

38.9 24.9 89.2 38.9 0.576 

2 GBT 52.7 27.1 69.2 39.0 0.619 

3 Light GBM 49.7 26.5 73.8 39.0 0.603 

4 XGBoost 27.9 23.2 100.0 37.7 0.565 

5 DT 28.9 22.5 92.3 36.1 0.574 

6 KNN 46.6 22.0 56.9 31.8 0.527 

7 ET 36.6 24.6 92.3 38.8 0.579 

8 SLP 21.8 21.8 100.0 35.8 0.536 

9 SVM 62.8 29.1 49.2 36.6 0.583 

10 Lasso-LARS 45.6 24.6 72.3 36.7 0.576 

11 SGD 60.1 28.9 56.9 38.3 0.601 

 

In terms of accuracy and precision metrics reported in Table 9, the DT model achieves the highest accuracy 

and precision values (69.1 % and 31.1%), followed by the SGD model (56.4% and 26.2%). The XGBoost 

model, with accuracy = 25.0% and precision = 21.4%, ranks last in DIS prediction. However, the same model 

(XGBoost), along with the RF model, attains the highest recall value (100%). The second-highest and lowest 

recall values are recorded by the ET and DT models (97.8% and 42.2%), respectively. The light GBM model 

(39.6% and 0.615) performs better than other ML models in terms of the F1 score and AUC values. This is 

followed by the GBT (w.r.t the F1 score = 37.8%) and the lasso-LARS (w.r.t the AUC = 0.603). The KNN 

model exhibits the lowest F1 score and AUC values (33.3% and 0.537) for TR = 0.7 under 10-FCV. 

Table 9 – Values of performance metrics at 10-FCV for TR 0.7 

SL. ML algorithm TR 
Imphal at 10-FCV 

Accuracy Precision Recall F1 score AUC 

1 RF 

0.7 

31.4 23.0 100.0 37.3 0.581 

2 GBT 37.3 23.7 93.3 37.8 0.598 

3 Light GBM 41.8 25.1 93.3 39.6 0.615 

4 XGBoost 25.0 21.4 100.0 35.3 0.512 

5 DT 69.1 31.1 42.2 35.8 0.576 

6 KNN 45.5 22.2 66.7 33.3 0.537 

7 ET 31.8 22.8 97.8 37.0 0.563 

8 SLP 49.5 24.2 68.9 35.8 0.568 

9 SVM 46.4 24.1 75.6 36.6 0.561 

10 Lasso-LARS 54.1 25.9 66.7 37.3 0.603 

11 SGD 56.4 26.2 62.2 36.8 0.583 

 

The values of PMs for TR = 0.8 under 10-FCV are presented in Table 10. With a 59.6% accuracy value, the 

lasso-LARS model provides the best performance for the DIS prediction, followed by the KNN model (42.9%). 

The SLP and SVM models perform the worst for the DIS prediction, with an accuracy value of 18.0%. The 

lasso-LARS model achieves the highest precision value (23.5%), followed by the light GBM model (20.9%). 

The SLP and SVM models stand in the last position with the lowest precision value (18%). However, the same 

models (SLP and SVM), along with the RF and XGBoost, achieve the highest recall value (100%). The second-

highest recall value is recorded by the DT and ET (96.6%), while the lasso-LARS has the lowest recall value 

(55.2%). Based on the F1 score metric, the light GBM model (34.2%) demonstrates the best performance for 
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DIS prediction, followed by the GBT model (33.5%). The KNN model ranks last, with an F1 score of 28.1%. 

The best DIS prediction, based on the AUC value, is exhibited by the SGD model. The second-highest area 

covered under the curve is associated with the light GBM model (0.556). 

Table 10 – Values of performance metrics at 10-FCV for TR 0.8 

 SL. ML algorithm  TR  
Imphal at 10-FCV 

Accuracy Precision Recall  F1 score AUC 

1 RF 

0.8 

28.0 20.0 100.0 33.3 0.511 

2 GBT 36.0 20.6 89.7 33.5 0.517 

3 Light GBM 35.4 20.9 93.1 34.2 0.556 

4 XGBoost 23.0 19.0 100.0 31.9 0.457 

5 DT 26.7 19.3 96.6 32.2 0.528 

6 KNN 42.9 18.2 62.1 28.1 0.494 

7 ET 28.6 19.7 96.6 32.7 0.512 

8 SLP 18.0 18.0 100.0 30.5 0.492 

9 SVM 18.0 18.0 100.0 30.5 0.457 

10 Lasso-LARS 59.6 23.5 55.2 33.0 0.546 

11 SGD 31.7 19.5 89.7 32.1 0.597 

 

Overall, it is observed that the light GBM model provides the best combination of PMs and can be 

considered the top ML model for DIS prediction when TR = 0.5 and 0.7 under 10-FCV. Similarly, for TR = 

0.6 and 0.8, the GBT and lasso-LARS models, respectively, can be selected as the top ML models for DIS 

prediction in Imphal speeding-related crashes. These results are summarised in Table 11. 

Table 11 – Summary of the top model performance for 10-FCV 

k-fold TR Top model 
Performance metrics 

Accuracy   Precision Recall F1 score AUC 

10 

0.5 Light GBM 37.4 25.5 95.3 40.2 0.620 

0.6 GBT 52.7 27.1 69.2 39.0 0.619 

0.7 Light GBM 41.8 25.1 93.3 39.6 0.615 

0.8 Lasso-LARS 59.6 23.5 55.2 33.0 0.546 

4.3 Feature importance analysis 

Feature importance analysis (FIA) based on Shapley values is referred to as Shapley Additive exPlanations 

(SHAP). SHAP values illustrate how each attribute contributes to the prediction for each occurrence. A high 

SHAP value represents the feature as significantly more important. It is important to note that the FIA using 

SHAP was performed only on the best ML models for TR values of 0.5, 0.6, 0.7 and 0.8 under 5- and 10-FCVs 

(as summarised in Tables 6 and 11). 

The FIA results for 5-FCV from Figure 2 (a-d) revealed that the two-wheeler (17.11%), head-on collision 

(23.75%), 6 AM–12 PM (21.06%) and 12 PM–6 PM (14.57%) variables had the maximum impact on the DIS 

prediction for TR values of 0.5, 0.6, 0.7 and 0.8, respectively. These were followed by the 6 AM–12 PM 

(10.82%), 12 PM–6 PM (13.53%), hit-pedestrian (19.86%) and 6 PM–12 AM (13.64%) variables for TR = 

0.5, 0.6, 0.7 and 0.8, respectively. Female drivers (1.07%), LMV (0.15%), above 40 age group (0.30%) and 

other (0.03%) variables were found to have the minimum impact on the DIS prediction for TR values of 0.5, 

0.6, 0.7 and 0.8, respectively. It was further noticed that the gender variable had no impact on the DIS 

prediction in most of the cases. A similar outcome was reported by [33], [35] and [42]. The authors reported 

that the time of crash and nature of crash (collision type) were the most critical determinants of crash severity. 

However, some previous studies reported different outcomes. For instance, Chen et al. [45] reported that the 

HMV variable was the most influential factor for the DIS when a hybrid DT and NB model was deployed. 

Another study reported that the LMV variable was the top contributor to the DIS when the XGBoost model 
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was deployed [15]. In a recent study, it was reported that the driver age variable was one of the most influential 

factors for predicting speeding behaviours among long-haul truck drivers in India [55]. The results of this study 

implied that the feature and its percentage impact on the DIS prediction in FIA depended upon the TR value 

and indirectly depended on the ML models deployed. For example, the position and percentage impact of the 

12 PM-6 PM variable were 5th (6.02%), 2nd (13.53%), 4th (7.7%) and 1st (14.57%) when TR = 0.5 (GBT model), 

= 0.6 (SGD model), = 0.7 (DT model) and = 0.8 (lasso-LARS model). 

 

Figure 2 – Feature importance rating for 5-FCV when (a) TR = 0.5, (b) TR = 0.6, (c) TR = 0.7 and (d) TR = 0.8 

The FIA results for 10-FCV from Figure 3 (a-d) indicated that the two-wheeler (18.20%), head-on collision 

(16.44%), two-wheeler (30.31%) and 12 PM–6 PM (13.1%) variables contributed the highest impact on the 

DIS prediction for TR values of 0.5, 0.6, 0.7 and 0.8, respectively. The second most impactful variables were 

the 6 AM–12 PM (15.43%), 12 PM–6 PM (12.39%), head-on collision (21.83%) and 25–40 age group 

(12.19%) in the case of TR = 0.5, 0.6, 0.7 and 0.8, respectively. The least impactful variables in the case of TR 

= 0.5, 0.6, 0.7 and 0.8 were the overturn (0.22%), 6 PM–12 AM (1.3%), rear-end collision (0.68%) and male 

drivers (0.19%), respectively. However, Mokoatle et al. [15] stated that overturned-type crashes were one of 

the most contributing variables for increased DIS. Furthermore, the result of this study indicated that the 

“other” variable had no impact on the DIS prediction (except in TR = 0.6). Similar to the 5-FCV case, the 

results of the 10-FCV case also showed that the feature and its percentage impact on the DIS prediction in FIA 

depended upon the TR value and ML models deployed. 
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Figure 3 – Feature importance rating for 10-FCV when (a) TR = 0.5, (b) TR = 0.6, (c) TR = 0.7 and (d) TR = 0.8 

Overall, it can be concluded that the vehicle type (two-wheeler), nature of crash (head-on collision), and 

time of crash (12 PM–6 PM and 6 AM–12 PM) variables have significant impacts on the DIS prediction in 

Imphal speeding-related crashes. This overall outcome is in line with the results reported by [59]. Further, it is 

observed that the degree of variable impact on the DIS prediction varies with the change in FCV value for the 

same TR value. For instance, the percentage impact of the two-wheeler and 6 AM–12 PM variables for TR 

=0.5 differ between 5- and 10-FCV cases. 

5. SUMMARY AND CONCLUSIONS 

The present study aimed to predict and analyse DIS in speeding-related crashes by applying eleven 

supervised ML algorithms on the Dataiku platform using 793 police-reported single- and two-vehicle crash 

data collected from Imphal City between 2011 and 2020. For DIS prediction, all ML models were implemented 

using 5- and 10-FCVs and trained at TR values of 0.5, 0.6, 0.7 and 0.8 in each FCV. While comparing 

predictive performance, the top ML model for DIS prediction was selected based on the best combination of 

recall, precision, F1 score, accuracy and AUC metrics. From the top ML models, the importance of variables 

contributing to DIS in speeding-related crashes was determined through FIA. The important conclusions drawn 

from the study are summarised below. 

– For the 5-FCV, the GBT, SGD, DT and lasso-LARS models were identified as the top ML models for the 

DIS prediction in speeding-related crashes for TR = 0.5, 0.6, 0.7 and 0.8, respectively. For the 10-FCV, the 

light GBM model was the top ML model for the DIS prediction in speeding-related crashes for TR = 0.5 and 

0.7 cases. In the case of TR = 0.6 and 0.8, the GBT and lasso-LARS models, respectively, were the top ML-

performing models for the DIS prediction. 
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 The feature and its percentage impact on the DIS prediction in FIA depended upon the TR value and 

indirectly depended on the ML models deployed. 

 The degree of variable impact on the DIS prediction varies with the changes in FCV value for the same 

TR value 

 Vehicle type (two-wheeler), nature of crash (head-on collision) and time of crash (12 PM–6 PM and 6 

AM–12 PM) variables were the most impactful variables on the DIS prediction in Imphal speeding-related 

crashes. 

These ML models can be employed in hilly areas for the accurate prediction of DIS. The results of the 

current study may be helpful for transportation policy-makers to have a better knowledge of various 

contributing elements to the RTAs while implementing road safety measures to reduce speeding-related crash 

severities for drivers. This study has some limitations. Firstly, since the police-reported data were used, there 

is a possibility of under-reporting some crash data and missing other injury severity levels. Secondly, the small 

size of the crash data was used, which may lead to biased results. Additionally, the unobserved heterogeneity 

in crash severity modelling was not considered in the present study. To address these issues, the following 

recommendations are proposed: 

 To overcome the limitation of under-reporting in police-reported data and also the missing severity level 

of injuries, future studies should consider supplementing additional data from other sources, such as 

hospitals or insurance companies. This will help provide more comprehensive and accurate information 

regarding crash severity and injuries. 

 For small sample size issue, future studies should rely more on larger datasets by merging data from 

multiple regions to represent a wider spectrum of crash types over a broader range of severity levels, or 

use advanced statistical methods, such as bootstrapping or Bayesian approaches, to better utilise data and 

reduce possible biases. 

 Researchers should consider implementing more advanced modelling approaches to control for 

unobserved heterogeneity. One possibility is hybrid approaches, combining ML with statistical models 

(e.g. mixed logit models or generalised linear models) to reduce the impact of unobserved heterogeneity.  
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