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@ ABSTRACT
- Risks causing delays in the construction of roads and highways frequently lead to substantial

This work is licensed economic and social consequences, with project timelines extending up to three times beyond
under a Creative their initial schedules. These risks not only extend the project timeline but also escalate the
Commons Attribution 4.0 overall project execution cost. Despite extensive research on construction-related risks
International Licence. globally, a notable gap remains in studies specifically addressing the risk factors that cause
Publisher: delays in road projects. Analysing completed projects is crucial to derive practical and
Faculty of Transport applicable results, as they offer essential insights into the real-world challenges and risks that
and Traffic Sciences, may cause timeline extensions and budget escalations. Such an approach ensures that the

University of Zagreb findings are grounded in actual project outcomes, thereby enhancing their relevance and

effectiveness in improving future project planning and risk management. For these reasons,
this study aims to analyse 25 project characteristics across 28 completed projects, from which
three project complexity coefficients are derived. Additionally, a list of risks is defined based
on expert evaluations, and the dominant risks are identified. For each of these dominant risks,
a prediction model is constructed using Sugeno fuzzy logic, enabling more accurate and
sustainable risk management and mitigation in future projects.

KEYWORDS
risk management; sustainable management; risk prediction; road infrastructure; Sugeno
fuzzy logic; project complexity coefficients.

1. INTRODUCTION

Risk is an inherent aspect of large-scale construction projects, encompassing possible challenges in meeting
project goals. Risk is highly prevalent in construction projects, necessitating a thorough risk assessment [1].
The continuous rise in both the figure and interconnectedness of the project risks requires a systematic, holistic
assessment of risk, leading to structured collective decision processes. According to Samani and
Shahbodaghlou [2], multi-valued logic in managing risks produces improved outcomes compared to
conventional research methods, as it can effectively delineate the relationships among risks, contributing
factors and their consequences [3, 4].

Effective risk management involves understanding the fundamental aspects that contribute to threats to
project execution, which are typically consistent across all project types. Commonly, an initial risk assessment
phase involves identifying risks. Following identification, a risk analysis is performed to assess the probability
of these risks materialising [3, 4]. Risk identification aims to pinpoint latent risks that could influence project
objectives positively or negatively.

Vygnanov and Fironov [5] propose a risk management methodology that consists of four key processes:
within the planning group, risk identification and assessment are conducted; in the project group, risk
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mitigation measures are developed; and the management group is responsible for the overall management of
risks. Risk represents an uncertain detriment, quantified by its probability of occurrence, that can affect various
dimensions of a project, such as cost, schedule or scope. Early identification of risks enables project managers
to mitigate potential impacts and aids in the timely delivery of projects. The risk management process includes
identifying, analysing and applying strategies to minimise identified risks, which can be effectively achieved
through multi-valued reasoning in the management of risks [6-9].

In the context of complex construction projects, a key challenge is how to systematically assess and quantify
risks when objective project data are scarce or incomplete. This has led to the frequent application of expert
evaluation methods as a reliable tool for supporting risk assessment and decision-making. Recent research also
highlights the growing role of artificial intelligence and machine learning techniques, including transformers
and tokenisation methods, in improving predictive accuracy in decision-making contexts [10-12]. The expert
evaluation method is widely applied in risk assessment and decision-making within infrastructure project
management, especially in situations where empirical data are limited. Various studies have combined expert
panels, Likert scales and weighted scoring models to assess critical risks and quantify expert opinions, often
integrating them into predictive models such as fuzzy inference systems [13-15]. This approach is particularly
relevant in complex and variable project environments, where expert judgement helps overcome data
limitations. In line with this, the present study incorporates expert input into the calibration of the fuzzy model
to ensure that project complexity factors are accurately represented.

In the literature, significant attention is given to the identification and classification of risks [16—18]. Tah
and Carr [16] established a risk hierarchy, classifying risks as either external or internal. Chapman [17]
identified various risk origins, including the surroundings, industry sector and employers, and identified fifty-
eight associated risk factors in construction projects. Lu et al. [18] classified seven categories of risks in
construction projects: (1) budget risks, (2) binding and lawful risks, (3) risks associated with subcontractors,
(4) labour and protection risks, (5) sociopolitical risks, (6) risks form project designing and (7) unforeseeable
event risks.

Table 1 presents a summary of key features and research findings gathered from an extensive analysis of
publications, primarily focusing on studies that utilise multi-criteria analysis in risk management and project
complexity evaluation. The table highlights significant aspects that informed the methodology of this study,
including critical project characteristics, commonly identified risks, and the effectiveness of fuzzy logic in
addressing uncertainties within complex construction projects. This structured overview serves as a foundation
for understanding the context and relevance of fuzzy approaches in risk prediction, offering a comprehensive
reference point for the study’s development of predictive models and complexity assessment frameworks.

Table 1 — Summary of key characteristics and research findings from the analysis of publications, with a concentration on multi-
criteria studies

Authors Papers Year Apﬁqr;f:}%gnd Main research findings
37 most applicable risks were
Igbal, Choudhry _ _ ) incorporated into the_questionr_laire.
Holséhemacher ' Al Risk Man_agemen_t in 2015 Expe(t Judgement Payment delays recel_vgo_l the highest
& Tamogaitien é’ [19’] Construction Projects questionnaire score for the r_esp_on3|b|I|ty fo_r
delays occurring in construction
projects.
Edjossan-Sossou, Risk management strategies are
Galvez, Deck, Al Sustainable Risk prioritised based on a set of criteria.
Heib, Verdel, Management_ Strategy Fuzzy multi-criteria The resu_lts showed that the criteria
Dupont, Chery, Selec_tlon_ Us_lng a l_:u_zzy 2020 decision-making aggregation approach, the
Camargo, Morel [20] Multi-Criteria Decision confidence level chosen by the
Approach decision-makers, and their attitude
affect the ranking.
The study identified four specific
. S delay factors that predominantly
Antoniou [21] Delay Risk Assessme_nt 2021 Mu!tl_-crlterla_ affect Greek road construction
Models for Road Projects decision-making ] -
projects, for which targeted
mitigation strategies were proposed.
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Approach and

Authors Papers Year methods

Main research findings

The study presents a risk assessment
framework that effectively models
and analyses the critical risks
associated with Indian BOT road
projects, such as traffic revenue risk,
land acquisition delays, demand risk
and financial closure delays.

Modelling and Assessment of
Thomas et al. [22] Critical Risks in BOT Road 2006
Projects

Fuzzy-fault tree
analysis

The use of a fuzzy inference system

Proposing a New . A
posing in assessing risks in tunnel

Abdolreza Yazdani- Methodology Based on Fuzzy Fuzzy inference

Chamzini [23] Logic for Tunnelling Risk 2014 system COI’]SFTUCtIOI’] has der_’nonstrated.
considerable potential for precise
Assessment - - S
risk evaluation and prioritisation.
The study successfully developed a
Risk Assessment in risk matrix that predicts a potential
: cost increase of 7.53% for an
Sustainable Infrastructure infrastructure project, with this
Canesi and Gallo [24] | Development Projects: A 2023 | Case study - devi proj b ' v 1.34%
Tool for Mitigating Cost estimate deviating by only 1.34%
overruns from the actual execution costs, thus
effectively mitigating unexpected
cost overruns.
This study seeks to analyse 25
project characteristics from 28
completed projects to derive three
Risk Prediction in Road complexity coefficients, define and
our stud Infrastructure Projects 2025 Fuzzy inference identify dominant risks through
y Considering Project system expert evaluations, and use Sugeno
Complexity Coefficients fuzzy logic to construct a prediction

model for more accurate risk
management and mitigation in
future projects.

Based on a review of the literature, it has been observed that existing research lacks a systematic framework
for assessing project complexity and predicting dominant civil engineering risks. This research seeks to bridge
that discrepancy through the development of a structured approach to evaluating project complexity and
identifying key risks. The research analyses a set of critical project characteristics to derive complexity
coefficients that represent overall project complexity. Through expert assessments, a comprehensive list of
potential risks is established, allowing for the identification of dominant risks that have the most significant
impact on project outcomes. To address these risks, the study employs Sugeno fuzzy logic, a powerful method
for managing uncertainty and generating precise predictions in complex systems.

This research contributes to the field by offering a novel approach to risk management, combining project
complexity assessment with advanced predictive modelling. The results have practical implications for
enhancing the reliability and success of construction projects, particularly in managing and mitigating risks
that are most likely to affect project outcomes.

2. METHODOLOGY

This study seeks to improve risk management in road and highway construction by evolving the systematic
approach for assessing project complexity and forecasting key risks. To achieve this, the research analyses 25
key characteristics from 28 completed projects to derive three complexity coefficients that encapsulate the
overall project complexity. Based on expert evaluations, a comprehensive list of potential risks is established,
and the dominant risks, which have the most significant impact on project outcomes, are identified.

Risk identification in road construction projects is a crucial component of project management conducted
during various phases, most commonly in the early stages of planning and design. In the planning phase, an
initial assessment of all potential risks that could impact project success is carried out, including technical,
economic, safety and environmental factors. During the design phase, risks are further developed based on
specific technical solutions, allowing for a more precise assessment and the development of mitigation
strategies. However, the risk identification process is not limited to the initial project stages; it continues
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throughout the entire project lifecycle, encompassing the construction and operational phases, where new risks
may emerge, or existing risks may be redefined depending on changes in circumstances or specific situations
on the site.

To address these dominant risks, prediction models are constructed using Sugeno fuzzy logic, a method
recognised for its effectiveness in handling uncertainty and providing accurate predictions in complex systems.
This research contributes to the field by offering a novel approach to risk management, combining project
complexity assessment with advanced predictive modelling. The findings carry practical implications for
enhancing the reliability and success of construction projects, especially in the management and mitigation of
risks most likely to impact project outcomes.

2.1 TSK system

The Takagi-Sugeno-Kang (TSK) fuzzy inference system (FIS) is a specialised type of fuzzy logic system
well-suited for handling complex, non-linear systems; hereafter referred to as the TSK system. This model is
particularly valued for its ability to process complex data sets. Unlike traditional logic, which operates on
binary values (true or false), fuzzy logic allows for partial membership within sets, providing a way to represent
real-world concepts with varying degrees of truth. In a fuzzy logic system, the extent of an element’s
membership in the group is quantified through the characteristic operation that measures this partial
association.

Structure of the TSK system

The TSK system is distinguished by a regulation framework consisting of rules containing an occasion
(precursor) and an outcome (successor). Descriptive language parameters are used as the precursor of TSK
assertion, whereas the successors are generally expressed as linear functions or fixed values.

The standard TSK principle is formulated as:

If x—A and y—B, then g=f(x, y).

In this context, TSK groups are A and B, and they represent x and y, the input parameters. A sharp function
f(x, y) is typically expressed as the linear compound of the TSK groups. The successor may be structured as
follows:

g=ax+hy+c

where a, b and c are fixed values.

Conclusion process

The following essential stages were comprised in the TSK system for the conclusion process:

— Linguistic mapping: For each TSK group, precise input values are converted into membership degrees.
Each input is allocated a membership degree ranging from 0 to 1, indicating an association level with the
relevant TSK group.

— Examination of rules: The precursors of the TSK principles are evaluated to identify the rule strength.
The fuzzy intersection operation accomplished this by multiplying the precursor figures.

— Output integration: The output is generated for every rule using the associated successor function,
typically a linear function in the TSK system.

— Output defuzzification: The single crisp output is produced by merging the outputs of all rules, which is
often done using a weighted arithmetic mean. The weights correspond to the standardised rule strengths.

The final outcome, Q, is calculated by the equation:

_ x(sixqi)
Q= Ysi

where:
— si —represents the rule strength of the rule in order of place i-th;
— gi —denotes the outcome from the successor function of the rule in order of place i-th.

This weighted arithmetic mean method guarantees an appropriate reflection of the final outcome that
contributes to all engaged rules [25-29].
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2.2 Utilised programs and mechanisms

The MATLAB (version 2024) was used in this research to create and implement the TSK logic, taking
advantage of its advanced computational capabilities and extensive toolbox for effective data modelling and
analysis. Furthermore, SPSS software (version 28.0) [30-32] was utilised for data evaluation, supporting and
ensuring the precision and trustworthiness of the study’s results.

3.OUTCOME

3.1 Data collection

The study data collection encompasses twenty-eight finished projects that represent significant state roads
of the Republic of Serbia associated with the development of the pan-European Road Corridor X. This
multimodal transport link runs from Northwest to Southeast Europe. It connects Salzburg (Austria) — Ljubljana
(Slovenia) — Zagreb (Croatia) — Beograd (Serbia) — Skopje (North Macedonia) — Thessaloniki (Greece). The
main axis is connected to the following cities or areas via four branches:

— Graz (Austria) — Maribor (Slovenia) — Zagreb (Croatia);

— Budapest (Hungary) — Novi Sad (Serbia) — Beograd (Serbia);

— Nis (Serbia) — Sofija (Bulgaria) and further along Corridor 1V to Istanbul; and

— Veles (North Macedonia) — Bitola (North Macedonia) — Florina (Greece) and further via Florina — Kozani
(via Egnatia) to Igoumenitsa.

The construction of the main axis of Corridor X in the southern part of the Republic of Serbia, covering a
total of 74.2 km, was initiated in 2010 and completed in 2024. This segment consists of 10 distinct contracts,
each awarded through internationally standardised tendering processes, resulting in 10 individual contracts.
Furthermore, two supplementary contracts were implemented to construct auxiliary local roads to
accommodate impacted neighbouring populations.

The branch Nis (Serbia) — Sofija (Bulgaria) of Corridor X in the eastern part of the Republic of Serbia,
extending over 86 km, was initiated in 2009 and reached completion in 2024. This segment encompassed
sixteen distinct contracts executed in alignment with international financial institution standards. The design
for these contracts involved building a multi-bridge highway with 7 tunnels. Conditions of Contracts were
formalised under the so-called Pink FIDIC, which represents Red FIDIC Harmonised by the Banks.
Procurement processes complied with the frameworks established by the multilateral bank rules and guidelines
for procurement in force during the period of the financial agreement.

Project characteristics

During the evaluation, a rigorous investigation of specific determinants that critically affect the
implementation and outcome of the project is paramount. The framework of twenty-five characteristics of the
project is established to enhance the predictive accuracy regarding the probability of particular risk occurrence.

This framework emerged from an extensive literature review complemented by a dedicated two-day expert
interview session on risk management. The session engaged 14 engineers and specialists with substantial
expertise in road infrastructure projects, both within Serbia and internationally. To ensure a comprehensive
risk assessment, the study incorporated a diverse panel of experts from multiple disciplines relevant to
infrastructure projects. The expert team included not only technical specialists but also project managers, as
well as hydrotechnical engineers, structural engineers, linear infrastructure engineers, electrical engineers,
urban planners, geotechnical engineers, environmental engineers, social experts and procurement specialists.
Many of these experts held pivotal roles in the analysed projects, acting as the Employer’s Representatives,
Engineer and Implementation Consultant. Diversity among experts allowed the research to encompass a broad
range of perspectives, addressing technical, environmental, social and procedural aspects of risk. The inclusion
of project management expertise further enriched the evaluation, enabling a nuanced assessment of risks that
extends beyond a purely technical focus and provides a well-rounded understanding of the challenges affecting
project outcomes.

The characteristics delineated in this framework furnish a comprehensive perspective on the essential
elements required for effective project evaluation and risk management. For the 28 completed projects under
analysis, these identified project characteristics are systematically summarised in Table 2.
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Table 2 — Summary of project characteristics and detailed descriptions (Source: [33])

Characteristic

Description

Accepted contract amount [€]

Denotes the contractually accepted sum outlined in the Letter of Acceptance for
the execution and completion of the Works, including the remediation of any
identified defects. Quantifications are provided in euros.

Time for completion [days]

Indicates the allocated timeframe for the completion of the Works, measured
from the Commencement Date. VValues are expressed in days.

Landslides along the route [1, 2, 3 or 4]

Classification based on geological survey findings: 1 — absence of landslides, 2 —
sporadic occurrence of landslides, 3 — moderate frequency of landslides, 4 — high
frequency of landslides.

Archaeological sites along the route [1, 2, 3 or
4]

Classification based on the presence of cultural assets: 1 — no recorded assets, 2
—assets in proximity, 3 — preliminary investigation required, 4 — archaeological
excavation necessary.

Population density in the future route zone
[n/km?’]

Defined as the population density, calculated by dividing the number of
inhabitants divided by the area of the zone of influence (a 5 km radius around the
section).

Difference between the highest and lowest
points on the route [m]

Represents the elevation range between the highest and lowest points within the
terrain, serving as an indicator of topographic complexity. Classified terrain
types are as follows: plain (< 50 m), hilly (50 — 150 m) and mountainous (> 150
m).

Section length [km]

Denotes the total length of the horizontal alignment as specified in the road
layout plan.

Per cent of length of embankments on route
[%]

Represents the ratio of the cumulative embankment length to the overall section
length, expressed as a percentage.

Per cent of length of bridges on route [%]

Indicates the proportion of the total bridge length relative to the section length,
expressed as a percentage.

Per cent of length of cuts on route [%]

Represents the proportion of the total length of cuts relative to the section length,
expressed as a percentage.

Per cent of length of tunnels on route [%)]

Denotes the ratio of the total tunnel length to the section length, expressed as a
percentage.

Maximum height of cuts [m]

Represents the maximum distance between the natural terrain and the vertical
alignment of the road, serving as an indicator of the need for cuts versus tunnels.

Maximum height of embankments [m]

The highest distance between the road alignment and the ground elevation,
indicating the need for embankments versus bridges.

Predominant material category along the route
[A-1to A-7]

Soil and soil-aggregate mixtures are classified according to the AASHTO
(American Association of State Highway and Transportation Officials) Soil
Classification System, which organises soil types based on their suitability for
roadway and construction applications.

Number of collisions (box culvert, overpass,
watercourse, utilities) [n]

Number of collisions with local infrastructure, watercourses and utilities as
identified in the layout plan.

Type of foundation [shallow or deep]

Classification of foundation type based on soil resistance: shallow (e.g. strip
foundations) or deep (e.g. pile foundations).

Whose contractual obligation is to prepare the
Project for Execution [Employer or
Contractor]

Indicates whether the Employer or Contractor is responsible for providing the
Project for Execution.

Level of land expropriation completion at the
time of tender announcement [%]

Represents the percentage of land expropriation parcels completed relative to the
total parcels requiring expropriation.

Is the designer a state-owned company [yes or
noj

Denotes whether the designer is a state-owned company, a factor that may
influence the quality of project documentation and levels of accountability.

Number of amendments and clarifications to
tender documents [n]

Represents the number of amendments and additions made to the tender
documents, which can affect the overall duration of the tendering process.

Number of submitted bids [n]

Indicates the level of interest from bidders and may affect the review time and
likelihood of appeals.
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Characteristic Description
Is the price adjustment for changes in cost Specifies whether the contract incorporates a Price Adjustment for Changes in
contracted [yes or no] Cost clause, influencing adjustments in response to cost fluctuations.

Per cent of contractual advance payment [%] Denotes the percentage of the advance payment relative to the Accepted
Contract Amount, impacting the Contractor’s cash flow.

Whose contractual obligation is to provide Indicates whether the Employer or Contractor is responsible for providing
borrow pits for material [Employer or borrow pits for material, affecting risk allocation.

Contractor]

Whose contractual obligation is to provide a Indicates whether the Employer or Contractor is responsible for providing the
material disposal area [Employer or material disposal area, affecting risk allocation.

Contractor]

Formation of project complexity coefficients

The formation of the complexity coefficient in the context of road construction involves the quantitative
assessment and aggregation of specific road characteristics to provide insight into the project’s complexity.
Experts thoroughly examined and unanimously defined the project complexity coefficients. Through detailed
analysis and collaboration, they identified and agreed upon the specific characteristics that make up each
coefficient, ensuring that these measures accurately reflect the various challenges associated with the project.
Their consensus underscores the reliability and validity of these coefficients in assessing project complexity.
The three key complexity coefficients are the environment coefficient, the contractual coefficient and the
design coefficient. Each of these is defined by a set of characteristics that are analysed in detail.

The environment coefficient comprises the following characteristics: frequency of landslides along the
proposed route, presence of archaeological sites, population density within the projected route zone, vertical
elevation range from the maximum to the minimum elevation coordinates, primary soil type throughout the
alignment, and the amount of structural intersections (e.g. box culvert, overpasses, watercourses and utility
crossings).

The contractual coefficient incorporates attributes related to contractual conditions, including: accepted
contract amount, allocated project duration, the responsible entity for the preparation of the design for
execution, degree of land acquisition finalisation during tender release, modifications and clarifications amount
in tender documentation, total bids submitted, the presence of price adjustment clauses for cost fluctuations,
advance payment percentage, accountability for sourcing borrow pits, and responsibility for the provision of
material disposal areas.

The design coefficient encompasses key design-related metrics: section length, proportion of embankment
length, bridge length, cut length and tunnel length relative to the total route length, maximum cut and
embankment heights, foundation type, and whether the designer company is government-owned.

Determining the impact of project characteristics on project execution

For the purpose of parameter evaluation, an initial interview and panel discussion were conducted, during
which experts defined a list of parameters. Subsequently, they carried out an evaluation of each project
parameter. The evaluation was performed using a Likert scale (ranging from 1 to 7), where the ratings reflected
the degree of impact of each parameter on the extension of time (EoT) and the increase in contract price (ICP).
A rating of 1 indicated a minimal influence of the project parameter on time extensions and cost increases,
whereas a rating of 7 signified the maximum impact, i.e. the most significant potential effect. Experts assessed
each project parameter based on their qualitative understanding of its effect on EoT and ICP, with the option
to assign the same rating to different parameters if they deemed them to have an equivalent impact. This
flexibility enhances the evaluation process, allowing experts to rank project characteristics without
compromising the accuracy of their assessments.

The experts’ assessment (U§°T) of the specific impact of each parameter on EoT represents the arithmetic
mean of all ratings:

14 yrEoT
1 Up

[JTEOT —
Up 14

where p is the parameter index.
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In the same manner, the final expert assessment (U,’f” ) for the specific impact of each parameter on ICP
was determined.

Based on the obtained mean values, the final rating for each individual parameter (Ep) can be calculated
using the following formula:

- qEoT qICP
Ep= 1 X U3°T+ w2 X U}

where:
— o and o2 — weighting coefficients (weights) that reflect the relative importance of each parameter.

In the given example, both factors have equal importance, hence: ®: = @2 = 1. The outcomes are presented
in Table 3.

Table 3 — Impact rating values of the project characteristics on project performance

Group Project characteristics Score Ep
Number of collisions (box culvert, overpass, watercourse, utilities) 10.86
= Landslides along the route 5.06
g Population density in the future route zone 431
§ The difference between the highest and lowest points on the route 10.88
(i Predominant material category along the route 4.05
Archaeological sites along the route 4.23
Accepted contract amount 11.49
Is the price adjustment for changes in cost contracted 3.77
Number of submitted bids 3.46
= Time for completion 11.38
% Whose contractual obligation is to prepare the project for execution 3.88
o
‘g‘ Number of amendments and clarifications to tender documents 3.57
© Per cent of contractual advance payment 3.60
Whose contractual obligation is to provide borrow pits for material 3.01
Whose contractual obligation is to provide a material disposal area 3.54
Level of land expropriation completion at the time of tender announcement 3.79
Per cent of the length of the tunnels on the route 4.03
Maximum height of cuts 11.37
Section length 10.63
c Per cent of the length of cuts on the route 11.04
g Maximum height of embankments 10.92
° Type of foundation 3.89
Per cent of the length of embankments on the route 10.55
Per cent of the length of bridges on the route 10.40
Is the designer a state-owned company 3.74

The basis of this table is sourced from: [33]

Following the analysis and compilation of results, experts reached a consensus that the assigned ratings
accurately and reliably reflect the relative influence of project characteristics on both criteria. This consensus
confirms the reliability and validity of the methodological approach. Additionally, this approach facilitates
straightforward ranking and interpretation of results through mathematical and statistical analysis.
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Determination of project complexity coefficients

Before calculating the coefficient of project complexity, it is necessary to normalise the values of the project
characteristics Pj. Pj represents the normalised value of the j-th project characteristic. In project management,
normalisation is used to bring different characteristics, which may have varying units and scales, onto a
common level, enabling comparison and analysis. The normalised value Pj is calculated using min-max
normalisation, which transforms the values to fall within the range of 0 to 1. This process is carried out as
follows:

Pi—Pmin
I~ Pmax —Pmin
where:
— Pj—normalised characteristics of the j-th contract value;
— Pi—initial (or raw) characteristics of the j-th contract value;
—  Pmin— minimum value of that characteristic among all the projects under consideration;
—  Pmax— maximum value of that characteristic among all the projects under consideration.

All project characteristics are assigned numerical values in a manner that ensures a direct correlation
between characteristics rating and project complexity coefficient, such that a higher characteristics rating
corresponds to a greater project complexity coefficient. Let Ki, K, and Kz be the three project complexity
coefficients. Each complexity coefficient Ki can be calculated based on n project characteristics as follows:

Ki=X}-1 (Pj x Ep)

where:

—  Kj—project complexity coefficient (for i=1,2,3);

— Pj—normalised characteristic of the j-th contract value;

— Ep—evaluation of the contract characteristic in order of place j-th;
— n—total number of project characteristics.

The three project complexity coefficients are: environment coefficient, contractual coefficient and design
coefficient. Project complexity coefficients are organised hierarchically, ranging from the least to the most
significant, with the initial coefficient having the lowest average value and the final coefficient exhibiting the
highest average value. The resulting values are influenced by the project characteristics that comprise each of
these three coefficients, the expert assessment of the significance of each project characteristic (Table 3), and
the number of project characteristics that contribute to the overall project complexity coefficient. This
structured approach ensures that the most critical aspects of project complexity are accurately weighted and
considered in the analysis. The coefficient of project complexity for realised projects is shown in Table 4.

Table 4 — Coefficients of project complexity for realised projects

Project Environment coefficient Contractual coefficient Design coefficient
1 9.8282 19.0560 38.2486
2 10.3472 19.4571 32.7270
3 3.8140 18.6284 25.3071
4 7.5417 19.9699 25.7173
5 13.4643 22.0857 39.3992
6 9.6375 20.4126 43.8757
7 4.3130 18.5824 22.4006
8 5.0405 17.8525 24.5930
9 5.5642 17.5643 37.6964
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Project Environment coefficient Contractual coefficient Design coefficient
10 5.0042 16.9464 35.1025
11 1.7089 11.6488 27.4665
12 7.5219 10.1725 20.3659
13 10.2059 19.8770 41.2720
14 15.6353 19.1536 45.7632
15 7.0392 9.3075 25.7500
16 3.6461 17.4882 25.0633
17 8.9107 19.0148 34.9094
18 7.5243 21.4177 45.2424
19 13.7522 23.3569 52.4325
20 15.1667 10.8083 58.6951
21 4.0515 17.4359 15.8753
22 4.1444 18.3224 36.9475
23 6.2233 13.3695 39.7772
24 9.9153 18.4015 36.7102
25 11.6832 19.2720 18.4551
26 9.8435 10.8548 46.1938
27 9.8435 9.9405 46.1938
28 6.1359 19.9621 25.6578

The results presented in Table 4 illustrate the variation in project complexity coefficients across the analysed
projects. In general, higher values of the design coefficient, for example, values above 35, indicate a project
characterised by significant technical challenges, such as complex design requirements, the use of advanced
technologies or demanding construction conditions. Conversely, lower values, for example, below 25, suggest
technically less complex projects. Similarly, higher values of the contractual coefficient point to projects with
more complex contractual frameworks, potentially involving numerous stakeholders, intricate contractual
terms or complex risk-sharing mechanisms. The environment coefficient reflects environmental-sensitivity and
regulatory constraints, where higher values denote projects located in environmentally demanding areas or
those subject to stricter environmental regulations. Overall, projects with high coefficients in all three
categories are generally considered complex and may require more intensive management and risk mitigation
strategies. These coefficients provide valuable insight for project managers, allowing them to assess the
complexity level at an early stage and plan accordingly.

Selection of the most significant risks

This study’s primary objective is forecasting the most significant risks influencing contract implementation,
which is achieved by utilising a project complexity coefficient. Table 5 illustrates the percentage of each key
risk occurrence across completed projects. Through an extensive analysis of publications, expert evaluations
and risk frequency examination in previously executed projects, five predominant risks were selected for
detailed examination.
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Table 5 — Percentage of occurrence of selected dominant risks in completed projects

Risk 1.9.
. Unresolved
Risk L1 Risk 1.11. collisions with .
Non-compliance - . Risk 1.5. Delays -
. Inapplicable existing . ; Risk 1.4.
of the project - . in the production ] .
! project infrastructure - Non-compliance in
. with . e or changes in
Project . documentation facilities - parts of the
environmental - project -
- for high cuts, (underground . project
conditions dueto | . - - . documentation .
. . including tunnel installations, . . documentation.
inappropriate - during execution.
. portals. pipelines, local
design bases. ,
roads, railways,
etc.).

1 7.53 23.01 17.57 3.77 7.95
2 15.63 14.06 11.98 2.60 13.02
3 21.79 21.79 0 0 0
4 21.05 6.32 5.26 5.26 8.42
5 11.86 35.57 6.19 4.12 0
6 11.38 0.60 10.78 7.78 10.78
7 6.67 7.41 19.26 5.19 4.44
8 14.06 7.03 18.75 2.34 7.03
9 17.09 0 2.56 13.68 17.09
10 9.24 0 20.17 0 5.88
11 13.79 0 24.14 6.90 3.45
12 0 0 0 0 7.69
13 18.54 25.28 9.55 7.30 1.69
14 7.84 32.68 9.80 3.92 0.65
15 0 0 0 87.50 0
16 10.59 5.88 0 10.59 5.88
17 4.00 10.67 14.67 9.33 13.33
18 10 5.88 9.41 3.53 14.12
19 3.90 3.90 25.97 3.90 11.69
20 25.87 8.39 3.50 3.50 4.90
21 14.29 14.29 17.86 0 0
22 16.00 0 12.00 20 4.00
23 6.82 0 18.18 2.27 10.23
24 0 8.00 40 0
25 0 0 12.50 0
26 37.50 0 25.00 0 12.50
27 8.33 5.95 5.95 1.19 9.52
28 3.80 3.80 2.53 6.33 7.59

The results presented in Table 5 highlight the frequency of occurrence of the five selected dominant risks
across 28 completed projects. The analysis reveals that “Risk 1.11. Inapplicable project documentation for
high cuts, including tunnel portals” and “Risk 1.1. Non-compliance of the project with environmental
conditions due to inappropriate design bases” show particularly high occurrence rates in several projects,
indicating that deficiencies in project documentation and environmental considerations are common challenges
in infrastructure projects. Additionally, “Risk 1.9. Unresolved collisions with existing infrastructure facilities”
also demonstrates a notable frequency, confirming its relevance as a critical factor that can disrupt project
execution. The variation in percentages across projects suggests that while certain risks are systemic, others
are more context-dependent, influenced by project-specific conditions. This ranking helps identify which risks
require the most attention in future projects.
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3.2 Predictive analysis of risk in Serbian road infrastructure projects: Case study analysis

The suggested approach was implemented to predict risks and estimate potential increases in accepted
contract amount and extensions of time for completion in the construction of roads and highways [34, 35]. The
TSK system was chosen because of its computational efficiency and precision in constructing models that are
precise, using outcome representations that are linear and multivariable. This case study specifically targets
the construction of roads and highways in Serbia, where data for system training and testing the system were
sourced from 28 projects across the country. Data from 25 of these projects were utilised for fuzzy inference
system (FIS) development and training. For validation, the data from three additional projects were used. The
developed fuzzy inference system comprises 3 input variables and 7 output variables (as illustrated in Figure
1).

The inputs of the developed TSK fuzzy inference system, as previously defined, are three project
complexity coefficients (the environment parameters coefficient, the contractual parameters coefficient and
the design parameters coefficient). These coefficients represent aggregated indicators that describe the
complexity level of a project in terms of environmental, contractual and technical factors.

The outputs of the TSK fuzzy inference system, as shown in Figure 1, consist of two project-level indicators
and five critical risk factors. The project-level indicators are extension of time (EoT) and increase in accepted
contract price (ICP), which represent two major consequences of risk occurrence in road infrastructure
projects. In addition, the system outputs include five selected dominant risks, identified through expert
assessment and frequency analysis based on data from 28 completed infrastructure projects:

— Risk 1.1. Non-compliance of the project with environmental conditions due to inappropriate design bases,

— Risk 1.11. Inapplicable project documentation for high cuts, including tunnel portals,

— Risk 1.9. Unresolved collisions with existing infrastructure facilities (underground installations, pipelines,
local roads, railways, etc.),

— Risk 1.5. Delays in the creation or changes in project documentation during execution and

— Risk 1.4. Non-compliance in parts of the project documentation.

The selected risks were chosen based on their high frequency and significant impact on project
performance, particularly regarding time delays and cost overruns (EoT and ICP), as evidenced in the analysed
data and expert opinions.

For generating a fuzzy inference system (FIS) based on a dataset using subtractive clustering in MATLAB,
the “genfis2” function was used. This approach enables the automatic determination of rules and membership
functions based on the input data. Subtractive clustering analyses the data and identifies cluster centres. Each
cluster is then used to create fuzzy rules. Gaussian membership functions were selected to represent the input
variables, while linear functions were applied to model the seven output variables. The use of Gaussian
functions enables smooth and continuous transitions between fuzzy sets, which is essential for capturing the
inherent uncertainty of complex projects. Compared to alternative membership functions, such as triangular or
trapezoidal, Gaussian functions demonstrate greater robustness to noise in input data, resulting in enhanced
model stability under real-world conditions. Moreover, their differentiability across the entire domain supports
more efficient optimisation and fine-tuning of fuzzy logic systems. On the output side, linear functions were
chosen due to their computational efficiency, offering faster processing than more complex nonlinear
alternatives. In the context of a Sugeno-type fuzzy inference system, linear output functions streamline the
defuzzification process, ensuring that risk probabilities are derived quickly and effectively [13].

The “genfis2” function is particularly useful for quickly generating an FIS from data without the need for
manual adjustment of rules and membership functions. However, it requires careful tuning of the clustering
radius, i.e. the cluster density parameter, to achieve optimal model accuracy. This parameter determines the
cluster size when applying the subtractive clustering algorithm. A larger radius value results in fewer but larger
clusters, whereas a smaller radius value leads to a greater number of smaller clusters and, consequently, a
larger number of fuzzy rules. Normal distribution membership functions were utilised for input parameters,
allowing effective simulation of the data entries. Outputs were represented by linear functions, enabling an
accurate, robust simulation of results. The principles were designed as “IF-THEN” propositions with
mathematical expressions, ensuring a balance between flexibility and accuracy in the modelling process.

The data utilised for generating or training the fuzzy inference system were structured in a database, with
the first three columns (A, B and C) containing input variable data and the subsequent seven rows (D to J)
containing output variable data. Based on the data, 25 fuzzy rules were generated. The system can be enhanced
by expanding the training database with additional data, as this will provide a broader variable span through
TSK principles.
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il ek . out3 Noncompliance of the project with environmental h
inl Environment coefficient conditions due to inappropriate design bases |
. . g out4 Inapplicable project documentation
in2 Contractual coefficient ugeno

in3 Design coefficient

Outputs

outl Increasing Accepted Contract Price

out2 Extension of Time for Completion

A

for high cuts, including tunnel portals

out5 Unresolved collisions with existing infrastructure facilities b
(e.g., underground installations, pipelines, local roads, railways)
-

out6 Delays in the creation or modification of
project documentation during execution

ﬁ|

-

out7 Non-compliance of parts of project documentation

Figure 1 — Structure of the TSK system

The assessment of the generated FIS was conducted using data from actual projects in Serbia. Table 6
provides the output data obtained from the FIS alongside the corresponding data from the real-world system,

specifically from these three projects.

Table 6 — The evaluation results

From a real project From FIS Deviation [%6] Average
Outputs ] ] ] ] ] . . . . deviation
Project 1 | Project2 | Project3 | Project1 | Project2 | Project3 | Project1l | Project2 | Project3 [%]

Output 1 (ICP) 105.074 146.613 | 116.974 99.090 | 143.143 | 123.034 5.695 2.366 5.180 4.414
Output 2 (EoT) 71.644 205.342 59.667 65.247 198.223 58.482 8.927 3.467 1.985 4.793
Output 3 (1.1) 14.063 3.896 8.333 17.342 3.256 8.234 23.321 16.437 1.195 13.651
Output 4 (1.11.) 7.031 3.896 5.952 7.501 2.9896 5.405 6.681 23.287 9.203 13.057
Output 5 (1.9.) 18.750 25.974 5.952 17.163 25.606 5.592 8.464 1.418 6.060 5.314
Output 6 (1.5.) 2.344 3.896 1.190 1.594 3.345 1.112 31.966 14.147 6.630 17.581
Output 7 (1.4.) 7.031 11.688 9.524 7.852 9.852 8.9832 11.685 15.707 5.677 11.023

Table 6 presents a comparison between the actual values obtained from three completed projects and the
outputs generated by the FIS model. The “Deviation [%]” columns indicate the percentage difference between
the real project data and the FIS predictions for each output, while the “Average deviation [%]” column
provides the mean deviation across all three projects for each output variable. Based on engineering judgement
and relevant literature, deviations below 10% are generally considered acceptable for early-stage project
planning, as they provide a sufficiently reliable basis for risk-informed decision-making [13, 36, 37]. In this
analysis, most outputs fall within or close to this acceptable range, with the exception of Output 6 (1.5.), which
shows a higher deviation (average of 17.58%). This deviation is interpreted as potentially problematic and
signals the need for model refinement, particularly through additional training and adjustment of membership
functions. On the other hand, the lowest deviations are observed for the ICP and EoT outputs (Output 1 and
Output 2), indicating a higher reliability of the model in predicting these key project indicators. Based on the
obtained results, it can be concluded that the developed TSK system exhibits an average deviation of 9.98%
in prediction for the selected test projects, which is reasonable given the complexity of the task. From a
practical perspective, this level of accuracy is considered satisfactory in the initial phase of project planning
[38].
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The most significant deviation was noted in the predictions for out6, while it is the smallest for outl. To
enhance prediction accuracy, additional training of the FIS, coupled with precise adjustments to the
membership functions of input variables and refinement of inference rules, is required.

Application of the TSK model for risk group ranking

The results obtained through the developed TSK fuzzy model methodology can also be effectively used for
risk ranking. In road infrastructure projects, risk ranking is of crucial importance as it enables the definition of
priorities for undertaking appropriate preventive measures. By applying the TSK model and analysing the
obtained coefficients, it is possible to create a ranking list of risk groups. In this way, a customised ranking
can be generated for each project, where the model allows, for example, the determination of the relative
importance and priority of action for each of the five defined risk groups, contributing to more efficient risk
management and cost optimisation.

To facilitate a comparative analysis of the model outputs, three infrastructure projects were selected, each
characterised by notable differences in input parameters, specifically the complexity coefficients. The selected
projects exhibit varying values of the environmental parameters coefficient, contractual parameters coefficient
and technical parameters coefficient, with the aim of testing the model’s capability to consistently predict the
impact of risks on the ICP and to rank them under diverse conditions. Furthermore, one of the analysed projects
includes an outlier in the dataset, allowing for the evaluation of the model’s robustness and its capacity to
manage extreme values. Following the conducted analyses, the results for the top ten key risks were obtained
for each project. The risks are ranked in descending order from those with the greatest impact on the ICP to
those with the least influence:

Table 7 — Ranking of the top ten risks according to their influence on ICP

Project 1 Project 2 Project 3

Environment | Contractual Design Environment | Contractual Design Environment | Contractual Design
coefficient coefficient | coefficient | coefficient coefficient | coefficient | coefficient coefficient | coefficient

5.0405 17.8525 24.593 13.7522 23.3569 52.4325 3.6461 17.4882 25.0633

1.11. Inapplicable project documentation
for high cuts, including tunnel portals.

) ) ; for high cuts, including tunnel portals.
1.1._Non-compllancg .Of the project with 1.6. Incorrect Bill of Quantities of works.
environmental conditions due to

inappropriate design bases. 1.1. Non-ComplianCE of the project with

1.5. Delays in the production or changes environmental conditions due to

in project documentation during Inappropriate de5|gr1 base-s.-
execution. 2.7. Exchange rate instability and

resource price spikes.

1.11. Inapplicable project documentation 1.11. Inapplicable project documentation

for high cuts, including tunnel portals.
1.6. Incorrect Bill of Quantities of works.
2.7. Exchange rate instability and
resource price spikes.

1.1. Non-compliance of the project with

environmental conditions due to

2.7. Exchange rate instability and inappropriate design bases.

resource price spikes. L.5. D_elays in the proc_iuction_or changes 1.5. Delays in the production or changes
1.9. Unresolved collisions with existing L?(Eggi?(fr: documentation during in project documentation during
infrastructure facilities (underground h ) execution.
installations, pipelines, local roads, 3.5. hE_qument failures and obsolete 4.6. Delay in handing over (parts of) the
railways, etc.). machinery. _ o construction site to the contractor.
1.6. Incorrect Bill of Quantities of works. | 7-3- Unsolved Claims, Variations and 1.7. Insufficiently examined and

—_ . VEPs. T . -
1.7. Insufficiently examined and ] ) imprecisely determined locations, as well
imprecisely determined locations, as well | 1.10. Inadequate design of riverbeds and | as available quantities of materials in
as available quantities of materials in stormwater treatment. borrow pits.
borrow pits. 7.4. High complexity of the project 1.10. Inadequate design of riverbeds and
3.5. Equipment failures and obsolete (scope of works, topography, access stormwater treatment.
machinery. restrictions, new technologies, etc.) 7.3. Unsolved Claims, Variations and
7.3. Unsolved Claims, Variations and 1.9. Unresolved collisions with existing | VEPs.
VEPs. infrastructure facilities (underground

1.8. Failure to provide adequate locations

installations, pipelines, local roads, . .
PP for deposit areas for excavated materials.

1.10. Inadequate design of riverbeds and :
railways, etc.).

stormwater treatment.

The results in Table 7 clearly illustrate the model’s capacity to effectively rank key risks according to their
impact on ICP across different project scenarios. In all three projects, the TSK model consistently identifies
“Inapplicable project documentation for high cuts, including tunnel portals” and “Incorrect Bill of Quantities
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of works” as top-ranked risks, confirming their dominant influence regardless of project-specific parameters.
The ranking further shows that certain risks, such as “Exchange rate instability and resource price spikes” and
“Unsolved Claims, Variations and VEPs”, maintain high positions across multiple projects, emphasising their
broad relevance. However, the appearance of risks unique to individual projects, such as “Delay in handing
over (parts of) the construction site to the contractor” in Project 3, indicates the model’s sensitivity to varying
project contexts. The established ranking allows for the clear prioritisation of risks, ensuring that risks with
the greatest potential to affect the ICP are systematically identified. This provides decision-makers with a
structured basis for targeted risk management actions.

4. CONCLUSIONS

This study has successfully developed a systematic approach to risk prediction in road infrastructure
projects by analysing 25 project characteristics across 28 completed projects. From this analysis, three project
complexity coefficients were derived, providing a comprehensive measure of project complexity. A list of
potential risks was defined based on expert evaluations, and the dominant risks with the most significant impact
on project outcomes were identified.

Using Sugeno fuzzy logic, prediction models were constructed for each of the dominant risks, leading to
the successful prediction of the five most common risks encountered in infrastructure projects. These models
demonstrate the effectiveness of Sugeno fuzzy logic in handling complex, non-linear data and provide valuable
insights for more accurate risk management and mitigation in future projects. This approach establishes a
robust framework for improving the reliability and success of road infrastructure projects through proactive
mitigation of potential risks.

Additionally, the model was extended to include a ranking of risk groups based on their influence on project
outcomes, particularly on ICP. The results highlighted that risks related to project documentation deficiencies
and unresolved collisions with existing infrastructure were consistently ranked highest, confirming their
systemic nature. This ranking provides project managers with a clear prioritisation of risks, helping to focus
preventive measures on the most critical threats to project success.

These study findings bear essential practical implications for the effective management of road
infrastructure projects. By utilising the developed prediction models based on Sugeno fuzzy logic, project
managers and engineers can anticipate and mitigate the most common risks before they impact the project’s
progress. The derived project complexity coefficients enable better resource allocation, scheduling and
contingency planning, ultimately leading to more efficient project execution and reduced likelihood of costly
delays or failures. The evaluation of model performance showed that an average deviation of approximately
10% between the model outputs and real project data is acceptable for project assessment at early planning
stages, while deviations exceeding 15% are considered problematic and require model refinement. This
proactive approach to risk management enhances the overall reliability and success of infrastructure projects.

While the use of expert evaluation in this study has provided valuable insights for assessing the impact of
project characteristics on key project indicators (EoT and ICP), certain limitations should be acknowledged.
The results depend on the subjective judgement of a selected panel of experts, which, despite their experience
and qualifications, may introduce biases or variability in the assessment process. Moreover, the applied variant,
based on a single-round scoring using a Likert scale, may limit the depth of consensus that could be achieved
through iterative methods, such as the Delphi technique. Therefore, although the outcomes are robust for early-
stage project assessments, caution is recommended when generalising the findings to projects outside the
analysed context or when applying the results without further expert consultation.

Future research could expand on this study by incorporating a larger and more diverse dataset, including
projects from various regions and environments, to enhance the generalisability of the findings [39-44].
Furthermore, incorporating more sophisticated machine learning methods in conjunction with Sugeno fuzzy
logic has the potential to enhance the precision of risk prediction models. Research could also explore the
dynamic nature of risks over the project lifecycle, developing models that can adapt to changes in project
conditions. Additionally, future research should aim to include a broader range of expert disciplines, such as
finance specialists, to explore potential differences in risk assessment across various fields and to yield insights
evaluated from multiple perspectives. It would also be beneficial for future studies to consider preventive
measures from the perspective of contractors, ensuring a more comprehensive approach to risk mitigation.
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