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ABSTRACT 

Risks causing delays in the construction of roads and highways frequently lead to substantial 

economic and social consequences, with project timelines extending up to three times beyond 

their initial schedules. These risks not only extend the project timeline but also escalate the 

overall project execution cost. Despite extensive research on construction-related risks 

globally, a notable gap remains in studies specifically addressing the risk factors that cause 

delays in road projects. Analysing completed projects is crucial to derive practical and 

applicable results, as they offer essential insights into the real-world challenges and risks that 

may cause timeline extensions and budget escalations. Such an approach ensures that the 

findings are grounded in actual project outcomes, thereby enhancing their relevance and 

effectiveness in improving future project planning and risk management. For these reasons, 

this study aims to analyse 25 project characteristics across 28 completed projects, from which 

three project complexity coefficients are derived. Additionally, a list of risks is defined based 

on expert evaluations, and the dominant risks are identified. For each of these dominant risks, 

a prediction model is constructed using Sugeno fuzzy logic, enabling more accurate and 

sustainable risk management and mitigation in future projects. 
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1. INTRODUCTION 

Risk is an inherent aspect of large-scale construction projects, encompassing possible challenges in meeting 

project goals. Risk is highly prevalent in construction projects, necessitating a thorough risk assessment [1]. 

The continuous rise in both the figure and interconnectedness of the project risks requires a systematic, holistic 

assessment of risk, leading to structured collective decision processes. According to Samani and 

Shahbodaghlou [2], multi-valued logic in managing risks produces improved outcomes compared to 

conventional research methods, as it can effectively delineate the relationships among risks, contributing 

factors and their consequences [3, 4]. 

Effective risk management involves understanding the fundamental aspects that contribute to threats to 

project execution, which are typically consistent across all project types. Commonly, an initial risk assessment 

phase involves identifying risks. Following identification, a risk analysis is performed to assess the probability 

of these risks materialising [3, 4]. Risk identification aims to pinpoint latent risks that could influence project 

objectives positively or negatively. 

Vygnanov and Fironov [5] propose a risk management methodology that consists of four key processes: 

within the planning group, risk identification and assessment are conducted; in the project group, risk 
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mitigation measures are developed; and the management group is responsible for the overall management of 

risks. Risk represents an uncertain detriment, quantified by its probability of occurrence, that can affect various 

dimensions of a project, such as cost, schedule or scope. Early identification of risks enables project managers 

to mitigate potential impacts and aids in the timely delivery of projects. The risk management process includes 

identifying, analysing and applying strategies to minimise identified risks, which can be effectively achieved 

through multi-valued reasoning in the management of risks [6–9].  

In the context of complex construction projects, a key challenge is how to systematically assess and quantify 

risks when objective project data are scarce or incomplete. This has led to the frequent application of expert 

evaluation methods as a reliable tool for supporting risk assessment and decision-making. Recent research also 

highlights the growing role of artificial intelligence and machine learning techniques, including transformers 

and tokenisation methods, in improving predictive accuracy in decision-making contexts [10–12]. The expert 

evaluation method is widely applied in risk assessment and decision-making within infrastructure project 

management, especially in situations where empirical data are limited. Various studies have combined expert 

panels, Likert scales and weighted scoring models to assess critical risks and quantify expert opinions, often 

integrating them into predictive models such as fuzzy inference systems [13–15]. This approach is particularly 

relevant in complex and variable project environments, where expert judgement helps overcome data 

limitations. In line with this, the present study incorporates expert input into the calibration of the fuzzy model 

to ensure that project complexity factors are accurately represented. 

In the literature, significant attention is given to the identification and classification of risks [16–18]. Tah 

and Carr [16] established a risk hierarchy, classifying risks as either external or internal. Chapman [17] 

identified various risk origins, including the surroundings, industry sector and employers, and identified fifty-

eight associated risk factors in construction projects. Lu et al. [18] classified seven categories of risks in 

construction projects: (1) budget risks, (2) binding and lawful risks, (3) risks associated with subcontractors, 

(4) labour and protection risks, (5) sociopolitical risks, (6) risks form project designing and (7) unforeseeable 

event risks. 

Table 1 presents a summary of key features and research findings gathered from an extensive analysis of 

publications, primarily focusing on studies that utilise multi-criteria analysis in risk management and project 

complexity evaluation. The table highlights significant aspects that informed the methodology of this study, 

including critical project characteristics, commonly identified risks, and the effectiveness of fuzzy logic in 

addressing uncertainties within complex construction projects. This structured overview serves as a foundation 

for understanding the context and relevance of fuzzy approaches in risk prediction, offering a comprehensive 

reference point for the study’s development of predictive models and complexity assessment frameworks. 

Table 1 – Summary of key characteristics and research findings from the analysis of publications, with a concentration on multi-

criteria studies 

Authors Papers Year 
Approach and 

methods 
Main research findings 

Iqbal, Choudhry, 

Holschemacher, Ali, 

& Tamošaitienė [19] 

Risk Management in 

Construction Projects 
2015 

Expert judgement 

questionnaire 

37 most applicable risks were 

incorporated into the questionnaire. 

Payment delays received the highest 

score for the responsibility for 

delays occurring in construction 

projects. 

Edjossan-Sossou, 

Galvez, Deck, Al 

Heib, Verdel, 

Dupont, Chery, 

Camargo, Morel [20] 

 

Sustainable Risk 

Management Strategy 

Selection Using a Fuzzy 

Multi-Criteria Decision 

Approach 

2020 
Fuzzy multi-criteria 

decision-making 

Risk management strategies are 

prioritised based on a set of criteria. 

The results showed that the criteria 

aggregation approach, the 

confidence level chosen by the 

decision-makers, and their attitude 

affect the ranking. 

Antoniou [21] 
Delay Risk Assessment 

Models for Road Projects 
2021 

Multi-criteria 

decision-making 

The study identified four specific 

delay factors that predominantly 

affect Greek road construction 

projects, for which targeted 

mitigation strategies were proposed. 
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Authors Papers Year 
Approach and 

methods 
Main research findings 

Thomas et al. [22] 

Modelling and Assessment of 

Critical Risks in BOT Road 

Projects 

2006 
Fuzzy-fault tree 

analysis 

The study presents a risk assessment 

framework that effectively models 

and analyses the critical risks 

associated with Indian BOT road 

projects, such as traffic revenue risk, 

land acquisition delays, demand risk 

and financial closure delays. 

Abdolreza Yazdani-

Chamzini [23] 

Proposing a New 

Methodology Based on Fuzzy 

Logic for Tunnelling Risk 

Assessment 

2014 
Fuzzy inference 

system 

The use of a fuzzy inference system 

in assessing risks in tunnel 

construction has demonstrated 

considerable potential for precise 

risk evaluation and prioritisation. 

Canesi and Gallo [24] 

Risk Assessment in 

Sustainable Infrastructure 

Development Projects: A 

Tool for Mitigating Cost 

Overruns 

2023 Case study 

The study successfully developed a 

risk matrix that predicts a potential 

cost increase of 7.53% for an 

infrastructure project, with this 

estimate deviating by only 1.34% 

from the actual execution costs, thus 

effectively mitigating unexpected 

cost overruns. 

Our study 

Risk Prediction in Road 

Infrastructure Projects 

Considering Project 

Complexity Coefficients 

2025 
Fuzzy inference 

system 

This study seeks to analyse 25 

project characteristics from 28 

completed projects to derive three 

complexity coefficients, define and 

identify dominant risks through 

expert evaluations, and use Sugeno 

fuzzy logic to construct a prediction 

model for more accurate risk 

management and mitigation in 

future projects. 

 

Based on a review of the literature, it has been observed that existing research lacks a systematic framework 

for assessing project complexity and predicting dominant civil engineering risks. This research seeks to bridge 

that discrepancy through the development of a structured approach to evaluating project complexity and 

identifying key risks. The research analyses a set of critical project characteristics to derive complexity 

coefficients that represent overall project complexity. Through expert assessments, a comprehensive list of 

potential risks is established, allowing for the identification of dominant risks that have the most significant 

impact on project outcomes. To address these risks, the study employs Sugeno fuzzy logic, a powerful method 

for managing uncertainty and generating precise predictions in complex systems. 

This research contributes to the field by offering a novel approach to risk management, combining project 

complexity assessment with advanced predictive modelling. The results have practical implications for 

enhancing the reliability and success of construction projects, particularly in managing and mitigating risks 

that are most likely to affect project outcomes. 

2. METHODOLOGY 

This study seeks to improve risk management in road and highway construction by evolving the systematic 

approach for assessing project complexity and forecasting key risks. To achieve this, the research analyses 25 

key characteristics from 28 completed projects to derive three complexity coefficients that encapsulate the 

overall project complexity. Based on expert evaluations, a comprehensive list of potential risks is established, 

and the dominant risks, which have the most significant impact on project outcomes, are identified. 

Risk identification in road construction projects is a crucial component of project management conducted 

during various phases, most commonly in the early stages of planning and design. In the planning phase, an 

initial assessment of all potential risks that could impact project success is carried out, including technical, 

economic, safety and environmental factors. During the design phase, risks are further developed based on 

specific technical solutions, allowing for a more precise assessment and the development of mitigation 

strategies. However, the risk identification process is not limited to the initial project stages; it continues 
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throughout the entire project lifecycle, encompassing the construction and operational phases, where new risks 

may emerge, or existing risks may be redefined depending on changes in circumstances or specific situations 

on the site. 

To address these dominant risks, prediction models are constructed using Sugeno fuzzy logic, a method 

recognised for its effectiveness in handling uncertainty and providing accurate predictions in complex systems. 

This research contributes to the field by offering a novel approach to risk management, combining project 

complexity assessment with advanced predictive modelling. The findings carry practical implications for 

enhancing the reliability and success of construction projects, especially in the management and mitigation of 

risks most likely to impact project outcomes. 

2.1 TSK system 

The Takagi-Sugeno-Kang (TSK) fuzzy inference system (FIS) is a specialised type of fuzzy logic system 

well-suited for handling complex, non-linear systems; hereafter referred to as the TSK system. This model is 

particularly valued for its ability to process complex data sets. Unlike traditional logic, which operates on 

binary values (true or false), fuzzy logic allows for partial membership within sets, providing a way to represent 

real-world concepts with varying degrees of truth. In a fuzzy logic system, the extent of an element’s 

membership in the group is quantified through the characteristic operation that measures this partial 

association. 

Structure of the TSK system 

The TSK system is distinguished by a regulation framework consisting of rules containing an occasion 

(precursor) and an outcome (successor). Descriptive language parameters are used as the precursor of TSK 

assertion, whereas the successors are generally expressed as linear functions or fixed values. 

The standard TSK principle is formulated as: 

If x→A and y→B, then q=f(x, y). 

In this context, TSK groups are A and B, and they represent x and y, the input parameters. A sharp function 

f(x, y) is typically expressed as the linear compound of the TSK groups. The successor may be structured as 

follows: 

q = ax + by + c 

where a, b and c are fixed values. 

Conclusion process 

The following essential stages were comprised in the TSK system for the conclusion process: 

 Linguistic mapping: For each TSK group, precise input values are converted into membership degrees. 

Each input is allocated a membership degree ranging from 0 to 1, indicating an association level with the 

relevant TSK group. 

 Examination of rules: The precursors of the TSK principles are evaluated to identify the rule strength. 

The fuzzy intersection operation accomplished this by multiplying the precursor figures. 

 Output integration: The output is generated for every rule using the associated successor function, 

typically a linear function in the TSK system. 

 Output defuzzification: The single crisp output is produced by merging the outputs of all rules, which is 

often done using a weighted arithmetic mean. The weights correspond to the standardised rule strengths. 

The final outcome, Q, is calculated by the equation: 

Q= 
∑(𝑠𝑖×𝑞𝑖)

∑𝑠𝑖
 

where: 

 si – represents the rule strength of the rule in order of place i-th; 

 qi – denotes the outcome from the successor function of the rule in order of place i-th. 

 

This weighted arithmetic mean method guarantees an appropriate reflection of the final outcome that 

contributes to all engaged rules [25–29]. 
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2.2 Utilised programs and mechanisms 

The MATLAB (version 2024) was used in this research to create and implement the TSK logic, taking 

advantage of its advanced computational capabilities and extensive toolbox for effective data modelling and 

analysis. Furthermore, SPSS software (version 28.0) [30–32] was utilised for data evaluation, supporting and 

ensuring the precision and trustworthiness of the study’s results. 

3. OUTCOME 

3.1 Data collection 

The study data collection encompasses twenty-eight finished projects that represent significant state roads 

of the Republic of Serbia associated with the development of the pan-European Road Corridor X. This 

multimodal transport link runs from Northwest to Southeast Europe. It connects Salzburg (Austria) – Ljubljana 

(Slovenia) – Zagreb (Croatia) – Beograd (Serbia) – Skopje (North Macedonia) – Thessaloniki (Greece). The 

main axis is connected to the following cities or areas via four branches:  

 Graz (Austria) – Maribor (Slovenia) – Zagreb (Croatia);  

 Budapest (Hungary) – Novi Sad (Serbia) – Beograd (Serbia);  

 Niš (Serbia) – Sofija (Bulgaria) and further along Corridor IV to Istanbul; and  

 Veles (North Macedonia) – Bitola (North Macedonia) – Florina (Greece) and further via Florina – Kozani 

(via Egnatia) to Igoumenitsa.  

 

The construction of the main axis of Corridor X in the southern part of the Republic of Serbia, covering a 

total of 74.2 km, was initiated in 2010 and completed in 2024. This segment consists of 10 distinct contracts, 

each awarded through internationally standardised tendering processes, resulting in 10 individual contracts. 

Furthermore, two supplementary contracts were implemented to construct auxiliary local roads to 

accommodate impacted neighbouring populations. 

The branch Niš (Serbia) – Sofija (Bulgaria) of Corridor X in the eastern part of the Republic of Serbia, 

extending over 86 km, was initiated in 2009 and reached completion in 2024. This segment encompassed 

sixteen distinct contracts executed in alignment with international financial institution standards. The design 

for these contracts involved building a multi-bridge highway with 7 tunnels. Conditions of Contracts were 

formalised under the so-called Pink FIDIC, which represents Red FIDIC Harmonised by the Banks. 

Procurement processes complied with the frameworks established by the multilateral bank rules and guidelines 

for procurement in force during the period of the financial agreement. 

Project characteristics 

During the evaluation, a rigorous investigation of specific determinants that critically affect the 

implementation and outcome of the project is paramount. The framework of twenty-five characteristics of the 

project is established to enhance the predictive accuracy regarding the probability of particular risk occurrence. 

This framework emerged from an extensive literature review complemented by a dedicated two-day expert 

interview session on risk management. The session engaged 14 engineers and specialists with substantial 

expertise in road infrastructure projects, both within Serbia and internationally. To ensure a comprehensive 

risk assessment, the study incorporated a diverse panel of experts from multiple disciplines relevant to 

infrastructure projects. The expert team included not only technical specialists but also project managers, as 

well as hydrotechnical engineers, structural engineers, linear infrastructure engineers, electrical engineers, 

urban planners, geotechnical engineers, environmental engineers, social experts and procurement specialists. 

Many of these experts held pivotal roles in the analysed projects, acting as the Employer’s Representatives, 

Engineer and Implementation Consultant. Diversity among experts allowed the research to encompass a broad 

range of perspectives, addressing technical, environmental, social and procedural aspects of risk. The inclusion 

of project management expertise further enriched the evaluation, enabling a nuanced assessment of risks that 

extends beyond a purely technical focus and provides a well-rounded understanding of the challenges affecting 

project outcomes. 

The characteristics delineated in this framework furnish a comprehensive perspective on the essential 

elements required for effective project evaluation and risk management. For the 28 completed projects under 

analysis, these identified project characteristics are systematically summarised in Table 2. 
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Table 2 – Summary of project characteristics and detailed descriptions (Source: [33]) 

Characteristic Description 

Accepted contract amount [€] Denotes the contractually accepted sum outlined in the Letter of Acceptance for 

the execution and completion of the Works, including the remediation of any 

identified defects. Quantifications are provided in euros. 

Time for completion [days] Indicates the allocated timeframe for the completion of the Works, measured 

from the Commencement Date. Values are expressed in days. 

Landslides along the route [1, 2, 3 or 4] Classification based on geological survey findings: 1 – absence of landslides, 2 – 

sporadic occurrence of landslides, 3 – moderate frequency of landslides, 4 – high 

frequency of landslides. 

Archaeological sites along the route [1, 2, 3 or 

4] 

Classification based on the presence of cultural assets: 1 – no recorded assets, 2 

– assets in proximity, 3 – preliminary investigation required, 4 – archaeological 

excavation necessary. 

Population density in the future route zone 

[n/km²] 

Defined as the population density, calculated by dividing the number of 

inhabitants divided by the area of the zone of influence (a 5 km radius around the 

section). 

Difference between the highest and lowest 

points on the route [m] 

Represents the elevation range between the highest and lowest points within the 

terrain, serving as an indicator of topographic complexity. Classified terrain 

types are as follows: plain (≤ 50 m), hilly (50 – 150 m) and mountainous (≥ 150 

m). 

Section length [km] Denotes the total length of the horizontal alignment as specified in the road 

layout plan. 

Per cent of length of embankments on route 

[%] 

Represents the ratio of the cumulative embankment length to the overall section 

length, expressed as a percentage. 

Per cent of length of bridges on route [%] Indicates the proportion of the total bridge length relative to the section length, 

expressed as a percentage. 

Per cent of length of cuts on route [%] Represents the proportion of the total length of cuts relative to the section length, 

expressed as a percentage. 

Per cent of length of tunnels on route [%] Denotes the ratio of the total tunnel length to the section length, expressed as a 

percentage. 

Maximum height of cuts [m] Represents the maximum distance between the natural terrain and the vertical 

alignment of the road, serving as an indicator of the need for cuts versus tunnels. 

Maximum height of embankments [m] The highest distance between the road alignment and the ground elevation, 

indicating the need for embankments versus bridges. 

Predominant material category along the route 

[A-1 to A-7] 

Soil and soil-aggregate mixtures are classified according to the AASHTO 

(American Association of State Highway and Transportation Officials) Soil 

Classification System, which organises soil types based on their suitability for 

roadway and construction applications. 

Number of collisions (box culvert, overpass, 

watercourse, utilities) [n] 

Number of collisions with local infrastructure, watercourses and utilities as 

identified in the layout plan. 

Type of foundation [shallow or deep] Classification of foundation type based on soil resistance: shallow (e.g. strip 

foundations) or deep (e.g. pile foundations). 

Whose contractual obligation is to prepare the 

Project for Execution [Employer or 

Contractor] 

Indicates whether the Employer or Contractor is responsible for providing the 

Project for Execution. 

Level of land expropriation completion at the 

time of tender announcement [%] 

Represents the percentage of land expropriation parcels completed relative to the 

total parcels requiring expropriation. 

Is the designer a state-owned company [yes or 

no] 

Denotes whether the designer is a state-owned company, a factor that may 

influence the quality of project documentation and levels of accountability. 

Number of amendments and clarifications to 

tender documents [n] 

Represents the number of amendments and additions made to the tender 

documents, which can affect the overall duration of the tendering process. 

Number of submitted bids [n] Indicates the level of interest from bidders and may affect the review time and 

likelihood of appeals. 
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Characteristic Description 

Is the price adjustment for changes in cost 

contracted [yes or no] 

Specifies whether the contract incorporates a Price Adjustment for Changes in 

Cost clause, influencing adjustments in response to cost fluctuations. 

Per cent of contractual advance payment [%] Denotes the percentage of the advance payment relative to the Accepted 

Contract Amount, impacting the Contractor’s cash flow. 

Whose contractual obligation is to provide 

borrow pits for material [Employer or 

Contractor] 

Indicates whether the Employer or Contractor is responsible for providing 

borrow pits for material, affecting risk allocation. 

Whose contractual obligation is to provide a 

material disposal area [Employer or 

Contractor] 

Indicates whether the Employer or Contractor is responsible for providing the 

material disposal area, affecting risk allocation. 

Formation of project complexity coefficients 

The formation of the complexity coefficient in the context of road construction involves the quantitative 

assessment and aggregation of specific road characteristics to provide insight into the project’s complexity. 

Experts thoroughly examined and unanimously defined the project complexity coefficients. Through detailed 

analysis and collaboration, they identified and agreed upon the specific characteristics that make up each 

coefficient, ensuring that these measures accurately reflect the various challenges associated with the project. 

Their consensus underscores the reliability and validity of these coefficients in assessing project complexity. 

The three key complexity coefficients are the environment coefficient, the contractual coefficient and the 

design coefficient. Each of these is defined by a set of characteristics that are analysed in detail. 

The environment coefficient comprises the following characteristics: frequency of landslides along the 

proposed route, presence of archaeological sites, population density within the projected route zone, vertical 

elevation range from the maximum to the minimum elevation coordinates, primary soil type throughout the 

alignment, and the amount of structural intersections (e.g. box culvert, overpasses, watercourses and utility 

crossings). 

The contractual coefficient incorporates attributes related to contractual conditions, including: accepted 

contract amount, allocated project duration, the responsible entity for the preparation of the design for 

execution, degree of land acquisition finalisation during tender release, modifications and clarifications amount 

in tender documentation, total bids submitted, the presence of price adjustment clauses for cost fluctuations, 

advance payment percentage, accountability for sourcing borrow pits, and responsibility for the provision of 

material disposal areas. 

The design coefficient encompasses key design-related metrics: section length, proportion of embankment 

length, bridge length, cut length and tunnel length relative to the total route length, maximum cut and 

embankment heights, foundation type, and whether the designer company is government-owned. 

Determining the impact of project characteristics on project execution 

For the purpose of parameter evaluation, an initial interview and panel discussion were conducted, during 

which experts defined a list of parameters. Subsequently, they carried out an evaluation of each project 

parameter. The evaluation was performed using a Likert scale (ranging from 1 to 7), where the ratings reflected 

the degree of impact of each parameter on the extension of time (EoT) and the increase in contract price (ICP). 

A rating of 1 indicated a minimal influence of the project parameter on time extensions and cost increases, 

whereas a rating of 7 signified the maximum impact, i.e. the most significant potential effect. Experts assessed 

each project parameter based on their qualitative understanding of its effect on EoT and ICP, with the option 

to assign the same rating to different parameters if they deemed them to have an equivalent impact. This 

flexibility enhances the evaluation process, allowing experts to rank project characteristics without 

compromising the accuracy of their assessments. 

The experts’ assessment (Ū𝑝
𝐸𝑜𝑇) of the specific impact of each parameter on EoT represents the arithmetic 

mean of all ratings: 

Ū𝑝
𝐸𝑜𝑇 =

∑ 𝑈𝑝
𝐸𝑜𝑇14

1

14
 

where p is the parameter index. 



Promet – Traffic&Transportation. 2025;37(6):1441-1457.  Engineering and Infrastructure  

1448 

In the same manner, the final expert assessment (Ū𝑝
𝐼𝐶𝑃) for the specific impact of each parameter on ICP 

was determined. 

Based on the obtained mean values, the final rating for each individual parameter (Ep) can be calculated 

using the following formula: 

Ep = ω1 × Ū𝑝
𝐸𝑜𝑇+ ω2 × Ū𝑝

𝐼𝐶𝑃 

where: 

 ω₁ and ω₂ – weighting coefficients (weights) that reflect the relative importance of each parameter. 

In the given example, both factors have equal importance, hence: ω₁ = ω₂ = 1. The outcomes are presented 

in Table 3. 

Table 3 – Impact rating values of the project characteristics on project performance  

Group Project characteristics Score Ep 

E
n

v
ir

o
n

m
en

t 

Number of collisions (box culvert, overpass, watercourse, utilities) 10.86 

Landslides along the route 5.06 

Population density in the future route zone 4.31 

The difference between the highest and lowest points on the route 10.88 

Predominant material category along the route 4.05 

Archaeological sites along the route 4.23 

C
o

n
tr

a
ct

u
a
l 

Accepted contract amount 11.49 

Is the price adjustment for changes in cost contracted 3.77 

Number of submitted bids 3.46 

Time for completion 11.38 

Whose contractual obligation is to prepare the project for execution 3.88 

Number of amendments and clarifications to tender documents 3.57 

Per cent of contractual advance payment 3.60 

Whose contractual obligation is to provide borrow pits for material 3.01 

Whose contractual obligation is to provide a material disposal area 3.54 

Level of land expropriation completion at the time of tender announcement 3.79 

D
es

ig
n

 

Per cent of the length of the tunnels on the route 4.03 

Maximum height of cuts 11.37 

Section length 10.63 

Per cent of the length of cuts on the route 11.04 

Maximum height of embankments 10.92 

Type of foundation 3.89 

Per cent of the length of embankments on the route 10.55 

Per cent of the length of bridges on the route 10.40 

Is the designer a state-owned company 3.74 

The basis of this table is sourced from: [33] 

Following the analysis and compilation of results, experts reached a consensus that the assigned ratings 

accurately and reliably reflect the relative influence of project characteristics on both criteria. This consensus 

confirms the reliability and validity of the methodological approach. Additionally, this approach facilitates 

straightforward ranking and interpretation of results through mathematical and statistical analysis. 
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Determination of project complexity coefficients 

Before calculating the coefficient of project complexity, it is necessary to normalise the values of the project 

characteristics Pj. Pj represents the normalised value of the j-th project characteristic. In project management, 

normalisation is used to bring different characteristics, which may have varying units and scales, onto a 

common level, enabling comparison and analysis. The normalised value Pj is calculated using min-max 

normalisation, which transforms the values to fall within the range of 0 to 1. This process is carried out as 

follows:  

Pj = 
𝑃𝑖−𝑃𝑚𝑖𝑛

Pmax −𝑃𝑚𝑖𝑛
 

where: 

 Pj – normalised characteristics of the j-th contract value; 

 Pi – initial (or raw) characteristics of the j-th contract value; 

 Pmin – minimum value of that characteristic among all the projects under consideration; 

 Pmax – maximum value of that characteristic among all the projects under consideration. 

 

All project characteristics are assigned numerical values in a manner that ensures a direct correlation 

between characteristics rating and project complexity coefficient, such that a higher characteristics rating 

corresponds to a greater project complexity coefficient. Let K1, K2 and K3 be the three project complexity 

coefficients. Each complexity coefficient Ki can be calculated based on n project characteristics as follows: 

Ki = ∑ (Pj × Ep)𝑛
𝑗=1  

where: 

 Ki – project complexity coefficient (for i=1,2,3); 

 Pj – normalised characteristic of the j-th contract value; 

 Ep – evaluation of the contract characteristic in order of place j-th; 

 n – total number of project characteristics. 

 

The three project complexity coefficients are: environment coefficient, contractual coefficient and design 

coefficient. Project complexity coefficients are organised hierarchically, ranging from the least to the most 

significant, with the initial coefficient having the lowest average value and the final coefficient exhibiting the 

highest average value. The resulting values are influenced by the project characteristics that comprise each of 

these three coefficients, the expert assessment of the significance of each project characteristic (Table 3), and 

the number of project characteristics that contribute to the overall project complexity coefficient. This 

structured approach ensures that the most critical aspects of project complexity are accurately weighted and 

considered in the analysis. The coefficient of project complexity for realised projects is shown in Table 4. 

Table 4 – Coefficients of project complexity for realised projects 

Project Environment coefficient Contractual coefficient Design coefficient 

1 9.8282 19.0560 38.2486 

2 10.3472 19.4571 32.7270 

3 3.8140 18.6284 25.3071 

4 7.5417 19.9699 25.7173 

5 13.4643 22.0857 39.3992 

6 9.6375 20.4126 43.8757 

7 4.3130 18.5824 22.4006 

8 5.0405 17.8525 24.5930 

9 5.5642 17.5643 37.6964 
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Project Environment coefficient Contractual coefficient Design coefficient 

10 5.0042 16.9464 35.1025 

11 1.7089 11.6488 27.4665 

12 7.5219 10.1725 20.3659 

13 10.2059 19.8770 41.2720 

14 15.6353 19.1536 45.7632 

15 7.0392 9.3075 25.7500 

16 3.6461 17.4882 25.0633 

17 8.9107 19.0148 34.9094 

18 7.5243 21.4177 45.2424 

19 13.7522 23.3569 52.4325 

20 15.1667 10.8083 58.6951 

21 4.0515 17.4359 15.8753 

22 4.1444 18.3224 36.9475 

23 6.2233 13.3695 39.7772 

24 9.9153 18.4015 36.7102 

25 11.6832 19.2720 18.4551 

26 9.8435 10.8548 46.1938 

27 9.8435 9.9405 46.1938 

28 6.1359 19.9621 25.6578 

 

The results presented in Table 4 illustrate the variation in project complexity coefficients across the analysed 

projects. In general, higher values of the design coefficient, for example, values above 35, indicate a project 

characterised by significant technical challenges, such as complex design requirements, the use of advanced 

technologies or demanding construction conditions. Conversely, lower values, for example, below 25, suggest 

technically less complex projects. Similarly, higher values of the contractual coefficient point to projects with 

more complex contractual frameworks, potentially involving numerous stakeholders, intricate contractual 

terms or complex risk-sharing mechanisms. The environment coefficient reflects environmental sensitivity and 

regulatory constraints, where higher values denote projects located in environmentally demanding areas or 

those subject to stricter environmental regulations. Overall, projects with high coefficients in all three 

categories are generally considered complex and may require more intensive management and risk mitigation 

strategies. These coefficients provide valuable insight for project managers, allowing them to assess the 

complexity level at an early stage and plan accordingly. 

Selection of the most significant risks 

This study’s primary objective is forecasting the most significant risks influencing contract implementation, 

which is achieved by utilising a project complexity coefficient. Table 5 illustrates the percentage of each key 

risk occurrence across completed projects. Through an extensive analysis of publications, expert evaluations 

and risk frequency examination in previously executed projects, five predominant risks were selected for 

detailed examination. 
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Table 5 – Percentage of occurrence of selected dominant risks in completed projects 

Project 

Risk 1.1. 

Non-compliance 

of the project 

with 

environmental 

conditions due to 

inappropriate 

design bases. 

Risk 1.11. 

Inapplicable 

project 

documentation 

for high cuts, 

including tunnel 

portals. 

Risk 1.9. 

Unresolved 

collisions with 

existing 

infrastructure 

facilities 

(underground 

installations, 

pipelines, local 

roads, railways, 

etc.). 

Risk 1.5. Delays 

in the production 

or changes in 

project 

documentation 

during execution. 

Risk 1.4. 

Non-compliance in 

parts of the 

project 

documentation. 

1 7.53 23.01 17.57 3.77 7.95 

2 15.63 14.06 11.98 2.60 13.02 

3 21.79 21.79 0 0 0 

4 21.05 6.32 5.26 5.26 8.42 

5 11.86 35.57 6.19 4.12 0 

6 11.38 0.60 10.78 7.78 10.78 

7 6.67 7.41 19.26 5.19 4.44 

8 14.06 7.03 18.75 2.34 7.03 

9 17.09 0 2.56 13.68 17.09 

10 9.24 0 20.17 0 5.88 

11 13.79 0 24.14 6.90 3.45 

12 0 0 0 0 7.69 

13 18.54 25.28 9.55 7.30 1.69 

14 7.84 32.68 9.80 3.92 0.65 

15 0 0 0 87.50 0 

16 10.59 5.88 0 10.59 5.88 

17 4.00 10.67 14.67 9.33 13.33 

18 10 5.88 9.41 3.53 14.12 

19 3.90 3.90 25.97 3.90 11.69 

20 25.87 8.39 3.50 3.50 4.90 

21 14.29 14.29 17.86 0 0 

22 16.00 0 12.00 20 4.00 

23 6.82 0 18.18 2.27 10.23 

24 0 8.00 40 0 0 

25 0 0 12.50 0 0 

26 37.50 0 25.00 0 12.50 

27 8.33 5.95 5.95 1.19 9.52 

28 3.80 3.80 2.53 6.33 7.59 

 

The results presented in Table 5 highlight the frequency of occurrence of the five selected dominant risks 

across 28 completed projects. The analysis reveals that “Risk 1.11. Inapplicable project documentation for 

high cuts, including tunnel portals” and “Risk 1.1. Non-compliance of the project with environmental 

conditions due to inappropriate design bases” show particularly high occurrence rates in several projects, 

indicating that deficiencies in project documentation and environmental considerations are common challenges 

in infrastructure projects. Additionally, “Risk 1.9. Unresolved collisions with existing infrastructure facilities” 

also demonstrates a notable frequency, confirming its relevance as a critical factor that can disrupt project 

execution. The variation in percentages across projects suggests that while certain risks are systemic, others 

are more context-dependent, influenced by project-specific conditions. This ranking helps identify which risks 

require the most attention in future projects. 
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3.2 Predictive analysis of risk in Serbian road infrastructure projects: Case study analysis 

The suggested approach was implemented to predict risks and estimate potential increases in accepted 

contract amount and extensions of time for completion in the construction of roads and highways [34, 35]. The 

TSK system was chosen because of its computational efficiency and precision in constructing models that are 

precise, using outcome representations that are linear and multivariable. This case study specifically targets 

the construction of roads and highways in Serbia, where data for system training and testing the system were 

sourced from 28 projects across the country. Data from 25 of these projects were utilised for fuzzy inference 

system (FIS) development and training. For validation, the data from three additional projects were used. The 

developed fuzzy inference system comprises 3 input variables and 7 output variables (as illustrated in Figure 

1). 

The inputs of the developed TSK fuzzy inference system, as previously defined, are three project 

complexity coefficients (the environment parameters coefficient, the contractual parameters coefficient and 

the design parameters coefficient). These coefficients represent aggregated indicators that describe the 

complexity level of a project in terms of environmental, contractual and technical factors. 

The outputs of the TSK fuzzy inference system, as shown in Figure 1, consist of two project-level indicators 

and five critical risk factors. The project-level indicators are extension of time (EoT) and increase in accepted 

contract price (ICP), which represent two major consequences of risk occurrence in road infrastructure 

projects. In addition, the system outputs include five selected dominant risks, identified through expert 

assessment and frequency analysis based on data from 28 completed infrastructure projects: 

 Risk 1.1. Non-compliance of the project with environmental conditions due to inappropriate design bases, 

 Risk 1.11. Inapplicable project documentation for high cuts, including tunnel portals, 

 Risk 1.9. Unresolved collisions with existing infrastructure facilities (underground installations, pipelines, 

local roads, railways, etc.), 

 Risk 1.5. Delays in the creation or changes in project documentation during execution and 

 Risk 1.4. Non-compliance in parts of the project documentation. 

The selected risks were chosen based on their high frequency and significant impact on project 

performance, particularly regarding time delays and cost overruns (EoT and ICP), as evidenced in the analysed 

data and expert opinions. 

For generating a fuzzy inference system (FIS) based on a dataset using subtractive clustering in MATLAB, 

the “genfis2” function was used. This approach enables the automatic determination of rules and membership 

functions based on the input data. Subtractive clustering analyses the data and identifies cluster centres. Each 

cluster is then used to create fuzzy rules. Gaussian membership functions were selected to represent the input 

variables, while linear functions were applied to model the seven output variables. The use of Gaussian 

functions enables smooth and continuous transitions between fuzzy sets, which is essential for capturing the 

inherent uncertainty of complex projects. Compared to alternative membership functions, such as triangular or 

trapezoidal, Gaussian functions demonstrate greater robustness to noise in input data, resulting in enhanced 

model stability under real-world conditions. Moreover, their differentiability across the entire domain supports 

more efficient optimisation and fine-tuning of fuzzy logic systems. On the output side, linear functions were 

chosen due to their computational efficiency, offering faster processing than more complex nonlinear 

alternatives. In the context of a Sugeno-type fuzzy inference system, linear output functions streamline the 

defuzzification process, ensuring that risk probabilities are derived quickly and effectively [13]. 

The “genfis2” function is particularly useful for quickly generating an FIS from data without the need for 

manual adjustment of rules and membership functions. However, it requires careful tuning of the clustering 

radius, i.e. the cluster density parameter, to achieve optimal model accuracy. This parameter determines the 

cluster size when applying the subtractive clustering algorithm. A larger radius value results in fewer but larger 

clusters, whereas a smaller radius value leads to a greater number of smaller clusters and, consequently, a 

larger number of fuzzy rules. Normal distribution membership functions were utilised for input parameters, 

allowing effective simulation of the data entries. Outputs were represented by linear functions, enabling an 

accurate, robust simulation of results. The principles were designed as “IF-THEN” propositions with 

mathematical expressions, ensuring a balance between flexibility and accuracy in the modelling process. 

The data utilised for generating or training the fuzzy inference system were structured in a database, with 

the first three columns (A, B and C) containing input variable data and the subsequent seven rows (D to J) 

containing output variable data. Based on the data, 25 fuzzy rules were generated. The system can be enhanced 

by expanding the training database with additional data, as this will provide a broader variable span through 

TSK principles. 
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Figure 1 – Structure of the TSK system 

The assessment of the generated FIS was conducted using data from actual projects in Serbia. Table 6 

provides the output data obtained from the FIS alongside the corresponding data from the real-world system, 

specifically from these three projects. 

Table 6 – The evaluation results 

Outputs 

From a real project From FIS Deviation [%] Average 

deviation 

[%] Project 1 Project 2 Project 3 Project 1 Project 2 Project 3 Project 1 Project 2 Project 3 

Output 1 (ICP) 105.074 146.613 116.974 99.090 143.143 123.034 5.695 2.366 5.180 4.414 

Output 2 (EoT) 71.644 205.342 59.667 65.247 198.223 58.482 8.927 3.467 1.985 4.793 

Output 3 (1.1.) 14.063 3.896 8.333 17.342 3.256 8.234 23.321 16.437 1.195 13.651 

Output 4 (1.11.) 7.031 3.896 5.952 7.501 2.9896 5.405 6.681 23.287 9.203 13.057 

Output 5 (1.9.) 18.750 25.974 5.952 17.163 25.606 5.592 8.464 1.418 6.060 5.314 

Output 6 (1.5.) 2.344 3.896 1.190 1.594 3.345 1.112 31.966 14.147 6.630 17.581 

Output 7 (1.4.) 7.031 11.688 9.524 7.852 9.852 8.9832 11.685 15.707 5.677 11.023 

 

Table 6 presents a comparison between the actual values obtained from three completed projects and the 

outputs generated by the FIS model. The “Deviation [%]” columns indicate the percentage difference between 

the real project data and the FIS predictions for each output, while the “Average deviation [%]” column 

provides the mean deviation across all three projects for each output variable. Based on engineering judgement 

and relevant literature, deviations below 10% are generally considered acceptable for early-stage project 

planning, as they provide a sufficiently reliable basis for risk-informed decision-making [13, 36, 37]. In this 

analysis, most outputs fall within or close to this acceptable range, with the exception of Output 6 (1.5.), which 

shows a higher deviation (average of 17.58%). This deviation is interpreted as potentially problematic and 

signals the need for model refinement, particularly through additional training and adjustment of membership 

functions. On the other hand, the lowest deviations are observed for the ICP and EoT outputs (Output 1 and 

Output 2), indicating a higher reliability of the model in predicting these key project indicators. Based on the 

obtained results, it can be concluded that the developed TSK system exhibits an average deviation of 9.98% 

in prediction for the selected test projects, which is reasonable given the complexity of the task. From a 

practical perspective, this level of accuracy is considered satisfactory in the initial phase of project planning 

[38]. 
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The most significant deviation was noted in the predictions for out6, while it is the smallest for out1. To 

enhance prediction accuracy, additional training of the FIS, coupled with precise adjustments to the 

membership functions of input variables and refinement of inference rules, is required. 

Application of the TSK model for risk group ranking 

The results obtained through the developed TSK fuzzy model methodology can also be effectively used for 

risk ranking. In road infrastructure projects, risk ranking is of crucial importance as it enables the definition of 

priorities for undertaking appropriate preventive measures. By applying the TSK model and analysing the 

obtained coefficients, it is possible to create a ranking list of risk groups. In this way, a customised ranking 

can be generated for each project, where the model allows, for example, the determination of the relative 

importance and priority of action for each of the five defined risk groups, contributing to more efficient risk 

management and cost optimisation. 

To facilitate a comparative analysis of the model outputs, three infrastructure projects were selected, each 

characterised by notable differences in input parameters, specifically the complexity coefficients. The selected 

projects exhibit varying values of the environmental parameters coefficient, contractual parameters coefficient 

and technical parameters coefficient, with the aim of testing the model’s capability to consistently predict the 

impact of risks on the ICP and to rank them under diverse conditions. Furthermore, one of the analysed projects 

includes an outlier in the dataset, allowing for the evaluation of the model’s robustness and its capacity to 

manage extreme values. Following the conducted analyses, the results for the top ten key risks were obtained 

for each project. The risks are ranked in descending order from those with the greatest impact on the ICP to 

those with the least influence: 

Table 7 – Ranking of the top ten risks according to their influence on ICP 

Project 1 Project 2 Project 3 

Environment 

coefficient 

Contractual 

coefficient 

Design 

coefficient 

Environment 

coefficient 

Contractual 

coefficient 

Design 

coefficient 

Environment 

coefficient 

Contractual 

coefficient 

Design 

coefficient 

5.0405 17.8525 24.593 13.7522 23.3569 52.4325 3.6461 17.4882 25.0633 

1.11. Inapplicable project documentation 

for high cuts, including tunnel portals. 

1.1. Non-compliance of the project with 

environmental conditions due to 

inappropriate design bases. 

1.5. Delays in the production or changes 

in project documentation during 

execution. 

2.7. Exchange rate instability and 

resource price spikes. 

1.9. Unresolved collisions with existing 

infrastructure facilities (underground 

installations, pipelines, local roads, 

railways, etc.). 

1.6. Incorrect Bill of Quantities of works. 

1.7. Insufficiently examined and 

imprecisely determined locations, as well 

as available quantities of materials in 

borrow pits. 

3.5. Equipment failures and obsolete 

machinery. 

7.3. Unsolved Claims, Variations and 

VEPs. 

1.10. Inadequate design of riverbeds and 

stormwater treatment. 

1.11. Inapplicable project documentation 

for high cuts, including tunnel portals. 

1.6. Incorrect Bill of Quantities of works. 

1.1. Non-compliance of the project with 

environmental conditions due to 

inappropriate design bases. 

2.7. Exchange rate instability and 

resource price spikes. 

1.5. Delays in the production or changes 

in project documentation during 

execution. 

3.5. Equipment failures and obsolete 

machinery. 

7.3. Unsolved Claims, Variations and 

VEPs. 

1.10. Inadequate design of riverbeds and 

stormwater treatment. 

7.4. High complexity of the project 

(scope of works, topography, access 

restrictions, new technologies, etc.). 

1.9. Unresolved collisions with existing 

infrastructure facilities (underground 

installations, pipelines, local roads, 

railways, etc.). 

1.11. Inapplicable project documentation 

for high cuts, including tunnel portals. 

1.6. Incorrect Bill of Quantities of works. 

2.7. Exchange rate instability and 

resource price spikes. 

1.1. Non-compliance of the project with 

environmental conditions due to 

inappropriate design bases. 

1.5. Delays in the production or changes 

in project documentation during 

execution. 

4.6. Delay in handing over (parts of) the 

construction site to the contractor. 

1.7. Insufficiently examined and 

imprecisely determined locations, as well 

as available quantities of materials in 

borrow pits. 

1.10. Inadequate design of riverbeds and 

stormwater treatment. 

7.3. Unsolved Claims, Variations and 

VEPs. 

1.8. Failure to provide adequate locations 

for deposit areas for excavated materials. 

 

The results in Table 7 clearly illustrate the model’s capacity to effectively rank key risks according to their 

impact on ICP across different project scenarios. In all three projects, the TSK model consistently identifies 

“Inapplicable project documentation for high cuts, including tunnel portals” and “Incorrect Bill of Quantities 
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of works” as top-ranked risks, confirming their dominant influence regardless of project-specific parameters. 

The ranking further shows that certain risks, such as “Exchange rate instability and resource price spikes” and 

“Unsolved Claims, Variations and VEPs”, maintain high positions across multiple projects, emphasising their 

broad relevance. However, the appearance of risks unique to individual projects, such as “Delay in handing 

over (parts of) the construction site to the contractor” in Project 3, indicates the model’s sensitivity to varying 

project contexts. The established ranking allows for the clear prioritisation of risks, ensuring that risks with 

the greatest potential to affect the ICP are systematically identified. This provides decision-makers with a 

structured basis for targeted risk management actions. 

4. CONCLUSIONS 

This study has successfully developed a systematic approach to risk prediction in road infrastructure 

projects by analysing 25 project characteristics across 28 completed projects. From this analysis, three project 

complexity coefficients were derived, providing a comprehensive measure of project complexity. A list of 

potential risks was defined based on expert evaluations, and the dominant risks with the most significant impact 

on project outcomes were identified. 

Using Sugeno fuzzy logic, prediction models were constructed for each of the dominant risks, leading to 

the successful prediction of the five most common risks encountered in infrastructure projects. These models 

demonstrate the effectiveness of Sugeno fuzzy logic in handling complex, non-linear data and provide valuable 

insights for more accurate risk management and mitigation in future projects. This approach establishes a 

robust framework for improving the reliability and success of road infrastructure projects through proactive 

mitigation of potential risks. 

Additionally, the model was extended to include a ranking of risk groups based on their influence on project 

outcomes, particularly on ICP. The results highlighted that risks related to project documentation deficiencies 

and unresolved collisions with existing infrastructure were consistently ranked highest, confirming their 

systemic nature. This ranking provides project managers with a clear prioritisation of risks, helping to focus 

preventive measures on the most critical threats to project success. 

These study findings bear essential practical implications for the effective management of road 

infrastructure projects. By utilising the developed prediction models based on Sugeno fuzzy logic, project 

managers and engineers can anticipate and mitigate the most common risks before they impact the project’s 

progress. The derived project complexity coefficients enable better resource allocation, scheduling and 

contingency planning, ultimately leading to more efficient project execution and reduced likelihood of costly 

delays or failures. The evaluation of model performance showed that an average deviation of approximately 

10% between the model outputs and real project data is acceptable for project assessment at early planning 

stages, while deviations exceeding 15% are considered problematic and require model refinement. This 

proactive approach to risk management enhances the overall reliability and success of infrastructure projects. 

While the use of expert evaluation in this study has provided valuable insights for assessing the impact of 

project characteristics on key project indicators (EoT and ICP), certain limitations should be acknowledged. 

The results depend on the subjective judgement of a selected panel of experts, which, despite their experience 

and qualifications, may introduce biases or variability in the assessment process. Moreover, the applied variant, 

based on a single-round scoring using a Likert scale, may limit the depth of consensus that could be achieved 

through iterative methods, such as the Delphi technique. Therefore, although the outcomes are robust for early-

stage project assessments, caution is recommended when generalising the findings to projects outside the 

analysed context or when applying the results without further expert consultation. 

Future research could expand on this study by incorporating a larger and more diverse dataset, including 

projects from various regions and environments, to enhance the generalisability of the findings [39–44]. 

Furthermore, incorporating more sophisticated machine learning methods in conjunction with Sugeno fuzzy 

logic has the potential to enhance the precision of risk prediction models. Research could also explore the 

dynamic nature of risks over the project lifecycle, developing models that can adapt to changes in project 

conditions. Additionally, future research should aim to include a broader range of expert disciplines, such as 

finance specialists, to explore potential differences in risk assessment across various fields and to yield insights 

evaluated from multiple perspectives. It would also be beneficial for future studies to consider preventive 

measures from the perspective of contractors, ensuring a more comprehensive approach to risk mitigation. 
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