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@ ABSTRACT
~ The convergence of blockchain technology, multi-access edge computing (MEC) and

This work is licensed artificial intelligence (Al) has opened new frontiers for advancing the Internet of Vehicles
under a Creative (loV) within intelligent transport systems. The work introduces EdgeChain-Al, a novel
Commons Attribution 4.0 framework that synergises these three technologies to improve the security, efficiency and
International Licence. scalability of loV applications. By employing blockchain’s decentralised ledger for secure
Publisher: communication, MEC’s edge computing capabilities for instantaneous processing, and Al’s
Faculty of Transport cognitive intelligence for predictive decision-making. The work addresses critical challenges
and Traffic Sciences, such as latency, privacy and data integrity. Our framework outperforms current approaches

University of Zagreb by reducing latency by 25%, improving energy efficiency by 15% and maintaining 99.9%

data integrity. Extensive evaluation and comparative analysis with existing methods like
federated learning and edge intelligence solutions further demonstrate the superior
performance of the proposed work. This study provides a forward-looking approach for the
seamless integration of 1oV into the broader 10T ecosystem, enhancing the advancement of
intelligent transport systems.

KEYWORDS
blockchain; artificial intelligence; security; Internet of Vehicles.

1. INTRODUCTION

The Internet of VVehicles (loV) has emerged as a pivotal application area, integrating vehicles, infrastructure
and other devices into a highly interconnected ecosystem aimed at improving safety, efficiency and user
experiences on the road. Several studies have explored the security, privacy and efficiency aspects of loV.
Studies [1-3] discuss security frameworks that integrate hesitant fuzzy sets, privacy-preserving mechanisms
and big data applications to address cybersecurity concerns in interconnected environments. Research in [4-5]
proposes secure data exchange frameworks and efficient edge computing models tailored for loV, highlighting
the need for decentralised approaches to ensure data integrity and low-latency decision-making. Additionally,
studies [6-7] focus on blockchain-based solutions and real-time decision-making strategies, which are crucial
for ensuring secure and reliable vehicular communication. Addressing these challenges requires innovative
approaches that combine multiple cutting-edge technologies to create a robust, scalable and secure loV
framework. Studies [8-9] explore traffic prediction models and decentralised traffic management solutions
using edge computing and blockchain technology, demonstrating how such techniques enhance system
efficiency. Research in [10] introduces machine learning-based anomaly detection mechanisms for vehicular
networks, providing crucial insights into detecting malicious behaviour and preventing cyber threats. Work in
[11] proposes load-balancing techniques to optimise network performance in intelligent transportation
systems, while [12] investigates high-level approaches for threat detection using both classical and deep
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learning techniques. Furthermore, [13] extends these discussions by integrating deep learning and social
network analysis to enhance security in smart city policing, which directly aligns with IoV’s need for real-time
security enforcement.

By reducing reliance on centralised cloud infrastructure, mobile edge computing (MEC) lowers latency and
ensures faster responses in critical 1oV scenarios, such as collision avoidance and traffic flow optimisation.
Study [14] discusses the importance of reliable backhaul connectivity in offshore 10T networks, which can be
extended to loV applications to enhance long-range vehicle communication. Research in [15] proposes a secure
and highly efficient distributed blockchain PBFT consensus algorithm for intelligent loV, reinforcing trust and
immutability in data exchange. Work in [16] explores smart contract-based authentication mechanisms that
can be adapted to loV authentication frameworks. Additionally, [17] investigates the role of UAV-based
network management in 6G environments, offering potential solutions for securing vehicular communication
and ensuring continuous network coverage. Finally, [18] analyses the convergence of blockchain, Al and ML
in big data analytics, underscoring the importance of integrating these technologies for a more intelligent and
secure loV ecosystem. Blockchain offers a tamper-resistant platform where transactions and data exchanges
can be verified and stored securely across a distributed network of nodes, without the essential for a centralised
scheme [19]. Additionally, blockchain enables transparent, auditable data exchanges, further boosting trust
among stakeholders in the loV ecosystem. When combined with MEC, blockchain’s decentralised nature
complements the proximity-based computing of MEC, ensuring both security and real-time processing [20].

Despite the advantages of MEC and blockchain, the sheer volume and complexity of loV data require
advanced intelligence to extract meaningful insights and optimise decision-making. This is where Al plays a
crucial role. Al technologies, particularly machine learning and deep learning, can process big loV data to
predict traffic patterns, optimise vehicle routes, enhance fuel efficiency and even anticipate maintenance needs.
By incorporating Al into the EdgeChain-Al framework, we enable vehicles and edge nodes to acquire from
past data and make informed decisions autonomously. For instance, Al can forecast traffic congestion based
on real-time data and historical patterns, allowing vehicles to reroute dynamically to avoid delays.
Furthermore, Al-driven predictive maintenance can monitor vehicle health in real time, reducing the risk of
unexpected breakdowns and refining overall road safety.

One of the key innovations of the proposed framework is its ability to integrate Al, blockchain and MEC
into a seamless, cohesive system that addresses the critical challenges of loV. While each of these technologies
has been explored individually in loV research, their combination creates a synergistic effect that enhances the
overall performance of loV applications. MEC ensures low-latency processing, blockchain secures data
exchanges, and Al optimises decision-making and resource allocation. Together, these technologies create a
robust framework that is well-suited for the demands of intelligent transport systems.

A major challenge in loV environments is latency. For example, in autonomous driving, vehicles process
sensor data and make decisions in milliseconds to avoid accidents and ensure passenger safety. Traditional
cloud-based approaches often introduce unacceptable delays due to the distance between data sources and
processing centres. MEC pointedly diminishes this latency, enabling real-time data processing at the edge of
the network. By processing data locally, MEC ensures that time-sensitive applications, like collision
recognition and lane-keeping assistance, can operate with minimal delay.

In addition to latency, data privacy and security are major concerns in loV environments. Vehicles collect
and share a wide range of sensitive information, including location data, driving behaviour and personal
preferences. The data, if violated, can be exploited for malicious intent, such as tracking individuals or
manipulating vehicle behaviour. Blockchain technology provides a secure and decentralised platform to
overcome these issues. In the proposed framework, blockchain ensures that all data exchanges between
vehicles, infrastructure and central authorities are secure and tamper-proof.

Energy efficiency is another critical issue in loV environments, particularly for electric vehicles and
battery-powered sensors. 1oV systems must strike a balance between performance and power consumption to
ensure that vehicles and devices can run for extended periods without recurrent recharging. Al plays a crucial
role in enhancing energy efficiency by analysing real-time data and making smart decisions about resource
allocation. For instance, Al algorithms can optimise vehicle routing to minimise fuel consumption or adjust
the power usage of edge nodes based on current demand. In this paper, Al-driven energy optimisation leads to
a 15% increase in energy efficiency compared to existing loV solutions.

Data integrity is essential for the reliable operation of loV systems, as inaccurate or tampered data could
lead to disastrous consequences, such as traffic accidents or incorrect navigation. Blockchain technology
ensures data integrity by verifying all transactions and storing them in a tamper-proof ledger. The blockchain’s
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immutable ledger in this study guarantees that all data exchanged between vehicles, infrastructure and central
authorities remains accurate and trustworthy. This is particularly important in scenarios where vehicles rely on
real-time data from other vehicles or roadside units to make critical decisions.

Through comprehensive evaluation and comparative analysis, the study demonstrates superior performance
in terms of latency, security, energy efficiency and data integrity. Our experiments show a 25% reduction in
latency, a 15% improvement in energy efficiency and 99.9% data integrity, outperforming existing loV
frameworks that rely on edge intelligence, federated learning or blockchain-based communication alone. The
integration of Al, blockchain and MEC in the EdgeChain-Al framework provides a holistic solution to the key
challenges facing loV, paving the way for the advancement of intelligent transport systems.

2. RELATED WORKS

The integration of advanced communication frameworks, decentralised data collection and machine
learning techniques has been crucial in improving the performance of such systems. A decentralised framework
for data collection, as discussed by [9], shows the advantages of using a distributed architecture for gathering
transportation data, ensuring privacy and security while reducing reliance on centralised entities. In contrast,
the authors of [10] focused on a machine learning-based communication system, highlighting the security and
trust issues in vehicle-to-vehicle (V2V) communications, particularly addressing the challenges posed by
untrustworthy actors in intelligent transportation environments. The challenges in V2V communications
include untrusted nodes, message integrity risks, privacy concerns, high latency, scalability issues and trust
management complexities, requiring robust security frameworks.

Additionally, the integration of blockchain technology into the Internet of Vehicles (IoV), as discussed in
the study by [11], illustrates the growing importance of secure communication frameworks. The study
emphasises blockchain’s ability to ensure that data exchanges between vehicles are tamper-proof, providing a
secure, trustworthy infrastructure for loV operations. This aligns with earlier research by [12] and [13], who
emphasised smart contracts and MEC to enhance the efficiency of vehicular communications using deep
learning. Such approaches allow intelligent transportation systems (ITS) to process large volumes of data at
the network’s edge, reducing latency and improving real-time decision-making. However, the deployment of
such technologies introduces significant challenges, particularly around scalability, energy consumption and
real-time processing capabilities, which necessitate further exploration and optimisation.

Task offloading methods, as discussed by [14], address the growing computational demands of 5G-enabled
vehicular networks by suggesting multi-period vehicular task offloading in heterogeneous networks. Their
work presents a framework that adapts to the fluctuating nature of vehicular traffic, but it still leaves open
guestions about how such systems can ensure consistent performance amidst network congestion or in areas
with less reliable infrastructure. Furthermore, the study by [15] explored the prediction of node mobility, a
fundamental aspect of ITS that impacts both task offloading and communication reliability. Their research
highlights the importance of accurately predicting the movements of vehicles in a three-dimensional space to
optimise resource allocation and communication routes, although real-world implementation remains complex
and requires further refinement.

Beyond communication and data processing, machine learning techniques have played an increasingly
prominentrole in ITS, especially in predicting traffic flow and managing congestion. Authors of [17] discussed
the need for an edge traffic flow detection system leveraging deep learning techniques to analyse and predict
traffic patterns, enhancing traffic management’s efficiency. This complements the work of [18], who proposed
an intelligent traffic signal management strategy aimed at reducing CO- emissions in fog-oriented vehicular
ad hoc networks (VANETS). The combination of fog computing and machine learning allows traffic systems
to make localised decisions based on real-time data, further contributing to energy conservation and emission
reduction. Energy efficiency and environmental sustainability are critical concerns in modern transportation
systems. They also conducted a comprehensive review of the impacts of ITS on energy conservation and
emission reduction, highlighting how intelligent traffic management systems can optimise vehicle flow,
reducing fuel consumption and emissions. This aligns with the work of [19], who explored the challenges of
implementing ITS in loV, where transport inequalities complicate the adoption of these systems. Their study
points to the necessity for context-specific solutions that address the exclusive challenges met by developing
nations, as well as infrastructure deficits and socioeconomic factors.

Similarly, authors of [20] presented a practical case study on traffic management in Montreal, illustrating
how smart city technologies can be applied to urban mobility. Their research underscores the potential for ITS
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to enhance traffic management in densely populated urban areas, although they also identify several challenges
related to scalability, data privacy and interoperability between different systems. These challenges are
particularly relevant when considering the rapid urbanisation and increasing vehicular traffic in cities
worldwide, which necessitates more robust and scalable ITS solutions. The study by [21] explores spectrum
sensing, clustering algorithms and energy-harvesting techniques in cognitive-radio-based 10T networks,
highlighting their role in optimising spectrum utilisation and improving network efficiency. Authors of [22]
discuss the energy-efficient strategies for the industrial Internet of Things (I110T) within green 6G networks,
emphasising sustainable network design and optimised resource allocation. The study by [23] explores the
technological advancements and future prospects in smart city energy systems, focusing on sustainable energy
solutions and innovative technologies for efficient urban energy management.

2.1 Research gaps

Despite these advancements, several key research gaps remain. The existing works on ITS have largely focused
on the technical aspects of communication, data collection and processing, but there has been limited
exploration of how these technologies can be optimised for energy efficiency and long-term sustainability.
While blockchain and decentralised frameworks offer promising solutions for enhancing security and trust in
vehicular communications, the high energy consumption associated with blockchain operations remains a
significant barrier to widespread adoption. Similarly, while machine learning-based traffic management
systems show great promise, there is a need for more research into how these systems can be made more
scalable and adaptable to real-world conditions, particularly in regions with less reliable infrastructure.

Another important gap lies in the integration of ITS with emerging technologies such as 5G and edge
computing. While several studies have explored the potential of 5G networks to support ITS, there is still a
need for more detailed investigations into how these technologies can be integrated in a way that ensures
consistent performance across different geographic regions and traffic conditions. Furthermore, while task
offloading and MEC have been proposed as solutions to the computational challenges of ITS, there is still a
lack of research into how these systems can be optimised for low-power devices, which are commonly used in
loV environments.

Problem identification in the field of ITS is therefore twofold. First, while significant progress has been
made in enhancing the security, efficiency and sustainability of transportation systems, there remains a need
for more holistic solutions that integrate communication frameworks, machine learning and decentralised
systems in a way that optimises both performance and energy efficiency. Second, the scalability of ITS
technologies remains a key challenge, particularly in urban environments where traffic patterns are highly
dynamic and infrastructure can be inconsistent. Addressing these issues will require not only technical
innovation but also a greater focus on the policy and regulatory frameworks that govern the deployment of ITS
technologies, particularly in regions with varying levels of infrastructure development.

3. PROPOSED WORK

This section presents a novel framework called SecureEdge-ITS, integrating blockchain, machine learning
and mobile edge computing (MEC) for intelligent transportation systems (ITS). The framework improves
security, data integrity, real-time decision-making and resource allocation across vehicular networks. The
proposed framework is a cutting-edge solution designed to enhance the efficiency, security and decision-
making capabilities of ITS by integrating blockchain technology, machine learning and MEC. The framework
consists of four distinct layers, each responsible for specific functions to ensure effective data management
and real-time responsiveness in vehicular networks.

The proposed framework is composed of four layers:

Data collection and sensing layer

The data collection and sensing layer is integral to the proposed framework, responsible for collecting real-
time data from a variety of sources, which includes vehicular sensors (e.g. speed v, location (x,y), temperature
T), roadside units (RSUs) and mobile devices. This layer employs loV technology to facilitate seamless
transportation amongst vehicles and infrastructure, enabling effective data exchange. It gathers critical
information encompassing traffic conditions, vehicle statuses and environmental factors. The types of data
collected include vehicle data (which comprise speed v, acceleration a, GPS coordinates (X,y), battery status
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B and diagnostic information DDD), environmental data (which consist of weather conditions W, road
conditions R and traffic signals S) and infrastructure data (including status updates U from RSUs regarding
traffic flow F and incident reports I).

Edge computing layer

The edge computing layer of the proposed framework plays a crucial role in processing data locally at the
edge of the network, effectively minimising latency and reducing bandwidth usage. This layer is essential for
supporting real-time decision-making processes for traffic management and accident detection. Before
transmitting data to the blockchain layer, it implements several processing techniques, including data filtering,
aggregation and analysis. The key responsibilities of this layer include data filtering, which eliminates noise
and irrelevant information N from incoming data streams, thereby enhancing data quality and ensuring that
only pertinent information is forwarded for further processing. Additionally, real-time analytics techniques
leverage algorithms to analyse these incoming data streams D for immediate insights, such as determining
traffic congestion levels C using parameters like speed v and vehicle density p. Furthermore, the task
offloading mechanism is employed to balance the computational load L across various edge nodes E,,
optimising resource usage and improving response times. This distribution of tasks ensures that no single edge
node becomes a bottleneck, enabling a more efficient processing environment that is critical for timely
decision-making in intelligent transportation systems. Overall, the edge computing layer enhances the
responsiveness and effectiveness of the proposed framework by facilitating localised data processing and rapid
analysis of critical information.

Blockchain layer

The blockchain layer of the proposed framework serves as a central component in warranting the secure
and immutable storage of processed data through the utilisation of a decentralised ledger. This layer plays a
vital role in facilitating transparent and tamper-proof transactions among vehicles and infrastructure, thereby
enhancing trust and reliability within the intelligent transportation system. Its responsibilities extend to
automating critical operational processes, such as toll payments and emergency response coordination, by
leveraging smart contracts. These contracts are self-executing agreements where the terms are directly written
into code and automatically enforced based on predefined conditions. The data security features integrated into
the blockchain layer include decentralisation, which significantly mitigates the risk of single points of failure,
thus enhancing the overall resilience of the system against potential cyberattacks. This characteristic ensures
that data are dispersed across multiple nodes, making unauthorised alterations or data breaches considerably
more difficult. Furthermore, smart contracts play a crucial role in automating various operational tasks by
executing predefined actions based on specific data environments. For example, an automatic toll deduction
can be triggered upon a vehicle passing through a toll booth, streamlining the payment process and reducing
delays. This layer not only safeguards data integrity and enhances operational efficiency but also contributes
to the overall reliability and security of vehicular communications within the framework, ensuring that all
transactions are conducted in a trustworthy manner while maintaining a high level of security for sensitive
information. Through these mechanisms, the blockchain layer reinforces the operational robustness of the
proposed framework, making it a critical asset for intelligent transportation systems.

Machine learning and decision-making layer

The machine learning and decision-making layer of the proposed framework plays a crucial role in
enhancing the framework’s capabilities through the implementation of advanced machine learning models.
This layer is primarily responsible for analysing data trends and predicting future traffic scenarios, which is
essential for effective traffic flow management and accident prevention. By leveraging sophisticated
algorithms, this layer significantly improves the decision-making processes concerning resource allocation and
operational efficiency. One of the key machine learning techniques employed in this layer is long short-term
memory (LSTM) networks. LSTM networks are particularly well-suited for time-series forecasting, allowing
the framework to predict traffic patterns based on historical data. This capability is vital for anticipating
congestion and optimising traffic signal timings. Additionally, LSTM networks facilitate anomaly detection
by identifying irregularities in vehicle behaviour, which can signal potential issues such as accidents or
unauthorised vehicle movements. Furthermore, the machine learning and decision-making layer incorporates
various classification algorithms to identify and categorise potential risks or irregularities in vehicular
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operations. These algorithms analyse incoming data to classify events into predefined categories, such as

normal, caution or critical situations. This classification aids in prioritising responses and implementing timely

interventions, thereby enhancing the overall safety and efficiency of the transportation system.

Key components of the proposed work include:
Blockchain-enabled security: Uses a decentralised ledger and smart contracts for secure vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2l) communications.

— Mobile edge computing (MEC): Provides localised data processing for real-time traffic analysis and
accident detection.

— Machine learning and predictive analytics: Utilises machine learning algorithms to forecast traffic
congestion and identify anomalies in vehicular networks.

— Task offloading and resource allocation: Balances task execution across edge nodes, optimising resource
usage and minimising latency.

Integration of key components

The framework integrates blockchain, MEC and machine learning in a layered approach. Data flow from
sensors to edge nodes for processing, then to the blockchain for secure storage, while machine learning models
predict traffic flow and prevent theft. Smart contracts are employed to automate processes like toll payments
and emergency responses.

The steps are as follows:
1) Data collection: Data are collected using loV and sent to edge servers.
2) Data processing: MEC processes data locally for real-time decision-making.
3) Blockchain integration: Processed data are securely stored in the blockchain.
4) Machine learning-based predictions: Traffic patterns and anomalies are predicted using machine learning

algorithms.

Algorithm 1 — Blockchain-enabled V2V secure communication

Objective: Establish secure V2V communication using blockchain and smart contracts.

Input: Vehicle data V4, blockchain ledger L.

Output: Secure V2V communication channel C,,,,.

1. Begin

2. Broadcast request:

The vehicle broadcasts a communication request R to nearby vehicles.

3. Verify request:

Each receiving vehicle verifies the request R by querying the blockchain ledger L:
, 1 if valid

Verify(R) = {0 if invalide

4. Establish communication:

If verified, establish a secure vehicle-to-vehicle communication channel C,,,

Cy2y = Initialise(SCyyy),
where SC,,,, is the smart contract for secure communication.

5. Verify data integrity:
The smart contract verifies the data integrity | of each message:
I = Hash(M),
where M is the message data.
6. Integrity check:
If data integrity | is compromised, alert the system and terminate the communication.

7. Store communication session:
Store the complete communication session S as an immutable record in the blockchain:

S = Block(Cyyy)
8. End

Vehicles broadcast a communication request R, which is verified by nearby vehicles against the blockchain
ledger L. Upon validation, a secure communication channel C,,,, is established using a smart contract SC,,,,,.
The integrity of message data M is ensured by hashing, and if any integrity compromise is detected,
communication is terminated. Finally, the entire session is stored immutably in the blockchain. This approach
enhances V2V communication security by using blockchain for verification, data integrity and record-keeping.
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Algorithm 2 — Multi-task offloading in edge computing
Objective: Offload tasks to edge nodes to optimise resource usage and minimise latency.
Input:
— Task size Ty,
— Task complexity T,
— Edge node resources R,, (CPU, memory).
Output: Optimal task offloading strategy S,
1. Begin
2. Gather task and resource information:
o Collect task details Ty, T, and available edge node resources R,,.
3. Calculate task priority P,:
T.
Pt = FS X va
where W, is the weight factor.
4. ldentify available edge nodes:
Identify all available edge nodes N and evaluate their resource capacities R,,.
5. Compute resource utilisation UnU_nUn:
For each node n, calculate the resource utilisation U,,:
CPU, + Memory,

"™ Total resources,

6. Task allocation:

Allocate tasks to nodes where: U,, < threshold.

7. Monitor and adjust:

Monitor task execution and dynamically adjust the allocation S,, if necessary.
8. End

Algorithm 2 focuses on optimising task offloading in edge computing to enhance resource utilisation and
reduce latency. It begins by gathering essential task details such as size T, and complexity T,, along with edge
node resources R,,. A priority P, is calculated based on task complexity relative to size, adjusted by a weight
factor W},. The algorithm identifies available edge nodes, evaluates their resource capacities, and computes
resource utilisation U,,. Tasks are then allocated to nodes with utilisation below a certain threshold. Continuous
monitoring ensures dynamic adjustments to the offloading strategy as needed, ensuring efficiency in task
execution.

Algorithm 3 — Vehicle theft detection using blockchain and loV

Objective: Detect vehicle theft using blockchain technology and the loV.

Input:

— Vehicle status S, = {L,, I,, D,,}}

— L, Location

— [I,,: Ignition status

— D, Sensor data
Output:

— Theft detection alert A,

1. Begin
2. Monitor vehicle status:
Continuously monitor vehicle status S,, = {L,, I,,, D,,}, where L,, is the location, I,, is the ignition status and D,, is sensor data.
3. Detect unauthorised movement:

If unauthorised movement AL, is detected without ignition:

AL, = AL,(ty) — AL,(ty),and I, = 0.
then:

A =1
4. Broadcast theft alert:
— Broadcast the theft detection alert A, to nearby loV devices and roadside units (RSUS).

5. Verify theft:

RSUs verify the potential theft by querying the blockchain for vehicle ownership 0,,:

, Alert law enforcement, if theft,

Verify(0y) = { End, if false alarm

6. Execute smart contract:
Execute the smart contract to remotely lock the vehicle and store the theft record immutably on the blockchain.
7. End
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Algorithm 3 outlines a systematic approach to detect vehicle theft using blockchain technology and the loV.
The algorithm begins by continuously monitoring the vehicle’s status, including its location L,,, ignition status
I, and sensor data D,,. Unauthorised movement is detected by calculating the change in location AL,, while the
ignition is off. If such movement is detected, a theft alert A; is triggered and broadcast to nearby loV devices
and roadside units (RSUs). The RSUs verify the vehicle’s ownership via the blockchain. If theft is confirmed,
law enforcement is alerted; otherwise, the process ends. Additionally, a smart contract is executed to remotely
lock the vehicle and create an immutable record of the theft on the blockchain, enhancing security and
traceability. This algorithm demonstrates how integrating loV and blockchain can significantly improve
vehicle security measures.

Algorithm 4 — Traffic flow prediction using LSTM

Objective:
Predict real-time traffic flow using historical data and long short-term memory (LSTM) networks.
Input:

— Historical traffic data H, = {h1, h2, ..., hn}

— Current sensor data D,
Output:

— Predicted traffic flow P;
1. Begin
2. Collect historical traffic data:
3. Gather historical traffic data H; = {h1, h2, ..., hn}
4. Preprocess data:
Normalise the data and remove any missing values.
5. Define LSTM network architecture:
Set up the LSTM network with hidden layers H; and a learning rate 1:
H =o(W-X;+Db),
where W is the weight matrix, X, is the input vector and b is the bias.
6. Train the LSTM model:

— Train the LSTM model using the historical traffic data H,.

7. Feed real-time data into LSTM:

Input the current sensor data D, into the trained LSTM model:

P, = LSTM(D,).

8. Congestion detection:

If the predicted traffic flow P, exceeds the threshold T,:

A. = 1(congestion alert).

9. End

Algorithm 4 outlines a method for predicting real-time traffic flow using long short-term memory (LSTM)
networks, leveraging historical data for accurate forecasting. The process begins with the collection of
historical traffic data H;, which includes various past traffic metrics. Data preprocessing follows, involving
normalisation and the removal of missing values to ensure quality input for the model.

Next, the LSTM network architecture is defined, including the configuration of hidden layers H; and the
learning rate . The model is then trained using the preprocessed historical data. Once trained, real-time sensor
data D, is fed into the model to generate predictions for traffic flow P;.

To enhance traffic management, the algorithm includes a congestion detection step, where a threshold T
is set. If the predicted traffic flow P, exceeds this threshold, a congestion alert A, is triggered. This algorithm
demonstrates how LSTM networks can effectively analyse and predict traffic patterns, facilitating better traffic
management strategies.

Algorithm 5 — Energy-efficient vehicular task offloading
Objective:
Optimise task offloading in vehicular networks to minimise energy consumption.
Input:
— Task energy consumption E,
— Vehicle battery status B,
Output:
— Energy-efficient offloading strategy S,
1. Begin
2. Gather data:
Collect the task energy profile E.and the vehicle battery status B,,.
3. Calculate energy cost:
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For each task, calculate the energy cost:

B,

CezEt+(1— )xWe,

max
where W, is the energy weight factor and B,,,, is the maximum battery capacity.

4. Task offloading:

Offload tasks to edge nodes that have the lowest energy cost C,.

5. Dynamic monitoring:

Continuously monitor energy consumption and adjust the offloading strategy S, dynamically based on the current battery status.
6. End

Algorithm 5 focuses on optimising task offloading in vehicular networks with the goal of minimising energy
consumption. It begins by gathering critical data, including the task energy profile E; and the vehicle’s battery
status B,,.

The algorithm then calculates the energy cost C, for each task, incorporating a weight factor W, and the
vehicle’s maximum battery capacity B,,,, to evaluate how much energy the task will consume relative to the
remaining battery power.

Tasks are subsequently offloaded to edge nodes that present the lowest energy cost C,, ensuring efficient
energy use. The algorithm emphasises dynamic monitoring, continuously assessing energy consumption to
adjust the offloading strategy S, in real-time based on the current battery status. This approach not only
conserves battery life but also enhances the overall efficiency of task processing in vehicular networks.

3.1 Underlying mathematical principles of the proposed work

The underlying mathematical principles of the proposed framework are fundamental to its ability to process
data efficiently, ensure security through blockchain, and make intelligent decisions using machine learning
models. Below is a breakdown of these principles across the key components of the framework, with associated
formulas and algorithms:

Data collection and sensing layer

In this layer, data are collected from vehicular sensors, roadside units (RSUs) and mobile devices. The
sensor data collected can be represented mathematically as a multidimensional data matrix:

D = {dl' dz, ...,dn}

where d; represents the real-time data vector collected from a vehicle or an RSU at time ti. Each data vector
contains various attributes, such as speed, location, temperature, etc. The data are used to form time series for
subsequent layers in the framework.

Edge computing layer

The edge computing layer processes data locally at the edge of the network. One of its key tasks is to
perform data filtering and aggregation. The edge node receives raw data D and applies a filtering function F
to remove noise:

Dfiltered =F(D)

This function could be a low-pass filter for removing high-frequency noise or any noise-reduction algorithm
that optimises data quality.

Next, real-time analytics is conducted to extract immediate insights from the filtered data. Real-time
analysis can be represented through a continuous monitoring function A,..4;:ime,» Which analyses the data
stream S; over time windows t, t,, ..., t,

R = Areai—time (St)

where R, represents the real-time result at time t. These results could include traffic congestion levels or
accident detections.

Task offloading is also handled in this layer by balancing computational tasks across edge nodes. The task
offloading decision can be formulated as an optimisation problem, where the goal is to minimise latency L and
maximise resource utilisation U:

1650



Promet — Traffic&Transportation. 2025;37(6):1642-1659. Intelligent Transport Systems (ITS)

n n
Minimise: L = Z L;, Maximise: U = Z U;
i=1 i=1
Here, L;is the latency of task i and U; is the resource usage for task i.

Blockchain layer

The blockchain layer ensures secure, immutable storage of processed data. The key operation in this layer
is the creation of a decentralised ledger, which can be mathematically described as:

B ={By,B;, ..., By}

where B; is the block containing processed data D,,cesseq @Nd a cryptographic hash H; of the previous block
B;_1. The blockchain ensures data integrity by using cryptographic hashing, with each block’s hash computed
as:

H; = Hash(B;_1 | Dprocessea Il ti

This creates an immutable chain, where any tampering in one block invalidates the hashes of all subsequent
blocks.

Smart contracts in the blockchain layer automate predefined processes, such as toll payments. A smart
contract SC executes an action based on specific conditions C:

a, if C;
SC(C) =4ay of Cy

For example, if a vehicle passes a toll booth, the condition C; is satisfied, and the action a; (automatic
payment deduction) is executed.

Machine learning and decision-making layer

The machine learning layer is responsible for predictive analytics and decision-making. One of the central
techniques used here is the long short-term memory (LSTM) network for time-series forecasting of traffic
patterns. The LSTM architecture can be described by the following set of equations:

fi= o (Wg,[hi—1, ;] + by)
ip = o (W, [hi—1,x] + by)
Ce = tanh (W, [hi—y,x;] + bc)
Ce= fe* Ciog + ip* G,
or = 0 (Wo, [hi—1,x:] + bo)
h; = o; * tanh (C;)
Here, f;, i; o; represent the forget, input and output gates, respectively. C; is the cell state and h; is the
hidden state at time t. These gates control the flow of information through the network and allow the LSTM to
capture temporal dependencies in the traffic data.

The classification algorithms used for anomaly detection and risk identification can be represented through
a hypothesis h(x) for classifying input data x into a set of predefined categories C:

h(x) = argmax(P(c | x))

where P(c|x) is the posterior probability of class ¢ for the input data x. These classification models help
categorise vehicular operations into normal, cautious or critical scenarios.

Optimisation techniques

In the proposed framework, several optimisation techniques are employed to enhance system performance.
For example, task offloading decisions in the edge layer and resource allocation can be modelled as an
optimisation problem with constraints. Consider an objective function O(x) representing the cost of offloading
tasks, with constraints g(x)<0 representing the capacity of edge nodes:
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n
Minimise: O(x) = Z C; x;
i=1
Subject to: g(x) <0
where C; is the cost associated with offloading task iii to edge node x;. The goal is to minimise this cost while
ensuring that edge nodes are not overloaded.

4. EXPERIMENTAL EVALUATION

The proposed framework was tested using a large-scale dataset that included vehicular sensor data, roadside
unit (RSU) information and environmental data. The data were collected over a span of 6 months, covering a
dense urban traffic network.

Tools used

—  Python for implementing edge computing and machine learning models.

— Hyperledger Fabric for the blockchain layer.

— NVIDIA GPUs for training machine learning models like LSTMs and classification algorithms.
— Apache Kafka for real-time data streaming between layers.

Performance metrics

The following metrics were used to evaluate the performance of each layer in the framework:
1) Accuracy (%): The accuracy of machine learning representations in predicting traffic patterns and
detecting anomalies.
2) Latency (ms): The time taken to process data at the edge nodes and send it to the blockchain.
3) Bandwidth usage (MB/s): The quantity of data communicated amongst the vehicular sensors, edge nodes
and blockchain network.
4) Blockchain transaction time (ms): The time taken to complete a transaction (e.g. toll payments) in the
blockchain.
5) Detection time (ms): The time taken by machine learning models to detect anomalies and predict traffic
conditions.

4.1 Results of each layer’s performance

Data collection and sensing layer

This layer was responsible for gathering data from vehicular sensors and RSUSs. Table 1 shows the amount
of data collected over time.

Table 1 — Data collection details

Data source Total data collected Average data rate
(GB) (MBI/s)
Vehicular sensors 320 12
RSUs 150 5
Environmental sensors 80 3

The data collection efficiency was high, with minimal data loss during transmission. This was largely
attributed to the robust loV communication system implemented in the framework. Figure 1 compares the total
data collected and the average data rate across vehicular sensors, roadside units (RSUs) and environmental
sensors, highlighting the dominance of vehicular sensors in both volume and transmission speed.
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Figure 1 — Comparison of data rate

On the left, a bar chart in Figure 1 illustrates the total amount of data collected (in gigabytes) from three
types of data sources: vehicular sensors, roadside units (RSUs) and environmental sensors. The chart highlights
that vehicular sensors have the highest data collection at 320 GB, significantly surpassing the 150 GB collected
from RSUs and the 80 GB from environmental sensors. This indicates the dominant role of vehicular sensors
in data accumulation, likely due to their continuous operation and the extensive range of parameters they
monitor.

On the right, a line chart in Figure 1 depicts the average data rate (in megabytes per second) for the same
data sources. Here, the average data rate is notably highest for vehicular sensors at 12 MB/s, followed by RSUs
at 5 MB/s and environmental sensors at 3 MB/s. This graph emphasises not only the volume of data collected
but also the efficiency of each source in terms of data transmission speed. The combination of these two
visualisations provides a comprehensive overview of the data dynamics across different sources, illustrating
how vehicular sensors lead in both the total data collected and data rate, which could have implications for
traffic management systems and smart city infrastructures.

Edge computing layer

The performance of the edge layer was evaluated based on latency and bandwidth usage during data
filtering, aggregation and analysis. Table 2 presents the results for different traffic scenarios:

Table 2 — Different traffic scenarios

Traffic scenario Latency (ms) Bandwidth usage Real-time decision
(MBYJs) accuracy (%)
Low traffic 120 8 96.5
Medium traffic 250 10 94.3
High traffic 450 15 921

From the results, it is evident that the latency increased as the traffic volume rose, but the decision accuracy
remained above 90% in all cases, indicating effective data processing at the edge. Figure 2 consists of three
visualisations that analyse the impact of different traffic scenarios on latency, bandwidth usage and real-time
decision accuracy.

1653



Promet — Traffic&Transportation. 2025;37(6):1642-1659.

Intelligent Transport Systems (ITS)

400 4

Latency by Traffic Scenario

15 4

H
=
L

H
W
L

Bandwidth Usage by Traffic Scenario

Real-Time Decision Accuracy by Traffic Scenario

96

95

300

,_.
[¥)
L

~

,_.

=
L

~

200 -

Latency (ms)

5
'Y

Bandwidth Usage (MB/s)
~
Real-Time Decision Accuracy (%)

100 A -

©
Y
Y

g1 & 92 |

T T
Medium Traffic High Traffic

Traffic Scenario

T T T
Medium Traffic High Traffic Low Traffic

Traffic Scenario

T
Medium Traffic Low Traffic

Traffic Scenario

Low Traffic High Traffic

Figure 2 — Comparison of latency, bandwidth and accuracy

1) Latency by traffic scenario: The leftmost bar chart in Figure 2 illustrates the latency experienced under
three distinct traffic conditions: low, medium and high traffic. Latency increases significantly from low
traffic (120 ms) to high traffic (450 ms), highlighting the adverse effect of congestion on response times.
This information is critical for systems that rely on real-time data processing, as higher latency can lead
to delays in decision-making and potential traffic management issues.

2) Bandwidth usage by traffic scenario: The centre line chart in Figure 2 showcases bandwidth usage across
the same traffic scenarios. The bandwidth usage shows a moderate increase from low traffic (8 MB/s) to
high traffic (15 MB/s). This suggests that as traffic density increases, more bandwidth is required to
accommodate the growing volume of data generated by connected vehicles and infrastructure.
Understanding this relationship is vital for optimising network resources and ensuring efficient data
transmission in smart transportation systems.

3) Real-time decision accuracy by traffic scenario: Finally, the rightmost scatter plot in Figure 2 illustrates
the real-time decision accuracy percentages for each traffic scenario. The accuracy decreases from low
traffic (96.5%) to high traffic (92.1%), indicating that decision-making may become less reliable in more
congested conditions. This trend emphasises the importance of maintaining high accuracy levels in real-
time systems, especially in high-traffic situations where timely and accurate decisions are crucial for
safety and efficiency.

Blockchain layer

The blockchain layer ensured secure and transparent transactions among vehicles and infrastructure, such
as automatic toll payments and emergency response coordination. Table 3 shows the blockchain’s performance
metrics:

Table 3 — Performance metrics

Transaction type

Average transaction

Data size per

Success rate (%0)

time (ms) transaction (KB)
Toll payment 35 10 99.5
Incident reporting 45 15 99.0
Vehicle maintenance 50 8 98.7

updates

The transaction time remained consistently low, demonstrating the efficiency of the blockchain in
processing vehicular data. Figure 3 presents three visualisations that analyse the performance metrics associated
with various transaction types: toll payment, incident reporting and vehicle maintenance updates.
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Figure 3 — Transaction time and data success rate

1) Average transaction time by type: The leftmost bar chart displays the average transaction times for each
type of transaction. Toll payments have the shortest average transaction time at 35 ms, while vehicle
maintenance updates take the longest at 50 ms. This information is crucial for assessing the efficiency of
different transaction types, particularly in environments where rapid processing is essential, such as toll
booths or emergency response systems.

2) Data size per transaction by type: The centre line chart illustrates the data size associated with each
transaction type, measured in kilobytes (KB). The data size for incident reporting is the highest at 15 KB,
followed closely by toll payments at 10 KB, while vehicle maintenance updates are the smallest at 8 KB.
Understanding the data requirements of each transaction type can help optimise network usage and ensure
that data transmission does not bottleneck the system, especially during peak times.

3) Success rate by transaction type: Finally, the rightmost scatter plot highlights the success rates for each
transaction type. All three types demonstrate high success rates, with toll payments achieving 99.5%,
followed by incident reporting at 99.0% and vehicle maintenance updates at 98.7%. These success rates
indicate the reliability of the system for processing transactions, which is vital for maintaining user trust
and ensuring operational effectiveness.

Machine learning and decision-making layer

This layer implemented advanced machine learning models to predict traffic patterns and detect anomalies.
Table 4 summarises the prediction accuracy of different models:

Table 4 — Accuracy comparison

Model Prediction accuracy (%) Anomaly ((j;tse)ctlon time
LSTM (proposed) 97.8 150
Random forest 93.6 200
Support vector machines
(SVM) 90.5 250

The proposed LSTM model outperformed other models, achieving a prediction accuracy of 97.8% with a
low anomaly detection time of 150 ms.

Figure 4 shows the performance comparison of different machine learning models based on their prediction
accuracy and anomaly detection time.
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Figure 4 — Prediction accuracy and anomaly detection rate

Prediction accuracy by model: The left bar chart illustrates the prediction accuracy percentages for three
models: LSTM (proposed), random forest and support vector machines (SVM). The LSTM model
demonstrates the highest accuracy at 97.8%, followed by random forest at 93.6% and SVM at 90.5%.
This indicates that the proposed LSTM model is the most effective in making accurate predictions, which
is crucial for applications requiring high precision, such as anomaly detection and risk assessment.
Anomaly detection time by model: The right bar chart presents the average anomaly detection time (in
milliseconds) for each model. LSTM (proposed) shows the fastest detection time at 150 ms, while SVM
has the slowest detection time at 250 ms. This suggests that while the LSTM model excels in accuracy, it
also maintains a competitive speed, making it suitable for real-time applications where both accuracy and
response time are essential. In contrast, the slower performance of SVM may limit its usability in time-
sensitive environments.

4.2 Comparative analysis

[2]

The proposed framework was compared to four other works from the literature, specifically those by [1],

, [3] and [4]. The comparison was made based on key metrics such as security, latency and machine learning

performance. Table 5 displays the evaluation of the proposed work with other state-of-the-art models.

Table 5 — Comparative analysis

Framework Security (blockchain) Latency (ms) Accuracy (%) Bandmdéys)usage
Proposed work Yes 120-450 97.8 8-15
Kumar et al. (2020) Yes 300-700 934 10-20
Verma et al. (2022) No 500-1000 91.2 15-25
Alam et al. (2020) Yes 200-500 94.5 12-20

The results show that the study outperforms other methods in terms of latency, prediction accuracy and

bandwidth usage. Additionally, the blockchain implementation provides a more robust security mechanism
compared to frameworks without blockchain integration, such as [4]. Figure 5 illustrates the latency comparison,
where the proposed framework demonstrates lower latency (120-450 ms) compared to other methods,
showcasing its efficiency in real-time processing. Figure 6 presents the accuracy comparison, highlighting the
superior prediction accuracy (97.8%) of the proposed framework, outperforming existing models such as those
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by [1] and [3]. Figure 7 depicts bandwidth usage, where the proposed method maintains an optimised range (8-
15 MBY/s), ensuring efficient data transmission while minimising network congestion.
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4.3 Discussion of results

The results presented in this section demonstrate the effectiveness of the framework across multiple layers,
with significant improvements in processing time, security and predictive accuracy. The edge computing layer,
in particular, showcased superior performance in real-time decision-making, with a latency of 120 ms during
low traffic conditions and 450 ms during high traffic conditions, which is lower than the latency observed in
existing works from the literature. The real-time analytics performed at the edge nodes was also highly
accurate, with over 94% decision accuracy even under high traffic loads. The blockchain layer ensured secure
and transparent data management, with fast transaction times and a high success rate of over 98%. This is a
critical improvement over other works, such as [4], where blockchain was not implemented, leading to
vulnerabilities in data security. The machine learning and decision-making layer exhibited exceptional
predictive accuracy, especially with the LSTM model, which achieved an accuracy of 97.8% in predicting
traffic patterns and anomalies. This is a significant enhancement over other methods, such as random forest
and SVM, which had lower accuracy rates. The comparison with the current works further reveals the
advantages of the proposed framework over other existing methods, particularly in terms of latency, accuracy
and bandwidth usage. The integration of blockchain and edge computing ensures a balance between security,
performance and scalability.

5. CONCLUSION

This research thoroughly examined the performance of three prominent machine learning models — LSTM
(proposed), random forest and support vector machines (SVM) — within the framework of EdgeChain-Al. The
findings reveal that the proposed LSTM model significantly outperforms the other models, achieving the
highest prediction accuracy of 97.8% along with an efficient anomaly detection time of 150 ms. These results
illustrate the LSTM model’s ability to effectively balance accuracy and speed, making it particularly suitable
for applications that demand timely and precise decision-making, such as cybersecurity and real-time
monitoring systems. Conversely, while random forest and SVM provide acceptable accuracy levels, their
longer detection times may limit their effectiveness in scenarios requiring rapid responses. This analysis
emphasises the necessity for stakeholders to consider both accuracy and speed when selecting machine
learning models for anomaly detection tasks. However, future research should explore hybrid models and
adaptive learning techniques to further enhance detection accuracy and efficiency in dynamic environments.
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