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ABSTRACT 

The convergence of blockchain technology, multi-access edge computing (MEC) and 

artificial intelligence (AI) has opened new frontiers for advancing the Internet of Vehicles 

(IoV) within intelligent transport systems. The work introduces EdgeChain-AI, a novel 

framework that synergises these three technologies to improve the security, efficiency and 

scalability of IoV applications. By employing blockchain’s decentralised ledger for secure 

communication, MEC’s edge computing capabilities for instantaneous processing, and AI’s 

cognitive intelligence for predictive decision-making. The work addresses critical challenges 

such as latency, privacy and data integrity. Our framework outperforms current approaches 

by reducing latency by 25%, improving energy efficiency by 15% and maintaining 99.9% 

data integrity. Extensive evaluation and comparative analysis with existing methods like 

federated learning and edge intelligence solutions further demonstrate the superior 

performance of the proposed work. This study provides a forward-looking approach for the 

seamless integration of IoV into the broader IoT ecosystem, enhancing the advancement of 

intelligent transport systems. 
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1. INTRODUCTION 

The Internet of Vehicles (IoV) has emerged as a pivotal application area, integrating vehicles, infrastructure 

and other devices into a highly interconnected ecosystem aimed at improving safety, efficiency and user 

experiences on the road. Several studies have explored the security, privacy and efficiency aspects of IoV. 

Studies [1-3] discuss security frameworks that integrate hesitant fuzzy sets, privacy-preserving mechanisms 

and big data applications to address cybersecurity concerns in interconnected environments. Research in [4-5] 

proposes secure data exchange frameworks and efficient edge computing models tailored for IoV, highlighting 

the need for decentralised approaches to ensure data integrity and low-latency decision-making. Additionally, 

studies [6-7] focus on blockchain-based solutions and real-time decision-making strategies, which are crucial 

for ensuring secure and reliable vehicular communication. Addressing these challenges requires innovative 

approaches that combine multiple cutting-edge technologies to create a robust, scalable and secure IoV 

framework. Studies [8-9] explore traffic prediction models and decentralised traffic management solutions 

using edge computing and blockchain technology, demonstrating how such techniques enhance system 

efficiency. Research in [10] introduces machine learning-based anomaly detection mechanisms for vehicular 

networks, providing crucial insights into detecting malicious behaviour and preventing cyber threats. Work in 

[11] proposes load-balancing techniques to optimise network performance in intelligent transportation 

systems, while [12] investigates high-level approaches for threat detection using both classical and deep 
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learning techniques. Furthermore, [13] extends these discussions by integrating deep learning and social 

network analysis to enhance security in smart city policing, which directly aligns with IoV’s need for real-time 

security enforcement. 

By reducing reliance on centralised cloud infrastructure, mobile edge computing (MEC) lowers latency and 

ensures faster responses in critical IoV scenarios, such as collision avoidance and traffic flow optimisation. 

Study [14] discusses the importance of reliable backhaul connectivity in offshore IoT networks, which can be 

extended to IoV applications to enhance long-range vehicle communication. Research in [15] proposes a secure 

and highly efficient distributed blockchain PBFT consensus algorithm for intelligent IoV, reinforcing trust and 

immutability in data exchange. Work in [16] explores smart contract-based authentication mechanisms that 

can be adapted to IoV authentication frameworks. Additionally, [17] investigates the role of UAV-based 

network management in 6G environments, offering potential solutions for securing vehicular communication 

and ensuring continuous network coverage. Finally, [18] analyses the convergence of blockchain, AI and ML 

in big data analytics, underscoring the importance of integrating these technologies for a more intelligent and 

secure IoV ecosystem. Blockchain offers a tamper-resistant platform where transactions and data exchanges 

can be verified and stored securely across a distributed network of nodes, without the essential for a centralised 

scheme [19]. Additionally, blockchain enables transparent, auditable data exchanges, further boosting trust 

among stakeholders in the IoV ecosystem. When combined with MEC, blockchain’s decentralised nature 

complements the proximity-based computing of MEC, ensuring both security and real-time processing [20]. 

Despite the advantages of MEC and blockchain, the sheer volume and complexity of IoV data require 

advanced intelligence to extract meaningful insights and optimise decision-making. This is where AI plays a 

crucial role. AI technologies, particularly machine learning and deep learning, can process big IoV data to 

predict traffic patterns, optimise vehicle routes, enhance fuel efficiency and even anticipate maintenance needs. 

By incorporating AI into the EdgeChain-AI framework, we enable vehicles and edge nodes to acquire from 

past data and make informed decisions autonomously. For instance, AI can forecast traffic congestion based 

on real-time data and historical patterns, allowing vehicles to reroute dynamically to avoid delays. 

Furthermore, AI-driven predictive maintenance can monitor vehicle health in real time, reducing the risk of 

unexpected breakdowns and refining overall road safety. 

One of the key innovations of the proposed framework is its ability to integrate AI, blockchain and MEC 

into a seamless, cohesive system that addresses the critical challenges of IoV. While each of these technologies 

has been explored individually in IoV research, their combination creates a synergistic effect that enhances the 

overall performance of IoV applications. MEC ensures low-latency processing, blockchain secures data 

exchanges, and AI optimises decision-making and resource allocation. Together, these technologies create a 

robust framework that is well-suited for the demands of intelligent transport systems. 

A major challenge in IoV environments is latency. For example, in autonomous driving, vehicles process 

sensor data and make decisions in milliseconds to avoid accidents and ensure passenger safety. Traditional 

cloud-based approaches often introduce unacceptable delays due to the distance between data sources and 

processing centres. MEC pointedly diminishes this latency, enabling real-time data processing at the edge of 

the network. By processing data locally, MEC ensures that time-sensitive applications, like collision 

recognition and lane-keeping assistance, can operate with minimal delay. 

In addition to latency, data privacy and security are major concerns in IoV environments. Vehicles collect 

and share a wide range of sensitive information, including location data, driving behaviour and personal 

preferences. The data, if violated, can be exploited for malicious intent, such as tracking individuals or 

manipulating vehicle behaviour. Blockchain technology provides a secure and decentralised platform to 

overcome these issues. In the proposed framework, blockchain ensures that all data exchanges between 

vehicles, infrastructure and central authorities are secure and tamper-proof. 

Energy efficiency is another critical issue in IoV environments, particularly for electric vehicles and 

battery-powered sensors. IoV systems must strike a balance between performance and power consumption to 

ensure that vehicles and devices can run for extended periods without recurrent recharging. AI plays a crucial 

role in enhancing energy efficiency by analysing real-time data and making smart decisions about resource 

allocation. For instance, AI algorithms can optimise vehicle routing to minimise fuel consumption or adjust 

the power usage of edge nodes based on current demand. In this paper, AI-driven energy optimisation leads to 

a 15% increase in energy efficiency compared to existing IoV solutions. 

Data integrity is essential for the reliable operation of IoV systems, as inaccurate or tampered data could 

lead to disastrous consequences, such as traffic accidents or incorrect navigation. Blockchain technology 

ensures data integrity by verifying all transactions and storing them in a tamper-proof ledger. The blockchain’s 
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immutable ledger in this study guarantees that all data exchanged between vehicles, infrastructure and central 

authorities remains accurate and trustworthy. This is particularly important in scenarios where vehicles rely on 

real-time data from other vehicles or roadside units to make critical decisions. 

Through comprehensive evaluation and comparative analysis, the study demonstrates superior performance 

in terms of latency, security, energy efficiency and data integrity. Our experiments show a 25% reduction in 

latency, a 15% improvement in energy efficiency and 99.9% data integrity, outperforming existing IoV 

frameworks that rely on edge intelligence, federated learning or blockchain-based communication alone. The 

integration of AI, blockchain and MEC in the EdgeChain-AI framework provides a holistic solution to the key 

challenges facing IoV, paving the way for the advancement of intelligent transport systems. 

2. RELATED WORKS 

The integration of advanced communication frameworks, decentralised data collection and machine 

learning techniques has been crucial in improving the performance of such systems. A decentralised framework 

for data collection, as discussed by [9], shows the advantages of using a distributed architecture for gathering 

transportation data, ensuring privacy and security while reducing reliance on centralised entities. In contrast, 

the authors of [10] focused on a machine learning-based communication system, highlighting the security and 

trust issues in vehicle-to-vehicle (V2V) communications, particularly addressing the challenges posed by 

untrustworthy actors in intelligent transportation environments. The challenges in V2V communications 

include untrusted nodes, message integrity risks, privacy concerns, high latency, scalability issues and trust 

management complexities, requiring robust security frameworks. 

Additionally, the integration of blockchain technology into the Internet of Vehicles (IoV), as discussed in 

the study by [11], illustrates the growing importance of secure communication frameworks. The study 

emphasises blockchain’s ability to ensure that data exchanges between vehicles are tamper-proof, providing a 

secure, trustworthy infrastructure for IoV operations. This aligns with earlier research by [12] and [13], who 

emphasised smart contracts and MEC to enhance the efficiency of vehicular communications using deep 

learning. Such approaches allow intelligent transportation systems (ITS) to process large volumes of data at 

the network’s edge, reducing latency and improving real-time decision-making. However, the deployment of 

such technologies introduces significant challenges, particularly around scalability, energy consumption and 

real-time processing capabilities, which necessitate further exploration and optimisation. 

Task offloading methods, as discussed by [14], address the growing computational demands of 5G-enabled 

vehicular networks by suggesting multi-period vehicular task offloading in heterogeneous networks. Their 

work presents a framework that adapts to the fluctuating nature of vehicular traffic, but it still leaves open 

questions about how such systems can ensure consistent performance amidst network congestion or in areas 

with less reliable infrastructure. Furthermore, the study by [15] explored the prediction of node mobility, a 

fundamental aspect of ITS that impacts both task offloading and communication reliability. Their research 

highlights the importance of accurately predicting the movements of vehicles in a three-dimensional space to 

optimise resource allocation and communication routes, although real-world implementation remains complex 

and requires further refinement. 

Beyond communication and data processing, machine learning techniques have played an increasingly 

prominent role in ITS, especially in predicting traffic flow and managing congestion. Authors of [17] discussed 

the need for an edge traffic flow detection system leveraging deep learning techniques to analyse and predict 

traffic patterns, enhancing traffic management’s efficiency. This complements the work of [18], who proposed 

an intelligent traffic signal management strategy aimed at reducing CO2 emissions in fog-oriented vehicular 

ad hoc networks (VANETs). The combination of fog computing and machine learning allows traffic systems 

to make localised decisions based on real-time data, further contributing to energy conservation and emission 

reduction. Energy efficiency and environmental sustainability are critical concerns in modern transportation 

systems. They also conducted a comprehensive review of the impacts of ITS on energy conservation and 

emission reduction, highlighting how intelligent traffic management systems can optimise vehicle flow, 

reducing fuel consumption and emissions. This aligns with the work of [19], who explored the challenges of 

implementing ITS in IoV, where transport inequalities complicate the adoption of these systems. Their study 

points to the necessity for context-specific solutions that address the exclusive challenges met by developing 

nations, as well as infrastructure deficits and socioeconomic factors. 

Similarly, authors of [20] presented a practical case study on traffic management in Montreal, illustrating 

how smart city technologies can be applied to urban mobility. Their research underscores the potential for ITS 



Promet – Traffic&Transportation. 2025;37(6):1642-1659.  Intelligent Transport Systems (ITS)  

1645 

to enhance traffic management in densely populated urban areas, although they also identify several challenges 

related to scalability, data privacy and interoperability between different systems. These challenges are 

particularly relevant when considering the rapid urbanisation and increasing vehicular traffic in cities 

worldwide, which necessitates more robust and scalable ITS solutions. The study by [21] explores spectrum 

sensing, clustering algorithms and energy-harvesting techniques in cognitive-radio-based IoT networks, 

highlighting their role in optimising spectrum utilisation and improving network efficiency. Authors of [22] 

discuss the energy-efficient strategies for the industrial Internet of Things (IIoT) within green 6G networks, 

emphasising sustainable network design and optimised resource allocation. The study by [23] explores the 

technological advancements and future prospects in smart city energy systems, focusing on sustainable energy 

solutions and innovative technologies for efficient urban energy management. 

2.1 Research gaps 

Despite these advancements, several key research gaps remain. The existing works on ITS have largely focused 

on the technical aspects of communication, data collection and processing, but there has been limited 

exploration of how these technologies can be optimised for energy efficiency and long-term sustainability. 

While blockchain and decentralised frameworks offer promising solutions for enhancing security and trust in 

vehicular communications, the high energy consumption associated with blockchain operations remains a 

significant barrier to widespread adoption. Similarly, while machine learning-based traffic management 

systems show great promise, there is a need for more research into how these systems can be made more 

scalable and adaptable to real-world conditions, particularly in regions with less reliable infrastructure. 

Another important gap lies in the integration of ITS with emerging technologies such as 5G and edge 

computing. While several studies have explored the potential of 5G networks to support ITS, there is still a 

need for more detailed investigations into how these technologies can be integrated in a way that ensures 

consistent performance across different geographic regions and traffic conditions. Furthermore, while task 

offloading and MEC have been proposed as solutions to the computational challenges of ITS, there is still a 

lack of research into how these systems can be optimised for low-power devices, which are commonly used in 

IoV environments. 

Problem identification in the field of ITS is therefore twofold. First, while significant progress has been 

made in enhancing the security, efficiency and sustainability of transportation systems, there remains a need 

for more holistic solutions that integrate communication frameworks, machine learning and decentralised 

systems in a way that optimises both performance and energy efficiency. Second, the scalability of ITS 

technologies remains a key challenge, particularly in urban environments where traffic patterns are highly 

dynamic and infrastructure can be inconsistent. Addressing these issues will require not only technical 

innovation but also a greater focus on the policy and regulatory frameworks that govern the deployment of ITS 

technologies, particularly in regions with varying levels of infrastructure development. 

3. PROPOSED WORK 

This section presents a novel framework called SecureEdge-ITS, integrating blockchain, machine learning 

and mobile edge computing (MEC) for intelligent transportation systems (ITS). The framework improves 

security, data integrity, real-time decision-making and resource allocation across vehicular networks. The 

proposed framework is a cutting-edge solution designed to enhance the efficiency, security and decision-

making capabilities of ITS by integrating blockchain technology, machine learning and MEC. The framework 

consists of four distinct layers, each responsible for specific functions to ensure effective data management 

and real-time responsiveness in vehicular networks. 

The proposed framework is composed of four layers: 

Data collection and sensing layer 

The data collection and sensing layer is integral to the proposed framework, responsible for collecting real-

time data from a variety of sources, which includes vehicular sensors (e.g. speed v, location (x,y), temperature 

T), roadside units (RSUs) and mobile devices. This layer employs IoV technology to facilitate seamless 

transportation amongst vehicles and infrastructure, enabling effective data exchange. It gathers critical 

information encompassing traffic conditions, vehicle statuses and environmental factors. The types of data 

collected include vehicle data (which comprise speed v, acceleration a, GPS coordinates (x,y), battery status 
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B and diagnostic information DDD), environmental data (which consist of weather conditions W, road 

conditions R and traffic signals S) and infrastructure data (including status updates U from RSUs regarding 

traffic flow F and incident reports I). 

Edge computing layer 

The edge computing layer of the proposed framework plays a crucial role in processing data locally at the 

edge of the network, effectively minimising latency and reducing bandwidth usage. This layer is essential for 

supporting real-time decision-making processes for traffic management and accident detection. Before 

transmitting data to the blockchain layer, it implements several processing techniques, including data filtering, 

aggregation and analysis. The key responsibilities of this layer include data filtering, which eliminates noise 

and irrelevant information N from incoming data streams, thereby enhancing data quality and ensuring that 

only pertinent information is forwarded for further processing. Additionally, real-time analytics techniques 

leverage algorithms to analyse these incoming data streams D for immediate insights, such as determining 

traffic congestion levels C using parameters like speed v and vehicle density ρ. Furthermore, the task 

offloading mechanism is employed to balance the computational load L across various edge nodes 𝐸𝑛, 

optimising resource usage and improving response times. This distribution of tasks ensures that no single edge 

node becomes a bottleneck, enabling a more efficient processing environment that is critical for timely 

decision-making in intelligent transportation systems. Overall, the edge computing layer enhances the 

responsiveness and effectiveness of the proposed framework by facilitating localised data processing and rapid 

analysis of critical information. 

Blockchain layer 

The blockchain layer of the proposed framework serves as a central component in warranting the secure 

and immutable storage of processed data through the utilisation of a decentralised ledger. This layer plays a 

vital role in facilitating transparent and tamper-proof transactions among vehicles and infrastructure, thereby 

enhancing trust and reliability within the intelligent transportation system. Its responsibilities extend to 

automating critical operational processes, such as toll payments and emergency response coordination, by 

leveraging smart contracts. These contracts are self-executing agreements where the terms are directly written 

into code and automatically enforced based on predefined conditions. The data security features integrated into 

the blockchain layer include decentralisation, which significantly mitigates the risk of single points of failure, 

thus enhancing the overall resilience of the system against potential cyberattacks. This characteristic ensures 

that data are dispersed across multiple nodes, making unauthorised alterations or data breaches considerably 

more difficult. Furthermore, smart contracts play a crucial role in automating various operational tasks by 

executing predefined actions based on specific data environments. For example, an automatic toll deduction 

can be triggered upon a vehicle passing through a toll booth, streamlining the payment process and reducing 

delays. This layer not only safeguards data integrity and enhances operational efficiency but also contributes 

to the overall reliability and security of vehicular communications within the framework, ensuring that all 

transactions are conducted in a trustworthy manner while maintaining a high level of security for sensitive 

information. Through these mechanisms, the blockchain layer reinforces the operational robustness of the 

proposed framework, making it a critical asset for intelligent transportation systems. 

Machine learning and decision-making layer 

The machine learning and decision-making layer of the proposed framework plays a crucial role in 

enhancing the framework’s capabilities through the implementation of advanced machine learning models. 

This layer is primarily responsible for analysing data trends and predicting future traffic scenarios, which is 

essential for effective traffic flow management and accident prevention. By leveraging sophisticated 

algorithms, this layer significantly improves the decision-making processes concerning resource allocation and 

operational efficiency. One of the key machine learning techniques employed in this layer is long short-term 

memory (LSTM) networks. LSTM networks are particularly well-suited for time-series forecasting, allowing 

the framework to predict traffic patterns based on historical data. This capability is vital for anticipating 

congestion and optimising traffic signal timings. Additionally, LSTM networks facilitate anomaly detection 

by identifying irregularities in vehicle behaviour, which can signal potential issues such as accidents or 

unauthorised vehicle movements. Furthermore, the machine learning and decision-making layer incorporates 

various classification algorithms to identify and categorise potential risks or irregularities in vehicular 
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operations. These algorithms analyse incoming data to classify events into predefined categories, such as 

normal, caution or critical situations. This classification aids in prioritising responses and implementing timely 

interventions, thereby enhancing the overall safety and efficiency of the transportation system. 

Key components of the proposed work include: 

 Blockchain-enabled security: Uses a decentralised ledger and smart contracts for secure vehicle-to-

vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. 

 Mobile edge computing (MEC): Provides localised data processing for real-time traffic analysis and 

accident detection. 

 Machine learning and predictive analytics: Utilises machine learning algorithms to forecast traffic 

congestion and identify anomalies in vehicular networks. 

 Task offloading and resource allocation: Balances task execution across edge nodes, optimising resource 

usage and minimising latency. 

Integration of key components 

The framework integrates blockchain, MEC and machine learning in a layered approach. Data flow from 

sensors to edge nodes for processing, then to the blockchain for secure storage, while machine learning models 

predict traffic flow and prevent theft. Smart contracts are employed to automate processes like toll payments 

and emergency responses. 

The steps are as follows: 

1) Data collection: Data are collected using IoV and sent to edge servers. 

2) Data processing: MEC processes data locally for real-time decision-making. 

3) Blockchain integration: Processed data are securely stored in the blockchain. 

4) Machine learning-based predictions: Traffic patterns and anomalies are predicted using machine learning 

algorithms. 

Algorithm 1 – Blockchain-enabled V2V secure communication 

Objective: Establish secure V2V communication using blockchain and smart contracts. 

Input: Vehicle data 𝑉𝑑, blockchain ledger L. 

Output: Secure V2V communication channel 𝐶𝑣2𝑣. 
1. Begin 

2. Broadcast request: 
The vehicle broadcasts a communication request R to nearby vehicles. 

3. Verify request: 
Each receiving vehicle verifies the request R by querying the blockchain ledger L:  

𝑉𝑒𝑟𝑖𝑓𝑦(𝑅) = {
1       𝑖𝑓 𝑣𝑎𝑙𝑖𝑑
0 𝑖𝑓 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑒

 

4. Establish communication: 

If verified, establish a secure vehicle-to-vehicle communication channel 𝐶𝑣2𝑣  

𝐶𝑣2𝑣 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒(𝑆𝐶𝑣2𝑣), 

where 𝑆𝐶𝑣2𝑣 is the smart contract for secure communication. 

5. Verify data integrity: 
The smart contract verifies the data integrity I of each message:  

𝐼 = 𝐻𝑎𝑠ℎ(𝑀),  

where M is the message data. 

6. Integrity check: 
If data integrity I is compromised, alert the system and terminate the communication. 

7. Store communication session: 
Store the complete communication session S as an immutable record in the blockchain:  

𝑆 = 𝐵𝑙𝑜𝑐𝑘(𝐶𝑣2𝑣) 

8. End 

Vehicles broadcast a communication request R, which is verified by nearby vehicles against the blockchain 

ledger L. Upon validation, a secure communication channel 𝐶𝑣2𝑣 is established using a smart contract 𝑆𝐶𝑣2𝑣. 

The integrity of message data M is ensured by hashing, and if any integrity compromise is detected, 

communication is terminated. Finally, the entire session is stored immutably in the blockchain. This approach 

enhances V2V communication security by using blockchain for verification, data integrity and record-keeping. 
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Algorithm 2 – Multi-task offloading in edge computing 

Objective: Offload tasks to edge nodes to optimise resource usage and minimise latency. 

Input:  

 Task size 𝑇𝑠,  

 Task complexity 𝑇𝑐,  

 Edge node resources 𝑅𝑛 (CPU, memory). 

Output: Optimal task offloading strategy 𝑆𝑜 

1. Begin 

2. Gather task and resource information: 

o Collect task details 𝑇𝑠, 𝑇𝑐 and available edge node resources 𝑅𝑛. 

3. Calculate task priority 𝑷𝒕:  

𝑃𝑡 =
𝑇𝑐

𝑇𝑠
× 𝑊𝑝 

where 𝑊𝑝 is the weight factor. 

4. Identify available edge nodes: 

Identify all available edge nodes N and evaluate their resource capacities 𝑅𝑛.  

5. Compute resource utilisation UnU_nUn: 

For each node n, calculate the resource utilisation 𝑈𝑛:  

𝑈𝑛 =
𝐶𝑃𝑈𝑛 + 𝑀𝑒𝑚𝑜𝑟𝑦𝑛

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑛
  . 

6. Task allocation: 

Allocate tasks to nodes where: 𝑈𝑛  < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 
7. Monitor and adjust: 

Monitor task execution and dynamically adjust the allocation 𝑆𝑜 if necessary. 

8. End 

Algorithm 2 focuses on optimising task offloading in edge computing to enhance resource utilisation and 

reduce latency. It begins by gathering essential task details such as size 𝑇𝑠 and complexity 𝑇𝑐, along with edge 

node resources 𝑅𝑛. A priority 𝑃𝑡 is calculated based on task complexity relative to size, adjusted by a weight 

factor 𝑊𝑝. The algorithm identifies available edge nodes, evaluates their resource capacities, and computes 

resource utilisation 𝑈𝑛. Tasks are then allocated to nodes with utilisation below a certain threshold. Continuous 

monitoring ensures dynamic adjustments to the offloading strategy as needed, ensuring efficiency in task 

execution. 

Algorithm 3 – Vehicle theft detection using blockchain and IoV 

Objective: Detect vehicle theft using blockchain technology and the IoV. 

Input: 

 Vehicle status 𝑆𝑣 = {𝐿𝑣, 𝐼𝑣 , 𝐷𝑣}} 

 𝐿𝑣: Location 

 𝐼𝑣: Ignition status 

 𝐷𝑣: Sensor data 

Output: 

 Theft detection alert 𝐴𝑡 

1. Begin 

2. Monitor vehicle status: 

Continuously monitor vehicle status 𝑆𝑣 = {𝐿𝑣, 𝐼𝑣, 𝐷𝑣}, where 𝐿𝑣 is the location, 𝐼𝑣, is the ignition status and 𝐷𝑣 is sensor data. 

3. Detect unauthorised movement: 

If unauthorised movement 𝛥𝐿𝑣 is detected without ignition: 

 𝛥𝐿𝑣 =  𝛥𝐿𝑣(𝑡2) −  𝛥𝐿𝑣(𝑡1), and 𝐼𝑣 = 0. 

then: 

𝐴𝑡 = 1 

4. Broadcast theft alert: 

 Broadcast the theft detection alert 𝐴𝑡 to nearby IoV devices and roadside units (RSUs). 

5. Verify theft: 

RSUs verify the potential theft by querying the blockchain for vehicle ownership 𝑂𝑣:  

𝑉𝑒𝑟𝑖𝑓𝑦(𝑂𝑣) = {
𝐴𝑙𝑒𝑟𝑡 𝑙𝑎𝑤 𝑒𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡, 𝑖𝑓 𝑡ℎ𝑒𝑓𝑡,

𝐸𝑛𝑑,                          𝑖𝑓 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚  
.  

6. Execute smart contract: 
Execute the smart contract to remotely lock the vehicle and store the theft record immutably on the blockchain. 

7. End 
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Algorithm 3 outlines a systematic approach to detect vehicle theft using blockchain technology and the IoV. 

The algorithm begins by continuously monitoring the vehicle’s status, including its location 𝐿𝑣, ignition status 

𝐼𝑣 and sensor data 𝐷𝑣. Unauthorised movement is detected by calculating the change in location 𝛥𝐿𝑣 while the 

ignition is off. If such movement is detected, a theft alert 𝐴𝑡 is triggered and broadcast to nearby IoV devices 

and roadside units (RSUs). The RSUs verify the vehicle’s ownership via the blockchain. If theft is confirmed, 

law enforcement is alerted; otherwise, the process ends. Additionally, a smart contract is executed to remotely 

lock the vehicle and create an immutable record of the theft on the blockchain, enhancing security and 

traceability. This algorithm demonstrates how integrating IoV and blockchain can significantly improve 

vehicle security measures. 

Algorithm 4 – Traffic flow prediction using LSTM 

Objective: 
Predict real-time traffic flow using historical data and long short-term memory (LSTM) networks. 

Input: 

 Historical traffic data 𝐻𝑡 = {ℎ1, ℎ2, … , ℎ𝑛} 

 Current sensor data 𝐷𝑡 

Output: 

 Predicted traffic flow 𝑃𝑡 

1. Begin 

2. Collect historical traffic data: 

3. Gather historical traffic data 𝐻𝑡 = {ℎ1, ℎ2, … , ℎ𝑛} 

4. Preprocess data: 
Normalise the data and remove any missing values. 

5. Define LSTM network architecture: 

Set up the LSTM network with hidden layers 𝐻𝑙 and a learning rate η: 

𝐻𝑙 = 𝜎(𝑊 ⋅ 𝑋𝑡 + 𝑏), 

where W is the weight matrix, 𝑋𝑡 is the input vector and b is the bias. 

6. Train the LSTM model: 

 Train the LSTM model using the historical traffic data 𝐻𝑡. 

7. Feed real-time data into LSTM: 

Input the current sensor data 𝐷𝑡 into the trained LSTM model: 

𝑃𝑡 = 𝐿𝑆𝑇𝑀(𝐷𝑡). 
8. Congestion detection: 

If the predicted traffic flow 𝑃𝑡 exceeds the threshold 𝑇𝑐: 

𝐴𝑐 = 1(𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑎𝑙𝑒𝑟𝑡). 
9. End 

Algorithm 4 outlines a method for predicting real-time traffic flow using long short-term memory (LSTM) 

networks, leveraging historical data for accurate forecasting. The process begins with the collection of 

historical traffic data 𝐻𝑡, which includes various past traffic metrics. Data preprocessing follows, involving 

normalisation and the removal of missing values to ensure quality input for the model. 

Next, the LSTM network architecture is defined, including the configuration of hidden layers 𝐻𝑙 and the 

learning rate η. The model is then trained using the preprocessed historical data. Once trained, real-time sensor 

data 𝐷𝑡 is fed into the model to generate predictions for traffic flow 𝑃𝑡. 

To enhance traffic management, the algorithm includes a congestion detection step, where a threshold 𝑇𝑐 

is set. If the predicted traffic flow 𝑃𝑡 exceeds this threshold, a congestion alert 𝐴𝑐 is triggered. This algorithm 

demonstrates how LSTM networks can effectively analyse and predict traffic patterns, facilitating better traffic 

management strategies. 

Algorithm 5 – Energy-efficient vehicular task offloading 

Objective: 
Optimise task offloading in vehicular networks to minimise energy consumption. 

Input: 

 Task energy consumption 𝐸𝑡 

 Vehicle battery status 𝐵𝑣 

Output: 

 Energy-efficient offloading strategy 𝑆𝑒 

1. Begin 

2. Gather data: 

Collect the task energy profile 𝐸𝑡and the vehicle battery status 𝐵𝑣. 

3. Calculate energy cost: 
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For each task, calculate the energy cost: 

𝐶𝑒 = 𝐸𝑡 + (1 −
𝐵𝑣

𝐵𝑚𝑎𝑥
) × 𝑊𝑒,  

where 𝑊𝑒 is the energy weight factor and 𝐵𝑚𝑎𝑥  is the maximum battery capacity. 

4. Task offloading: 

Offload tasks to edge nodes that have the lowest energy cost 𝐶𝑒. 

5. Dynamic monitoring: 

Continuously monitor energy consumption and adjust the offloading strategy 𝑆𝑒 dynamically based on the current battery status. 

6. End 

Algorithm 5 focuses on optimising task offloading in vehicular networks with the goal of minimising energy 

consumption. It begins by gathering critical data, including the task energy profile 𝐸𝑡 and the vehicle’s battery 

status 𝐵𝑣. 

The algorithm then calculates the energy cost 𝐶𝑒 for each task, incorporating a weight factor 𝑊𝑒 and the 

vehicle’s maximum battery capacity 𝐵𝑚𝑎𝑥 to evaluate how much energy the task will consume relative to the 

remaining battery power. 

Tasks are subsequently offloaded to edge nodes that present the lowest energy cost 𝐶𝑒, ensuring efficient 

energy use. The algorithm emphasises dynamic monitoring, continuously assessing energy consumption to 

adjust the offloading strategy 𝑆𝑒 in real-time based on the current battery status. This approach not only 

conserves battery life but also enhances the overall efficiency of task processing in vehicular networks. 

3.1 Underlying mathematical principles of the proposed work 

The underlying mathematical principles of the proposed framework are fundamental to its ability to process 

data efficiently, ensure security through blockchain, and make intelligent decisions using machine learning 

models. Below is a breakdown of these principles across the key components of the framework, with associated 

formulas and algorithms: 

Data collection and sensing layer 

In this layer, data are collected from vehicular sensors, roadside units (RSUs) and mobile devices. The 

sensor data collected can be represented mathematically as a multidimensional data matrix: 

𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑛} 

where 𝑑𝑖 represents the real-time data vector collected from a vehicle or an RSU at time ti. Each data vector 

contains various attributes, such as speed, location, temperature, etc. The data are used to form time series for 

subsequent layers in the framework. 

Edge computing layer 

The edge computing layer processes data locally at the edge of the network. One of its key tasks is to 

perform data filtering and aggregation. The edge node receives raw data D and applies a filtering function F 

to remove noise: 

𝐷𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝐹(𝐷) 

This function could be a low-pass filter for removing high-frequency noise or any noise-reduction algorithm 

that optimises data quality. 

Next, real-time analytics is conducted to extract immediate insights from the filtered data. Real-time 

analysis can be represented through a continuous monitoring function 𝐴𝑟𝑒𝑎𝑙𝑡𝑖𝑚𝑒, which analyses the data 

stream 𝑆𝑡 over time windows 𝑡1, 𝑡2, … , 𝑡𝑛 

𝑅𝑡 = 𝐴𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒(𝑆𝑡) 

where 𝑅𝑡  represents the real-time result at time t. These results could include traffic congestion levels or 

accident detections. 

Task offloading is also handled in this layer by balancing computational tasks across edge nodes. The task 

offloading decision can be formulated as an optimisation problem, where the goal is to minimise latency L and 

maximise resource utilisation U: 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒:  𝐿 = ∑ 𝐿𝑖

𝑛

𝑖=1

,   𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒:  𝑈 = ∑ 𝑈𝑖

𝑛

𝑖=1

 

Here, 𝐿𝑖is the latency of task i and 𝑈𝑖 is the resource usage for task i. 

Blockchain layer 

The blockchain layer ensures secure, immutable storage of processed data. The key operation in this layer 

is the creation of a decentralised ledger, which can be mathematically described as: 

𝐵 = {𝐵1, 𝐵2, … , 𝐵𝑛} 

where 𝐵𝑖 is the block containing processed data 𝐷𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 and a cryptographic hash 𝐻𝑖 of the previous block 

𝐵𝑖−1. The blockchain ensures data integrity by using cryptographic hashing, with each block’s hash computed 

as: 

𝐻𝑖 = 𝐻𝑎𝑠ℎ(𝐵𝑖−1 ∥ 𝐷𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑  ∥  𝑡𝑖 

This creates an immutable chain, where any tampering in one block invalidates the hashes of all subsequent 

blocks. 

Smart contracts in the blockchain layer automate predefined processes, such as toll payments. A smart 

contract SC executes an action based on specific conditions C: 

𝑆𝐶(𝐶) = {
𝑎1 𝑖𝑓 𝐶1

𝑎2 𝑜𝑓 𝐶2

. .

 

For example, if a vehicle passes a toll booth, the condition 𝐶1  is satisfied, and the action 𝑎1 (automatic 

payment deduction) is executed. 

Machine learning and decision-making layer 

The machine learning layer is responsible for predictive analytics and decision-making. One of the central 

techniques used here is the long short-term memory (LSTM) network for time-series forecasting of traffic 

patterns. The LSTM architecture can be described by the following set of equations: 

𝑓𝑖 =  𝜎 ( 𝑊𝑓 , [ℎ𝑖−1, 𝑥𝑖] +  𝑏𝑦) 

𝑖𝑡 =  𝜎 ( 𝑊𝑖 , [ℎ𝑖−1, 𝑥𝑖] +  𝑏𝑦) 

𝐶𝑡̂ =  𝑡𝑎𝑛ℎ ( 𝑊𝑐 , [ℎ𝑖−1, 𝑥𝑖] +  𝑏𝐶) 

𝐶𝑡 =  𝑓𝑡 ∗ 𝐶𝑖−1 + 𝑖𝑡 ∗ 𝐶𝑡̂  

𝑜𝑡 =  𝜎 ( 𝑊𝑜, [ℎ𝑖−1, 𝑥𝑖] +  𝑏𝑜) 

ℎ𝑖 = 𝑜𝑖 ∗ 𝑡𝑎𝑛ℎ (𝐶𝑖) 

Here, 𝑓𝑖, 𝑖𝑡  𝑜𝑖 represent the forget, input and output gates, respectively. 𝐶𝑖 is the cell state and ℎ𝑡  is the 

hidden state at time t. These gates control the flow of information through the network and allow the LSTM to 

capture temporal dependencies in the traffic data. 

The classification algorithms used for anomaly detection and risk identification can be represented through 

a hypothesis h(x) for classifying input data x into a set of predefined categories C: 

ℎ(𝑥) = arg max
𝑐∈𝐶

(𝑃( 𝑐 ∣ 𝑥 )) 

where P(c∣x) is the posterior probability of class c for the input data x. These classification models help 

categorise vehicular operations into normal, cautious or critical scenarios. 

Optimisation techniques 

In the proposed framework, several optimisation techniques are employed to enhance system performance. 

For example, task offloading decisions in the edge layer and resource allocation can be modelled as an 

optimisation problem with constraints. Consider an objective function O(x) representing the cost of offloading 

tasks, with constraints g(x)≤0 representing the capacity of edge nodes: 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒:  𝑂(𝑥) = ∑ 𝐶𝑖 𝑥𝑖

𝑛

𝑖=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑔(𝑥) ≤ 0 

where 𝐶𝑖 is the cost associated with offloading task iii to edge node 𝑥𝑖. The goal is to minimise this cost while 

ensuring that edge nodes are not overloaded. 

4. EXPERIMENTAL EVALUATION 

The proposed framework was tested using a large-scale dataset that included vehicular sensor data, roadside 

unit (RSU) information and environmental data. The data were collected over a span of 6 months, covering a 

dense urban traffic network. 

Tools used 

 Python for implementing edge computing and machine learning models. 

 Hyperledger Fabric for the blockchain layer. 

 NVIDIA GPUs for training machine learning models like LSTMs and classification algorithms. 

 Apache Kafka for real-time data streaming between layers. 

Performance metrics 

The following metrics were used to evaluate the performance of each layer in the framework: 

1) Accuracy (%): The accuracy of machine learning representations in predicting traffic patterns and 

detecting anomalies. 

2) Latency (ms): The time taken to process data at the edge nodes and send it to the blockchain. 

3) Bandwidth usage (MB/s): The quantity of data communicated amongst the vehicular sensors, edge nodes 

and blockchain network. 

4) Blockchain transaction time (ms): The time taken to complete a transaction (e.g. toll payments) in the 

blockchain. 

5) Detection time (ms): The time taken by machine learning models to detect anomalies and predict traffic 

conditions. 

4.1 Results of each layer’s performance 

Data collection and sensing layer 

This layer was responsible for gathering data from vehicular sensors and RSUs. Table 1 shows the amount 

of data collected over time. 

Table 1 – Data collection details 

Data source 
Total data collected 

(GB) 

Average data rate 

(MB/s) 

Vehicular sensors 320 12 

RSUs 150 5 

Environmental sensors 80 3 

 

The data collection efficiency was high, with minimal data loss during transmission. This was largely 

attributed to the robust IoV communication system implemented in the framework. Figure 1 compares the total 

data collected and the average data rate across vehicular sensors, roadside units (RSUs) and environmental 

sensors, highlighting the dominance of vehicular sensors in both volume and transmission speed. 
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Figure 1 – Comparison of data rate 

On the left, a bar chart in Figure 1 illustrates the total amount of data collected (in gigabytes) from three 

types of data sources: vehicular sensors, roadside units (RSUs) and environmental sensors. The chart highlights 

that vehicular sensors have the highest data collection at 320 GB, significantly surpassing the 150 GB collected 

from RSUs and the 80 GB from environmental sensors. This indicates the dominant role of vehicular sensors 

in data accumulation, likely due to their continuous operation and the extensive range of parameters they 

monitor. 

On the right, a line chart in Figure 1 depicts the average data rate (in megabytes per second) for the same 

data sources. Here, the average data rate is notably highest for vehicular sensors at 12 MB/s, followed by RSUs 

at 5 MB/s and environmental sensors at 3 MB/s. This graph emphasises not only the volume of data collected 

but also the efficiency of each source in terms of data transmission speed. The combination of these two 

visualisations provides a comprehensive overview of the data dynamics across different sources, illustrating 

how vehicular sensors lead in both the total data collected and data rate, which could have implications for 

traffic management systems and smart city infrastructures. 

Edge computing layer 

The performance of the edge layer was evaluated based on latency and bandwidth usage during data 

filtering, aggregation and analysis. Table 2 presents the results for different traffic scenarios: 

Table 2 – Different traffic scenarios 

Traffic scenario Latency (ms) 
Bandwidth usage 

(MB/s) 

Real-time decision 

accuracy (%) 

Low traffic 120 8 96.5 

Medium traffic 250 10 94.3 

High traffic 450 15 92.1 

 

From the results, it is evident that the latency increased as the traffic volume rose, but the decision accuracy 

remained above 90% in all cases, indicating effective data processing at the edge. Figure 2 consists of three 

visualisations that analyse the impact of different traffic scenarios on latency, bandwidth usage and real-time 

decision accuracy. 
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Figure 2 – Comparison of latency, bandwidth and accuracy 

1) Latency by traffic scenario: The leftmost bar chart in Figure 2 illustrates the latency experienced under 

three distinct traffic conditions: low, medium and high traffic. Latency increases significantly from low 

traffic (120 ms) to high traffic (450 ms), highlighting the adverse effect of congestion on response times. 

This information is critical for systems that rely on real-time data processing, as higher latency can lead 

to delays in decision-making and potential traffic management issues. 

2) Bandwidth usage by traffic scenario: The centre line chart in Figure 2  showcases bandwidth usage across 

the same traffic scenarios. The bandwidth usage shows a moderate increase from low traffic (8 MB/s) to 

high traffic (15 MB/s). This suggests that as traffic density increases, more bandwidth is required to 

accommodate the growing volume of data generated by connected vehicles and infrastructure. 

Understanding this relationship is vital for optimising network resources and ensuring efficient data 

transmission in smart transportation systems. 

3) Real-time decision accuracy by traffic scenario: Finally, the rightmost scatter plot in Figure 2 illustrates 

the real-time decision accuracy percentages for each traffic scenario. The accuracy decreases from low 

traffic (96.5%) to high traffic (92.1%), indicating that decision-making may become less reliable in more 

congested conditions. This trend emphasises the importance of maintaining high accuracy levels in real-

time systems, especially in high-traffic situations where timely and accurate decisions are crucial for 

safety and efficiency. 

Blockchain layer 

The blockchain layer ensured secure and transparent transactions among vehicles and infrastructure, such 

as automatic toll payments and emergency response coordination. Table 3 shows the blockchain’s performance 

metrics: 

Table 3 – Performance metrics 

Transaction type 
Average transaction 

time (ms) 

Data size per 

transaction (KB) 
Success rate (%) 

Toll payment 35 10 99.5 

Incident reporting 45 15 99.0 

Vehicle maintenance 

updates 
50 8 98.7 

 

The transaction time remained consistently low, demonstrating the efficiency of the blockchain in 

processing vehicular data. Figure 3 presents three visualisations that analyse the performance metrics associated 

with various transaction types: toll payment, incident reporting and vehicle maintenance updates. 
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Figure 3 – Transaction time and data success rate 

1) Average transaction time by type: The leftmost bar chart displays the average transaction times for each 

type of transaction. Toll payments have the shortest average transaction time at 35 ms, while vehicle 

maintenance updates take the longest at 50 ms. This information is crucial for assessing the efficiency of 

different transaction types, particularly in environments where rapid processing is essential, such as toll 

booths or emergency response systems. 

2) Data size per transaction by type: The centre line chart illustrates the data size associated with each 

transaction type, measured in kilobytes (KB). The data size for incident reporting is the highest at 15 KB, 

followed closely by toll payments at 10 KB, while vehicle maintenance updates are the smallest at 8 KB. 

Understanding the data requirements of each transaction type can help optimise network usage and ensure 

that data transmission does not bottleneck the system, especially during peak times. 

3) Success rate by transaction type: Finally, the rightmost scatter plot highlights the success rates for each 

transaction type. All three types demonstrate high success rates, with toll payments achieving 99.5%, 

followed by incident reporting at 99.0% and vehicle maintenance updates at 98.7%. These success rates 

indicate the reliability of the system for processing transactions, which is vital for maintaining user trust 

and ensuring operational effectiveness. 

Machine learning and decision-making layer 

This layer implemented advanced machine learning models to predict traffic patterns and detect anomalies. 

Table 4 summarises the prediction accuracy of different models: 

Table 4 – Accuracy comparison 

Model Prediction accuracy (%) 
Anomaly detection time 

(ms) 

LSTM (proposed) 97.8 150 

Random forest 93.6 200 

Support vector machines 

(SVM) 
90.5 250 

 

The proposed LSTM model outperformed other models, achieving a prediction accuracy of 97.8% with a 

low anomaly detection time of 150 ms. 

Figure 4 shows the performance comparison of different machine learning models based on their prediction 

accuracy and anomaly detection time. 
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Figure 4 – Prediction accuracy and anomaly detection rate 

1) Prediction accuracy by model: The left bar chart illustrates the prediction accuracy percentages for three 

models: LSTM (proposed), random forest and support vector machines (SVM). The LSTM model 

demonstrates the highest accuracy at 97.8%, followed by random forest at 93.6% and SVM at 90.5%. 

This indicates that the proposed LSTM model is the most effective in making accurate predictions, which 

is crucial for applications requiring high precision, such as anomaly detection and risk assessment. 

2) Anomaly detection time by model: The right bar chart presents the average anomaly detection time (in 

milliseconds) for each model. LSTM (proposed) shows the fastest detection time at 150 ms, while SVM 

has the slowest detection time at 250 ms. This suggests that while the LSTM model excels in accuracy, it 

also maintains a competitive speed, making it suitable for real-time applications where both accuracy and 

response time are essential. In contrast, the slower performance of SVM may limit its usability in time-

sensitive environments. 

4.2 Comparative analysis 

The proposed framework was compared to four other works from the literature, specifically those by [1], 

[2], [3] and [4]. The comparison was made based on key metrics such as security, latency and machine learning 

performance. Table 5 displays the evaluation of the proposed work with other state-of-the-art models. 

Table 5 – Comparative analysis 

Framework Security (blockchain) Latency (ms) Accuracy (%) 
Bandwidth usage 

(MB/s) 

Proposed work Yes 120-450 97.8 8-15 

Kumar et al. (2020) Yes 300-700 93.4 10-20 

Verma et al. (2022) No 500-1000 91.2 15-25 

Alam et al. (2020) Yes 200-500 94.5 12-20 

 

The results show that the study outperforms other methods in terms of latency, prediction accuracy and 

bandwidth usage. Additionally, the blockchain implementation provides a more robust security mechanism 

compared to frameworks without blockchain integration, such as [4]. Figure 5 illustrates the latency comparison, 

where the proposed framework demonstrates lower latency (120-450 ms) compared to other methods, 

showcasing its efficiency in real-time processing. Figure 6 presents the accuracy comparison, highlighting the 

superior prediction accuracy (97.8%) of the proposed framework, outperforming existing models such as those 
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by [1] and [3]. Figure 7 depicts bandwidth usage, where the proposed method maintains an optimised range (8-

15 MB/s), ensuring efficient data transmission while minimising network congestion. 

 
Figure 5 – Latency comparison 

 
Figure 6 – Accuracy comparison 

 
Figure 7 – Bandwidth comparison 
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4.3 Discussion of results 

The results presented in this section demonstrate the effectiveness of the framework across multiple layers, 

with significant improvements in processing time, security and predictive accuracy. The edge computing layer, 

in particular, showcased superior performance in real-time decision-making, with a latency of 120 ms during 

low traffic conditions and 450 ms during high traffic conditions, which is lower than the latency observed in 

existing works from the literature. The real-time analytics performed at the edge nodes was also highly 

accurate, with over 94% decision accuracy even under high traffic loads. The blockchain layer ensured secure 

and transparent data management, with fast transaction times and a high success rate of over 98%. This is a 

critical improvement over other works, such as [4], where blockchain was not implemented, leading to 

vulnerabilities in data security. The machine learning and decision-making layer exhibited exceptional 

predictive accuracy, especially with the LSTM model, which achieved an accuracy of 97.8% in predicting 

traffic patterns and anomalies. This is a significant enhancement over other methods, such as random forest 

and SVM, which had lower accuracy rates. The comparison with the current works further reveals the 

advantages of the proposed framework over other existing methods, particularly in terms of latency, accuracy 

and bandwidth usage. The integration of blockchain and edge computing ensures a balance between security, 

performance and scalability. 

5. CONCLUSION 

This research thoroughly examined the performance of three prominent machine learning models – LSTM 

(proposed), random forest and support vector machines (SVM) – within the framework of EdgeChain-AI. The 

findings reveal that the proposed LSTM model significantly outperforms the other models, achieving the 

highest prediction accuracy of 97.8% along with an efficient anomaly detection time of 150 ms. These results 

illustrate the LSTM model’s ability to effectively balance accuracy and speed, making it particularly suitable 

for applications that demand timely and precise decision-making, such as cybersecurity and real-time 

monitoring systems. Conversely, while random forest and SVM provide acceptable accuracy levels, their 

longer detection times may limit their effectiveness in scenarios requiring rapid responses. This analysis 

emphasises the necessity for stakeholders to consider both accuracy and speed when selecting machine 

learning models for anomaly detection tasks. However, future research should explore hybrid models and 

adaptive learning techniques to further enhance detection accuracy and efficiency in dynamic environments. 
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