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ABSTRACT 

Researchers have become increasingly captivated by the windy postman problem (WPP), a 

major combinatorial optimisation problem with several practical applications. It is crucial to 

take the experts’ belief levels into account when modelling such a real-world application 

since these applications frequently involve uncertain aspects. A fuzzy set is one of the tools 

that might be regarded as appropriate for modelling such human perspectives. Applying 

fuzzy set theory to a multi-objective windy postman problem is the focus of this study. 

Maximising the overall profit and minimising the transportable time of the route visited by a 

postman are the objectives of the problem. In an effort to solve the fuzzy multi-objective 

windy postman problem (FMWPP), we have developed a chance-constrained programming 

model (CCPM). Subsequently, the epsilon-constraint method, a classical multi-objective 

solution methodology, is used to solve the deterministic transformation of the relevant 

CCPM. Moreover, the model is solved using two multi-objective genetic algorithms 

(MOGAs): fast Pareto genetic algorithm (FastPGA) and nondominated sorting genetic 

algorithm II (NSGAII). To demonstrate the proposed model, a numerical example is 

presented. We conclude by comparing the performance of the MOGAs on four randomly 

generated FMWPP instances. 

KEYWORDS 

transportation; windy postman problem; epsilon constraint method; multi-objective genetic 
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1. INTRODUCTION 

Among the significant classical combinatorial optimisation problems, M. K. Kwan [1] introduced the 

Chinese postman problem (CPP). The basic premise of CPP is that a postman sets out from the post office on 

a mission to deliver all the essential products by way of the city’s many streets and lanes. Every street in a city 

must be crossed at least once by the postman, who must travel the bare minimum distance to deliver the mail. 

This situation is defined as follows and is thought of as a network optimisation problem. Let 𝒩  be an 

undirected connected network.  𝑉𝒩   and 𝐸𝒩 are respectively considered as the set of all vertices and the set of 

all edges in 𝒩. The objective is to find the smallest closed walk of 𝒩 such that every edge in 𝐸𝒩 is traversed 

at least once in the network. The shortest closed walk is explored by considering the symmetrical nature of the 

costs and time attached to each edge. In other words, the cost and time required for travelling any given edge 
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𝑒𝑖𝑗 in either direction in the network is the same. On the other hand, there are cases where the related edge 

costs of the network problem start to skew, turning it into a windy postman problem. The windy postman 

problem (WPP) was introduced by E. Minieka [2] and is concerned with finding the minimum cost of a closed 

tour that passes through every edge at least once of an undirected network. In this problem, the cost of 

traversing through an edge 𝑒𝑖𝑗 in one direction (𝑐𝑖𝑗) can differ from the cost of traversing through it in the other 

direction (𝑐𝑗𝑖 ). Among the many interesting variants of the ancient Chinese postman problem, the windy 

postman problem (WPP) stands out. Both directions of an edge’s traversal on a WPP network incur different 

costs. Several scholars [3, 4] have studied the problem, which is deemed 𝑁𝑃-complete [5]. A. Corberán et al. 

[6] subsequently introduced a new set of facet-inducing inequalities for the WPP. Afterwards, a variant of 

WPP called the min-max version with multiple vehicles was suggested by Benavent et al. [7]. The goal of this 

task is to find the longest tour with the minimum possible length. They looked at the associated polyhedron 

and suggested an integer linear programming (ILP) formulation. Following that, a metaheuristic for the min-

max form of the windy rural postman problem with 𝑘 vehicles was proposed by Benavent et al. [8]. Later, 

Benavent et al. [9] described various new facet-inducing inequalities derived from the WRPP and applied them 

to the min-max windy rural postman problem. The periodic edge routing problem [10], the time-dependent 

windy rural postman problem [11], hierarchical WPP with variable service prices [12], etc., have all been the 

subject of further investigation on WPP. Considering the existing literature, there is a dearth of published 

works in the multi-objective domain, which are discussed hereafter. Typically known as the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 in the 

scheduling theory, the bi-objective capacitated arc routing problem (CARP) was developed by Lacomme et al. 

[13]. Here, the objective is to minimise the overall routing cost as well as the distance of the longest journey. 

A multi-objective genetic algorithm (MOGA) was used by the authors to explore a solution for the problem. 

The multi-objective CARP was solved by Grandinetti et al. [14] using the 𝜀-constraint technique in their 

subsequent work. This method minimised the overall transportation cost, 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 and the total vehicles 

needed to service all the required routes. Using a hybrid multi-objective simulated annealing technique, 

Rabbani et al. [15] demonstrated the capacitated WPP with multiple vehicles and found a solution to the 

problem. 

All of the studies that take WPP model variants into account do so in a crisp context with well-defined 

associated model parameters. But mostly in real-world contexts, where certain circumstances are modelled as 

network optimisation problems, inevitably contain some degree of indeterminacy (uncertainty). Uncertainty 

in real-world network problems is inevitable and arises due to the manifestation of certain unknowable aspects, 

such as inadequate or missing information, a lack of proof and incorrect assessments. Consequently, classical 

network models are no longer applicable in such cases. Therefore, to depict the unknown or indeterminate 

phenomena, we need a suitable tool. 

Previous research has shown that probability theory can be used to represent unknown events relevant to 

network optimisation. The idea of a random graph, where the edges and vertices are chosen at random with 

equal chances, was initially put up by P. Erdős and A. Rényi [16] in this context. The study on the 

connectedness of random graphs was reported by E. Gilbert [17] in the same year. The problem for a random 

network was resolved by Tan et al. [18] within the framework of CPP. On the other hand, probability theory 

is not the right tool to use for every ambiguous occurrence. The computed probability distribution approaches 

the long-run cumulative frequency, especially with a big enough sample size. When this occurs, inferential 

probability distributions are a suitable basis for representing unknown events in probability theory. On the flip 

side, probability theory loses its legitimacy as a method for representing uncertainty when the sample size is 

insufficient or none are available. In real-world network problems, it is common for factors which are poorly 

defined or nebulous, like trip time, fuel cost, toll tax and distance between cities. Inadequate data, lack of 

historical evidence, incorrect interpretations, etc., often lead to what is known as non-stochastic uncertainty in 

these parameters. As a result, we cannot avoid asking subject-matter experts to rate the likelihood of each 

event’s occurrence. Fuzzy set theory is one such approach to handling human ambiguity, which is characterised 

as non-stochastic uncertainty. Wang and Wen [19] investigated a time-bound CPP with an imprecise time 

frame in this paradigm. Subsequently, the hierarchical CPP utilising fuzzy time parameters was suggested by 

Sökmen and Yilmaz [20]. Within the context of uncertainty theory [21], various network problems can be 

observed in the literature (Majumder [22], Samanifar et al. [23, 24]). Recently, Samanifar et al. [25] also put 

forward the WPP with unknown parameters under an uncertain paradigm. 

Considering the above-mentioned literature, so far as we are aware, no multi-objective WPP has been 

investigated in the aforementioned research on the windy postman problem in either crisp/deterministic or 

uncertain settings. Here, we consider a weighted connected fuzzy transportation network, where the associated 
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edge weights are represented as fuzzy numbers. A postman (courier person) is supposed to traverse this 

network for the shipment of the articles(goods). Henceforth, we have introduced a fuzzy multi-objective windy 

postman problem (FMWPP) on a transportation network in this article. To understand the application of 

FMWPP, we present a suitable example. A newspaper delivery person in a scenic, hilly tourist town is tasked 

with delivering newspapers to residences, hotels and cafés located along winding, steep roads. A network with 

edges (streets) and nodes (delivery locations) is a good metaphor for the delivery area. The goal is to find a 

closed delivery route that goes through every street at least once, all the while trying to maximise total revenue 

and minimise total travel time, which are two competing (conflicting) and uncertain objectives. The associated 

parameters, revenue and travel time, are both asymmetric because their values change depending on the 

direction of travel and are uncertain because of things like traffic, weather and fluctuating delivery volumes. 

For instance, if the delivery person serves hotels and villas on the way uphill, he may earn more money, but if 

he returns downhill, he may earn less or no money at all. The variables that affect travel time include, but are 

not limited to, weather (such as fog or rain), the number of tourists, steep gradients (longer times uphill) and 

the direction of travel. In light of the above, it is reasonable to assume that both the revenue and the travel time 

will be subject to some degree of uncertainty. Therefore, fuzzy variable becomes a good alternative to describe 

these parameters. One way to look at this problem is as an application of FMWPP where the delivery 

person aims to traverse each street at least once, such that it maximises the total fuzzy revenue by favouring 

more profitable directions, while also minimising total fuzzy travel time by favouring faster and more efficient 

paths. Subsequently, we have summarised the important contributions of our proposed problem below. 

⎯ FMWPP with profit maximisation and time minimisation is proposed;  

⎯ With all input parameters treated as fuzzy variables, the FMWPP is formulated as a chance-constrained 

programming model (CCPM); 

⎯ The deterministic model transformation is then resolved using the epsilon-constraint method [26], a 

classical multi-objective technique. Following this, the deterministic model of FMWPP is solved using 

two MOGAs: FastPGA [27] and nondominated sorting algorithm II (NSGAII) [28]. Here, it is to be 

mentioned that to the best of our knowledge, FastPGA has yet to be applied to any multi-objective network 

problem as observed in the literature. 

Chance-constrained programming [29, 30] can be used to deal with optimisation problems associated with 

fuzzy parameters. The core idea underlying this powerful modelling method is to optimise the critical value of 

the fuzzy objective function(s) with a user-specified confidence (chance) level(s) while taking into 

consideration distinctive chance restrictions. In a chance-constrained programming model (CCPM), a 

decision-maker provides a confidence level 𝛼, the value of which is assumed to be selected from the closed 

interval [0,1]. In the subsequent sections, we use the idea of CCPM to develop our suggested model, FMWPP. 

The outline of the rest of the article is mentioned as follows. In Section 2, we present the essential and 

fundamental concepts related to our proposed study. We illustrate the model’s formulation in Section 3, and 

then present the deterministic transformation of the model in Section 4. Section 5 delves into the methodologies 

that are used to solve the proposed model. Section 6 provides a discussion of the necessary results of the 

proposed FMWPP. Lastly, Section 7 presents the findings of our investigation. 

2. RUDIMENTARY CONCEPTS 

In the parts that follow, we will review some basic ideas connected to fuzzy variables, credibility theory 

and triangular fuzzy variables (TFV) in order to explain the fuzzy multi-objective windy postman problem.  

L.A. Zadeh [31] was the first to propose the idea of a fuzzy set. Accordingly, L.A. Zadeh [32] put forth the 

idea of a possibility measure as a way to quantify a fuzzy event. But a self-duality feature for a possibility 

measure does not exist. Later, the credibility measure was proposed by B. Liu and Y. Liu [33] to address the 

shortcomings of the possibility measure. Afterwards, credibility theory was established by B. Liu [34] as a 

mathematical subfield that investigates the credibility-based behaviour of fuzzy phenomena. 

Assume Θ is a non-empty set, the power set of Θ is denoted as 𝒫(Θ), and 𝑃𝑜𝑠 is a measure of possibility. 

The triplet,  Θ,𝒫(Θ), and 𝑃𝑜𝑠 constitute what is known as a possibility space. Consequently, a fuzzy variable 

is a function that maps the set of real numbers to a possibility space (Θ,𝒫(Θ), 𝑃𝑜𝑠) . 

Consider 𝜇 as the membership function of a fuzzy variable 𝜂. Then, we may define the possibility (𝑃𝑜𝑠), 
necessity (𝑁𝑒𝑐) and credibility (𝐶𝑟) of a fuzzy event {𝜂 ≥ 𝑞} as mentioned below: 
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𝑃𝑜𝑠{𝜂 ≥ 𝑞} =
𝑠𝑢𝑝

𝑥 ≥ 𝑞
𝜇(𝑥);  

𝑁𝑒𝑐{𝜂 ≥ 𝑞} = 1 −
𝑠𝑢𝑝

𝑥 < 𝑞
𝜇(𝑥);  

𝐶𝑟{𝜂 ≥ 𝑞} =
1

2
(𝑃𝑜𝑠{𝜂 ≥ 𝑞} + 𝑁𝑒𝑐{𝜂 ≥ 𝑞}).  

Definition 2.1 [35]: The expression 𝜓(𝑥) = 𝐶𝑟{𝜃 ∈ Θ|𝜂(𝜃) ≤ 𝑥}  defines the credibility distribution 

Ψ: 𝔑 → [0, 1] of a fuzzy variable 𝜓. Furthermore, for every 𝛼 that falls inside the interval [0, 1], the existence 

and uniqueness of the inverse function 𝜓−1(𝛼) indicate that the credibility distribution 𝜓 is regular. The term 

used to describe the inverse of 𝜂 is the inverse credibility distribution [36]. 

For example, a TFV 𝜂 which is represented by a triplet (𝑞1, 𝑞2, 𝑞3) with 𝑞𝑖 ∈ 𝔑, ∀𝑖 = 1,2,3 and 𝑞1 < 𝑞2 <
𝑞3. Accordingly, the membership function and the credibility distribution of 𝜂 are shown respectively in Eqs. 

(1), (2) and (3). 

𝜇(𝜂𝑥) =

{
 
 

 
 
𝑥 − 𝑞1
𝑞2 − 𝑞1

;  𝑖𝑓 𝑞1 ≤ 𝑥 ≤ 𝑞2;

𝑥 − 𝑞2
𝑞3 − 𝑞2

;  𝑖𝑓 𝑞2 < 𝑥 ≤ 𝑞3;

0           ;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.      

 (1) 

𝜓(𝜂 ≤ 𝑥) =

{
 
 

 
 

0             ;  𝑖𝑓 𝑥 < 𝑞1;      
𝑥 − 𝑞1

2(𝑞2 − 𝑞1)
;  𝑖𝑓 𝑞1 ≤ 𝑥 < 𝑞2; 

𝑥 + 𝑞3 − 2𝑞2
2(𝑞3 − 𝑞2)

;  𝑖𝑓 𝑞2 ≤ 𝑥 < 𝑞3;

1                     ;  𝑖𝑓 𝑥 ≥ 𝑞3.         

 (2) 

𝜓(𝜂 ≥ 𝑥) =

{
 
 

 
 

1                  ;  𝑖𝑓 𝑥 < 𝑞1;      
2𝑞2 − 𝑞1 − 𝑥

2(𝑞2 − 𝑞1)
;  𝑖𝑓 𝑞1 ≤ 𝑥 < 𝑞2; 

𝑞3 − 𝑥

2(𝑞3 − 𝑞2)
;  𝑖𝑓 𝑞2 ≤ 𝑥 < 𝑞3;

0                 ;  𝑖𝑓 𝑥 ≥ 𝑞3.         

 (3) 

In addition, as seen in Eqs. (4) and (5), the inverse credibility distributions of the TFV, denoted as 𝜂, for a 

predetermined confidence level 𝛽 are calculated respectively following Eqs. (2) and (3). 

𝜓−1(𝛼) = {
(1 − 2𝛽)𝑞1 + 2𝛽𝑞2            ;  𝑖𝑓 0 ≤ 𝛽 ≤ 0.5;
(2 − 2𝛽)𝑞2 + (2𝛽 − 1)𝑞3;  𝑖𝑓 0.5 < 𝛽 ≤ 1.

  (4) 

𝜓−1(𝛼) = {
2𝛽𝑞2 + (1 − 2𝛽)𝑞3           ;  𝑖𝑓 0 ≤ 𝛽 ≤ 0.5
(2𝛽 − 1)𝑞1 + (2 − 2𝛽)𝑞2;  𝑖𝑓 0.5 < 𝛽 ≤ 1.

  (5) 

Following the ideas put out by Y. Liu and J. Gao [37] on independent fuzzy variables and regular credibility 

distributions, J. Zhou et al. [36] demonstrated a significant operational law for such variables as mentioned 

below. 

Theorem 2.1 [35]: The independent fuzzy variables 𝜂1, 𝜂2, 𝜂3…𝜂𝑛  are defined by their respective regular 

credibility distributions 𝜓1, 𝜓2, 𝜓3, … , 𝜓𝑛. A fuzzy variable 𝜂 = 𝑓(𝜂1, 𝜂2, 𝜂3…𝜂𝑛) which is strictly increasing 

with respect to 𝜂1, 𝜂2, 𝜂3…𝜂𝑚 and strictly decreasing with respect to 𝜂𝑚+1, 𝜂𝑚+2, 𝜂𝑚+3…𝜂𝑛 has the inverse 

credibility distribution: 

𝜓−1(𝛼) = 𝑓 (𝜓1
−1(𝛼),𝜓2

−1(𝛼),…𝜓𝑚
−1(𝛼),𝜓𝑚+1

−1 (1 − 𝛼), 𝜓𝑚+2
−1 (1 − 𝛼),…𝜓𝑛

−1(1 − 𝛼)). (6) 
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3. FUZZY MULTI-OBJECTIVE WINDY POSTMAN PROBLEM 

This section presents the model formation of the proposed FMWPP using the chance-constrained 

programming technique.  

3.1 The proposed model 

Consider an interconnected network 𝒩 = (𝒬𝒩 , 𝒲𝒩), where 𝒬𝒩 = {𝑣1, 𝑣2, … , 𝑣𝑚} and 𝒲𝒩  are finite sets 

of vertices and edges of 𝒩, respectively. There are 𝑛 pairs of vertices in the set 𝐸𝒩, denoted as 〈𝑣𝑖 , 𝑣𝑗〉, such 

that each pair represents an edge  𝑒𝑖𝑗. Each 𝑒𝑖𝑗 is associated with a non-negative finite quantities 𝜔𝑖𝑗, also 

referred to as the weight of 𝑒𝑖𝑗. Furthermore, the associated weight  𝜔𝑖𝑗 of  𝑒𝑖𝑗 will differ from  𝑒𝑗𝑖 's associated 

weight  𝜔𝑗𝑖 when traversed from 𝑣𝑗 to 𝑣𝑖. 

We have examined a fuzzy multi-objective windy postman problem for a transportation network 𝒩 in this 

article, where the associated parameters to an edge are represented as a triangular fuzzy number. A street in 

the suggested problem is represented by an edge, 𝑒𝑖𝑗, and a vertex is the point where the streets connect. As a 

result, the edge represented by 𝑒𝑖𝑗 joins the neighbouring vertices 𝑣𝑖 and 𝑣𝑗. When traveling down a street 𝑒𝑖𝑗, 

a courier company’s delivery employee or postman receives compensation for navigating each lane of the road 

in order to deliver items to clients on time. The postman (courier person) is responsible for covering all 

transportable outlays incurred during the trip, including fuel costs, toll taxes, congestion fees, vehicle 

maintenance costs, etc. Furthermore, because each street has two lanes, traffic congestion may cause the time 

needed to travel each of the lanes, or 𝑒𝑖𝑗 and 𝑒𝑗𝑖 of a street, to vary within a given day. Hence, the associated 

parameters to an edge are most likely to be asymmetric in nature. More specifically, at any one time, one lane 

of the street may have more traffic than the other. When driving on a road like this, one may experience varying 

travel expenses (such as gasoline costs for the vehicle, congestion fees, toll taxes, etc.) and delivery times to 

the recipient. Accordingly, the courier distribution person will attempt to make the most of the overall earnings 

from the whole commission amount after accounting for all potential road travel charges, such as fuel costs, 

congestion fees, toll taxes, vehicle overhaul costs, etc. Concurrently, the delivery person endeavours to reduce 

the overall travel time spent on the trip. The shortest closed walk (tour) of 𝒩 is used to optimise the delivery 

person’s total overall profit and journey time, making sure that every edge 𝑒𝑖𝑗 of 𝒲𝒩 is walked at least once. 

In actuality, we treat all related parameters – that is, commission amount, travel expense and travel time – as 

triangular fuzzy variables in the proposed FMWPP, as explained below: 

– 𝜂𝐶𝑖𝑗:  fuzzy commission amount that the delivery person receives for passing a street 𝑒𝑖𝑗; 

–  𝜂𝐸𝑖𝑗: fuzzy travel expenditure incurred by the courier person throughout their journey through 𝑒𝑖𝑗; 

– 𝜂𝑇𝑖𝑗 : fuzzy duration of time it takes for the delivery person to traverse via 𝑒𝑖𝑗. 

There are two goals to the suggested model: first, to maximise the postman’s earnings from the tour; and 

second, to minimise the overall travel time of the trip. The model is developed by using the concept of CCPM. 

The proposed FMWPP is presented below in Model (7): 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑀𝑎𝑥 �̅�1                                                                                                

𝑀𝑖𝑛 �̅�2                                                                                                  
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                                                                                                                             

𝜓 {[∑ ∑ ((𝜂𝐶𝑖𝑗𝑥𝑖𝑗 + 𝜂𝐶𝑗𝑖𝑥𝑗𝑖) − (𝜂𝐸𝑖𝑗𝑥𝑖𝑗 + 𝜂𝐸𝑗𝑖𝑥𝑗𝑖)) 
𝑚

𝑗=1,𝑗≠𝑖

𝑚

𝑖=1
] ≥ �̅�1} ≥ 𝛼1;

𝜓 {[∑ ∑ (𝜂𝑇𝑖𝑗𝑥𝑖𝑗 + 𝜂𝑇𝑗𝑖𝑥𝑗𝑖)
𝑚

𝑗=1,𝑗≠𝑖

𝑚

𝑖=1
] ≤ �̅�2} ≥ 𝛼2;                                            

∑𝑥𝑖𝑗

𝑛

𝑗=1

−∑𝑥𝑘𝑖

𝑛

𝑘=1

= 0, 𝑖 = 1,2,… , 𝑛;                                                                        

𝑥𝑖𝑗 + 𝑥𝑗𝑖 ≥ 1 , 𝑒𝑖𝑗 ∈ 𝒲𝒩;                                                                                                    

𝑥𝑖𝑗 ∈ {0,1} , 𝑒𝑖𝑗 ∈ 𝒲𝒩;                                                                                                        
𝜂𝐶𝑖𝑗 ≠ 𝜂𝐶𝑗𝑖 , 𝜂𝐸𝑖𝑗 ≠ 𝜂𝐸𝑗𝑖 , 𝜂𝑇𝑖𝑗 ≠  𝜂𝑇𝑗𝑖 .                                                                               

 (7) 

Here, 𝛼1and 𝛼2 regulate the chance levels at which the first and second constraints hold good. The crucial 

values relating to overall profit and total elapsed time connected with a postman trip, which correspond to the 
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first and second constraints, respectively, are represented by the objectives �̅�1 and �̅�2. The first constraint 

establishes the optimistic 𝛼1 – estimated total profit linked to the postman's 𝛼1 – tour. In addition, the second 

constraint establishes the 𝛼2 – pessimistic estimated overall time needed to complete the postman’s associated 

𝛼2 – route. Furthermore, each vertex 𝑣𝑖 is associated with a closed walk determined by the third constraint, 

and each edge is traversed at least once, as confirmed by the fourth constraint. According to the proposed 

Model (7), both objectives are optimised while optimising a path (a closed walk that visits each edge at least 

once). For each edge 𝑒𝑖𝑗, we have a decision variable 𝑥𝑖𝑗 that can take on the values 0 or 1. The optimal path 

of Model (7) includes 𝑒𝑖𝑗 if and only if 𝑥𝑖𝑗=1, else it discards 𝑒𝑖𝑗. 

4. DETERMINISTIC TRANSFORMATION 

In this section, based on the credibility theory, we propose the deterministic equivalent model of the 

FMWPP as presented in Model (7). 

Theorem 4.1: Let 𝜂𝐶𝑖𝑗 , 𝜂𝐸𝑖𝑗  and 𝜂𝑇𝑖𝑗(𝑖, 𝑗 = 1,2, …𝑚)  be the independent triangular fuzzy variables 

(TFVs), where 𝜂𝐶𝑖𝑗 = (𝐶𝑖𝑗1, 𝐶𝑖𝑗2, 𝐶𝑖𝑗3) , 𝜂𝐸𝑖𝑗 = (𝐸𝑖𝑗1, 𝐸𝑖𝑗2, 𝐸𝑖𝑗3)  and 𝜂𝑇𝑖𝑗 = (𝑇𝑖𝑗1, 𝑇𝑖𝑗2, 𝑇𝑖𝑗3) , 𝑖, 𝑗 = 1,2, …𝑚. 

Then the deterministic equivalent of FMWPP as presented in Model (7) is given by: 

⎯ when 0 ≤ 𝛼1 ≤ 0.5 and 0 ≤ 𝛼2 ≤ 0.5: 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝑀𝑎𝑥 �̅�1 =

[
 
 
 
 2𝛼1 {∑ ∑ ((𝜂𝐶𝑖𝑗2𝑥𝑖𝑗 + 𝜂𝐶𝑗𝑖2𝑥𝑗𝑖) − (𝜂𝐸𝑖𝑗2𝑥𝑖𝑗 + 𝜂𝐸𝑗𝑖2𝑥𝑗𝑖))

𝑚

𝑗=1,𝑗≠𝑖

𝑚

𝑖=1
} +

(1 − 2𝛼1) {∑ ∑ ((𝜂𝐶𝑖𝑗3𝑥𝑖𝑗 + 𝜂𝐶𝑗𝑖3𝑥𝑗𝑖) − (𝜂𝐸𝑖𝑗3𝑥𝑖𝑗 + 𝜂𝐸𝑗𝑖3𝑥𝑗𝑖))
𝑚

𝑗=1,𝑗≠𝑖

𝑚

𝑖=1
}
]
 
 
 
 

       

𝑀𝑖𝑛 �̅�2  =

[
 
 
 
 (1 − 2𝛼2) {∑ ∑ (𝜂𝑇𝑖𝑗1𝑥𝑖𝑗 + 𝜂𝑇𝑗𝑖1𝑥𝑗𝑖)

𝑚

𝑗=1,𝑗≠𝑖

𝑚

𝑖=1
} +

2𝛼2 {∑ ∑ (𝜂𝑇𝑖𝑗2𝑥𝑖𝑗 + 𝜂𝑇𝑗𝑖2𝑥𝑗𝑖)
𝑚

𝑗=1,𝑗≠𝑖

𝑚

𝑖=1
}

]
 
 
 
 

                                                  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                                                                                                                                                           

∑𝑥𝑖𝑗

𝑛

𝑗=1

−∑𝑥𝑘𝑖

𝑛

𝑘=1

= 0, 𝑖 = 1,2, … , 𝑛;                                                                                                

𝑥𝑖𝑗 + 𝑥𝑗𝑖 ≥ 1 , 𝑒𝑖𝑗 ∈ 𝒲𝒩;                                                                                                                           

𝑥𝑖𝑗 ∈ {0,1} , 𝑒𝑖𝑗 ∈ 𝒲𝒩;                                                                                                                             
𝜂𝐶𝑖𝑗1 ≠ 𝜂𝐶𝑗𝑖1 , 𝜂𝐶𝑖𝑗2 ≠ 𝜂𝐶𝑗𝑖2 , 𝜂𝐸𝑖𝑗1 ≠ 𝜂𝐸𝑗𝑖1 , 𝜂𝐸𝑖𝑗2 ≠ 𝜂𝐸𝑗𝑖2 , 𝜂𝑇𝑖𝑗1 ≠  𝜂𝑇𝑗𝑖1 , 𝜂𝑇𝑖𝑗2 ≠  𝜂𝑇𝑗𝑖2 .               

 (8) 

⎯ when 0.5 < 𝛼1 ≤ 1 and 0.5 < 𝛼2 ≤ 1: 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝑀𝑎𝑥 �̅�1 =

[
 
 
 
 (2𝛼1 − 1) {∑ ∑ (𝜂𝐶𝑖𝑗1𝑥𝑖𝑗 + 𝜂𝐶𝑗𝑖1𝑥𝑗𝑖)

𝑚

𝑗=1,𝑗≠𝑖

𝑚

𝑖=1
− (𝜂𝐸𝑖𝑗1𝑥𝑖𝑗 + 𝜂𝐸𝑗𝑖1𝑥𝑗𝑖)} +

(2 − 2𝛼1) {∑ ∑ ((𝜂𝐶𝑖𝑗2𝑥𝑖𝑗 + 𝜂𝐶𝑗𝑖2𝑥𝑗𝑖) − (𝜂𝐸𝑖𝑗2𝑥𝑖𝑗 + 𝜂𝐸𝑗𝑖2𝑥𝑗𝑖))
𝑚

𝑗=1,𝑗≠𝑖

𝑚

𝑖=1
}
]
 
 
 
 

    

𝑀𝑖𝑛 �̅�2  =

[
 
 
 
 (2 − 2𝛼2) {∑ ∑ (𝜂𝑇𝑖𝑗2𝑥𝑖𝑗 + 𝜂𝑇𝑗𝑖2𝑥𝑗𝑖)

𝑚

𝑗=1,𝑗≠𝑖

𝑚

𝑖=1
} +

(2𝛼2 − 1) {∑ ∑ (𝜂𝑇𝑖𝑗3𝑥𝑖𝑗 + 𝜂𝑇𝑗𝑖3𝑥𝑗𝑖)
𝑚

𝑗=1,𝑗≠𝑖

𝑚

𝑖=1
}
]
 
 
 
 

                                                  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                                                                                                                                                           

∑𝑥𝑖𝑗

𝑛

𝑗=1

−∑𝑥𝑘𝑖

𝑛

𝑘=1

= 0, 𝑖 = 1,2, … , 𝑛;                                                                                                

𝑥𝑖𝑗 + 𝑥𝑗𝑖 ≥ 1 , 𝑒𝑖𝑗 ∈ 𝒲𝒩;                                                                                                                           

𝑥𝑖𝑗 ∈ {0,1} , 𝑒𝑖𝑗 ∈ 𝒲𝒩;                                                                                                                             
𝜂𝐶𝑖𝑗2 ≠ 𝜂𝐶𝑗𝑖2 , 𝜂𝐶𝑖𝑗3 ≠ 𝜂𝐶𝑗𝑖3 , 𝜂𝐸𝑖𝑗2 ≠ 𝜂𝐸𝑗𝑖2 , 𝜂𝐸𝑖𝑗3 ≠ 𝜂𝐸𝑗𝑖3 , 𝜂𝑇𝑖𝑗2 ≠  𝜂𝑇𝑗𝑖2 , 𝜂𝑇𝑖𝑗3 ≠  𝜂𝑇𝑗𝑖3 .             

 (9) 
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Proof: Since 𝑥𝑖𝑗 ∈ {0,1} for 𝑖, 𝑗 = 1,2,…𝑚, it follows from the extension principle (L.A. Zadeh [31, 32]) 

that the objective functions ∑ ∑ ((𝜂𝐶𝑖𝑗𝑥𝑖𝑗 + 𝜂𝐶𝑗𝑖𝑥𝑗𝑖) − (𝜂𝐸𝑖𝑗𝑥𝑖𝑗 + 𝜂𝐸𝑗𝑖𝑥𝑗𝑖)) 
𝑚
𝑗=1,𝑗≠𝑖

𝑚
𝑖=1 and 

∑ ∑ (𝜂𝑇𝑖𝑗𝑥𝑖𝑗 + 𝜂𝑇𝑗𝑖𝑥𝑗𝑖)
𝑚
𝑗=1,𝑗≠𝑖

𝑚
𝑖=1  are also triangular fuzzy numbers. Here, 𝒙 is a 

𝑚!

(𝑚−2)!
−dimension decision 

vector such that every 𝑥𝑖𝑗 ∈ 𝒙. Furthermore, since 𝜂𝐶𝑖𝑗 , 𝜂𝐸𝑖𝑗  and 𝜂𝑇𝑖𝑗(𝑖, 𝑗 = 1,2, …𝑚) are the independent 

triangular fuzzy variables, then it follows from Theorem 2.1, and Eqs. (4) and (5), the chance-constraints 

𝜓 {[∑ ∑ ((𝜂𝐶𝑖𝑗𝑥𝑖𝑗 + 𝜂𝐶𝑗𝑖𝑥𝑗𝑖) − (𝜂𝐸𝑖𝑗𝑥𝑖𝑗 + 𝜂𝐸𝑗𝑖𝑥𝑗𝑖)) 
𝑚
𝑗=1,𝑗≠𝑖

𝑚
𝑖=1 ] ≥ �̅�1} ≥ 𝛼1  and 𝜓 {[∑ ∑ (𝜂𝑇𝑖𝑗𝑥𝑖𝑗 +

𝑚
𝑗=1,𝑗≠𝑖

𝑚
𝑖=1

𝜂𝑇𝑗𝑖𝑥𝑗𝑖)] ≤ �̅�2} ≥ 𝛼2 are equivalent to:  

2𝛼1 {∑ ∑ ((𝜂𝐶𝑖𝑗2𝑥𝑖𝑗 + 𝜂𝐶𝑗𝑖2𝑥𝑗𝑖) − (𝜂𝐸𝑖𝑗2𝑥𝑖𝑗 + 𝜂𝐸𝑗𝑖2𝑥𝑗𝑖))
𝑚

𝑗=1,𝑗≠𝑖

𝑚

𝑖=1
} +

(1 − 2𝛼1) {∑ ∑ ((𝜂𝐶𝑖𝑗3𝑥𝑖𝑗 + 𝜂𝐶𝑗𝑖3𝑥𝑗𝑖) − (𝜂𝐸𝑖𝑗3𝑥𝑖𝑗 + 𝜂𝐸𝑗𝑖3𝑥𝑗𝑖))
𝑚

𝑗=1,𝑗≠𝑖

𝑚

𝑖=1
}

 

and 

(1 − 2𝛼2) {∑ ∑ (𝜂𝑇𝑖𝑗1𝑥𝑖𝑗 + 𝜂𝑇𝑗𝑖1𝑥𝑗𝑖)
𝑚

𝑗=1,𝑗≠𝑖

𝑚

𝑖=1
} +

2𝛼2 {∑ ∑ (𝜂𝑇𝑖𝑗2𝑥𝑖𝑗 + 𝜂𝑇𝑗𝑖2𝑥𝑗𝑖)
𝑚

𝑗=1,𝑗≠𝑖

𝑚

𝑖=1
} ;

 

⎯ when 0 ≤ 𝛼1 ≤ 0.5 and 0 ≤ 𝛼2 ≤ 0.5. 

And  

  

(2𝛼1 − 1) {∑ ∑ (𝜂𝐶𝑖𝑗1𝑥𝑖𝑗 + 𝜂𝐶𝑗𝑖1𝑥𝑗𝑖)
𝑚

𝑗=1,𝑗≠𝑖

𝑚

𝑖=1
− (𝜂𝐸𝑖𝑗1𝑥𝑖𝑗 + 𝜂𝐸𝑗𝑖1𝑥𝑗𝑖)} +

(2 − 2𝛼1) {∑ ∑ ((𝜂𝐶𝑖𝑗2𝑥𝑖𝑗 + 𝜂𝐶𝑗𝑖2𝑥𝑗𝑖) − (𝜂𝐸𝑖𝑗2𝑥𝑖𝑗 + 𝜂𝐸𝑗𝑖2𝑥𝑗𝑖))
𝑚

𝑗=1,𝑗≠𝑖

𝑚

𝑖=1
}

  

and 

(2 − 2𝛼2) {∑ ∑ (𝜂𝑇𝑖𝑗2𝑥𝑖𝑗 + 𝜂𝑇𝑗𝑖2𝑥𝑗𝑖)
𝑚

𝑗=1,𝑗≠𝑖

𝑚

𝑖=1
} +

(2𝛼2 − 1) {∑ ∑ (𝜂𝑇𝑖𝑗3𝑥𝑖𝑗 + 𝜂𝑇𝑗𝑖3𝑥𝑗𝑖)
𝑚

𝑗=1,𝑗≠𝑖

𝑚

𝑖=1
} .

  

 

 

⎯ when 0.5 < 𝛼1 ≤ 1 and 0.5 < 𝛼2 ≤ 1: 

Therefore, considering both the above-mentioned conditions, it directly follows Models (8) and (9). 

5. SOLUTION METHODOLOGIES 

The solution methodologies employed in this study to resolve the proposed problem are detailed in the 

following subsections. 

5.1 Epsilon-constraint method 

Y. Haimes et al. [26] proposed the epsilon-constraint method to deal with MOOP. By optimising a single 

objective and converting the others into constraints with user-defined values, this approach simplifies problems 

with numerous objectives into optimisation problems with a single objective. Efficiently solving problems in 

the non-convex region of the objective space is also achieved using this method. A two-objective function 

multi-objective optimisation problem (MOOP) is presented in Model (10), so that we can discuss the approach: 

{
 
 

 
 
𝑀𝑎𝑥 𝑍1(𝒙)                                                                       
𝑀𝑖𝑛 𝑍2(𝒙)                                                                         
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                                                                         

𝑔𝑢(𝒙) ≥ 0, 𝑢 = 1,2,… , 𝑈;                                    

ℎ𝑤(𝒙) = 0,𝑤 = 1,2,… , 𝑆;                                   
𝒙 ≥ 0.                                                                     

 (10) 
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A 𝑞 – dimensional decision vector 𝒙, a set of inequality constraints 𝑔𝑢(𝒙) and a set of equality constraints 

ℎ𝑤(𝒙) are all part of the Model (10), which also includes the objective functions 𝑍1(𝒙) and 𝑍2(𝒙). Therefore, 

Model (10) can be turned into a compromise single objective optimisation problem using the epsilon-constraint 

method as shown below in Model (11): 

{
 
 

 
 
𝑀𝑎𝑥 𝑍1(𝒙)                                                                       
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                                                                         

 𝑍2(𝒙) ≤ 𝜖2;                                                          

𝑔𝑢(𝒙) ≥ 0, 𝑢 = 1,2,… , 𝑈;                                    

ℎ𝑤(𝒙) = 0,𝑤 = 1,2,… , 𝑆;                                   
𝑥 ≥ 0,                                                                     

 (11) 

where 𝜖2 signifies the value that lies somewhere between the two extremes of 𝑍2(𝒙), and not necessarily the 

one that is propinquity to zero. 

5.2 Multi-objective genetic algorithm 

For optimisation problems with multiple objectives, an MOGA can generate several nondominated 

solutions in a single run. An attractive alternative for investigating several MOOP solutions is an MOGA, 

which may simultaneously search numerous unexplored areas of the convex, non-convex and discontinuous 

solution spaces of numerous complicated MOOPs, all at once. On top of that, MOGAs do not necessitate a 

decision maker to rank the objectives. With these features, MOGAs are well-suited to solve MOOPs. A 

MOGA’s goal is to improve its nondominated solution generation over generations so that it approaches Pareto 

optimality. A nondominated front in the objective space is effectively created by these nondominated solutions. 

The first nondominated front of the solutions is the optimal one, and it corresponds to the Pareto front (PF). In 

order to solve difficult multi-objective optimisation problems, the multi-objective genetic algorithm (MOGA) 

put out by C. Fonseca and P. Flaming [38] has been attracting enormous interest. There are a plethora of 

MOGAs in the literature, including those by H. Eskandari et al. [27], K. Deb et al. [28], Zitzler and Thiele 

[39], A. Nebro et al. [40], and many more. In this study, two MOGAs, FastPGA [27] and NSGAII [28], are 

employed to solve the deterministic models of the proposed FMWPP. 

Fast Pareto genetic algorithm 

For large-dimensional search spaces, H. Eskandari et al. [27] developed the fast Pareto genetic algorithm, 

also known as FastPGA. This is a population-based multi-objective genetic algorithm. The FastPGA 

architecture includes a new method for fitness assignment and ranking strategy. The rapid dissemination of the 

Pareto optimum solution set is guaranteed by an elitist operator. Additionally, an operator for population 

regulation is also introduced that may dynamically adjust the population size as needed, up to a maximum that 

the user specifies, which is eventually the size of the set of nondominated solutions. Algorithm convergence 

behaviour and computing effort are both enhanced by the population regulation operator. We highlight the 

functioning concept of FastPGA in the paragraph that follows. 

An initial population of solution vector, 𝑃0 , is generated at random, the solutions of which are then 

evaluated with respect to the 𝑚 objective functions. Subsequently, for a particular generation 𝑡, a selection 

operator is used to choose pairs of solutions 𝑃𝑡
′  from prior populations 𝑃𝑡−1 . Next, a new population of 

offspring, 𝑂𝑡 is created by using crossover and mutation operators. In order to create a composite population 

𝐶𝑃𝑡, the solutions of 𝑂𝑡 are evaluated and then merged with the solutions of the prior population 𝑃𝑡−1. The 

solutions of 𝐶𝑃𝑡 are then ranked based on the novel ranking strategy [27] using their fitness values into two 

distinct groups. 

Using this ranking approach, the nondominated solutions are ranked first. This means that no solution is 

better than these solutions when all objective functions are considered at the same time. The second rank is 

used to identify all dominated solutions. In order to reproduce a solution, these ranks are utilised to assess its 

fitness:  

⎯ We can assess the fitness of the first-rank nondominated solutions by comparing them to each other and 

assigning a fitness value. Following the recommendation of K. Deb et al. [28], these fitness values are 

calculated using the crowding distance approach, which has been shown to help maintain diversity among 

the nondominated solutions in the Pareto optimal front; 

⎯ Each dominated solution in the second rank is compared to all other solutions and assigned a fitness value 

depending on the number of solutions it dominates. Any dominated solution 𝑥𝑖 is considered in the fitness 
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assignment together with the dominating solution. By giving every solution 𝑥𝑖 a strength value 𝑺𝒕(𝒙𝒊), 
we may determine how many solutions it dominates in the composite population 𝑪𝑷𝒕. 

For each dominated solution, 𝒙𝒊, the fitness value is calculated by taking the total strength values of all 

solutions it dominates and subtracting them from the sum of all solutions it is dominated by. When calculating 

its fitness value, FastPGA takes into account the solutions that are dominating and dominated with regard to a 

given solution 𝒙𝒊. This approach facilitates a lower likelihood of two solutions having the same fitness value, 

and essentially provides more information on Pareto dominance and niching relations among the composite 

population’s solutions. Following the calculation of fitness values for all alternate solutions in 𝑪𝑷𝒕 , the 

solutions are compared, leading to one of three possible outcomes. Two solutions, ranked differently, are 

chosen in the first scenario. Here, we favour the solution that has the lower rank. In the second case, the fitness 

values of the two chosen solutions are different, but their ranks are the same. Here, the solution with having 

larger fitness value is preferred. Finally, it is possible for two solutions to have both identical ranks and fitness 

values, with a random preference given to any one of them. 

To guarantee that the nondominated (non-inferior) solutions are passed down to next generations, an elitism 

operator with relatively high intensity is used successively after the ranking of the solutions of the population 

𝑃𝑡  is accomplished. To do this, all of the solutions from the prior generation’s population, 𝑃𝑡−1  are 

intermingled with the offspring population 𝑂𝑡. Based on the number of nondominated solutions found in the 

composite population 𝐶𝑇𝑡, the combination of 𝑃𝑡−1 with the created offspring 𝑂𝑡 allows for the preservation 

of superior solutions and the discarding of inferior solutions in the next generation. With a large and 

static population size, the number of nondominated solutions tends to grow with each generation, which means 

that early generations experience a low elitism intensity. Too much elitism intensity could lead to premature 

convergence, while too little might make convergence excessively slow and computationally costly. 

Consequently, FastPGA makes use of a regulatory operator to continuously fine-tune the population size up to 

a user-specified upper limit.  

Every successively created population in each generation goes through the same procedure until the 

termination condition is met. 

Nondominated sorting genetic algorithm II 

An elitist multi-objective genetic algorithm, the nondominated sorting genetic algorithm II (NSGAII), was 

developed by K. Deb et al. [28]. The intent is to keep the fittest candidates for the next population, which will 

enhance the convergence of the algorithm. The procedure begins by creating a population of random solutions 

represented as 𝑃0  of size 𝑁. In a given generation 𝑡, the individuals of the parent population 𝑃𝑡  undergo 

changes in genetics using genetic operators, including selection, crossover and mutation in order to produce a 

new population 𝐶𝑡 with the same number of potential solutions as the parent population. A population 𝑆𝑡 of 

size 2𝑁 is generated by combining the parent and progeny populations (generated through mating the parent) 

in order to guarantee elitism. The following are the two procedures that NSGAII undertakes for selecting 𝑁 

nondominated solutions from 𝑆𝑡 for the next generation: 

⎯ Ordering by rank: The process of assigning a rank to each member in 𝑆𝑡 frontifies them. Different 

nondominated fronts 𝑁1, 𝑁2,..., 𝑁𝑙 are frontified to the solutions in 𝑆𝑡 according to their ranks. Any set of 

nondominated solutions of rank 𝑘 is represented by each 𝑁𝑘, where 𝑘 is an element of the set {1,2,… , 𝑙}. 
Solutions that have the same rank belong to the same nondominated front. It is usually better to choose 

solutions with lower nondomination ranks. To rephrase, 𝑝 is better than 𝑞 if there exist two solutions 𝑝 

and 𝑞 in 𝑆𝑡 and 𝑝𝑟𝑎𝑛𝑘 < 𝑞𝑟𝑎𝑛𝑘. The solutions from 𝑁1 are initially taken into account in order to construct 

the following population, 𝑃𝑡+1. If 𝑁1 is less in size than 𝑁, then all of the solutions of 𝑁1 are added to 

𝑃𝑡+1. We rank the remaining solutions of 𝑃𝑡+1 from subsequent nondominated fronts. Starting with the 

second front’s solutions (𝑁2) and moving them to 𝑃𝑡+1, we continue with the third front’s solutions (𝑁3) 
and continue in this manner until no more solutions from a non-inferior front (𝑁𝑘) can be entirely 

interleaved into 𝑃𝑡+1;  

⎯ Ranking according to the crowding distance: According to the method suggested by K. Deb et al. [28], 

if every solution of 𝑁𝑘 does not fit in 𝑃𝑡+1, the solutions are arranged in descending order based on the 

crowding distance (𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) values. In 𝑁𝑘, 𝑝 is favoured over 𝑞 if 𝑝 has a better crowding distance than 

𝑞 , that is, if 𝑝𝑟𝑎𝑛𝑘 = 𝑞𝑟𝑎𝑛𝑘  and 𝑝𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 𝑞𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 . This is especially true if 𝑝 and 𝑞  are the two 

nondominated solutions. Filling up 𝑃𝑡+1 with solutions from 𝑁𝑘 having the comparatively larger 𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

are essentially selected. 
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The individuals of 𝑃𝑡+1 will replace 𝑃𝑡 for the next generation as the formation of 𝑃𝑡+1 is accomplished. 

This process keeps going until the termination condition of the algorithm, such as the maximum number of 

generations or function evaluations, is attained. 

6. NUMERICAL ILLUSTRATION 

This section provides a numerical example to demonstrate our suggested model, FMWPP. Here is a brief 

overview of the planned FMWPP. Let us consider a network that is not directed in any particular direction or 

is an undirected network; each node is a vertex, and each edge is a street that connects two nodes. Beginning 

the journey from the office of a courier service, a postman or delivery person will be traversing all the streets 

at least once to deliver the items to their final destinations before coming back to the office again. In exchange 

for crossing a street, the postman gets a certain amount in commission. But he is the one who has to make the 

payments for the ride, which includes things like gas refilling, repairs, tolls and upkeep. On top of that, the 

postman is always looking for ways to cut corners on his trip. So, when the delivery person prepares the tour, 

he keeps two goals in mind that need optimisation. First, he wants to make as much money as possible from 

the courier service’s commission and the money he spends on gas and other transportation costs. Second, he 

wants to do the tour in as little time as possible. 

The precise values of the related factors (commission amount, trip cost and travel length) are often hard to 

estimate since the postman plans the trip ahead of time and the features associated with a postman’s tour are 

quite dynamic. Some of the factors that impact a postman’s travel expenditures are fuel price, toll tax, vehicle 

running cost and driveway costs. All of these elements are constantly changing and evolving. The amount of 

money a postman gets to spend on gas and the number of packages that need to be delivered to a certain address 

are two factors that directly affect his travel budget. Just like how traffic conditions on the streets might change 

over time, the amount of time it takes to go somewhere is largely dependent on him. This uncertainty over the 

tour’s estimated profit – which is dependent on commission amount, travel cost and trip time – is typical among 

decision-makers (the postman, in this case). Fuzzy variables are used to express the values of these factors so 

that they may be dealt with logically. 

Using an undirected connected network 𝒩 (cf. Figure 1), we can optimise the postman’s route so that it 

maximises profit while decreasing journey time. Here, there are asymmetrical parameters connected with each 

edge 𝑒𝑖𝑗. The postman must travel eighteen streets at least once, each of which is represented by an edge 𝑒𝑖𝑗 

and connects a pair of vertices ( 𝑣𝑖, 𝑣𝑗) in 𝒩. There are three fuzzy parameters: 

⎯ The fuzzy commission amount; 

⎯ The fuzzy trip cost; 

⎯ The fuzzy journey time; 

which are associated with each 𝑒𝑖𝑗  of 𝒩. Table 1 displays the related fuzzy parameters of 𝒩 as fuzzy variables. 

We used the epsilon-constraint approach to find the solutions of the deterministic equivalent models (cf. 

Model (8) and Model (9)) of Model (7) of the proposed FMWPP. Merely, to keep things simple, we set both 

the 𝛼1 and 𝛼2 confidence levels of Model (8) to 0.4. On the other hand, Model (9) takes 𝛼1 and 𝛼2 to be 0.8. 

Accordingly, Table 2 displays the compromise solutions produced by Model (8) and Model (9), together with 

the related tours of the delivery person for network 𝒩. 

We examine two MOGAs, FastPGA and NSGAII, to produce a set of non-inferior solutions for Models (8) 

and (9). In Table 3, we can perceive the allied parameters of the MOGAs for both models. 

Table 4 displays the nondominated solutions, whereas Figure 2 provides visual representations of them. It can 

be shown that FastPGA produces more distinct nondominated solutions than NSGAII in this case. Moreover, 

while solving Model (8) and Model (9) for 𝒩, it is noted from Table 4 and Figure 2 that the solutions provided 

by the epsilon-constraint approach are further generated by the MOGAs. In Table 4, these solutions are reported 

in bold. 

Models (8) and (9) are subsequently solved at various confidence levels for sensitivity analysis. In this case, 

for the purpose of keeping things simple, we assign the confidence levels 𝛼1 and 𝛼2 to the identical values, 

thus 𝛼1 = 𝛼2 = 𝛼. Model (8) is solved for  𝛼1, 𝛼2falling within the interval [0,0.5]. However, Model (9) 

is solved for 𝛼1, 𝛼2 falling within the interval (0.5, 1]. Table 5 and Figure 3 show the results of the models at 

various confidence levels. 
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Figure 1 – A connected undirected network 

Table 1 – Specifics on the network 𝒩′𝑠 commission, travel costs and time spent on travelling 

Edges (𝐞𝟏𝐣) Commission amount Expense incurred Time 

𝑒12 𝒯(132.6,143.2, 149.6) 𝒯(34.2, 37.7, 40.2) 𝒯(73.2, 77.2, 79.7) 

𝑒21 𝒯(137.2,144.9, 151.6) 𝒯(27.4, 32.5, 36.4) 𝒯(73.4, 75.7, 78.4) 

𝑒14 𝒯(122.4,138.5, 146.8) 𝒯(28.4,30.2, 32.3) 𝒯(65.3, 68.3, 69.8) 

𝑒41 𝒯(122.4,138.5, 146.8) 𝒯(27.3, 29.8, 33.4) 𝒯(67.3, 69.4, 72.3) 

𝑒112 𝒯(137.6,145.7, 156.3) 𝒯(24.4, 27.5, 29.7) 𝒯(68.3, 72.5, 79.9) 

𝑒121 𝒯(127.6,137.7, 142.3) 𝒯(25.6, 29.9, 31.7) 𝒯(73.4, 77.6, 82.3) 

𝑒26 𝒯(134.2,152.3, 161.5) 𝒯(32.5, 37.5, 39.3) 𝒯(71.2, 74.4, 77.3) 

𝑒62 𝒯(126.2,132.6, 141.7) 𝒯(28.4, 34.6, 37.8) 𝒯(69.7, 74.3, 78.4) 

𝑒27 𝒯(113.2,123.3, 132.3) 𝒯(29.4, 33.5, 37.3) 𝒯(72.6, 76.6, 79.2) 

𝑒72 𝒯(117.9,122.5, 131.4) 𝒯(34.2, 37.6, 40.3) 𝒯(69.4, 75.4, 77.9) 

𝑒34 𝒯(103.4,107.4, 114.3) 𝒯(31.9, 36.7, 39.4) 𝒯(73.2, 76.5, 79.2) 

𝑒43 𝒯(121.6, 129.4, 134.5) 𝒯(33.4, 35.8, 39.2) 𝒯(71.3, 76.5, 77.9) 

𝑒35 𝒯(111.3, 119.7, 123.6) 𝒯(34.5, 37.5, 39.6) 𝒯(73.5, 77.4, 79.7) 

𝑒53 𝒯(117.6, 121.6, 127.2) 𝒯(37.3, 39.2, 41.2) 𝒯(72.2, 75.5, 78.8) 

𝑒38 𝒯(109.6, 129.7, 134.5) 𝒯(29.6, 35.5, 38.9) 𝒯(73.4, 76.4, 79.8) 

𝑒83 𝒯(102.2, 109.7, 114.5) 𝒯(32.4, 36.7, 39.8) 𝒯(75.1, 78.3, 81.2) 

𝑒49 𝒯(121.3, 129.3, 135.9) 𝒯(32.5, 37.7, 39.2) 𝒯(70.2, 74.2, 78.6) 

𝑒94 𝒯(118.7, 122.6, 129.8) 𝒯(34.1, 36.3, 40.3) 𝒯(72.1, 75.5, 77.8) 

𝑒56 𝒯(109.4, 113.7, 117.9) 𝒯(31.2, 35.4, 37.8) 𝒯(70.2, 74.9, 78.9) 

𝑒65 𝒯(113.5, 117.6, 119.3) 𝒯(29.3, 32.7,. 35.4) 𝒯(67.3, 73.3, 76.4) 

𝑒511 𝒯(118.1,  129.7, 133.3) 𝒯(27.4, 34.5, 38.2) 𝒯(75.3, 79.7, 82.3) 
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Edges (𝐞𝟏𝐣) Commission amount Expense incurred Time 

𝑒115 𝒯(124.6, 128.9, 133.6) 𝒯(32.9, 36.7, 39.9) 𝒯(76.2, 80.1, 84.2) 

𝑒610 𝒯(127.9, 134.6, 138.9) 𝒯(33.7, 38.8, 43.2) 𝒯(79.2, 83.8, 85.2) 

𝑒106 𝒯(124.6, 129.8, 134.7) 𝒯(36.3, 38.7, 41.3) 𝒯(67.4, 73.2, 78.7) 

𝑒78 𝒯(125.7, 128.6, 136.9) 𝒯(29.4, 34.2, 36.1) 𝒯(73.4, 77.5, 81.7) 

𝑒87 𝒯(102.7, 110.7, 114.4) 𝒯(29.7, 35.1, 37.8) 𝒯(77.4, 80.3, 86.5) 

𝑒712 𝒯(105.6, 115.9,125.3) 𝒯(34.5, 38,5, 40.1) 𝒯(78.4, 79.6, 81.9) 

𝑒127 𝒯(112.6, 117.6, 124.4) 𝒯(31.3, 35.4, 37.8) 𝒯(79.4, 81.4, 83.7) 

𝑒89 𝒯(106.6, 112.3, 118.4) 𝒯(35.6, 37.8, 39.7) 𝒯(78.9, 81.2, 83.8) 

𝑒98 𝒯(114.6, 119.3, 125.3) 𝒯(34.8, 37.9, 40.2) 𝒯(76.8, 79.2, 81.7) 

𝑒910 𝒯(123.4, 129.5, 130.4) 𝒯(29.9, 35.8, 38.6) 𝒯(68.3, 73.5, 76.7) 

𝑒109 𝒯(129.4, 134.3, 139.7) 𝒯(31.4, 35.6, 38.9) 𝒯(73.6, 78.9, 82.5) 

𝑒1011 𝒯(117.8, 124.5, 128.3) 𝒯(32.8, 37.3, 39.8) 𝒯(76.3, 79.1, 83.7) 

𝑒1110 𝒯(107.4, 113.2, 117.3) 𝒯(29.7, 35.7, 38.6) 𝒯(78.5, 81.6, 84.4) 

𝑒1112 𝒯(121.6, 126.8, 134.5) 𝒯(34.1, 36.9, 37.8) 𝒯(72.9, 75.8, 78.9) 

𝑒1211 𝒯(115.8, 119.3, 123.4) 𝒯(31.6, 36.7, 38.1) 𝒯(73.8, 78.7, 82.7) 

Table 2 – Compromise solutions of  𝓝 

Objective functions 
Epsilon-constraint method 

Model (8) with 𝜶𝟏 and 𝜶𝟐 set as 0.4 Model (9) with 𝜶𝟏 and 𝜶𝟐 set as 0.8 

�̅�1 1909.52 2021.66 

�̅�2 1806.58 1872.20 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑡𝑜𝑢𝑟 

𝑒21 − 𝑒14 − 𝑒41 − 𝑒112 − 𝑒1211 − 

𝑒1112 − 𝑒127 − 𝑒72 − 𝑒26 − 𝑒65 − 

𝑒53 − 𝑒34 − 𝑒49 − 𝑒98 − 𝑒87 − 

𝑒78 − 𝑒83 − 𝑒35 − 𝑒511  − 𝑒1110 − 

𝑒109 − 𝑒910 − 𝑒106 − 𝑒62  

𝑒21 − 𝑒14 − 𝑒41 − 𝑒112 − 𝑒1211 − 

𝑒1112 − 𝑒127 − 𝑒72 − 𝑒27 − 𝑒78 − 

𝑒83 − 𝑒38 − 𝑒89  − 𝑒94 − 𝑒43 − 𝑒35 − 

𝑒56 − 𝑒65 − 𝑒511 − 𝑒1110 − 𝑒109 − 

𝑒910 − 𝑒106 − 𝑒62 

Table 3 – Values for the associated parameters of NSGAII and FastPGA 

Parameter settings FastPGA and NSGAII 

Initial size of the population 100 

Maximum population size 100 

Crossover probability 0.9 

Mutation probability 1/𝑛, where 𝑛 is the total edges of the network  𝒩 

Crossover type single point 

Mutation operator bit flip mutation 

Selection operator binary tournament 

Solution evaluations 25000 
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Table 4 – Nondominated solutions of 𝒩 when executed by FastPGA and NSGAII 

Confidence level (𝜶𝟏, 𝜶𝟐) 

𝟎. 𝟒 𝟎. 𝟖 

FastPGA NSGAII FastPGA NSGAII 

�̅�1 �̅�2 �̅�1 �̅�2 �̅�1 �̅�2 �̅�1 �̅�2 

1909.52 1806.58 1909.52 1806.58 2021.66 1872.20 2021.66 1872.20 

1965.62 1807.78 1965.62 1807.78 1973.14 1874.34 1973.14 1874.34 

2211.10 1818.54 2211.10 1818.54 2279.20 1883.50 2279.20 1883.50 

2182.80 1817.34 2182.80 1817.34 2216.26 1884.04 2216.26 1884.04 

2420.00 1971.52 2420.00 1971.52 2402.10 2040.98 2402.10 2040.98 

2391.70 1970.32 2391.70 1970.32 2490.20 2042.18 2490.20 2042.18 

2588.72 2123.86 2588.72 2123.86 2671.52 2202.76 2671.52 2202.76 

2437.10 1971.70 2437.10 1971.70 2670.08 2197.70 2997.04 2518.46 

2736.20 2295.74 2736.2 2295.74 2815.72 2357.88 2825.40 2375.14 

2735.34 2277.14 2735.34 2277.14 2821.22 2368.90 3047.18 2834.66 

3009.04 2736.42 3009.04 2736.42 2997.04 2518.46 – –- 

2901.90 2432.48 – – 2825.40 2375.14 – – 

2934.42 2496.14 – – 3047.18 2834.66 – – 

3024.18 2784.34 – – – – – – 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2 – Graphical representation of the nondominated solutions generated by: a) FastPGA at the chance level 0.4;  

b) NSGAII at the chance level 0.4; c) FastPGA at the chance level 0.8; d) NSGAII at the chance level 0.8 
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Table 5 – Sensitivity analysis of Model (8) and Model (9) at different confidence levels when solved by the epsilon-constraint method 

Confidence level 

(𝜶𝟏, 𝜶𝟐) 
�̅�𝟏 �̅�𝟐 

0.005 1969.92 1731.36 

0.1 1955.08 1749.52 

0.2 1939.46 1768.64 

0.3 1923.84 1787.76 

0.4 1909.52 1806.58 

0.5 1892.40 1825.00 

0.6 1935.62 1841.40 

0.7 1978.64 1856.80 

0.8 2021.66 1872.20 

0.9 2064.68 1887.60 

0.995 2105.55 1902.23 

1.0 2107.70 1903.00 

 
Figure 3 – Graphical illustration of the sensitivity analysis of Models (8) and (9) for 𝒩 

We have used Models (8) and (9) to find the deterministic transformation of the associated CCPM for four 

randomly generated instances of FMWPP for simulation purposes. The problem instances are designated as 

𝐹𝑀𝑊𝑃𝑃 #𝑖, where 𝑖 =1,2,3 and 4 with the number of vertices are 10, 20, 30 and 40, respectively. Each of 

these instances, has undirected (𝑖
2
) edges, where 𝑖 = 10, 20, 30 and 40. Here, for each 𝐹𝑀𝑊𝑃𝑃 #𝑖 instance, 

three asymmetric parameters are associated with an edge. Subsequently, these parameters are: 

⎯ The commission amount  

⎯ The trip cost of the postman;  

⎯ Time elapsed to complete the trip. 

Each of these parameters is represented as a triangular fuzzy number to capture the uncertain phenomena 

associated with it. These instances can be accessed from the below mentioned link 

https://drive.google.com/drive/folders/1wWAO1ILwk0tv5acWjEP_RrKeDy6SVlc6?usp=drive_link.  

We have taken into account two performance metrics – hypervolume (HV) [39] and inverted generational 

distance (IGD) [41] – in order to compare the performance of the MOGAs, FastPGA and NSGAII. One can 

gauge both the convergence and diversity with these metrics. In order to simulate FastPGA and NSGAII on 

our instances, we have employed the jMetal4.5 framework [42]. Because these algorithms are inherently 

random, we execute them all 100 times, taking into account 250 generations in each run. All the other 

parameters listed in Table 3 are taken as being identical for both the MOGAs. The Pareto front (PF) of ideal 

solutions is rarely accessible for problems in the actual world. Consequently, we build a reference front using 

all the solutions of the first front of both FastPGA and NSGAII to approximate the PF. Afterwards, the 

reference front is used to assess the performance metric values for each algorithm run. Here, for each 

performance metric, we find the mean and standard deviation (sd) to get a sense of the related data’s central 

tendency and variability, respectively. 

https://drive.google.com/drive/folders/1wWAO1ILwk0tv5acWjEP_RrKeDy6SVlc6?usp=drive_link
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We solve each of the four fuzzy instances 𝐹𝑀𝑊𝑃𝑃 #𝑖, where 𝑖 = 1,2,3, 4 using Model (8) and Model (9), 

with the former model having a confidence level of 0.4 and the latter model of 0.8. So, we set the confidence 

levels of Model (8) to 0.4 for all four instances, and in Table 6 we provide the mean and standard deviation of 

all four fuzzy instances of 𝐹𝑀𝑊𝑃𝑃 #𝑖, where 𝑖 = 1,2,3, 4. Similarly, after solving Model (9) using MOGAs 

and setting the confidence levels to 0.8, Table 7 displays the means and standard deviations for all four cases. 

The bolded values in these tables represent the best options. The results show that FastPGA produces a better 

𝑚𝑒𝑎𝑛 of the HV than NSGAII, considering all four instances (cf. Tables 6 and 7). On the other hand, in every 

instance, the 𝑠𝑑 values of the HV produced by NSGAII outperform those of FastPGA. Furthermore, taking 

IGD into account, we perceive that FastPGA is a better MOGA than NSGAII in all four instances, both in 

terms of 𝑚𝑒𝑎𝑛 and 𝑠𝑑. 
Based on the data reported in Tables 6 and 7, visual representations of the HV and IGD are depicted in Figures 4 

and 5.  Here, we can observe the mean value differences of HV and IGD as produced by FastPGA and NSGAII, 

for 100 observations on the deterministic models of the four fuzzy instances at two distinct confidence levels 

(0.4 and 0.8). According to Gardner and Altman [43], the Gardner–Altman plots are employed for this 

particular purpose. The 'X' and 'Y' in the x-axis markers of Figure 4 and Figure 5, respectively, represent the data 

vectors generated by the FastPGA and the NSGAII. At both the confidence levels of 0.4 and 0.8, it is clear 

from examining all of the HV mean values in Figure 4 that the 'X' mean is significantly greater than the 'Y' 

mean. However, as shown in Figure 5, the mean values of 'X' are lower than those of 'Y' according to the IGD 

measure, which is ideally expected. 

Table 6 – 𝑀𝑒𝑎𝑛 and 𝑠𝑑 of 𝐻𝑉 and 𝐼𝐺𝐷 after 100 executions of 𝐹𝑎𝑠𝑡𝑃𝐺𝐴 and 𝑁𝑆𝐺𝐴𝐼𝐼 at the confidence level of 0.4 

MOGAs 
Uncertain 

instances 

𝑯𝑽 𝑰𝑮𝑫 

𝒎𝒆𝒂𝒏 𝒔𝒅 𝒎𝒆𝒂𝒏 𝒔𝒅 

FastPGA 

FMWPP #1 6.242E-01 7.937E-02 4.836E-04 3.198E-04 

FMWPP #2 7.205E-01 8.370E-02 3.377E-04 1.961E-04 

FMWPP #3 7.079E-01 9.260E-02 4.396E-04 2.419E-04 

FMWPP #4 7.566E-01 8.486E-02 5.341E-04 2.206E-04 

NSGAII 

FMWPP #1 6.048E-01 5.231E-03 7.200E-04 4.641E-04 

FMWPP #2 6.426E-01 1.616E-02 7.178E-04 4.368E-04 

FMWPP #3 6.176E-01 3.048E-02 8.058E-04 4.446E-04 

FMWPP #4 6.583E-01 1.997E-02 1.037E-03 4.677E-04 

Table 7 – 𝑀𝑒𝑎𝑛 and 𝑠𝑑 of 𝐻𝑉 and 𝐼𝐺𝐷 after 100 executions of 𝐹𝑎𝑠𝑡𝑃𝐺𝐴 and 𝑁𝑆𝐺𝐴𝐼𝐼 at the confidence level of 0.8 

MOGAs 
Uncertain 

instances 

𝑯𝑽 𝑰𝑮𝑫 

𝒎𝒆𝒂𝒏 𝒔𝒅 𝒎𝒆𝒂𝒏 𝒔𝒅 

FastPGA 

FMWPP #1 7.223E-01 1.137E-01 6.844E-04 3.891E-04 

FMWPP #2 7.261E-01 7.934E-02 4.847E-04 2.628E-04 

FMWPP #3 7.148E-01 8.917E-02 6.021E-04 3.057E-04 

FMWPP #4 7.625E-01 8.051E-02 6.916E-04 2.843E-04 

NSGAII 

FMWPP #1 6.765E-01 5.554E-02 1.024E-03 5.792E-04 

FMWPP #2 6.485E-01 1.519E-02 9.864E-04 5.353E-04 

FMWPP #3 6.042E-01 1.067E-01 1.084E-03 5.122E-04 

FMWPP #4 6.395E-01 9.457E-02 1.172E-03 4.873E-04 
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Figure 4 – For the fuzzy instances: a) 𝐹𝑀𝑊𝑃𝑃 #1, b) 𝐹𝑀𝑊𝑃𝑃 #2, c) 𝐹𝑀𝑊𝑃𝑃 #3, d) 𝐹𝑀𝑊𝑃𝑃 #4 at a chance (confidence) level of 

0.4; e) 𝐹𝑀𝑊𝑃𝑃 #1, f) 𝐹𝑀𝑊𝑃𝑃 #2, g) 𝐹𝑀𝑊𝑃𝑃 #3, h) 𝐹𝑀𝑊𝑃𝑃 #4 at a confidence level of 0.8, the Gardner–Altman plots for the 

HV produced by the MOGAs 
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Figure 5 – For the fuzzy instances a) 𝐹𝑀𝑊𝑃𝑃 #1, b) 𝐹𝑀𝑊𝑃𝑃 #2, c) 𝐹𝑀𝑊𝑃𝑃 #3, d) 𝐹𝑀𝑊𝑃𝑃 #4 at a chance (confidence) level of 

0.4; e) 𝐹𝑀𝑊𝑃𝑃 #1, f) 𝐹𝑀𝑊𝑃𝑃 #2, g) 𝐹𝑀𝑊𝑃𝑃 #3, h) 𝐹𝑀𝑊𝑃𝑃 #4 at a confidence level of 0.8, the Gardner–Altman plots for the 

IGD produced by the MOGAs 
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Besides, we examine a two-stage hypothesis test on the HV and IGD performance indicators corresponding 

to the four FMWPP instances. In this case, to test the null hypothesis (ℎ0), the 𝑝 −value is set as ≺𝑝
+for the 

two-sample parametric 𝑡 − 𝑡𝑒𝑠𝑡. The value of ≺𝑝
+, is accepted in this case if ℎ0 is refused. However, using the 

two-way nonparametric Wilcoxon signed rank test, we determine the 𝑝-value, ≺𝑝
−, that is associated with ℎ0 

when it is accepted. Since we are unsure of the distributions underlying the hypervolume and inverted 

generational distance, we have performed a two-stage hypothesis test that incorporates both parametric and 

non-parametric testing. Subsequently, ℎ0 considered during the test is mentioned below: 

– ℎ0: FastPGA and NSGAII produce comparable performance metrics. 

The results of the hypothesis testing, which are carried out at a significance level of 1%, are reported in 

Table 8. The FastPGA⋆NSGAII column in this table ends with one of the two possibilities.  

⎯ FastPGA ≺p
+  or ≺p

− NSGAII: Either  ≺p
+  or ≺p

− do not accept ℎ0, and FastPGA is considerably better 

than NSGAII at the 1% threshold of significance; 

⎯ FastPGA ≻𝑝 
+  or ≻𝑝 

−NSGAII: Either ≻𝑝 
+  or ≻𝑝 

−  do not accept ℎ0, and FastPGA is noticeably worse 

than NSGAII at the 1% threshold of significance. 

The 𝑝 − values in Table 8 show that FastPGA outperforms NSGAII for hypervolume and inverted 

generational distance at the 1% threshold of significance, with respect to both the chance levels 0.4 and 0.8. 

Moreover, at the confidence level of 0.4, and for the instances FMWPP #1 and FMWPP #3, FastPGA emerges 

as superior compared to NSGAII for HV by conducting 𝑡-test. Similar analysis can be done for the instance 

FMWPP #2 for the same performance metric at the 0.8 confidence level. Subsequently, for all the remaining 

instances, considering both HV and IGD, FastPGA becomes significantly better than NSGAII, at all the chance 

levels, only after the Wilcoxon signed rank test is conducted. 

Table 8 – Statistical significance of the hypothesis testing of hypervolume (HV) and inverted generational distance (IGD) generated 

by the MOGAs with respect to the four FMWPP instances 

Uncertain 

instances 

Confidence level 

𝟎. 𝟒 𝟎. 𝟖 

𝑯𝑽 𝑰𝑮𝑫 𝑯𝑽 𝑰𝑮𝑫 

𝐅𝐚𝐬𝐭𝐏𝐆𝐀 ⋆ 𝐍𝐒𝐆𝐀𝐈𝐈 𝐅𝐚𝐬𝐭𝐏𝐆𝐀 ⋆ 𝐍𝐒𝐆𝐀𝐈𝐈 𝐅𝐚𝐬𝐭𝐏𝐆𝐀 ⋆ 𝐍𝐒𝐆𝐀𝐈𝐈 𝐅𝐚𝐬𝐭𝐏𝐆𝐀 ⋆ 𝐍𝐒𝐆𝐀𝐈𝐈 

FMWPP #1 ≺0.0072
+  ≺4.1235E−05

−  ≺3.7246E−04
−  ≺2.2363E−06

−  

FMWPP #2 ≺8.0087E−17
−  ≺1.5022E−13

−  ≺3.4604E−18
+  ≺7.8768E−15

−  

FMWPP #3 ≺3.6084E−17
+  ≺1.0032E−11

−  ≺1.3511E−13
−  ≺6.3671E−14

−  

FMWPP #4 ≺4.4266E−23
−  ≺1.6816E−18

−  ≺4.8603E−19
−  ≺4.0073E−15

−  

7. CONCLUSIONS 

So far as we are aware, there is no multi-objective windy postman problem under any uncertain paradigm, 

which is what sets our proposed study apart from others. The findings of a fuzzy multi-objective windy 

postman problem (FMWPP) model with chance constraints are shown in this study. Both the overall revenue 

and the total amount of time elapsed during the voyage of the postman or article delivery person to travel along 

all the streets (edges) in the network are the objective functions that the model is trying to improve. Following 

this, the deterministic transformations of the model are solved at two distinct confidence levels utilising the 

traditional epsilon-constraint method and the two multi-objective genetic algorithms (FastPGA and NSGAII). 

Furthermore, a real-world numerical example is used to calibrate the model. Subsequently, we have considered 

four randomly generated larger FMWPP instances to evaluate the MOGAs’ performance on the performance 

metrics, HV and IGD. Here, it is observed that for all four random instances, FastPGA emerges as superior to 

NSGAII with respect to both the performance metrics, as shown in Tables 6 and 7. 

Our long-term goal in future is to broaden the scope of our research to include not only the many-objective 

fuzzy windy postman problem, but also its variants under type-2, intuitionistic fuzzy and neutrosophic fuzzy 

domains, including the many-objective mixed Chinese postman problem, the many-objective rural postman 

problem and the many-objective hierarchical windy postman problem. 
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Multi-objective Windy Postman Problem in a Fuzzy Transportation Network 

Abstract 

Researchers have become increasingly captivated by the windy postman problem (WPP), a 

major combinatorial optimisation problem with several practical applications. It is crucial to 

take the experts’ belief levels into account when modelling such a real-world application 

since these applications frequently involve uncertain aspects. A fuzzy set is one of the tools 

that might be regarded as appropriate for modelling such human perspectives. Applying 

fuzzy set theory to a multi-objective windy postman problem is the focus of this study. 

Maximising the overall profit and minimising the transportable time of the route visited by a 

postman are the objectives of the problem. In an effort to solve the fuzzy multi-objective 

windy postman problem (FMWPP), we have developed a chance-constrained programming 

model (CCPM). Subsequently, the epsilon-constraint method, a classical multi-objective 

solution methodology, is used to solve the deterministic transformation of the relevant 
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CCPM. Moreover, the model is solved using two multi-objective genetic algorithms 

(MOGAs): fast Pareto genetic algorithm (FastPGA) and nondominated sorting genetic 

algorithm II (NSGAII). To demonstrate the proposed model, a numerical example is 

presented. We conclude by comparing the performance of the MOGAs on four randomly 

generated FMWPP instances. 

Keywords 

transportation; windy postman problem; epsilon constraint method; multi-objective genetic 

algorithms; performance metrics. 


