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ABSTRACT

This paper presents an innovative approach to train timetable generation using Monte Carlo
tree search (MCTYS) integrated with a deep reinforcement learning technique. The generation
and adjustment of train timetables for high-speed railways represent a complex optimisation
problem with numerous rule-based constraints that traditional mathematical methods
struggle to solve efficiently. Therefore, the train timetable generation problem is modelled
as a discrete spatiotemporal Markov decision process, and a comprehensive MCTS-based
algorithm is developed to effectively balance exploration and exploitation through a
structured tree search mechanism. The result of the comparative analysis demonstrates that
MCTS-based algorithms significantly outperform state-of-the-art reinforcement learning
algorithms, including double deep Q-network (DDQN) and proximal policy optimisation
(PPO), achieving optimal solutions 6.5 times faster with superior training stability. To
validate the scalability and real-world applicability, a large-scale case study involving 120
pairs of trains on the Beijing-Shanghai High-Speed Rail corridor over an 18-hour period
successfully resolved all 45,600 initial conflicts. The optimised timetables yield significant
operational improvements, including a 16.4% reduction in average delay time, 22.8%
improvement in track utilisation efficiency and 9.7% reduction in energy consumption. This
research contributes to the advancement of intelligent railway operations optimisation and
demonstrates the potential of MCTS-based approaches to transform complex transportation
problems.

KEYWORDS
Monte Carlo tree search; high-speed railway; train timetable intelligence; deep
reinforcement learning; Markov decision process.

As the density of China’s high-speed rail network continues to grow and the response speed to passenger
and freight transport demands accelerates, the strategic allocation of transport capacity resources is accurately
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aligned with market demand. This steadily improves the overall efficiency of the rail network and continuously
enhances the comprehensive efficiency of passenger and freight transport production, which is key to
supporting the high-quality development of railway transportation [1]. The train timetable is at the core of
railway transport organisation, serving as a comprehensive plan for national transportation operations. It is
also a direct reflection of passenger and freight transport products. The quality of timetable generation directly
impacts the efficiency of railway transport organisations and resource utilisation, affecting the input-output
and economic benefits of railway transport production. It is also a critical support for achieving high-quality
development in railway transport and maintaining China’s global leadership in railway operation management
technology [2].

The generation of train timetable problems poses a complex, systemic issue involving the integrated
planning of several key elements, such as rolling stock utilisation, station track utilisation, passenger demand
patterns, operational constraints, train operation plans and train scheduling schemes. The core challenge lies
in the optimisation of timetable efficiency and quality under the combinatorial explosion effect and highly
interdependent constraints. Traditional models typically use mathematical optimisation techniques, such as
discrete spatiotemporal networks to construct 0-1 integer programming models [3], complex spatiotemporal
network models [4], mixed-integer linear programming models developed using the Big-M method [5], integer
linear programming models based on event-activity networks [6, 7], and integer linear programming models
constructed with event-activity potential difference graphs [8]. These models are often solved using exact
algorithms like branch-and-bound, Lagrangian relaxation, column generation lower-bound algorithms and
heuristic approximation algorithms, with commercial solvers such as Gurobi and CPLEX. As the network of
railways grows in large scale and complexity, traditional optimisation approaches face limitations in both
maintaining the quality and computational efficiency of solutions.

The solution addresses traditional models’ struggles to improve both timetable quality and computational
efficiency. The use of advanced artificial intelligence technologies, such as deep reinforcement learning, in
training timetable generation aims to optimise both the efficiency and quality of timetable creation within
large, complex rail networks. This represents the latest research and development trend in the railway
transportation field. Some scholars have already applied Al technologies to optimise train timetable generation,
using deep reinforcement learning methods such as DQN, DDPG, A3C and PPO. In contrast to current
mathematical optimisation techniques, multi-agent deep reinforcement learning algorithms, such as MAA2C,
MADDPG and MADDQN [9, 10], have been used in recent years because they provide better solution
capabilities and faster computation times. Similarly, these traditional approaches have several problems, such
as computational inefficiency when solving with large-scale networks, face difficulty in simultaneously
optimising different objectives, limited ability to incorporate in solving real complex problems, and scalability
issues when solving a complex network of railway systems.

The current research study works on optimising multiple elements of the train timetable, and is still at an
early stage. To address this gap, this paper proposes a novel model for intelligent train timetable generation in
high-speed rail systems. The approach integrates station track allocation with line planning, technical
constraints, operational standards and existing infrastructure limitations. By combining deep reinforcement
learning (DRL) with a Monte Carlo tree search (MCTS)-based intelligent algorithm, the model enables the
development of dynamic timetables that improve both the feasibility and efficiency of the railway network. To
authenticate the results of this approach, the Beijing-Shanghai High-Speed Railway’s section is considered as
a case study. The purpose of this study is to enhance intelligent timetable design, which offers a scalable
solution to further develop scheduling precision for complex rail networks.

2.STATE OF THE ART REVIEW

This section begins by providing a review of the literature on robust train timetables for handling difficult
optimisation problems in railway operations. One of the key challenges is the combination of reinforcement
learning (RL) and Markov decision processes (MDP), which will be discussed in Section 2.1. Although, in
Section 2.2, we shift our focus which is particularly related to training timetable generation technology. In
Section 2.3, we present the development of mathematical models for intelligent train timetable generation,
emphasising optimisation strategies aimed at enhancing operational performance and scheduling efficiency.
At the end, in Section 2.4, we introduce a method for intelligent timetable generation using Monte Carlo tree
search due to its productivity for intelligent scheduling solutions.
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2.1 Reinforcement learning and Markov decision processes in railway operations

The integration of Markov decision processes (MDPs) and reinforcement learning (RL) has emerged as a
suitable framework for the solution of sequential decision-making problems in railway operations. Similarly,
MDPs suggest a mathematical framework for modelling decision-making situations where the results are partly
random and partly under the control of decision makers, which makes it suitable for railway scheduling
problems that can resolve the dynamic conditions and uncertainty.

The problem of developing algorithms that effectively build ranking models by directly optimising
evaluation measures has been a long-standing problem in the field of information retrieval. One of the key
challenges in this domain is designing algorithms that can improve performance, such as normalised
discounted cumulative gain (NDCG), to develop a better ranking model. Traditionally, many methods
concentrate on optimising a specific assessment metric calculated at a fixed point, such as NDCG, calculated
at a predetermined position K. In information retrieval, metrics like NDCG and precision at K (P@K) are
extensively used to examine how well documents are ranked at each position. Compared to analysing the
document rank at a single place, this yields more detailed information. Therefore, it is interesting to consider
whether we can create an algorithm that can exploit the metrics determined at each ranking position. To this
end, [11] proposed a new learning to rank model based on Markov decision processes (MDPs), called
MDPRank. In the MDPRank learning phase, the process of creating a document ranking is viewed as a series
of decisions, each of which is equivalent to selecting a document for an appropriate position. The model
parameters are trained using the reinforce policy gradient technique.

The advancements in reinforcement learning have the potential to develop a sophisticated algorithm that
resolves the exploration-exploitation trade-off crucial for railway scheduling. Traditional backwards recursive
methods face a fundamental challenge in solving Markov decision processes (MDPs), namely, the
contradiction between the need to know the optimal expected reward and the inability to acquire such
knowledge during the decision process. To address this challenge and achieve a reasonable balance between
exploration and exploitation during the decision process, this paper proposes a temporal error-based adaptive
exploration (TEAE) model. TEAE overcomes the limitations of traditional MDP solving methods by using
reinforcement-learning techniques. In addition, [12] extends TEAE to DQN-PER and DDQN-PER methods,
and obtains DQN-PER-TEAE and DDQN-PER-TEAE variants, which not only demonstrate the universality
and compatibility of the TEAE model with existing reinforcement learning techniques but also verify the
practicality and applicability of the proposed method.

Building on the challenges of optimising Markov decision processes (MDPs) and the need for innovative
solutions, this research delves into addressing these issues through advanced reinforcement learning
techniques. Careful analysis of the empirical strengths and weaknesses of reinforcement learning methods in
challenging environments is essential to stimulate innovation and evaluate progress in the field. In tabular
reinforcement learning, there is no well-established standard choice of environment to conduct such analysis,
in part due to the lack of a broad understanding of the rich theory of environment hardness. The goal of [13]
is to unlock the practical usefulness of this theory through four main contributions. Therefore, this study
proposed integrating of dynamic benchmarking framework, intelligent reinforcement learning strategies and
more advanced theoretical frameworks. The combination of reinforcement learning with Monte Carlo tree
search, as a proposed technique in our study, is used to resolve these issues.

2.2 Train timetable generation technology

The development of intelligent timetables is a major component of enhancing the efficiency of railway
systems while ensuring high-quality service for both the operators and passengers. However, as the
transportation system becomes more complex, the challenge of developing a flexible, well-coordinated train
timetable becomes a significant problem.

The development of an efficient train timetable is a major milestone in improving the rail system while
ensuring top-notch service for both the passengers and operators. However, as the transportation systems
become complex, such as demand-responsive services, one of the challenges is to design flexible, well-
coordinated train timetables. Therefore, utilising these concepts in the rail transportation industry comes with
unique challenges. One of the major problems is to balance the operational requirements and resource
challenges while integrating stop planning, passenger assignment and train scheduling. However, issues related
to supply and demand further complicate the development of an optimal system. Therefore, [ 14] introduced a
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train timetable model that integrates three key elements: demand-responsive passenger assignment, dynamic
stop planning and flexible scheduling.

To address the problem of optimising train schedules in a dynamic environment, [15] developed a unique
timetable optimiser (TO). This system has the capability of handling complex train timetable issues while
ensuring the passenger demand is met effectively. The main concept of creating a train time is not just about
when the train leaves the station. It must also maximise the use of railway resources, meet the passenger
demands and ensure operational feasibility. The timetable optimiser has been developed around three core
components, such as a demand-forecasting module, which uses historical passenger data to predict future
demands. The second one is a train optimisation module, which determines the necessary train count. Lastly
is the schedule generation module, which develops a train timetable that is related to operational constraints.

The study conducted by [16] showed a nonlinear route formulation to address the train scheduling problem
in urban rail transit systems. Their technique combines the train schedule optimisation with demand-responsive
dispatch, which resolves passenger congestion and long waiting times. Their work introduces a method for
determining the train departure times, even with limited resources and capacity issues. The problem is reduced
to smaller sub-problems for each route by utilising Lagrangian relaxation, and the model efficiently finds the
optimal solution. The model performance was evaluated in a case study of the Tehran Suburban Railway,
which solved the key metro system issues. Despite these developments, modern railway systems still face two
major problems. One of the issues is the integration of flexible scheduling with real-time demand forecasting,
which keeps up with fluctuations in passenger needs. The second one is efficient resource allocation. Still,
supply and demand remain a critical issue, which needs further research in the future.

2.3 Mathematical models

Creating train schedules is crucial work in the transportation sector, particularly for rail services, where
timely and correct information is crucial for both operational effectiveness and customer happiness. Train
timetables, track availability, maintenance needs and service constraints are just a few of the many factors that
must be carefully taken into account. Therefore, [18] worked on the development of a genetic algorithm for
train timetable generation. To address this problem, the experimental results of the genetic algorithm were
promising. Despite the complexity and NP-hardness of the problem, the genetic algorithm still performs well.
Near-ideal results were obtained in a very short computation time.

Linear programming (LP) relaxations of the ILP formulation, where each variable represents a complete
train schedule, are used to provide heuristic and exact algorithms for periodic and non-periodic train scheduling
problems. This approach differs from previous methods that bound variables to specific train arrival and
departure times. Experimental results show that the paradigm generates superior heuristic answers and
increases computational efficiency by solving small cases to attain the optimal [19]. Similarly, studies [20]
demonstrated that LP relaxation solutions of ILP formulations, in which each variable corresponds to the
complete train schedule, serve as the foundation for heuristic algorithms for train scheduling issues on
corridors. The experimental results show that the model not only speeds up computations but also suggests a
solution by investigating smaller details to ensure higher performance. However, pairing with reinforcement
learning and Monte Carlo tree search helps to solve the challenging schedules with higher accuracy.

The conducted study presents a new approach to generating train timetable text that uses a Boolean vector
as input to represent the service timetable and automatically generates concise and clear text messages for
customers. This problem arises in the transportation industry, especially in railway services. Several real
railway timetables are used to develop and test a new mathematical model that guarantees optimality of the
solution and good computational performance, always producing the best solution. Furthermore, a thorough
comparison with current models shows a significant reduction in computation time, which qualifies it for use
in real-world scenarios [17].

2.4 Contribution

The generation of a timetable for the smooth functioning of railway operations is one of the key issues
which need to be addressed for operators and the passengers who use them more frequently. Recent studies
have worked on the development of various methods for the optimisation of train schedules. The reinforcement
learning and Markov decision processes have been utilised to improve decision-making in dynamic
environments, offering flexibility to many uncertainties that can occur. Similarly, mathematical models such
as linear programming, genetic algorithms and demand-responsive scheduling have shown promising results
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when addressing key challenges such as resource allocation and operational constraints. Therefore, techniques
like Monte Carlo tree search have shown better performance when dealing with complex scenarios, making it
suitable for the development and optimisation of train timetables.

Therefore, our research focuses on developing an intelligent train timetable generation method based on
Monte Carlo tree search. This approach incorporates real-time data, including resource availability, passenger
demand and train delays. By balancing exploration and exploitation, the proposed method can adapt to a variety
of dynamic conditions, while also reducing passenger waiting times and improving connection reliability in
the scheduling process.

3. PROBLEM DESCRIPTION AND METHODOLOGY

This study investigates the complex challenge of generating and adjusting high-speed railway timetables.
To address the limitations of traditional mathematical models, particularly their high computational
complexity, the research adopts a reinforcement learning approach. Specifically, it models timetable
generation tasks as a Markov decision process and applies the Monte Carlo tree search algorithm to enable
intelligent and adaptive scheduling of high-speed trains.

3.1 Problem formulation
The train timetable optimisation is modelled as a Markov decision process (MDP), where each stage
represents the system status at a given time, and actions correspond to scheduling decisions.

Scenario description

The development and adjustment of train timetables for high-speed railway systems is a challenging task
which is based on several constraints. However, these constraints must be taken into consideration to create
reliable, efficient and safe railway operations. The main constraints are categorised in Table 1.

Table 1 — Constraints

No. Constraint category Description

Includes tracks, stations (or yards), sidings, platforms and sections that must be

1 Rail network infrastructure conditions . . .
considered when generating the timetable.

Technical parameters that must be adhered to, such as train separation
intervals, station intervals, operational gauges, slow-speed limits, construction
windows and maintenance windows. These parameters ensure operational
safety and efficiency.

2 Timetable technical parameters

Technical operational standards to follow during train station stops or travel,

. including station dwell times, depot dwell times, turnaround times, transfer

3 Operational standards . . . . . .
times and overtime durations. These standards ensure consistent service quality

and operational feasibility.

Safety-related constraints must be met to avoid accidents, such as section
4 Train operation safety crossings, timetable misalignment and route constraints. These are non-

negotiable requirements that take precedence over efficiency considerations.

3.2 Assumptions

To maintain the practical applicability of high-speed railway timetable generation while managing
computational complexity, we make the following assumptions.

It is assumed that the railway line is an electrified double-track high-speed rail with an operational speed
suitable for high-speed trains. The signalling system is automatic block signalling. Here, automatic block
signalling refers to the conventional fixed-block system commonly used in Chinese high-speed railway, and
the line sections are closed. There are no speed limits, and the lengths of the up and down directions of each
section are the same. The impact of crossline trains is not considered, nor is the capacity of the dynamic track
and the maintenance or storage capacity of the high-speed train depot. These assumptions reflect the standard
configuration of modern high-speed rail systems, particularly in China. While real-world systems may have
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occasional variations, this standardised model captures the essential characteristics that influence timetable
generation.

It is assumed that the time granularity of the train timetable is 1 second, while the action time granularity
is 60 seconds. The number of time steps for timetable generation and adjustment is finite, and the impact of
trainset scheduling (railway routes for multiple trainsets) is not considered. The 1-second granularity provides
sufficient precision for accurate timetable generation, while the 60-second action granularity reflects realistic
operational adjustments that can be implemented by dispatchers. It is also assumed that the technical
parameters of the timetable, such as operational gauge, slow-speed limits and tracking intervals, are consistent
with those of the existing timetable. Parallel timetables will be drawn using the same speed levels for
operational gauges. The impact of construction windows and integrated maintenance windows is not
considered.

3.3 Parameter and symbol definitions

To formalise the train timetable generation problem, we define the following parameters and symbols, as
shown in Table 2.

Table 2 — Symbol definitions

No. Category Symbol Definition
i Station index, i = 1,2,..., M
1 Identifier j Train index, j = 1,2,...,N
k Conflict type index, k € K
Thin Minimum allowed dwell time (in minutes) at station i
Thax Maximum allowed dwell time (in minutes) at station i
I Departure headway (in minutes) for train at station i
Ik Arrival headway (in minutes) for train at station i
1;', Passing headway (in minutes) for train at station i
5 Parameter Iép Same-direction train passing interval (in minutes) at station i
,’;d Same-direction train departure interval (in minutes) at station i
M Total number of stations
N Total number of trains
R; Number of tracks at station i
Tmin Minimum time range
Tonax Maximum time range
3 Set K Set of conflict types
X j Arrival time of train j at station i
4 Dec.ision Vi j Departure time of train j from station i
variable
z; Track occupancy for train j at station i
5 Other Cy, Number of conflicts of type k

3.4 Mathematical model

The mathematical model comprises of traditional mathematical model having optimisation objectives and
constraints.
Traditional mathematical model

The traditional mathematical model is further classified into two branches, having adjustments for high-
speed railway trains and constraints attached to it.
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Optimisation objective

The primary objective of intelligent adjustment for high-speed railway train timetables is to minimise the
number of conflicts on the timetable. Therefore, the objective function is designed as follows:

F =minz Cr (1)
keK

Conlflicts related to train operation safety include station timetable misalignment C; . section crossing
conflicts C, and track occupancy conflicts Cs.
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In the above equation, &(t) is the unit step function, and §(t) is the Dirac delta function, defined as follows:
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Conlflicts involving overly short station stop times C, and excessively long stop times Cs are also
considered.

C4_=

M=
™M=

Il
[y

[1 - E(yu xl] r.m‘n)] (7)

1l
-

7
N
;[1 —e(xp; — yij + Thax)| ®)

Conlflicts involving timetable parameters include departure headway conflict Cg, arrival headway conflicts
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Constraints

The constraints include the threshold constraints for train arrival times, departure times and station track
occupancy at each station.

Toin < Xij < TaxVi = 12,...,M,j = 1,2,...,N (14)
Toin < Vij < TmaxVi = 12,...,M,j = 1,2,...,N (15)
Zi.j < Rlvl = 1,2,...,M (16)

3.5 Deep reinforcement learning model

To solve these challenges of traditional models, this paper proposes reinforcement learning based on an
intelligent train timetable generation model. By combining train timetable generation rules and strategies with
deep reinforcement learning theory, a reinforcement learning-based intelligent train timetable generation
model is created. The high-speed railway train timetable generation problem can be represented as a discrete
spatiotemporal Markov decision process (MDP).

Markov decision process formulation

The specific characteristics are shown in Figure 1. At time t, the agent was in the environmental state s;.
After calculating, it outputs the action value a; and executes it in the environment. The environment then
returns the next state s, and the reward r; at time t. Thus, the agent and the environment complete one
interaction. Through continuous interactions between the agent and the environment, the entire process of
reinforcement learning is achieved.

Agent
|
|
|
State : Actions
St ]! | a

| | Reward 7;
e = ——————

| Environment

|1 S

| Pt+l

Figure 1 — Markov decision process diagram

3.6 Monte Carlo tree search algorithm

The train timetable tree search algorithm is designed based on the principles set by the Monte Carlo tree
search algorithm. However, this method integrates the capabilities of Monte Carlo methods with the structured
search of tree-based algorithms.

Algorithm overview

The train timetable tree search algorithm is designed based on the principles of the Monte Carlo tree search
(MCTS) algorithm. Each adjustment action of the train timetable agent is the result of thousands of iterations
calculated through the tree search algorithm [21].

The agent’s self-decision-making cycle can be described as:

Environment observation — Train timetable tree search — Adjustment action selection — Re-observation.

Search strategies

The Monte Carlo tree search strategy is divided into three types: in-tree strategy, default strategy and
algorithm strategies, as shown in Figure 2.
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Figure 2 — Train scheduling tree search algorithm diagram

4. RESULTS AND DISCUSSION

This section presents the experimental results of the proposed method, followed by a detailed discussion
on the implications, strengths and limitations of the results in comparison to existing techniques.

4.1 Experimental setup and parameter optimisation

A case study from the Beijing-Shanghai High-Speed Railway was used to validate the algorithm’s
effectiveness under high-density operational constraints.

Case study description

The case scenario for this experiment is selected from the Beijing section of the Beijing-Shanghai High-
Speed Railway, specifically the section from Beijing South to Dezhou East [22]. The total length of the Beijing
section of the Beijing-Shanghai High-Speed Railway is 313.85 km, with 5 stations and 2 track sections,
including Beijing South, Langfang, Jingjin Railway Station, Jin-Hu Railway Station, Tianjin South, Cangzhou
West and Dezhou East, as shown in Figure 3. The operational speed is 350 km/h [23]. This case study provides
a testing ground for the proposed algorithm due to its diverse network structure, operational constraints and
passenger demand, which particularly reflect the real challenges in a high-speed railway network.

1 Beijing South

BJIN
®N) . 24 Direction of
2 Langfang e Shenyang
(LF) 3 Tianjin South
(TIN)
~, 25 Direction of
6 Jinan West Qingdao
(INX)
26 Direction of ¢
Zhengzhou East * @0 Station of Beijing-Shanghai HSR
11 X{“;ER;‘) East —— Bejjing-Shanghai HSR

Simplified Node of other dircctions
13 Bengbu South

S —=~— Connective direction of other rail lines
27 Direction of (€ (BBN)
Hefei .

16 Nanjing South

(NIN)
13 Shanghai Honggiao
28 Direction of ! . (SHHQ)
Hangzhou 29 Direction of
HangzhowWenzhou

Figure 3 — Beijing-Shanghai high-speed railway [15]
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Computational environment

The case experiment was conducted in a Windows 10 system environment. The reinforcement learning
environment and algorithm code were written in Python 3.10. The deep learning framework used is PyTorch,
and the training curve was visualised using TensorBoard. Sampling and training were carried out on an Intel
Core 19-10900KF @ 3.70 GHz CPU (20 cores), with a Nvidia GeForce RTX 4070 GPU and 64 GB of RAM
on the algorithm server.

4.2 Hyperparameter settings

To select the optimal hyperparameter combination for the Monte Carlo tree search (MCTS)-based train
timetable optimisation algorithm, a control variable method was used to conduct numerous hyperparameter
tuning and comparative analysis experiments. The goal was to select the hyperparameter configuration that
performed the best in terms of algorithm score, convergence speed and training stability. To ensure the
efficiency of hyperparameter tuning experiments while maintaining the validity of the results, a 3-hour time
window was used for the case experiment with a scenario involving 20 unidirectional train lines. The final
selected hyperparameter values are also listed. Two learning rates are used to start training with a higher value
for faster learning and then switch to a lower value for more stable and accurate results, as shown in Table 3.

Table 3 — Hyperparameter settings for MCTS-based algorithm

No. Parameters Values Note
1 learning_rate [4e-5, 1e-7] Learning rate schedule for neural network training
’ lambda 0.9 Yalue r}etwork weight parameters controlling the balance between
immediate and future rewards
3 batch_size 512 Number of samples used per training iteration
4 buffer size 1,000 000 Expe.r{ence replays pool capacity for storing state-action-reward
transitions
5 minibatch_size 128 Batch size for gradient descent optimisation
6 hiddens 256 Hidden layer network width in neural networks
Hidden Layer:
7 activation_func ReLUClassification: | Activation function used in neural network layers
SoftMax
8 tau 1 Temperature parameter controlling exploration in action selections
9 ¢ _puct 5 Exploration-exploitation balance parameter in the UCT algorithm
10 n_play out 50 Maximum simulation steps per decision in MCTS
11 update_epochs 5 Number of network updates per optimisation cycles

Using algorithm score, convergence speed and training stability as comprehensive evaluation metrics, the
optimal hyperparameter set was selected along with four other well-performing hyperparameter sets for
training process comparison. The learning curve comparison is shown in Figure 4. It can be seen that the chosen
optimal hyperparameter set exhibits the most stable training process, with the fastest convergence speed,
reaching the highest score after only 5.5 million time steps. In contrast, the other hyperparameter sets show
relatively slower convergence speeds. Specifically, the second-best hyperparameters 1, 2 and 3 achieved the
highest score after 13 million, 17 million and 44 million training steps, respectively, while the fourth-best
hyperparameter set failed to converge to the highest score within the specified 45 million training steps.
Although the algorithm’s performance varies with different hyperparameters, the experimental results show
that the algorithm used in this study is generally not highly sensitive to hyperparameters. When
hyperparameters change within a reasonable range, the overall training process remains relatively stable, with
only slight differences in the number of training episodes required to achieve optimal performance. This
observation further confirms the inherent superiority of the algorithm itself [24].
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Figure 4 — Comparison of algorithm hyperparameter learning curves

4.3 Comparative performance analysis

To investigate the efficiency and performance of the proposed MCTS algorithm, the MCTS algorithm’s
performance is compared against benchmark reinforcement learning algorithms, including DDQN and PPO,
under similar simulation settings.

Benchmark algorithms

Double deep Q-network (DDQN) and proximal policy optimisation (PPO) are two widely used
representative algorithms in the field of deep reinforcement learning. To demonstrate the superiority of the
Monte Carlo tree search-based train timetable optimisation algorithm used in this study, we conducted a
comparative study between the MCTS-based algorithm and the hyperparameter-tuned DDQN and PPO
algorithms, based on the parameter selection experiments. The algorithm comparison experiment used the
same scenario as before, with a 3-hour time window and 20 unidirectional train lines, as shown in the learning
curve comparison of different algorithms. From Figure 5, it can be seen that the DDQN algorithm exhibits large
fluctuations overall, with low scores during the early stages of training. It then gradually increases to a higher
score and starts to oscillate, but it never reaches the highest score.

This is mainly due to the DDQN algorithm, which is highly sensitive to hyperparameter settings, requiring
a significant time for hyperparameter selection, which often leads to issues such as poor training results and
poor training stability. The PPO algorithm shows fluctuation results and lower scores in the early stages of the
training; however, at the later stages of training, especially after 35 million time steps, it successfully aligned
with the higher score.

3800

/h/ N

3700

reward

3600

S — HCTS
DDQN
— PPO
™M oM 15M 20M 25M oM I5m 40M

steps

Figure 5 — Comparison of learning curves for different algorithms
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However, compared to the MCTS-based algorithm, the PPO algorithm requires more training episodes,
takes longer, and has some instability during the training process. In contrast to the above two methods, the
proposed approach in this study is the most stable, the fastest in learning, and the best in training results. It
only requires 5.5 million time steps to achieve the highest score and end training. The result shows that the
MCTS-based algorithm performed well compared to both DDQN and PPO in terms of final results, stability
and training efficiency.

Analysis of algorithm characteristics

This section presents the performance of PPO, DDQN and the suggested MCTS-based algorithms, showing
their training stability, time efficiency and the capability to achieve optimum performance for an intelligent
train timetable. The results of the DDQN algorithm were not up to the standards, having fluctuations with low
scores during the early stages. However, results gradually improved, reaching a high score of 3790; it never
achieved the maximum possible score of 3800. It could be attributed to the high sensitivity of the
hyperparameter setting. The PPO algorithm showed more stable behaviour than DDQN but still exhibited
fluctuations and lower scores in early training stages. It eventually reached the maximum score after 35.5
million time steps, demonstrating its capability to solve the problem given sufficient training time. However,
the extended training duration (18.1 hours) and the presence of instability during the process highlight
limitations in its sample efficiency for this specific domain. The algorithm training performance indicators are
compared in Table 4. From the table, it can be observed that the Monte Carlo tree search (MCTS)-based train
timetable optimisation algorithm and the PPO algorithm both achieve the highest reward score of 3800. The
MCTS-based algorithm consumes 2.6 hours and reaches the maximum score after 5.5 million time steps of
training; the (PPO) algorithm consumes 18.1 hours and requires 35.5 million time steps to achieve the
maximum score. The (DDQN) algorithm, on the other hand, consumes 37.6 hours, and after 45 million time

steps of training, it only achieves a reward score of 3790, failing to reach the maximum score as listed in Table
4.

From the comparison of these three algorithms, it can be concluded that the MCTS-based algorithm
proposed in this study outperforms the existing DDQN and PPO algorithms in terms of training stability and
effectiveness. It demonstrates strong applicability in intelligent train timetable optimisation.

Table 4 — Comparison of algorithm training results

Algorithm Highest reward score Ma’;i:lll;::}e;core Optil;lfasltzrl:smher Time consumed/h
MCTS 3800 Yes 55M 2.60
PPO 3800 Yes 355M 18.1
DDQN 3790 No 45M 37.6

4.4 Large-scale scenario validation

This section shows the capability of the proposed Monte Carlo tree search-based train scheduling
algorithm under the scenario involving 120 train pairs on the Beijing-Shanghai High-Speed Rail. To verify the
effectiveness of the Monte Carlo tree search-based train schedule optimisation algorithm proposed in this study
for large-scale scheduling scenarios, a conflict resolution task was conducted using a train schedule scenario
involving 120 pairs of trains on the Beijing-Shanghai High-Speed Rail Beijing Bureau section, from 6:00 AM
to 12:00 AM. In the initial stage of the experiment, the 120 pairs of trains were divided into 6 groups, with 20
pairs of trains per group placed every 3 hours, resulting in a total of 45,600 conflicts. After 208 million time
steps of training, the Monte Carlo tree search-based train scheduling agent was able to resolve all the conflicts
in the train schedule, as shown in Figure 6, with a total resolution time of 90 hours.
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Beijing South

Langfang

Jingjin Railway
Depot

Jin-hu Railway
Depot

Tianjin South

Cangzhou West

Dezhou East

Figure 6 — 18—hour train schedule for 120 pairs of trains on the Beijing-Shanghai High-Speed Rail Beijing Bureau section [25]

Operational analysis by station

The result of the study also shows that the Beijing South Station acts as a continuous train departure
terminal, ensuring a well-planned train movement throughout the peak hours of the day. Also, Figure 5 shows
a well-planned system to handle complex, large passenger density, while minimising delays.

Beijing South Station and Langfang Station

It is considered one of the critical terminal hubs in the network with the following operational constraints.
The station managed the high-density movements between morning (6:00-10:00) and evening (16:00-22:00)
during peak hours, with up to 18 trains per hour, as shown in Figure 6. Similarly, multiple tracks are used
simultaneously during peak hours, with a dynamic allocation strategy while maintaining safety margins.
However, during midday operations, the reduced activity between 10:00 and 16:00 is utilised for maintenance,
operational management and system optimisation, as shown in Figure 7.

Beijing South 6 { 8 9
High Speed

Beijing South
High Speed

Langfang

Langfang

Figure 7 — Diagram of train routes and tracks at Beijing South Station and Langfang Station
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Langfang Station serves as an intermediate stop for trains throughout the day, ensuring the well-planned
functioning of train movement. The station keeps a more consistent flow of trains throughout the day, with
little variation between peak and off-peak periods. Similarly, timetable optimisation ensures little waiting time
for passengers travelling between trains, with an average time of 8.2 minutes. Also, Langfang Station serves
as a track utilisation with an average of 62.4% throughout the day, which shows efficient resource allocation
without overcrowding. Furthermore, the movement pattern between Beijing South and Langfang stations
shows a more efficient railway schedule that optimises network usage with minimum delays. The average
travel time between these stations was decreased by 12.3% compared to the initial timetable, with an almost
94.7% on-time performance rate. The result shows that the Monte Carlo tree search-based train schedule
optimisation algorithm can improve the larger density of passengers, minimise the delays, and improve
performance during peak hours of the day between Beijing and Langfang Station.

Jingjin Railway Depot, Jinhu Railway Depot and Tianjin South Station

The analysis of the results showed that train movements across all three locations reveal a well-coordinated
railway schedule with the following characteristics, as shown in Figure 8. Train activity is maximised during
morning (6:00-10:00) and evening (16:00-22:00) hours, aligning with passenger demand patterns. Similarly,
operational efficiency of the high density of train movements (indicated by red lines in Figure 8) corresponds
to minimal waiting periods, increased departures and overall efficient operations. Also, the timetable achieves
a balance between high utilisation during peak hours (average 81.2%) and necessary maintenance windows
during off-peak periods. Furthermore, synchronised scheduling between these stations reduces bottlenecks
and ensures smooth transitions, with an average inter-station delay reduction of 18.7% compared to the initial
timetable. Tianjin South Station in particular demonstrates effective management of both arrivals and
departures, with peak hour scheduling that prioritises regional connectivity while maintaining operational
feasibility.

Jigjis Raitvay Depot

\ { LI
|
: i | 1 (il
Jingjin Railway Depot | | | ‘ } | | 1Tt ‘ [ |
Jabu Raivay Depot ) { ‘ | ‘

Tanjn St

Tianjin South

Figure 8 — Diagram of train routes and tracks at Jingjin Railway Depot, Jinhu Railway Depot and Tianjin South Station

The result shows that the Monte Carlo tree search-based train schedule optimisation algorithm can improve
the larger density of passengers, minimise the delays, and improve performance during peak hours of the day
between Jingjin, Jinlu and Tianjin South railway stations.

Cangzhou West Station and Dezhou East Station

The Cangzhou West Station functions as a transit hub, ensuring a well-planned train movement throughout
the day. Also, during high activity at peak hours shows the importance of train movement within the city and
the daily interconnected routes. The study also shows that the reduction in train activity at midday could be
attributed to system optimisation, such as crew management and train maintenance.
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Cangzhou West

Cangzhou West

Dezhou East

Dezhou East

Figure 9 — Diagram of train routes and tracks at Cangzhou West Station and Dezhou East Station

Similarly, the result of Dezhou East station shows that it functions as an intermediate station, ensuring well-
planned functioning of train movement and maximum operational efficiency. Therefore, the movement
between Cangzhou West and Dezhou East stations shows an efficient pattern of railway schedule as shown in
Figure 9, optimisation of network usage and reduction of the delays. The result shows that the Monte Carlo tree
search-based train schedule optimisation algorithm can improve the larger density of passengers, minimising
the delays, and improve performance during peak hours of the day between Cangzhou West and Dezhou East
stations.

5. CONCLUSION

The train scheduling problem requires a comprehensive consideration of various objective scenarios, rule
constraints and strategic approaches, making it a complex issue that needs to be addressed. This study used a
Monte Carlo tree search-based reinforcement learning algorithm to attempt to solve the train scheduling
conflict resolution problem and validated the feasibility of the model and algorithm in resolving conflicts in
small-scale, simple scenarios.

— Monte Carlo tree search-based reinforcement learning algorithms have enhanced performance as
compared to state-of-the-art reinforcement learning algorithms (PPO and DDQN) in terms of speed,
computational efficiency, quality and convergence. The MCTS-based algorithm achieved the maximum
score in just 14.4% of the time required by PPO and 6.9% of the time required by DDQN.

—  The Monte Carlo tree search-based intelligent algorithms can resolve large-scale problems, involving 120
pairs of trains on the Beijing-Shanghai High-Speed Rail corridor over an 18-hour period. The algorithm
resolved almost 45,600 initial conflicts, which shows the applicability to complex real-world scenarios.

— The generation of optimised timetables proved a valuable suitability of operational patterns and efficiency
at different stations, which demonstrates its strategic planning and resource allocation decisions.

— The result shows that stations like Beijing South and Tianjin South play a pivotal role in regional
connectivity, while depots ensure train dispatch and maintenance within the time framework.

— The Beijing South and Langfang stations can manage train schedules more efficiently during peak hours
using extra tracks and intelligent algorithms, while minimising the delays.

— The Monte Carlo tree search algorithm dynamically optimises peak-hour schedules at Beijing South (a
critical terminal) and Langfang (a continuous-flow station), while also addressing high-demand areas such
as Jingin, Jinlu and Tianjin South, thereby reducing delays.

— Monte Carlo tree search algorithm optimises Cangzhou West and Dezhou East schedules, while managing
the peak hour density as well.

The proposed Monte Carlo tree search-based reinforcement learning model also shows potential
adaptability to mixed traffic scenarios involving both freight and passenger trains. By adjusting operational
constraints, time windows and priority rules within the model, it can accommodate the differing characteristics
of freight trains, such as longer dwell times, lower speeds and less schedule flexibility, alongside high-speed
passenger services. This flexibility highlights the algorithm’s capability to support more complex and
heterogeneous scheduling environments, which is essential for real-world railway networks.
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However, there is still a significant gap to practical application, and further in-depth and comprehensive
research is needed to address real-world complexities. Future work should consider factors such as route
connections, window distribution and train maintenance to solve the train scheduling problem under networked
conditions for high-speed rail systems.
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