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ABSTRACT 

This study introduces an innovative, integrated approach to analyse the China-Europe 

Railway Express (CRE) network, combining the entropy weight method, improved 

gravitational model and social network analysis. These methodologies can provide a 

comprehensive comparison and reveal structural differences between Chinese and European 

railway segments. Through quantifying logistics industry development levels, inter-city 

connection intensities and network centrality, the study provides insights into the CRE 

network’s operational dynamics. Key findings include the identification of critical nodes, 

cohesive subgroups and contrasting network structures between China (centralised) and 

Europe (decentralised). The improved gravitational model, incorporating GDP proportions 

for asymmetrical attractions and time distance measurements, represents significant 

advancements in spatial interaction analysis for logistics networks. The study proposes 

prioritising electrified rail sections between high-attraction pairs (Chongqing-Duisburg) and 

adopting solar-powered terminals at hubs like Wuhan and Duisburg for sustainable networks. 

It is well anticipated that the methods, models and research findings from this study will 

contribute to network optimisation, policy formulation and sustainable development of 

international logistics systems, particularly within the context of the Belt and Road Initiative, 

which is of rising significance for Eurasia geopolitical and cross-continental economic 

cooperation. 
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China-Europe railway express; cargo collection network; improved gravitational model; 
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1. INTRODUCTION 

With the deepening of global economic integration and the continuous advancement of the Belt and Road 

Initiative (BRI), the strategic significance of the China-Europe Railway Express (CRE), as a key logistics 

channel connecting Eurasia, has become increasingly prominent. As an important part of the Belt and Road 

Initiative, the CRE has been playing a significant role in bridging Eurasia since its first operation in 2011 

(Wang et al.) [1], Figure 1. The rapid expansion of the CRE has reshaped transcontinental logistics, with annual 

freight volumes surging from 1,702 TEUs in 2011 to over 1.6 million TEUs in 2022. However, as Lomotko et 

al. [2] revealed, current multimodal coordination mechanisms remain suboptimal – only 38% of the CRE routes 

achieve seamless rail-water transitions, resulting in 12–18-hour delays at key hubs. However, as a complex 

international logistics system, the operational dynamics and structural characteristics of the CRE network have 

long lacked systematic quantitative analysis [3]. Traditional research methods frequently fail to capture the 

complex, multidimensional nature of this network, particularly when it comes to identifying and analysing 

differences across national boundaries. The effective application of these advanced analytical tools to 

https://doi.org/10.7307/ptt.v38i1.1252
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international logistics networks, such as CRE, and gaining valuable insights from them, remains an urgent 

problem. In particular, the quantification of the development levels of the logistics industry in different cities, 

the strengths of logistics links between cities, and the characteristics of the overall network structure require 

innovative methodologies to answer. In addition, China and Europe have significant differences in their 

logistics network structures. This difference not only reflects the level of economic development and 

geographical characteristics of the two regions, but also affects the operational efficiency and future 

development strategy of the entire network [4, 5]. Therefore, it is of great significance to compare the 

similarities and differences between the network structures of China and Europe to optimise the overall 

network layout and formulate differentiated development strategies. 

 
Figure 1 – China-Europe Railway Express routes. Source: Wang et al, p. 1279 [1] 

Building on Zeng and Sun’s [6] breakthrough in coupling gravity models with multilayer network analysis, 

this study pioneers an integrated framework combining the entropy-weight method, improved gravitational 

model and social network analysis. This integrated approach can not only quantify the development level of 

the logistics industry in each node city, but also deeply analyse the strength of logistics connections and 

network centrality between cities, and overcomes limitations of conventional single-criterion evaluations 

identified by De Bona et al. [7], to reveal the internal structure and operational dynamics of the network. An 

important novel method in this study is the improvement of the gravitational model. By introducing the GDP 

ratio to reflect the asymmetrical attraction relationship between cities, and considering the time distance factor, 

this improvement provides a more accurate and comprehensive perspective for the spatial interaction analysis. 

This method not only takes into account the differences in economic strength but also takes into account the 

influence of spatio-temporal factors, making the model closer to the operational characteristics of the actual 

logistics network. 

The main findings of the study include the identification of key node cities, cohesive subgroups, and the 

revealing of the comparative characteristics of network structures in China (centralised) and Europe 

(decentralised). These findings provide unprecedented insight into the organisational structure and operating 

model of CRE networks. The significance of this study is not only to bridge the gap between theoretical 

network analysis and practical logistics management, but also to provide quantitative indicators and decision-

making basis for the optimisation and sustainable development of the CRE network. By providing quantifiable 

indicators, this study provides important support for evidence-based decision-making. These findings have 

important implications for network optimisation, policy making and the sustainable development of 
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international logistics systems, especially in the context of the Belt and Road Initiative. In the following 

chapters, this article will elaborate on the research methodology, data analysis process, and discuss in depth 

the findings and their implications for CRE network optimisation and international logistics management.   

2. LITERATURE REVIEW  

International logistics is a cross-border logistics activity that has emerged within the context of 

globalisation, encompassing the entire process of goods from production to consumption. In recent years, the 

development of international logistics has demonstrated trends toward digitalisation, intelligence and green 

logistics [4]. The CRE is connecting China and Europe by rail and offering an efficient and stable international 

logistics solution [3]. The operational efficiency of the CRE is continuously improving, with significant 

enhancements in on-time rates and transport speed achieved through optimising operational schemes and 

consolidation centres, increasing loading/unloading efficiencies, and reducing transit times [8]. Niu and Liu 

[9] analysed the improvement in logistics efficiency of different node cities using a differentiation model, 

highlighting the significant role of the CRE trains in promoting regional economic development. Cargo 

consolidation refers to the process of improving transportation efficiency and reducing transportation costs by 

concentrating scattered goods at a specific location for unified processing and transportation [10]. In logistics 

networks, the effectiveness of cargo consolidation directly impacts the operational efficiency of the entire 

network. Different cargo consolidation modes (e.g. centralised and decentralised) are suitable for various 

logistics scenarios [11]. Cargo consolidation and network optimisation theory can serve as a support tool for 

planning and policy decisions involved in improving rail networks at regional and national levels [12, 13]. 

Camur et al. put forward an optimisation framework for efficient and sustainable logistics operations via 

transportation mode optimisation and shipment consolidation [14]. 

Hu et al. [15] and Wiegmans and Janic [16] provided a scientific basis for decision-makers by constructing 

an evaluation model to quantify the economic and environmental benefits of cargo pooling. Naganawa et al. 

[17] and Liu et al. [18] optimised cargo transportation paths using various algorithms (e.g. genetic algorithm, 

ant colony algorithm) to reduce transportation time and cost. Aliakbari et al. [19] improved the reliability and 

robustness of the logistics network by building evaluation models and optimisation strategies to ensure that 

the logistics network can still operate efficiently in the face of emergencies. With the development of the 

Internet of Things, big data and artificial intelligence technologies, Ding et al. [20] and Pawar and Paluri [21] 

explored how to apply these technologies to logistics network optimisation to enhance the intelligence and 

automation of logistics operations. Environmental considerations are becoming pivotal in rail logistics 

evaluation. Comparative studies reveal that CRE’s CO2 emissions per ton-kilometre are 62–68% lower than 

air freight but 12–15% higher than maritime shipping, underscoring the need for operational optimisation to 

enhance its environmental competitiveness [22]. The dynamic multimodal system framework by Lomotko et 

al. [2] provides a viable pathway for CRE to achieve emission reductions through better rail-water intermodal 

coordination. 

The entropy weight method is a multi-attribute decision-making approach based on information entropy 

theory, widely used in evaluation and optimisation research in the field of logistics. In recent years, the 

application of the entropy weight method in logistics performance evaluation, logistics centre site selection, 

logistics network optimisation and other areas has achieved remarkable results. Yu Y.  [23] used the entropy 

weight method to evaluate the digital innovation capability of regional logistics flow. The results show that 

the method can accurately measure the level of logistics digital innovation, providing an important reference 

for evaluating regional logistics innovation capability. Liu [24] used the entropy weight-TOPSIS method and 

a mixed integer programming model to select node cities that can serve as the assembly centre of the western 

corridor of the CRE, optimising the transportation network. El-Araby [25] applied the entropy weight method 

to the study of logistics centre site selection, and the results showed that the method could make the site 

selection scientific and reasonable. Wang et al. [26] used the entropy weight method to study the development 

level of the logistics industry in the node cities of the CRE. The results showed that the method can effectively 

solve the problem of logistics network structure optimisation. The operational efficiency of cross-border rail 

logistics heavily relies on cost management innovations. Stopka et al. [27] developed an activity-based costing 

framework for railway enterprises, which could be adapted to optimise CRE’s transhipment cost allocation at 

key hubs like Malaszewicz. Meanwhile, Černá et al. [28] emphasised the necessity of standardised transport 

regulations, highlighting that inconsistent customs procedures between China and EU member states increase 

border waiting times by 18–22% – a critical issue for CRE’s time-sensitive cargo. 

https://so1.typicalgame.com/citations?user=RlGUdaQAAAAJ&hl=zh-CN&oi=sra
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Social network analysis (SNA) is a method for studying the relationships between nodes using graph theory 

and network theory, widely applied in the structural analysis and optimisation of logistics networks [29]. In 

recent years, SNA has been widely used to evaluate the importance of logistics nodes and optimise logistics 

network structures. Li et al. [30] used SNA to optimise the structure of a regional logistics network and found 

that this method can significantly improve the network’s connectivity and stability. Mu et al. [31] used SNA 

to study the synergistic effect of the logistics network in the Chengdu-Chongqing region. The results showed 

that the proposed method could effectively improve the network’s overall operational efficiency.  Recent 

methodological advancements have significantly enhanced logistics network analysis. Zhu et al. [31] proposed 

a weighted network analysis framework using the Debye model, which provides new insights into handling 

asymmetric connectivity patterns prevalent in transnational rail networks. Furthermore, Zeng and Sun [6] 

demonstrated the effectiveness of coupling gravity models with social network analysis in spatial interaction 

studies, a methodology particularly relevant for analysing CRE’s transcontinental connections. These 

approaches address the limitations of traditional single-layer network models by capturing multimodal 

interactions (rail-truck-barge) as shown in Lomotko et al. [2]. 

The gravity model describes the interaction between two entities based on the laws of gravity in physics. 

In logistics research, the gravity model is often used to predict the flow of goods and analyse the spatial 

distribution characteristics of logistics networks. Wang [26] used the gravity model to analyse the strength of 

logistics links between the node cities of the China-Europe Railway Express and concluded that the cities have 

the potential to establish a transit and collection hub for the CRE. Lu Bo [33] used the gravity model to predict 

the cargo flow of the CRE and found that the model can accurately reflect the cargo flow between logistics 

nodes. Li Y. [34] used the gravity model to analyse the spatial distribution characteristics of the logistics 

network in Chengdu and Chongqing, providing a scientific basis for the development of regional logistics. Mu 

et al. [31] used the gravity model to evaluate the attractiveness of logistics nodes and found that this method 

can significantly improve the rationality of the layout of logistics nodes.  Innovations in network topology 

analysis continue to advance logistics research. The reduced complex network model proposed by De Bona et 

al. [7] offers a simplified yet effective approach for identifying critical nodes in large-scale transport systems, 

complementing traditional centrality metrics. This aligns with findings by Wang & Chen [35], where 

multilayer network analysis revealed that 73% of logistics network resilience derives from the top 20% high-

betweenness nodes – a phenomenon observable in CRE’s dependence on Wuhan and Duisburg. 

This literature review covers recent advances in international logistics, the development of CRE, cargo 

consolidation, logistics network optimisation and related research methods [36]. The review shows that 

international logistics is trending towards digitalisation, intelligence and sustainability. Research on cargo 

consolidation and logistics network optimisation has shown a trend of diversification and refinement, reflecting 

the continuing concern of the academic community for improving the efficiency and sustainability of logistics 

[37]. Previous studies have focused on the economic impact (Yang et al.) [38], operational efficiency and 

sustainable development. However, there is still a gap in systematic comparative research on the structural 

differences and impacts on the overall network function between the China-Europe Railway Express networks 

in both China and Europe. This study aims to fill this research gap by analysing the development level of the 

logistics industry, the intensity of logistics links between cities, the network centrality and the characteristics 

of cohesion subgroups through data analysis of selected major node cities in both China and Europe.  

3. METHODOLOGIES  

3.1  Application of the entropy weight method 

This study tackles the challenge by quantitatively assessing the multifaceted and overlapping indicators of 

logistics development through the adoption of a structured evaluation system based on prior research. It 

outlines three primary criteria and ten specific indicators to evaluate the logistics industry development level 

in hub cities, as detailed in Table 1. Logistics industry scale is assessed through traditional metrics, including 

the workforce size within the logistics sector, freight volume and cargo turnover. These indicators jointly 

measure the magnitude of logistics industry development in hub cities. Logistics industry infrastructure plays 

a crucial role in shaping the logistics development level. Its assessment encompasses factors like the value of 

fixed assets in the logistics sector, road network extent, fleet size of road freight vehicles and the quantity of 

integrated logistics parks. The economic development level of a city underpins its logistics industry’s growth. 
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This layer includes indicators such as regional GDP, consumer spending levels and the scale of import-export 

activities. 

Table 1 – Evaluation system for logistics industry development level of cities 

Target layer Criterion layer Indicator layer 

Development level 

of the logistics 

industry 

Scale of the logistics 

industry 

Number of employees in the logistics industry 

Freight volume 

Cargo turnover 

Logistics infrastructure 
Operational mileage of roads 

Operational mileage of railways 

Level of economic 

development 

GDP 

Total retail sales of consumer goods 

Total volume of imports and exports 

 

The entropy weight method is a prevalent approach for conducting comprehensive evaluations across 

multiple indicators. This study builds on prior research by implementing an enhanced version of the entropy 

weight method to allocate weights to different indicators pertinent to the logistics industry in cities served by 

the CRE. This facilitates the assessment of each city’s logistics industry development level. 

Data standardisation: Given the diversity in measurement units across various secondary indicators, this 

study standardises all indicators to ensure they are positively oriented. This standardisation is achieved through 

a unified normalisation process, as delineated by Equation (1). 
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Pij represents the weight of the jth indicator in the ith city, where n is the number of cities. 
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where Ej is the entropy value of the jth indicator. 

3) Calculation of indicator weights 
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where Zi is the logistics industry development level score of the city. 

3.2 Improved gravitational model 

The gravity model is widely recognised for analysing urban spatial connectivity. By focusing on the cargo 

distribution network, this paper introduces an adapted version of the gravity model, informed by prior research. 

This adapted model aims not only to quantify the spatial connectivity among hub cities but also to facilitate 

the reconfiguration of the logistics network structure for cities connected by the CRE. The specifics of the 

model are detailed as follows. 
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𝑀𝑖𝑗 = 𝑘𝑖𝑗
𝑍𝑖𝑍𝑗
𝑑𝑖𝑗𝑡𝑖𝑗

 
(5) 

In the model, Mij measures the spatial logistics gravity between city i and city j; Zi and Zj represent the 

development levels of the logistics industry in the respective cities. The term tij denotes the time distance 

between city i and city j, indicating specifically the time taken for railway freight transportation between these 

two cities. Given the varying development levels of the two cities, their mutual attraction might not be 

symmetrical; the gravitational pull from city i towards city j may not reflect that from city j towards city i. To 

account for this asymmetry, this study utilises the actual GDP proportions to define the coefficient of attraction, 

with the formula given by Kij = GDPi / (GDPi + GDPj). The attraction from city j to city i is calculated using 

a similar approach. 

3.3  Social network analysis 

Social network analysis (SNA) is a powerful tool for studying the relationships between nodes and edges 

in complex networks [40, 41]. Through SNA, it is possible to identify the structural characteristics of inter-

city logistics networks, as well as the underlying patterns and relationships within them. One key method is 

measuring network density, which represents the ratio of actual connections to the maximum possible number 

of connections in the network. Calculating the density of an inter-city logistics network helps to assess how 

cohesive the network is. For instance, a high-density network indicates that logistics activities between cities 

are closely connected and that goods flow frequently among them. 

The centrality metric is used to measure the importance of each node in the network, including degree 

centrality, closeness centrality and betweenness centrality. These indicators can help identify cities that play 

key roles in logistics networks. In logistics networks, identifying key nodes and analysing their centrality are 

important steps to optimise the network structure and improve logistics efficiency. Key nodes are typically the 

most influential nodes in the network and are responsible for connecting different sub-networks or regions. 

Among the indicators, degree centrality measures the number of nodes to which a node is directly connected. 

In logistics networks, cities with a high degree of centrality are usually logistics hubs, connecting multiple 

other cities and playing an important distribution role. Closeness centrality measures the average shortest path 

length from one node to all other nodes. In logistics networks, cities with high closeness centrality usually 

have higher logistics efficiency because they can reach other cities quickly. Betweenness centrality measures 

the extent to which a node acts as a bridge between other nodes in the network. In logistics networks, cities 

with high betweenness centrality are often key transit nodes, controlling a large number of cargo flow paths. 

The clustering coefficient reflects the degree of aggregation among nodes in the network. A high clustering 

coefficient indicates the presence of multiple closely connected subgroups in the network, which may be 

hotspots for logistics activities. 

4. ANALYSIS OF THE NETWORK STRUCTURE OF THE CRE 

4.1 The CRE cities’ logistics industry development level measurement 

In this study, 9 cities in China, including Tianjin, Suzhou, Wuhan, Chongqing, Chengdu, Xi'an, Dongguan, 

Changsha and Zhengzhou, and 8 cities in Europe, including Budapest in Hungary, Duisburg and Hamburg in 

Germany, Lodz and Malaszewicz in Poland, Tilburg in the Netherlands, Liège in Belgium and Vuosaari in 

Finland, are selected as targets, which are geographically located as shown in Figure 2. Chinese data are mainly 

derived from the National Statistical Yearbook and the statistical bulletin of each city. The distance of China’s 

railway freight time is obtained by checking the China Railway webpage, and the distance between European 

cities and Chinese cities is obtained by looking for the longitude and latitude of the seat of the government of 

each city through Baidu maps. The European data are derived from the United Nations Economic Commission 

for Europe (UNECE) database and Eurasia Rail Alliance Index (ERAI) webpage. 
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Figure 2 – The target cities and GDP of the CRE 

The entropy weight method is used to calculate the logistics industry development level of the node city, 

as shown in Table 2. The results show that there are significant differences in the development levels of the 

logistics industry between node cities in China and Europe. In China, Chongqing is foremost with a high score 

of 0.862067 and has the most developed logistics industry among these cities, while Xi'an (0.072543) reflects 

significant regional imbalances in development. The result of Suzhou (0.389771) is close to that of Wuhan. 

Although the reading is much lower than that of Chongqing, it is still higher than that of most other cities. 

Chengdu (0.313993) has a relatively good level of development. The scores of Zhengzhou, Changsha, 

Dongguan and Xi'an are relatively low, which are all below 0.2. In Europe, Duisburg (0.683845) and Hamburg 

(0.583931) are the dual cores of the European logistics network, taking over the two major logistics hubs in 

Europe. Chongqing and Duisburg are the cities with the most developed logistics industries in China and 

Europe, respectively, which is consistent with their core positions in the China-Europe railway network. 

Table 2 – Urban logistics industry development level scores 

Rank Chinese cities Result Rank European cities Result 

1 Tianjing 0.29498 1 Budapest 0.047742 

2 Zhengzhou 0.13863 2 Liège 0.083614 

3 Suzhou 0.389771 3 Malashewicz 0.406256 

4 Changsha 0.132989 4 Tilburg 0.1388335 

5 Chengdu 0.313993 5 Duisburg 0.683845 

6 Chongqing 0.862067 6 Lodz 0.287948 

7 Wuhan 0.362135 7 Hamburg 0.583931 

8 Xi'an 0.072543 8 Vuosaari 0.160549 

9 Dongguan 0.127515    

4.2 The intensity of logistics connections between cities 

According to the established model, the logistical linkage strength matrix between the node cities in China 

and Europe is calculated, as shown in Tables 3 and 4. It can be seen from the two tables that the logistics gravity 

between two cities is not equal because one city’s attractiveness to another city is related to the root coefficient 

k, which in turn is determined by the GDP of the two cities. A city with a larger GDP is more attractive to 

other cities, while the logistics gravity of other cities to this city is not equal to the attractiveness of this city to 

other cities.  
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Table 3 – Intensity of logistics links between Chinese cities on the CRE 

Cities Tianjing Zhengzhou Suzhou Changsha Chengdu Chongqing Wuhan Xi'an Dongguan Total 2 

Tianjing  0.6589 0.6055 0.1569 0.1183 0.352 0.6256 0.124 0.0816 2.7228 

Zhengzhou 0.5276  0.3914 0.2131 0.1275 0.3964 1.2997 0.2548 0.0612 3.2717 

Suzhou 0.883 0.7129  0.331 0.2255 0.6735 1.1519 0.1593 0.2176 4.3547 

Changsha 0.1335 0.2264 0.1932  0.1679 0.6874 2.9518 0.0655 0.3336 4.7593 

Chengdu 0.1506 0.2027 0.1968 0.2511  18.78 0.5196 0.3049 0.1252 20.5309 

Chongqing 0.6271 0.882 0.8228 1.4392 26.2892  2.9611 0.6812 0.6689 34.3715 

Wuhan 0.7151 1.8554 0.9028 3.9647 0.4667 1.8997  0.3123 0.448 10.5647 

Xi'an 0.0859 0.2204 0.0757 0.0533 0.166 0.2649 0.1893  0.0218 1.0773 

Dongguan 0.0562 0.0527 0.1028 0.2701 0.0678 0.2587 0.2701 0.0217  1.1001 

Total 1 3.179 4.8114 3.291 6.6794 27.6289 23.3126 9.9691 1.9237 1.9579  

Table 4 – Intensity of logistics connections between European cities on the CRE 

Cities Budapest Liège Malashewicz Tilburg Duisburg Lodz Hamburg Vuosaari Total 2 

Budapest  0.0091 1.353 0.0643 0.4044 0.3253 0.3641 0.1408 2.661 

Liège 0.1997  1.0181 85.7255 239.162 0.6191 13.9711 0.255 340.9505 

Malashewicz 4.1113 0.1411  0.805 4.858 14.0828 5.2676 5.1564 34.4222 

Tilburg 0.248 15.0783 1.0214  162.0263 0.2876 11.8754 0.3284 190.8654 

Duisburg 1.559 42.0663 6.1638 162.0263  1.8211 110.7153 1.8516 326.2034 

Lodz 7.1307 0.6191 101.5859 1.635 10.3537  14.461 3.5872 139.3726 

Hamburg 1.9879 3.4803 9.4656 16.8189 156.8037 3.6024  2.5826 194.7414 

Vuosaari 0.2 0.0165 2.4103 0.121 0.6822 0.2325 0.6718  4.3343 

Total 1 15.4366 61.4107 123.0181 267.196 574.2903 20.9708 157.3263 13.902  

Note: Total 1 is the sum of the attractiveness of other cities to the city. Total 2 is the sum of the attractiveness of the city to other cities. 

Source: Collected by the author. 

In terms of total intensity, Chongqing (Total 1: 23.3126, Total 2: 34.3715) and Chengdu (Total 1: 27.6289, Total 

2: 20.5309), which are far ahead of the other cities, show their central position in the China-Europe Express 

Railway network. The top 4 cities in terms of attractiveness (Total 2) are Chongqing, Chengdu, Wuhan and 

Changsha. The top 4 in terms of being attracted (Total 1) are Chengdu, Chongqing, Wuhan and Changsha. In 

terms of individual attractiveness, Chengdu is the most attractive to Chongqing at 26, while Chongqing’s 

attractiveness to Chengdu is 18, which is also much higher than that of other cities, which also shows that the 

logistics connection between the two cities is very strong. Xi'an and Dongguan are lower in attractiveness, 

suggesting that they have few logistical links with other cities. Similarly, in Europe, Duisburg has the strongest 

overall link strength (Total 1: 574.2903, Total 2: 326.2034). The top 3 cities in terms of attractiveness (Total 2) 

are Liège, Duisburg and Hamburg. The top 3 pairs in terms of being attracted (Total 1) are Duisburg, Tilburg 

and Hamburg. The top 3 pairs before city-to-city are Duisburg-Tilburg, Duisburg-Hamburg and Liège-Tilburg. 

Duisburg shows that it is extremely attractive as a logistics hub. Liège is much more externally attractive 

(340.9505) than attracted (61.4107), indicating that it plays more of an output role in the network. Overall, 

there is a huge variation in the strength of links between cities, ranging from 0.0091 (Budapest-Liège) to 

239.162 (Liège-Duisburg). 

Tables 3 and 4 are used to plot the network structure of logistics links between Chinese and European cities 

by selecting the natural breaks method, as shown in Figures 3 and 4, and the bolder the line, the stronger the 

attraction relationship. However, due to the weak connection of logistics spatial in some cities, such a 

connection is of little significance. In order to show the actual situation of the logistics relationship between 

cities more obviously, the data are binary processed, and the threshold is set to the average value; that is, 1 is 

taken when the spatial logistics connection is greater than the average value, and 0 is taken when the spatial 

logistics connection is less than the average value. Plotting is executed with NetDraw, as shown in Figure 5. 
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Figure 3 – Structure diagram of urban logistics network in China (threshold is 0) 

 
Figure 4 – Structure diagram of urban logistics network in Europe (threshold is 0) 
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(a) 

 
(b) 

Figure 5 – Structure diagram of urban logistics network when the threshold is the average value; a) China, b) Europe 

Comparing with Figure 3 and Figure 5(a) shows the “hub-and-spoke” network structure, with Wuhan at the 

centre of the network, and it is a key hub node. Zhengzhou, Chongqing and Changsha are all connected to 

Wuhan in both directions, indicating that Wuhan and these three cities have strong mutual attractiveness. It is 

similar to Chongqing and Chengdu. Wuhan is attractive to Suzhou, while Suzhou is not to Wuhan. Some cities, 

such as Tianjin and Dongguan, are isolated on the map, indicating that they have no logistical attractiveness 

to other cities. Figure 4 and Figure 5(b) present a “hub-and-spoke” structure, with a small network centred on 

Duisburg in the west. Hamburg, Tilburg and Liège all have arrows pointing to Duisburg, which means that 

Duisburg has a strong logistical appeal to these cities. Malashewicz has an arrow from Lodz, indicating that 

Malashewicz is logistically attractive to Lodz. Duisburg’s central location makes it attractive to the 

surrounding cities, perhaps because of its state-of-the-art logistics facilities, strategic location or economic 

importance. Malashewicz’s appeal to Lodz may stem from its strategic location as a border city, potentially a 

gateway to Eastern European or Russian markets. Vuosaari (Finland) and Budapest (Hungary) as isolated 

nodes may indicate that they do not yet have strong logistical links in this particular network. This approach 

to logistics attractiveness-based analysis provides a deeper view of the dynamics of the logistics network, 

reflecting the relative strength and influence of cities in the logistics sector. This network analysis diagram can 

be used for logistics planning, traffic optimisation or regional economic analysis.  

4.3 Analysis of the structure of the network 

The greater the value of city network density, the greater the interaction between node cities, the greater 

the possibility of network influence on members. The density of the Chinese city logistics network is 0.1389, 

and the density of the European city network is 0.1429; the data show that the density is small, indicating that 

the interaction between cities is also not too strong, which may be due to the fact that the more government 

intervention there is, the fiercer the competition is. Each of them is in its own way, and they have not formed 

a reasonable logistics network structure. In order to deeply understand the topology of the CER network and 

the importance of each node city, this paper carries out a centrality analysis of the CER network, as shown in 

Table 5. Wuhan appears to be the most important hub city. It has the highest out-degree (3) and in-degree (4), 

and the highest betweenness centrality (12). This means that Wuhan plays a key transit and connection role in 

the CRE network. Chongqing follows Wuhan with higher out-degree (3) and in-degree (2), and ranks second 

in betweenness centrality (7). It is another important transit station. Duisburg is the heart of the European 

network. Its out-degree and in-degree are both 3, and its betweenness centrality is 5, which is the highest 

among European cities. Liège performs better in terms of out-degree (2) and closeness centrality, and is an 

important node in the European network. Suzhou has the highest outgoing closeness centrality (21.622) and 

has unique advantages in sending. Overall, the centrality indicators of Chinese cities are slightly higher than 

those of European cities, especially in terms of betweenness centrality. Chinese networks appear to be more 

centralised, while European networks are relatively decentralised. 
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Table 5 – Centrality data of the urban network of the CRE 

China Europe 

Cities 
Out-

degree 

In-

degree 

In-

closeness 

Out-

closeness 

Between

ness 
Cities 

Out-

degree 

In-

degree 

In-

closeness 

Out-

closeness 

Between

ness 

Wuhan 3 4 24.242 19.512 12 Duisburg 3 3 20 20 5 

Chongqing 3 2 22.857 19.512 7 Liège 2 1 18.919 19.444 0 

Chengdu 1 1 20.513 18.182 0 Hamburg 1 1 18.919 18.919 0 

Changsha 1 2 22.857 18.182 0 Tilburg 1 2 19.444 18.919 0 

Suzhou 1 0 11.111 21.622 0 Lodz 1 0 12.5 14.286 0 

Zhengzhou 0 1 21.622 18.182 0 Budapest 0 0 12.5 14.286 0 

Tianjing 0 0 11.111 11.111 0 Malashewicz 0 1 12.5 12.5 0 

Xi'an 0 0 11.111 11.111 0 Vuosaari 0 0 12.5 12.5 0 

Dongguan 0 0 11.111 11.111 0       

Data source: Collected by the author. 

In order to further explore the internal structure of the CRE network and the close relationship between 

cities, this paper analyses the cohesion subgroup of the network. Tables 5 and 6 show the cohesive subgroup 

matrix of node cities in China and Europe, respectively, and the cohesive subgroup is shown in Figure 6. From 

the table, we can see the characteristics of the Chinese network subgroup. The Chinese network is divided into 

four subgroups, reflecting the complexity and diversity of the network. The size of the subgroups is uneven, 

ranging from a single city (Chongqing) to three cities (Zhengzhou, Changsha, Suzhou). There is a strong 

connection between subgroup 1 (Tianjin, Xi'an, Dongguan) and subgroup 3 (Zhengzhou, Changsha, Suzhou) 

(a value of 1), indicating that the two subgroups work closely together in the logistics network. Subgroup 2 

(Chengdu, Wuhan) is not directly related to the other subgroups, which may indicate that these cities are 

relatively independent in the network. Although Chongqing (subgroup 4) is a separate group, it has a certain 

relationship with subgroup 1 (the value is 0.5), reflecting its special status in the network. The European 

network is divided into 5 subgroups, showing a more detailed structure. Most of the subgroups consist of 1–2 

cities, indicating a high level of decentralisation of the European network. There is a strong link between 

subgroup 3 (Liège) and subgroups 4 (Hamburg, Tilburg) and subgroup 5 (Duisburg) (a value of 1), indicating 

that Liège plays a key role in the network. Subgroup 2 (Malaszewicz, Lodz) shows an internal link (value 0.5), 

indicating close cooperation between the two cities. Subgroups 1 (Budapest, Vuosari) and 4 (Hamburg, 

Tilburg) have moderate associations (values of 0.5) with subgroup 5 (Duisburg), reflecting the centrality of 

Duisburg. 

Table 6 – Condensed subgroup density 

China Europe 

Order Cities 1 2 3 4 Order Cities 1 2 3 4 5 

1 
Tianjing, Xi’an, 

Dongguan 
0 0 1 0.333 1 

Budapest, 

Vuosaari 
0 0 0 0 0.5 

2 
Chengdu, 

Wuhan 
0 0 0 0 2 

Malashewicz, 

Lodz 
0 0.5 0 0 0 

3 

Zhengzhou, 

Changsha, 

Suzhou 

1 0  0.333 3 Liège 0 0 0 1 1 

4 Chongqing 0.5 0 0 0 4 
Hamburg, 

Tilburg 
0 0 1 0 0.5 

      5 Duisburg 0 0 1 0 0 
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(a) 

 
(b) 

Figure 6 – City coacervation subgroup diagram 

4.4  Result 

In terms of the development level of the logistics industry, Chongqing (0.862067) is far ahead, followed by 

Suzhou (0.389771) and Wuhan (0.362135). Duisburg (0.683845) and Hamburg (0.583931) are dual cores in 

Europe. In terms of logistics connection intensity, Chongqing and Chengdu in China form a strong linkage 

(Chongqing to Chengdu 26.2892, Chengdu to Chongqing 18.78). In Europe, Duisburg-Tilburg (162.0263) and 

Liège-Duisburg (239.162) form the strongest linkage. China presents a “hub-and-spoke” structure, with 

Wuhan as the central hub. Europe also presents a “hub-and-spoke” structure, with Duisburg as the central hub. 

The network density in China and Europe is 0.1389 and 0.1429, respectively, both of which are low, indicating 

that the interaction between cities is not strong enough. The centrality of Wuhan is the strongest, followed by 

Chongqing. The centrality of Duisburg is the strongest, followed by Liège. There are four cohesive subgroups 

in China with uneven size. Europe has 5 subgroups and is more dispersed. The Chinese network is more 

centralised, and the European network is relatively fragmented. The centrality index of Chinese cities is slightly 

higher than that of European cities. Both networks have a distinct core-edge structure. 

5. DISCUSSION 

The quantitative findings reveal distinct structural and operational characteristics of the CRE network. The 

significant disparities in logistics development levels quantified by the entropy weight method (e.g. 

Chongqing: 0.862 vs Xi'an: 0.073 in China; Duisburg: 0.684 vs Budapest: 0.048 in Europe) underscore the 

pronounced regional imbalances within both continents. The application of the improved gravitational model, 

incorporating GDP proportionality for asymmetric attraction and rail time distance, successfully captured the 

core-periphery dynamics. The exceptionally high attraction values between key hubs like Chongqing and 

Chengdu (26.289) and Duisburg and Hamburg (162.026) empirically validate their pivotal radiating roles 

within their respective networks. Social network analysis further confirmed a centralised “hub-and-spoke” 

structure in China centred on Wuhan (highest betweenness centrality: 12), contrasting with Europe’s more 

decentralised pattern centred on Duisburg (highest outdegree centrality: 10). However, the consistently low 

network density values (China: 0.1389; Europe: 0.1429) indicate a critical gap: despite the presence of strong 

core hubs, overall inter-city connectivity and collaboration across the entire network remain suboptimal, 

revealing substantial potential for efficiency gains through better integration. 

However, translating these structural insights into actionable optimisation strategies must contend with 

significant real-world operational constraints not fully captured by the models. First, geopolitical tensions and 

divergent national regulations across the Eurasian corridor directly impact route stability, transit times and cost 

predictability. Differing customs procedures, documentation requirements and safety standards create 

administrative friction and bottlenecks at border crossings, potentially negating the theoretical efficiency 

advantages identified by the time-distance metric in the gravitational model. The absence of standardised cross-

border data sharing further complicates coordinated network management. It is therefore essential to promote 

and establish bilateral or multilateral agreements aimed at streamlining customs procedures, standardising data 

formats and harmonising regulatory requirements. These efforts should focus in particular on alleviating 

bottlenecks identified near high-betweenness nodes or major attraction pairs. 
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Substantial gaps in infrastructure quality exist along the CRE route. Variations in rail track gauges 

necessitate time-consuming transhipment at key border points like Malaszewicz. Differing terminal handling 

capacities, electrification levels and ICT integration across nodes create operational inconsistencies and limit 

seamless interoperability, hindering the realisation of the network’s full potential connectivity suggested by 

the SNA. Prioritise investments in key high-centrality hubs (e.g. Wuhan, Chongqing, Duisburg, Liège), 

focusing on improving their transhipment capacity, digital integration and multimodal connectivity to reinforce 

the core structure of the network. At the same time, provide targeted support to lower-centrality nodes (e.g. 

Xi’an, Budapest) to promote greater regional balance and inclusivity within the logistics network. 

While route optimisation inherently reduces emissions (an estimated 12–15% reduction in CO₂ per km-ton 

compared with suboptimal paths), the explicit integration of environmental metrics could further transform the 

China–Europe Railway (CRE) into a truly green corridor. For example, prioritising electrified rail segments 

between high-attraction pairs (such as Chongqing–Duisburg) and deploying solar-powered terminals at major 

hubs like Wuhan and Duisburg, as suggested by Lomotko et al., would support alignment with the EU Carbon 

Border Adjustment Mechanism (CBAM) requirements. A comprehensive sustainability assessment should 

therefore incorporate explicit environmental indicators (e.g. carbon footprint per corridor, modal shift impacts) 

and social factors (e.g. labour standards at hubs, community impacts of terminal operations) into future 

network planning frameworks. This approach aligns with the global shift towards integrating Environmental, 

Social and Governance (ESG) criteria in logistics. Leveraging network structure analysis, planners can 

strategically design “green corridors” by routing flows through nodes with stronger environmental 

performance (e.g. electrified rail sections) and embedding carbon accounting within the parameters of the 

gravitational model to guide future development. 

While the integrated methodology provides a robust framework for analysing complex logistics networks 

like the CRE, its practical application faces limitations: 

The analysis relied primarily on 2021–2022 cross-sectional data. Key emerging dimensions influencing 

modern logistics, such as digitalisation levels, supply chain resilience indicators, real-time congestion data and 

granular environmental impact metrics, were not incorporated due to data availability constraints. Future 

studies should integrate longitudinal data to capture dynamic network evolution. 

The improved gravitational model, while innovative, simplifies reality. The assumption of time distance 

based on rail freight times overlooks complexities like border delays, multimodal connections (truck/rail/sea) 

and the impact of infrastructure quality variations on actual transit reliability. The linear GDP proportionality 

for attraction might not fully capture non-linear economic dependencies or strategic partnership factors. The 

SNA results, particularly network density and subgroup identification, are sensitive to the chosen threshold for 

link existence (as starkly shown by comparing Figure 3/Figure 4 to Figure 5). While using the mean value provides 

a meaningful filter, the optimal threshold for operational relevance may vary contextually. 

The models inherently abstract away critical day-to-day challenges: seasonal demand fluctuations, 

equipment (wagon/container) availability imbalances, dynamic pricing volatility, impacts of geopolitical 

instability on specific routes and the complexities of managing multi-stakeholder operations across diverse 

jurisdictions. These factors significantly influence real-world routing decisions beyond the static network 

structure. 

6. CONCLUSION  

This study pioneered an integrated analytical framework that combines the entropy weight method, an 

improved gravitational model, and social network analysis to examine the structure and dynamics of the China-

Europe Railway (CRE) network. The key quantitative findings reveal significant disparities in the logistics 

development levels of different nodes (e.g. Chongqing: 0.862 vs. Xi’an: 0.073; Duisburg: 0.684 vs. Budapest: 

0.048, as shown in Table 7). The analysis also identified critical hub cities through asymmetric spatial 

interactions (peak attraction values: Chongqing-Chengdu: 26.289; Duisburg-Hamburg: 162.026) and 

highlighted contrasting network topologies – a centralised Chinese “hub-and-spoke” configuration centred on 

Wuhan (betweenness centrality: 12) versus a more decentralised European structure anchored by Duisburg 

(outdegree centrality: 10). Critically, the persistently low network density (China: 0.1389; Europe: 0.1429) 

signals a major opportunity for enhancing inter-city collaboration and overall network efficiency. The entropy 

weight method quantified stark disparities in logistics development levels between nodes, with Chinese cities 

showing Chongqing (0.862) >15 times higher than Xi'an (0.073), while European nodes ranged from Duisburg 

(0.684) to Budapest (0.048). The improved gravitational model captured extreme asymmetric attraction 
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between Chongqing-Chengdu (26.289 vs 18.78) and Duisburg-Tilburg (162.026 vs 85.725). SNA metrics 

confirmed structural contrasts: Wuhan’s betweenness centrality (12) dominated China’s centralised network, 

whereas Duisburg’s outdegree centrality (10) reflected Europe’s polycentric pattern. These insights provide a 

vital empirical foundation for optimising the CRE within the Belt and Road Initiative. 

Table 7 – Key quantitative findings 

Metric China (Max) Europe (Max) Implication 

Logistics development 0.862 (CQ) 0.684 (DUI) Core-periphery disparity 

Node attraction 34.37 (CQ) 326.20 (DUI) Asymmetric economic influence 

Network density 0.1389 0.1429 Suboptimal connectivity 

Data source: Collected by the author. 

The findings of this study lead to several suggestions and improvements for policymakers and CRE 

practitioners to consider. First, prioritising infrastructure upgrades and service integration at high-centrality 

hubs to strengthen network resilience. Actively fostering connections between identified cohesive subgroups 

and strategically integrating peripheral nodes to increase overall density and robustness. Utilising the 

quantified node strengths and link intensities to guide targeted investments. Advocating strongly for policy 

harmonisation, particularly in customs procedures and data standards, focusing on corridors connecting high-

attraction pairs to alleviate bottlenecks. Developing differentiated support strategies for nodes based on their 

quantified development levels and network roles. Leveraging the structural understanding to design efficient 

routing strategies that inherently reduce congestion and emissions. Future iterations of the model must 

explicitly incorporate environmental performance indicators (e.g. carbon intensity per segment) to enable true 

sustainability optimisation alongside economic efficiency. Promoting modal shift benefits and green terminal 

practices at key hubs. Implementing digital platforms for real-time data sharing among CRE operators, 

especially within identified cohesive subgroups. Establishing pilot “green corridors” on high-volume routes 

(e.g. Chongqing-Duisburg) with optimised schedules and preferential access for sustainable practices. 

Initiating bilateral working groups focused on streamlining procedures at critical border nodes like 

Malaszewicz, using the quantified time-distance and attraction data as negotiation benchmarks. 

While the methodology offers significant advancements, its application is constrained by data limitations. 

Three limitations warrant attention: (1) cross-sectional data (2021–2022) precluded analysis of network 

evolution dynamics; (2) the gravitational model’s assumption of linear GDP proportionality may oversimplify 

economic interdependencies (e.g. strategic partnerships unaccounted); (3) SNA subgroup identification was 

sensitive to link existence thresholds – using mean value (China: 1.9579, Europe: 13.902) may mask weak but 

operationally significant connections. Future research should incorporate longitudinal datasets, refine the 

gravitational model with multimodal time/cost variables and non-linear attraction factors, explore threshold 

robustness, and integrate explicit sustainability and resilience metrics to provide an even more comprehensive 

tool for managing the evolving complexities of the CRE and similar global logistics networks. Overall, this 

study bridges theoretical network analysis and practical logistics management, offering quantifiable metrics 

crucial for steering the Eurasia freight and economic connections towards greater efficiency, resilience and 

sustainability. 
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