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ABSTRACT

This study introduces an innovative, integrated approach to analyse the China-Europe
Railway Express (CRE) network, combining the entropy weight method, improved
gravitational model and social network analysis. These methodologies can provide a
comprehensive comparison and reveal structural differences between Chinese and European
railway segments. Through quantifying logistics industry development levels, inter-city
connection intensities and network centrality, the study provides insights into the CRE
network’s operational dynamics. Key findings include the identification of critical nodes,
cohesive subgroups and contrasting network structures between China (centralised) and

University of Zagreb Europe (decentralised). The improved gravitational model, incorporating GDP proportions

for asymmetrical attractions and time distance measurements, represents significant
advancements in spatial interaction analysis for logistics networks. The study proposes
prioritising electrified rail sections between high-attraction pairs (Chongqing-Duisburg) and
adopting solar-powered terminals at hubs like Wuhan and Duisburg for sustainable networks.
It is well anticipated that the methods, models and research findings from this study will
contribute to network optimisation, policy formulation and sustainable development of
international logistics systems, particularly within the context of the Belt and Road Initiative,
which is of rising significance for Eurasia geopolitical and cross-continental economic
cooperation.

KEYWORDS
China-Europe railway express; cargo collection network; improved gravitational model;
social network analysis; entropy weight method.

1. INTRODUCTION

With the deepening of global economic integration and the continuous advancement of the Belt and Road
Initiative (BRI), the strategic significance of the China-Europe Railway Express (CRE), as a key logistics
channel connecting Eurasia, has become increasingly prominent. As an important part of the Belt and Road
Initiative, the CRE has been playing a significant role in bridging Eurasia since its first operation in 2011
(Wang et al.) [1], Figure 1. The rapid expansion of the CRE has reshaped transcontinental logistics, with annual
freight volumes surging from 1,702 TEUs in 2011 to over 1.6 million TEUs in 2022. However, as Lomotko et
al. [2] revealed, current multimodal coordination mechanisms remain suboptimal — only 38% of the CRE routes
achieve seamless rail-water transitions, resulting in 12—18-hour delays at key hubs. However, as a complex
international logistics system, the operational dynamics and structural characteristics of the CRE network have
long lacked systematic quantitative analysis [3]. Traditional research methods frequently fail to capture the
complex, multidimensional nature of this network, particularly when it comes to identifying and analysing
differences across national boundaries. The effective application of these advanced analytical tools to
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international logistics networks, such as CRE, and gaining valuable insights from them, remains an urgent
problem. In particular, the quantification of the development levels of the logistics industry in different cities,
the strengths of logistics links between cities, and the characteristics of the overall network structure require
innovative methodologies to answer. In addition, China and Europe have significant differences in their
logistics network structures. This difference not only reflects the level of economic development and
geographical characteristics of the two regions, but also affects the operational efficiency and future
development strategy of the entire network [4, 5]. Therefore, it is of great significance to compare the
similarities and differences between the network structures of China and Europe to optimise the overall
network layout and formulate differentiated development strategies.
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Figure 1 - China-Europe Railway Express routes. Source: Wang et al, p. 1279 [1]

Building on Zeng and Sun’s [6] breakthrough in coupling gravity models with multilayer network analysis,
this study pioneers an integrated framework combining the entropy-weight method, improved gravitational
model and social network analysis. This integrated approach can not only quantify the development level of
the logistics industry in each node city, but also deeply analyse the strength of logistics connections and
network centrality between cities, and overcomes limitations of conventional single-criterion evaluations
identified by De Bona et al. [7], to reveal the internal structure and operational dynamics of the network. An
important novel method in this study is the improvement of the gravitational model. By introducing the GDP
ratio to reflect the asymmetrical attraction relationship between cities, and considering the time distance factor,
this improvement provides a more accurate and comprehensive perspective for the spatial interaction analysis.
This method not only takes into account the differences in economic strength but also takes into account the
influence of spatio-temporal factors, making the model closer to the operational characteristics of the actual
logistics network.

The main findings of the study include the identification of key node cities, cohesive subgroups, and the
revealing of the comparative characteristics of network structures in China (centralised) and Europe
(decentralised). These findings provide unprecedented insight into the organisational structure and operating
model of CRE networks. The significance of this study is not only to bridge the gap between theoretical
network analysis and practical logistics management, but also to provide quantitative indicators and decision-
making basis for the optimisation and sustainable development of the CRE network. By providing quantifiable
indicators, this study provides important support for evidence-based decision-making. These findings have
important implications for network optimisation, policy making and the sustainable development of
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international logistics systems, especially in the context of the Belt and Road Initiative. In the following
chapters, this article will elaborate on the research methodology, data analysis process, and discuss in depth
the findings and their implications for CRE network optimisation and international logistics management.

2. LITERATURE REVIEW

International logistics is a cross-border logistics activity that has emerged within the context of
globalisation, encompassing the entire process of goods from production to consumption. In recent years, the
development of international logistics has demonstrated trends toward digitalisation, intelligence and green
logistics [4]. The CRE is connecting China and Europe by rail and offering an efficient and stable international
logistics solution [3]. The operational efficiency of the CRE is continuously improving, with significant
enhancements in on-time rates and transport speed achieved through optimising operational schemes and
consolidation centres, increasing loading/unloading efficiencies, and reducing transit times [8]. Niu and Liu
[9] analysed the improvement in logistics efficiency of different node cities using a differentiation model,
highlighting the significant role of the CRE trains in promoting regional economic development. Cargo
consolidation refers to the process of improving transportation efficiency and reducing transportation costs by
concentrating scattered goods at a specific location for unified processing and transportation [10]. In logistics
networks, the effectiveness of cargo consolidation directly impacts the operational efficiency of the entire
network. Different cargo consolidation modes (e.g. centralised and decentralised) are suitable for various
logistics scenarios [11]. Cargo consolidation and network optimisation theory can serve as a support tool for
planning and policy decisions involved in improving rail networks at regional and national levels [12, 13].
Camur et al. put forward an optimisation framework for efficient and sustainable logistics operations via
transportation mode optimisation and shipment consolidation [14].

Hu et al. [15] and Wiegmans and Janic [16] provided a scientific basis for decision-makers by constructing
an evaluation model to quantify the economic and environmental benefits of cargo pooling. Naganawa et al.
[17] and Liu et al. [18] optimised cargo transportation paths using various algorithms (e.g. genetic algorithm,
ant colony algorithm) to reduce transportation time and cost. Aliakbari et al. [19] improved the reliability and
robustness of the logistics network by building evaluation models and optimisation strategies to ensure that
the logistics network can still operate efficiently in the face of emergencies. With the development of the
Internet of Things, big data and artificial intelligence technologies, Ding et al. [20] and Pawar and Paluri [21]
explored how to apply these technologies to logistics network optimisation to enhance the intelligence and
automation of logistics operations. Environmental considerations are becoming pivotal in rail logistics
evaluation. Comparative studies reveal that CRE’s CO, emissions per ton-kilometre are 62—68% lower than
air freight but 12—15% higher than maritime shipping, underscoring the need for operational optimisation to
enhance its environmental competitiveness [22]. The dynamic multimodal system framework by Lomotko et
al. [2] provides a viable pathway for CRE to achieve emission reductions through better rail-water intermodal
coordination.

The entropy weight method is a multi-attribute decision-making approach based on information entropy
theory, widely used in evaluation and optimisation research in the field of logistics. In recent years, the
application of the entropy weight method in logistics performance evaluation, logistics centre site selection,
logistics network optimisation and other areas has achieved remarkable results. Yu Y. [23] used the entropy
weight method to evaluate the digital innovation capability of regional logistics flow. The results show that
the method can accurately measure the level of logistics digital innovation, providing an important reference
for evaluating regional logistics innovation capability. Liu [24] used the entropy weight-TOPSIS method and
a mixed integer programming model to select node cities that can serve as the assembly centre of the western
corridor of the CRE, optimising the transportation network. El-Araby [25] applied the entropy weight method
to the study of logistics centre site selection, and the results showed that the method could make the site
selection scientific and reasonable. Wang et al. [26] used the entropy weight method to study the development
level of the logistics industry in the node cities of the CRE. The results showed that the method can effectively
solve the problem of logistics network structure optimisation. The operational efficiency of cross-border rail
logistics heavily relies on cost management innovations. Stopka et al. [27] developed an activity-based costing
framework for railway enterprises, which could be adapted to optimise CRE’s transhipment cost allocation at
key hubs like Malaszewicz. Meanwhile, Cernd et al. [28] emphasised the necessity of standardised transport
regulations, highlighting that inconsistent customs procedures between China and EU member states increase
border waiting times by 18-22% — a critical issue for CRE’s time-sensitive cargo.
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Social network analysis (SNA) is a method for studying the relationships between nodes using graph theory
and network theory, widely applied in the structural analysis and optimisation of logistics networks [29]. In
recent years, SNA has been widely used to evaluate the importance of logistics nodes and optimise logistics
network structures. Li et al. [30] used SNA to optimise the structure of a regional logistics network and found
that this method can significantly improve the network’s connectivity and stability. Mu et al. [31] used SNA
to study the synergistic effect of the logistics network in the Chengdu-Chongqing region. The results showed
that the proposed method could effectively improve the network’s overall operational efficiency. Recent
methodological advancements have significantly enhanced logistics network analysis. Zhu et al. [31] proposed
a weighted network analysis framework using the Debye model, which provides new insights into handling
asymmetric connectivity patterns prevalent in transnational rail networks. Furthermore, Zeng and Sun [6]
demonstrated the effectiveness of coupling gravity models with social network analysis in spatial interaction
studies, a methodology particularly relevant for analysing CRE’s transcontinental connections. These
approaches address the limitations of traditional single-layer network models by capturing multimodal
interactions (rail-truck-barge) as shown in Lomotko et al. [2].

The gravity model describes the interaction between two entities based on the laws of gravity in physics.
In logistics research, the gravity model is often used to predict the flow of goods and analyse the spatial
distribution characteristics of logistics networks. Wang [26] used the gravity model to analyse the strength of
logistics links between the node cities of the China-Europe Railway Express and concluded that the cities have
the potential to establish a transit and collection hub for the CRE. Lu Bo [33] used the gravity model to predict
the cargo flow of the CRE and found that the model can accurately reflect the cargo flow between logistics
nodes. Li Y. [34] used the gravity model to analyse the spatial distribution characteristics of the logistics
network in Chengdu and Chongqing, providing a scientific basis for the development of regional logistics. Mu
et al. [31] used the gravity model to evaluate the attractiveness of logistics nodes and found that this method
can significantly improve the rationality of the layout of logistics nodes. Innovations in network topology
analysis continue to advance logistics research. The reduced complex network model proposed by De Bona et
al. [7] offers a simplified yet effective approach for identifying critical nodes in large-scale transport systems,
complementing traditional centrality metrics. This aligns with findings by Wang & Chen [35], where
multilayer network analysis revealed that 73% of logistics network resilience derives from the top 20% high-
betweenness nodes — a phenomenon observable in CRE’s dependence on Wuhan and Duisburg.

This literature review covers recent advances in international logistics, the development of CRE, cargo
consolidation, logistics network optimisation and related research methods [36]. The review shows that
international logistics is trending towards digitalisation, intelligence and sustainability. Research on cargo
consolidation and logistics network optimisation has shown a trend of diversification and refinement, reflecting
the continuing concern of the academic community for improving the efficiency and sustainability of logistics
[37]. Previous studies have focused on the economic impact (Yang et al.) [38], operational efficiency and
sustainable development. However, there is still a gap in systematic comparative research on the structural
differences and impacts on the overall network function between the China-Europe Railway Express networks
in both China and Europe. This study aims to fill this research gap by analysing the development level of the
logistics industry, the intensity of logistics links between cities, the network centrality and the characteristics
of cohesion subgroups through data analysis of selected major node cities in both China and Europe.

3. METHODOLOGIES

3.1 Application of the entropy weight method

This study tackles the challenge by quantitatively assessing the multifaceted and overlapping indicators of
logistics development through the adoption of a structured evaluation system based on prior research. It
outlines three primary criteria and ten specific indicators to evaluate the logistics industry development level
in hub cities, as detailed in 7able 1. Logistics industry scale is assessed through traditional metrics, including
the workforce size within the logistics sector, freight volume and cargo turnover. These indicators jointly
measure the magnitude of logistics industry development in hub cities. Logistics industry infrastructure plays
a crucial role in shaping the logistics development level. Its assessment encompasses factors like the value of
fixed assets in the logistics sector, road network extent, fleet size of road freight vehicles and the quantity of
integrated logistics parks. The economic development level of a city underpins its logistics industry’s growth.

112



Promet — Traffic& Transportation. 2026;38(1):109-124. Management and Planning

This layer includes indicators such as regional GDP, consumer spending levels and the scale of import-export
activities.

Table 1 — Evaluation system for logistics industry development level of cities

Target layer Criterion layer Indicator layer

Number of employees in the logistics industry

Scale of the logistics Freight volume

industry
Cargo turnover
Development level Operational mileage of roads
of the logistics Logistics infrastructure
industry Operational mileage of railways

GDP

Level of economic

Total retail sales of consumer goods
development

Total volume of imports and exports

The entropy weight method is a prevalent approach for conducting comprehensive evaluations across
multiple indicators. This study builds on prior research by implementing an enhanced version of the entropy
weight method to allocate weights to different indicators pertinent to the logistics industry in cities served by
the CRE. This facilitates the assessment of each city’s logistics industry development level.

Data standardisation: Given the diversity in measurement units across various secondary indicators, this
study standardises all indicators to ensure they are positively oriented. This standardisation is achieved through
a unified normalisation process, as delineated by Equation (1).

Xz/_m}Il{Xzi}

Y, = , ()
' max{X,} —min (X, }
J J

where Xij is the original data, Max {Xij} and min{Xij} represent the maximum and minimum values of the jth
indicator in the ith city, respectively.
1) Calculation of indicator weights

Y,

P =—Y 2)
y n ) ju
Zi:l ij

Pij represents the weight of the jth indicator in the ith city, where n is the number of cities.
2) Calculation of indicator entropy values
1-F,
W, = n l (3)
T n-N" E
j=1""J

where Ej is the entropy value of the jth indicator.
3) Calculation of indicator weights

Z, = Z Y, *w, @
=

where Zi is the logistics industry development level score of the city.

3.2 Improved gravitational model

The gravity model is widely recognised for analysing urban spatial connectivity. By focusing on the cargo
distribution network, this paper introduces an adapted version of the gravity model, informed by prior research.
This adapted model aims not only to quantify the spatial connectivity among hub cities but also to facilitate
the reconfiguration of the logistics network structure for cities connected by the CRE. The specifics of the
model are detailed as follows.

113


javascript:;
javascript:;

Promet — Traffic& Transportation. 2026;38(1):109-124. Management and Planning

M;; =k ZiZj ®)

Tyt

In the model, Mij measures the spatial logistics gravity between city i and city j; Zi and Zj represent the
development levels of the logistics industry in the respective cities. The term tij denotes the time distance
between city i and city j, indicating specifically the time taken for railway freight transportation between these
two cities. Given the varying development levels of the two cities, their mutual attraction might not be
symmetrical; the gravitational pull from city i towards city j may not reflect that from city j towards city i. To
account for this asymmetry, this study utilises the actual GDP proportions to define the coefficient of attraction,
with the formula given by Kij = GDPi / (GDPi + GDPj). The attraction from city j to city i is calculated using
a similar approach.

3.3 Social network analysis

Social network analysis (SNA) is a powerful tool for studying the relationships between nodes and edges
in complex networks [40, 41]. Through SNA, it is possible to identify the structural characteristics of inter-
city logistics networks, as well as the underlying patterns and relationships within them. One key method is
measuring network density, which represents the ratio of actual connections to the maximum possible number
of connections in the network. Calculating the density of an inter-city logistics network helps to assess how
cohesive the network is. For instance, a high-density network indicates that logistics activities between cities
are closely connected and that goods flow frequently among them.

The centrality metric is used to measure the importance of each node in the network, including degree
centrality, closeness centrality and betweenness centrality. These indicators can help identify cities that play
key roles in logistics networks. In logistics networks, identifying key nodes and analysing their centrality are
important steps to optimise the network structure and improve logistics efficiency. Key nodes are typically the
most influential nodes in the network and are responsible for connecting different sub-networks or regions.
Among the indicators, degree centrality measures the number of nodes to which a node is directly connected.
In logistics networks, cities with a high degree of centrality are usually logistics hubs, connecting multiple
other cities and playing an important distribution role. Closeness centrality measures the average shortest path
length from one node to all other nodes. In logistics networks, cities with high closeness centrality usually
have higher logistics efficiency because they can reach other cities quickly. Betweenness centrality measures
the extent to which a node acts as a bridge between other nodes in the network. In logistics networks, cities
with high betweenness centrality are often key transit nodes, controlling a large number of cargo flow paths.
The clustering coefficient reflects the degree of aggregation among nodes in the network. A high clustering
coefficient indicates the presence of multiple closely connected subgroups in the network, which may be
hotspots for logistics activities.

4. ANALYSIS OF THE NETWORK STRUCTURE OF THE CRE

4.1 The CRE cities’ logistics industry development level measurement

In this study, 9 cities in China, including Tianjin, Suzhou, Wuhan, Chongqing, Chengdu, Xi'an, Dongguan,
Changsha and Zhengzhou, and 8 cities in Europe, including Budapest in Hungary, Duisburg and Hamburg in
Germany, Lodz and Malaszewicz in Poland, Tilburg in the Netherlands, Liége in Belgium and Vuosaari in
Finland, are selected as targets, which are geographically located as shown in Figure 2. Chinese data are mainly
derived from the National Statistical Yearbook and the statistical bulletin of each city. The distance of China’s
railway freight time is obtained by checking the China Railway webpage, and the distance between European
cities and Chinese cities is obtained by looking for the longitude and latitude of the seat of the government of
each city through Baidu maps. The European data are derived from the United Nations Economic Commission
for Europe (UNECE) database and Eurasia Rail Alliance Index (ERAI) webpage.
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Figure 2 — The target cities and GDP of the CRE

The entropy weight method is used to calculate the logistics industry development level of the node city,
as shown in Table 2. The results show that there are significant differences in the development levels of the
logistics industry between node cities in China and Europe. In China, Chonggqing is foremost with a high score
0f 0.862067 and has the most developed logistics industry among these cities, while Xi'an (0.072543) reflects
significant regional imbalances in development. The result of Suzhou (0.389771) is close to that of Wuhan.
Although the reading is much lower than that of Chonggqing, it is still higher than that of most other cities.
Chengdu (0.313993) has a relatively good level of development. The scores of Zhengzhou, Changsha,
Dongguan and Xi'an are relatively low, which are all below 0.2. In Europe, Duisburg (0.683845) and Hamburg
(0.583931) are the dual cores of the European logistics network, taking over the two major logistics hubs in
Europe. Chongqing and Duisburg are the cities with the most developed logistics industries in China and
Europe, respectively, which is consistent with their core positions in the China-Europe railway network.

Table 2 — Urban logistics industry development level scores

Rank Chinese cities Result Rank European cities Result

1 Tianjing 0.29498 1 Budapest 0.047742
2 Zhengzhou 0.13863 2 Liege 0.083614
3 Suzhou 0.389771 3 Malashewicz 0.406256
4 Changsha 0.132989 4 Tilburg 0.1388335
5 Chengdu 0.313993 5 Duisburg 0.683845
6 Chongqing 0.862067 6 Lodz 0.287948
7 Wuhan 0.362135 7 Hamburg 0.583931
8 Xi'an 0.072543 8 Vuosaari 0.160549
9 Dongguan 0.127515

4.2 The intensity of logistics connections between cities

According to the established model, the logistical linkage strength matrix between the node cities in China
and Europe is calculated, as shown in Tables 3 and 4. It can be seen from the two tables that the logistics gravity
between two cities is not equal because one city’s attractiveness to another city is related to the root coefficient
k, which in turn is determined by the GDP of the two cities. A city with a larger GDP is more attractive to
other cities, while the logistics gravity of other cities to this city is not equal to the attractiveness of this city to
other cities.
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Table 3 — Intensity of logistics links between Chinese cities on the CRE

Cities Tianjing | Zhengzhou Suzhou | Changsha | Chengdu | Chongqing | Wuhan Xi'an Dongguan Total 2
Tianjing 0.6589 0.6055 0.1569 0.1183 0.352 0.6256 0.124 0.0816 2.7228
Zhengzhou 0.5276 0.3914 0.2131 0.1275 0.3964 1.2997 0.2548 0.0612 3.2717
Suzhou 0.883 0.7129 0.331 0.2255 0.6735 1.1519 0.1593 0.2176 4.3547
Changsha 0.1335 0.2264 0.1932 0.1679 0.6874 2.9518 0.0655 0.3336 4.7593
Chengdu 0.1506 0.2027 0.1968 0.2511 18.78 0.5196 0.3049 0.1252 20.5309
Chongqing 0.6271 0.882 0.8228 1.4392 26.2892 2.9611 0.6812 0.6689 343715
Wuhan 0.7151 1.8554 0.9028 3.9647 0.4667 1.8997 0.3123 0.448 10.5647
Xi'an 0.0859 0.2204 0.0757 0.0533 0.166 0.2649 0.1893 0.0218 1.0773
Dongguan 0.0562 0.0527 0.1028 0.2701 0.0678 0.2587 0.2701 0.0217 1.1001
Total 1 3.179 4.8114 3.291 6.6794 27.6289 23.3126 9.9691 1.9237 1.9579
Table 4 — Intensity of logistics connections between European cities on the CRE
Cities Budapest Liége Malashewicz Tilburg Duisburg Lodz Hamburg | Vuosaari Total 2
Budapest 0.0091 1.353 0.0643 0.4044 0.3253 0.3641 0.1408 2.661
Liége 0.1997 1.0181 85.7255 239.162 0.6191 13.9711 0.255 340.9505
Malashewicz 4.1113 0.1411 0.805 4.858 14.0828 5.2676 5.1564 34.4222
Tilburg 0.248 15.0783 1.0214 162.0263 0.2876 11.8754 0.3284 190.8654
Duisburg 1.559 42.0663 6.1638 162.0263 1.8211 110.7153 1.8516 326.2034
Lodz 7.1307 0.6191 101.5859 1.635 10.3537 14.461 3.5872 139.3726
Hamburg 1.9879 3.4803 9.4656 16.8189 156.8037 3.6024 2.5826 194.7414
Vuosaari 0.2 0.0165 2.4103 0.121 0.6822 0.2325 0.6718 4.3343
Total 1 15.4366 61.4107 123.0181 267.196 5742903 | 209708 | 157.3263 13.902

Note: Total 1 is the sum of the attractiveness of other cities to the city. Total 2 is the sum of the attractiveness of the city to other cities.
Source: Collected by the author.

In terms of total intensity, Chongqing (7otal 1: 23.3126, Total 2: 34.3715) and Chengdu (Total I: 27.6289, Total
2: 20.5309), which are far ahead of the other cities, show their central position in the China-Europe Express
Railway network. The top 4 cities in terms of attractiveness (7ol 2) are Chongqing, Chengdu, Wuhan and
Changsha. The top 4 in terms of being attracted (7otal ) are Chengdu, Chongqing, Wuhan and Changsha. In
terms of individual attractiveness, Chengdu is the most attractive to Chongqing at 26, while Chongqing’s
attractiveness to Chengdu is 18, which is also much higher than that of other cities, which also shows that the
logistics connection between the two cities is very strong. Xi'an and Dongguan are lower in attractiveness,
suggesting that they have few logistical links with other cities. Similarly, in Europe, Duisburg has the strongest
overall link strength (Total 1: 574.2903, Total 2: 326.2034). The top 3 cities in terms of attractiveness (7otal 2)
are Liége, Duisburg and Hamburg. The top 3 pairs in terms of being attracted (7otal 1) are Duisburg, Tilburg
and Hamburg. The top 3 pairs before city-to-city are Duisburg-Tilburg, Duisburg-Hamburg and Li¢ge-Tilburg.
Duisburg shows that it is extremely attractive as a logistics hub. Liége is much more externally attractive
(340.9505) than attracted (61.4107), indicating that it plays more of an output role in the network. Overall,
there is a huge variation in the strength of links between cities, ranging from 0.0091 (Budapest-Li¢ge) to
239.162 (Liege-Duisburg).

Tables 3 and 4 are used to plot the network structure of logistics links between Chinese and European cities
by selecting the natural breaks method, as shown in Figures 3 and 4, and the bolder the line, the stronger the
attraction relationship. However, due to the weak connection of logistics spatial in some cities, such a
connection is of little significance. In order to show the actual situation of the logistics relationship between
cities more obviously, the data are binary processed, and the threshold is set to the average value; that is, 1 is
taken when the spatial logistics connection is greater than the average value, and 0 is taken when the spatial
logistics connection is less than the average value. Plotting is executed with NetDraw, as shown in Figure 5.
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Figure 3 — Structure diagram of urban logistics network in China (threshold is 0)
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Figure 4 — Structure diagram of urban logistics network in Europe (threshold is 0)
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Figure 5 — Structure diagram of urban logistics network when the threshold is the average value; a) China, b) Europe

Comparing with Figure 3 and Figure 5(a) shows the “hub-and-spoke” network structure, with Wuhan at the
centre of the network, and it is a key hub node. Zhengzhou, Chongqing and Changsha are all connected to
Wuhan in both directions, indicating that Wuhan and these three cities have strong mutual attractiveness. It is
similar to Chongqing and Chengdu. Wuhan is attractive to Suzhou, while Suzhou is not to Wuhan. Some cities,
such as Tianjin and Dongguan, are isolated on the map, indicating that they have no logistical attractiveness
to other cities. Figure 4 and Figure 5(b) present a “hub-and-spoke” structure, with a small network centred on
Duisburg in the west. Hamburg, Tilburg and Liége all have arrows pointing to Duisburg, which means that
Duisburg has a strong logistical appeal to these cities. Malashewicz has an arrow from Lodz, indicating that
Malashewicz is logistically attractive to Lodz. Duisburg’s central location makes it attractive to the
surrounding cities, perhaps because of its state-of-the-art logistics facilities, strategic location or economic
importance. Malashewicz’s appeal to Lodz may stem from its strategic location as a border city, potentially a
gateway to Eastern European or Russian markets. Vuosaari (Finland) and Budapest (Hungary) as isolated
nodes may indicate that they do not yet have strong logistical links in this particular network. This approach
to logistics attractiveness-based analysis provides a deeper view of the dynamics of the logistics network,
reflecting the relative strength and influence of cities in the logistics sector. This network analysis diagram can
be used for logistics planning, traffic optimisation or regional economic analysis.

4.3 Analysis of the structure of the network

The greater the value of city network density, the greater the interaction between node cities, the greater
the possibility of network influence on members. The density of the Chinese city logistics network is 0.1389,
and the density of the European city network is 0.1429; the data show that the density is small, indicating that
the interaction between cities is also not too strong, which may be due to the fact that the more government
intervention there is, the fiercer the competition is. Each of them is in its own way, and they have not formed
a reasonable logistics network structure. In order to deeply understand the topology of the CER network and
the importance of each node city, this paper carries out a centrality analysis of the CER network, as shown in
Table 5. Wuhan appears to be the most important hub city. It has the highest out-degree (3) and in-degree (4),
and the highest betweenness centrality (12). This means that Wuhan plays a key transit and connection role in
the CRE network. Chongqing follows Wuhan with higher out-degree (3) and in-degree (2), and ranks second
in betweenness centrality (7). It is another important transit station. Duisburg is the heart of the European
network. Its out-degree and in-degree are both 3, and its betweenness centrality is 5, which is the highest
among European cities. Liége performs better in terms of out-degree (2) and closeness centrality, and is an
important node in the European network. Suzhou has the highest outgoing closeness centrality (21.622) and
has unique advantages in sending. Overall, the centrality indicators of Chinese cities are slightly higher than
those of European cities, especially in terms of betweenness centrality. Chinese networks appear to be more
centralised, while European networks are relatively decentralised.
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Table 5 — Centrality data of the urban network of the CRE

China Europe
Cities Out- In- In- Out- Between Cities Out- In- In- Out- Between
degree degree closeness | closeness ness degree degree clc clc ness
Wuhan 3 4 24.242 19.512 12 Duisburg 3 3 20 20 5
Chongqing 3 2 22.857 19.512 7 Liege 2 1 18.919 19.444 0
Chengdu 1 1 20.513 18.182 0 Hamburg 1 1 18.919 18.919 0
Changsha 1 2 22.857 18.182 0 Tilburg 1 2 19.444 18.919 0
Suzhou 1 0 11.111 21.622 0 Lodz 1 0 12.5 14.286 0
Zhengzhou 0 1 21.622 18.182 0 Budapest 0 0 12.5 14.286 0
Tianjing 0 0 11.111 11.111 0 Malashewicz 0 1 12.5 12.5 0
Xi'an 0 0 11.111 11.111 0 Vuosaari 0 0 12.5 12.5 0
Dongguan 0 0 11.111 11.111 0

Data source: Collected by the author.

In order to further explore the internal structure of the CRE network and the close relationship between
cities, this paper analyses the cohesion subgroup of the network. Tables 5 and 6 show the cohesive subgroup
matrix of node cities in China and Europe, respectively, and the cohesive subgroup is shown in Figure 6. From
the table, we can see the characteristics of the Chinese network subgroup. The Chinese network is divided into
four subgroups, reflecting the complexity and diversity of the network. The size of the subgroups is uneven,
ranging from a single city (Chongqing) to three cities (Zhengzhou, Changsha, Suzhou). There is a strong
connection between subgroup 1 (Tianjin, Xi'an, Dongguan) and subgroup 3 (Zhengzhou, Changsha, Suzhou)
(a value of 1), indicating that the two subgroups work closely together in the logistics network. Subgroup 2
(Chengdu, Wuhan) is not directly related to the other subgroups, which may indicate that these cities are
relatively independent in the network. Although Chongqing (subgroup 4) is a separate group, it has a certain
relationship with subgroup 1 (the value is 0.5), reflecting its special status in the network. The European
network is divided into 5 subgroups, showing a more detailed structure. Most of the subgroups consist of 1-2
cities, indicating a high level of decentralisation of the European network. There is a strong link between
subgroup 3 (Liege) and subgroups 4 (Hamburg, Tilburg) and subgroup 5 (Duisburg) (a value of 1), indicating
that Liege plays a key role in the network. Subgroup 2 (Malaszewicz, Lodz) shows an internal link (value 0.5),
indicating close cooperation between the two cities. Subgroups 1 (Budapest, Vuosari) and 4 (Hamburg,
Tilburg) have moderate associations (values of 0.5) with subgroup 5 (Duisburg), reflecting the centrality of
Duisburg.

Table 6 — Condensed subgroup density

China Europe
Order Cities 1 2 3 4 Order Cities 1 2 3 4 5
1 Tianjing, X'an, |, 0 1 | 0333 1 Budapest, 0 0 0 0 | 05
Dongguan Vuosaari
Chengdu, Malashewicz,
2 Wuhan 0 0 0 0 2 Lodz 0 0.5 0 0 0
Zhengzhou,
3 Changsha, 1 0 0.333 3 Liége 0 0 0 1 1
Suzhou
. Hamburg,
4 Chongqing 0.5 0 0 0 4 Tilburg 0 0 1 0 0.5
5 Duisburg 0 0 1 0 0
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Chengdu 5

Zhengzhou 2

Changsha 4

Chongaing 3

(@ (b)

Figure 6 — City coacervation subgroup diagram

4.4 Result

In terms of the development level of the logistics industry, Chongqing (0.862067) is far ahead, followed by
Suzhou (0.389771) and Wuhan (0.362135). Duisburg (0.683845) and Hamburg (0.583931) are dual cores in
Europe. In terms of logistics connection intensity, Chongqing and Chengdu in China form a strong linkage
(Chongqing to Chengdu 26.2892, Chengdu to Chongqing 18.78). In Europe, Duisburg-Tilburg (162.0263) and
Liege-Duisburg (239.162) form the strongest linkage. China presents a “hub-and-spoke” structure, with
Wuhan as the central hub. Europe also presents a “hub-and-spoke” structure, with Duisburg as the central hub.
The network density in China and Europe is 0.1389 and 0.1429, respectively, both of which are low, indicating
that the interaction between cities is not strong enough. The centrality of Wuhan is the strongest, followed by
Chongqing. The centrality of Duisburg is the strongest, followed by Liége. There are four cohesive subgroups
in China with uneven size. Europe has 5 subgroups and is more dispersed. The Chinese network is more
centralised, and the European network is relatively fragmented. The centrality index of Chinese cities is slightly
higher than that of European cities. Both networks have a distinct core-edge structure.

5. DISCUSSION

The quantitative findings reveal distinct structural and operational characteristics of the CRE network. The
significant disparities in logistics development levels quantified by the entropy weight method (e.g.
Chongqing: 0.862 vs Xi'an: 0.073 in China; Duisburg: 0.684 vs Budapest: 0.048 in Europe) underscore the
pronounced regional imbalances within both continents. The application of the improved gravitational model,
incorporating GDP proportionality for asymmetric attraction and rail time distance, successfully captured the
core-periphery dynamics. The exceptionally high attraction values between key hubs like Chongqing and
Chengdu (26.289) and Duisburg and Hamburg (162.026) empirically validate their pivotal radiating roles
within their respective networks. Social network analysis further confirmed a centralised “hub-and-spoke”
structure in China centred on Wuhan (highest betweenness centrality: 12), contrasting with Europe’s more
decentralised pattern centred on Duisburg (highest outdegree centrality: 10). However, the consistently low
network density values (China: 0.1389; Europe: 0.1429) indicate a critical gap: despite the presence of strong
core hubs, overall inter-city connectivity and collaboration across the entire network remain suboptimal,
revealing substantial potential for efficiency gains through better integration.

However, translating these structural insights into actionable optimisation strategies must contend with
significant real-world operational constraints not fully captured by the models. First, geopolitical tensions and
divergent national regulations across the Eurasian corridor directly impact route stability, transit times and cost
predictability. Differing customs procedures, documentation requirements and safety standards create
administrative friction and bottlenecks at border crossings, potentially negating the theoretical efficiency
advantages identified by the time-distance metric in the gravitational model. The absence of standardised cross-
border data sharing further complicates coordinated network management. It is therefore essential to promote
and establish bilateral or multilateral agreements aimed at streamlining customs procedures, standardising data
formats and harmonising regulatory requirements. These efforts should focus in particular on alleviating
bottlenecks identified near high-betweenness nodes or major attraction pairs.
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Substantial gaps in infrastructure quality exist along the CRE route. Variations in rail track gauges
necessitate time-consuming transhipment at key border points like Malaszewicz. Differing terminal handling
capacities, electrification levels and ICT integration across nodes create operational inconsistencies and limit
seamless interoperability, hindering the realisation of the network’s full potential connectivity suggested by
the SNA. Prioritise investments in key high-centrality hubs (e.g. Wuhan, Chongqing, Duisburg, Liége),
focusing on improving their transhipment capacity, digital integration and multimodal connectivity to reinforce
the core structure of the network. At the same time, provide targeted support to lower-centrality nodes (e.g.
Xi’an, Budapest) to promote greater regional balance and inclusivity within the logistics network.

While route optimisation inherently reduces emissions (an estimated 12—15% reduction in CO: per km-ton
compared with suboptimal paths), the explicit integration of environmental metrics could further transform the
China—Europe Railway (CRE) into a truly green corridor. For example, prioritising electrified rail segments
between high-attraction pairs (such as Chongqing—Duisburg) and deploying solar-powered terminals at major
hubs like Wuhan and Duisburg, as suggested by Lomotko et al., would support alignment with the EU Carbon
Border Adjustment Mechanism (CBAM) requirements. A comprehensive sustainability assessment should
therefore incorporate explicit environmental indicators (e.g. carbon footprint per corridor, modal shift impacts)
and social factors (e.g. labour standards at hubs, community impacts of terminal operations) into future
network planning frameworks. This approach aligns with the global shift towards integrating Environmental,
Social and Governance (ESG) criteria in logistics. Leveraging network structure analysis, planners can
strategically design “green corridors” by routing flows through nodes with stronger environmental
performance (e.g. electrified rail sections) and embedding carbon accounting within the parameters of the
gravitational model to guide future development.

While the integrated methodology provides a robust framework for analysing complex logistics networks
like the CRE, its practical application faces limitations:

The analysis relied primarily on 2021-2022 cross-sectional data. Key emerging dimensions influencing
modern logistics, such as digitalisation levels, supply chain resilience indicators, real-time congestion data and
granular environmental impact metrics, were not incorporated due to data availability constraints. Future
studies should integrate longitudinal data to capture dynamic network evolution.

The improved gravitational model, while innovative, simplifies reality. The assumption of time distance
based on rail freight times overlooks complexities like border delays, multimodal connections (truck/rail/sea)
and the impact of infrastructure quality variations on actual transit reliability. The linear GDP proportionality
for attraction might not fully capture non-linear economic dependencies or strategic partnership factors. The
SNA results, particularly network density and subgroup identification, are sensitive to the chosen threshold for
link existence (as starkly shown by comparing Figure 3/Figure 4 to Figure 5). While using the mean value provides
a meaningful filter, the optimal threshold for operational relevance may vary contextually.

The models inherently abstract away critical day-to-day challenges: seasonal demand fluctuations,
equipment (wagon/container) availability imbalances, dynamic pricing volatility, impacts of geopolitical
instability on specific routes and the complexities of managing multi-stakeholder operations across diverse
jurisdictions. These factors significantly influence real-world routing decisions beyond the static network
structure.

6. CONCLUSION

This study pioneered an integrated analytical framework that combines the entropy weight method, an
improved gravitational model, and social network analysis to examine the structure and dynamics of the China-
Europe Railway (CRE) network. The key quantitative findings reveal significant disparities in the logistics
development levels of different nodes (e.g. Chongqing: 0.862 vs. Xi’an: 0.073; Duisburg: 0.684 vs. Budapest:
0.048, as shown in 7able 7). The analysis also identified critical hub cities through asymmetric spatial
interactions (peak attraction values: Chongqing-Chengdu: 26.289; Duisburg-Hamburg: 162.026) and
highlighted contrasting network topologies — a centralised Chinese “hub-and-spoke” configuration centred on
Wuhan (betweenness centrality: 12) versus a more decentralised European structure anchored by Duisburg
(outdegree centrality: 10). Critically, the persistently low network density (China: 0.1389; Europe: 0.1429)
signals a major opportunity for enhancing inter-city collaboration and overall network efficiency. The entropy
weight method quantified stark disparities in logistics development levels between nodes, with Chinese cities
showing Chonggqing (0.862) >15 times higher than Xi'an (0.073), while European nodes ranged from Duisburg
(0.684) to Budapest (0.048). The improved gravitational model captured extreme asymmetric attraction
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between Chongqing-Chengdu (26.289 vs 18.78) and Duisburg-Tilburg (162.026 vs 85.725). SNA metrics
confirmed structural contrasts: Wuhan’s betweenness centrality (12) dominated China’s centralised network,
whereas Duisburg’s outdegree centrality (10) reflected Europe’s polycentric pattern. These insights provide a
vital empirical foundation for optimising the CRE within the Belt and Road Initiative.

Table 7 — Key quantitative findings

Metric China (Max) Europe (Max) Implication
Logistics development 0.862 (CQ) 0.684 (DUI) Core-periphery disparity
Node attraction 34.37 (CQ) 326.20 (DUI) Asymmetric economic influence
Network density 0.1389 0.1429 Suboptimal connectivity

Data source: Collected by the author.

The findings of this study lead to several suggestions and improvements for policymakers and CRE
practitioners to consider. First, prioritising infrastructure upgrades and service integration at high-centrality
hubs to strengthen network resilience. Actively fostering connections between identified cohesive subgroups
and strategically integrating peripheral nodes to increase overall density and robustness. Utilising the
quantified node strengths and link intensities to guide targeted investments. Advocating strongly for policy
harmonisation, particularly in customs procedures and data standards, focusing on corridors connecting high-
attraction pairs to alleviate bottlenecks. Developing differentiated support strategies for nodes based on their
quantified development levels and network roles. Leveraging the structural understanding to design efficient
routing strategies that inherently reduce congestion and emissions. Future iterations of the model must
explicitly incorporate environmental performance indicators (e.g. carbon intensity per segment) to enable true
sustainability optimisation alongside economic efficiency. Promoting modal shift benefits and green terminal
practices at key hubs. Implementing digital platforms for real-time data sharing among CRE operators,
especially within identified cohesive subgroups. Establishing pilot “green corridors” on high-volume routes
(e.g. Chongging-Duisburg) with optimised schedules and preferential access for sustainable practices.
Initiating bilateral working groups focused on streamlining procedures at critical border nodes like
Malaszewicz, using the quantified time-distance and attraction data as negotiation benchmarks.

While the methodology offers significant advancements, its application is constrained by data limitations.
Three limitations warrant attention: (1) cross-sectional data (2021-2022) precluded analysis of network
evolution dynamics; (2) the gravitational model’s assumption of linear GDP proportionality may oversimplify
economic interdependencies (e.g. strategic partnerships unaccounted); (3) SNA subgroup identification was
sensitive to link existence thresholds — using mean value (China: 1.9579, Europe: 13.902) may mask weak but
operationally significant connections. Future research should incorporate longitudinal datasets, refine the
gravitational model with multimodal time/cost variables and non-linear attraction factors, explore threshold
robustness, and integrate explicit sustainability and resilience metrics to provide an even more comprehensive
tool for managing the evolving complexities of the CRE and similar global logistics networks. Overall, this
study bridges theoretical network analysis and practical logistics management, offering quantifiable metrics
crucial for steering the Eurasia freight and economic connections towards greater efficiency, resilience and
sustainability.
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