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ABSTRACT
Physiological signal index can accurately reflect the degree of fatigue, but the contact detec-
tion method will greatly affect the driver's driving. This paper presents a non-contact method 
for detecting tired driving. It uses cameras and other devices to collect information about the 
driver's face. By recording facial changes over a period and processing the captured video, 
pulse waves are extracted. Then the frequency domain index and nonlinear index of heart 
rate variability were extracted by pulse wave characteristics. Finally, the experiment proves 
that the method can clearly judge whether the driver is tired. In this study, the Imaging Pho-
toplethysmography (IPPG) technology was used to realise non-contact driver fatigue detec-
tion. Compared with the non-contact detection method through identifying drivers' blinking 
and yawning, the physiological signal adopted in this paper is more convincing. Compared 
with other methods that detect physiological signals to judge driver fatigue, the method in 
this paper has the advantages of being non-contact, fast, convenient and available for the 
cockpit environment.

KEYWORDS
vehicle safety system; active safety system; intelligent vehicle; fatigue detection; imaging 
photoplethysmography.

1. INTRODUCTION
Fatigue driving is one of the main causes of road traffic accidents. Fatigue driving refers to the phenomenon 

that drivers tend to decrease their driving skills due to mental and physiological disorders caused by the need 
to continuously perform various mental and physical tasks when driving a vehicle for a long time [1]. It is not 
a manifestation of human pathology, but a normal physiological activity. With the increase of mental load and 
physical load, the function of various cells, tissues and organs of the human body will weaken. Currently, the 
activity of the human sympathetic nerve becomes weak, and the activity of the parasympathetic nerve becomes 
strong. These reactions cause changes in physiological signals and behaviour. Therefore, physiological indica-
tors can accurately reflect the degree of fatigue. In recent years, with the continuous improvement of people's 
living standards of traffic safety awareness, it has become very important to identify the driver fatigue driving 
state. 

Research shows that [2], drivers’ physiological indexes will deviate from the normal state under fatigue. 
Therefore, the fatigue state of the driver can be detected according to the changes of physiological signals such 
as Electromyogram (EMG), Electro-Oculogram (EOG), Electrocardiogram (ECG), electroencephalogram 
(EEG) and pulse of the driver. For example, Hostens et al. [3] adopted the evoked potential method. When 
driver fatigue occurs during a long drive, the amplitude of surface EMG increases, while the average frequen-
cy decreases. Calcagnini et al. [4] found that four typical features of ECG signals were significantly different 
between awake and tired states, which are low frequency (LF) energy, ultra-low frequency (VFH) energy, high 
frequency (HF) energy and the ratio of low frequency energy to high frequency energy. These features can 
be used to show whether the driver is in a state of fatigue. Ohsuga et al. [5] obtained EOG waveforms under 
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various mental states according to the relationship among the three parameters of EOG: peak amplitude, rise 
time and fall time. Lal et al. [6, 7] found the relationship between EEG and driving fatigue through EEG tests: 
with the deepening of fatigue, the average values of δ and θ relative power spectra of EEG signals gradually 
increased, while the average values of α and β relative power spectra gradually decreased. The mean values of 
the relative power spectra of δ, θ and α waves are enhanced at very deep fatigue.

In general, although EMG is objective and authentic, it is invasive to the driver’s skin, which is not con-
ducive to the driver’s safe driving. The test accuracy of the EOG signal is higher, but the instrument is more 
complex, and it may interfere with the driver’s line of sight during driving. EEG signals can directly and accu-
rately reflect the state of the brain itself, but they are not convenient to carry. The physiological signal detec-
tion method based on photoplethysmography (PPG) has been widely used due to its low cost and convenient 
operation. However, the traditional PPG technology mainly uses sensors to contact the human body to obtain 
information, which will also bring inconvenience to the driver. The use of non-contact method to detect vital 
signs is convenient and fast, and more and more researchers pay attention to it. Although human heart rate can 
be detected by non-contact using LiDAR [8], microwave Doppler radar [9, 10], ultrasound [11] and thermal 
imaging [12, 13], the systems constructed by these methods are complex and expensive, hence difficult to ap-
ply to the specific scene of cockpit.

This paper uses Imaging Photoplethysmography (IPPG) to detect driving fatigue. IPPG [14] technology 
is a non-contact physiological parameter detection technology developed based on PPG. It uses cameras and 
other equipment to collect the driver’s face information, record the facial changes over a period, and process 
the captured video to extract pulse waves, and then extract the heart rate variability index by pulse wave char-
acteristics, and finally judge whether the driver is tired according to the index. Compared with the non-contact 
detection method through identifying drivers’ blinking and yawning, the physiological signal adopted in this 
paper is more convincing. Compared with other methods that detect physiological signals to judge driver fa-
tigue, the method in this paper has the advantages of being non-contact, fast, convenient and available for the 
cockpit environment.

2. THE USE OF THE IPPG TECHNOLOGY TO EXTRACT THE PULSE WAVE
2.1 The IPPG principle

The basic principle of the IPPG is the Lambert-Beer law and light scattering theory [15, 16]. The Lam-
bert-Beer law states that the concentration of an analyte is directly proportional to the amount of the light ab-
sorbed. It also shows that the absorbance of light is not necessarily related to the intensity of light. In the case of 
a given light wavelength, the absorbance of light is only related to the nature of the medium itself, that is, under 
the same illumination condition, the absorption degree of the medium with the same thickness is proportional 
to the concentration of the medium. The Lambert-Beer law is expressed as follows:

0

=
IT
I  

(1)

= = ⋅ ⋅A ln K C L
T  

(2)

where A refers to the degree of light absorption by the medium; I0 is the intensity when the light enters the 
medium, I is the intensity after the light passes through the medium, T is the ratio of I and I0, 1/T represents the 
transmittance of the medium; K is the absorption coefficient of the medium, which is determined by the wave-
length of the incident light and the properties of the medium itself, C is the concentration of the medium. L is 
the distance the light travels through the medium. When a medium is irradiated by incident light with intensity 
I, the intensity of transmitted light passing through the medium can be expressed by Equation 3:

0
− ⋅ ⋅= ⋅ K C LI I e  (3)

In the case of IPPG, the medium refers to the human skin tissue. Since the absorption of light by venous 
blood and other tissues in the skin basically does not change, only the absorption of light by arterial blood is 
considered. When the heart diastoles, the volume of blood in the blood vessels decreases, the volume of blood 
becomes smaller, and the distance of light passing through decreases accordingly. Currently, the skin absorbs 
the least amount of light, and the intensity of light passing through the tissue is the highest. Let the distance at 
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this time be Lmin and the absorption degree of light be Amin, then the light intensity at this time can be expressed 
as:

min minA K C L= ⋅ ⋅  (4)

Accordingly, when the heart contracts, the volume of blood in the blood vessels reaches the maximum, 
and the volume of blood increases, causing the distance of light through the tissue to be larger, and the skin 
absorption at that moment is the lightest, whereas the intensity of light coming through is the lowest. Let the 
distance at this time be Lmax and the absorption degree of light be Amax, then the light intensity at this time can 
be expressed as:

max maxA K C L= ⋅ ⋅  (5)

Make the difference between the above two formulas to obtain:
∆ = ⋅ ⋅∆A K C L  (6)

Equation 6 shows that when the incident light is constant, the absorption degree of human skin tissue to light 
is only related to the volume of arterial blood, and the change of the absorption degree is proportional to the 
change of the volume of blood. Therefore, if the change of skin surface light is detected, the change of blood 
volume can be obtained, as well as the waveform of the human pulse wave.

2.2 Extraction of the pulse wave
The main steps are as follows: first, screen and edit the collected videos, eliminate the nonstandard vid-

eos. Second, frame image separation is carried out on the experiment video data. After this, the video will be 
transformed into 30 images per second. Third, use the face detection algorithm to detect the face of the video 
data separated from the frame image. Fourth, select an appropriate region of interest (ROI) and separate the 
primary colour of the ROI into three colour channels, R, G and B, and calculate the mean of the pixel values of 
the three-color channels of each ROI. Fifth, the heart rate signal is separated from the above RGB channels by 
blind source separation technology. Finally, filtering operations are carried out on the data obtained in the fifth 
step to filter out the mixed noise. The technical route of pulse wave extraction based on the IPPG technology 
is shown in Figure 1.

Figure 1 – Technology roadmap

In practice, the experiment video contains not only the parts of the human body to be detected, but also 
the irregular background. The imaging size and angle of the detection site will also be changed with the body 
shaking. These factors will reduce the noise ratio of the signal, so it is necessary to process the video to get the 
image sequence of the detected part.
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In theory, the skin of any part of the human body can be used as the detection area, but in the specific exper-
iment, the convenience of operation and the distribution of human blood vessels should be given priority. The 
area should be easy photograph and to distribute with as many blood vessels as possible. From Figure 2, there 
are many capillaries distributed on the face. The subjects simply need to sit in front of the monitor and make 
sure their heads are fully presented in the laptop camera. Based on the above considerations, the facial region 
was selected as the region of interest of the human body.

When the facial region is selected as the ROI, the eye region is removed in the experiment as the uncon-
scious actions such as blinking will produce large motion spurious errors and bring non-negligible noise to the 
experimental results, as shown in Figure 3.

Figure 2 – Human vascular distribution Figure 3 – Schematic diagram of ROI region extraction

Pulse wave signal is obtained by calculating the grey mean of the image of the region of interest, and then 
separating and filtering the data blind source. The calculation formula of the grey mean is as follows:
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where, M represents the length of the picture, N represents the width of the picture, and x(i,j,t) represents the 
grey value of each pixel.

The grey mean of R, G and B channels of each frame of the ROI image is calculated and the result is shown 
in Figure 4.

Frame number
Figure 4 – Grey mean of RGB three-channel

During the experiment, the external light influence, or the interference of the imaging equipment itself, 
may cause interference to the extracted source pulse wave signal. Because it is impossible to know whether 
the noise mixed in the source pulse wave signal is additive or multiplicative, it is impossible to filter the source 
pulse wave signal directly through the filter. In this case, Blind Source Separation (BSS) techniques can be 
used to solve the problem [17].

In addition to the required source signal, there are also some unknown signals in the original signal. At this 
time, the observation of the original signal is obtained by equipment or instrument, and the observation is used 
as the input to realise the original signal estimation. The solution method is blind source separation, which 
is mainly applied to the processing of digital signals [18]. The most important characteristic of blind source 
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separation is that it cannot only estimate the signal, but also ensure that the periodic information of the signal 
is not lost [19].

Independent component analysis (ICA), as a commonly used blind source separation technology, is widely 
used in the field of artificial intelligence, biomedicine [20] and industry. The Principal Component Analysis 
(PCA) method guarantees that the decomposed signal components are not correlated, but cannot guarantee 
that these components are independent. The ICA algorithm is aimed at independent component decomposition. 
PCA requires data to conform to a certain distribution, such as the Gaussian distribution. But the ICA does not 
have that requirement. Therefore, the ICA is used for the blind source separation of signals in this paper. The 
prerequisite of the ICA method is to reduce the correlation between signals and keep the independence of sig-
nal data as far as possible. The main principle of the ICA is to solve the real source signal S and mixing matrix 
K to be separated by processing the observed source signal X accordingly, where the relationship between them 
is shown in Equation 8:

= ⋅X K S  (8)
In general, S cannot be accurately solved. The matrix N can be solved by using the auxiliary separation 

matrix L. In this case, N can be used as an approximate estimate of the real source signal S and its relation is 
shown in Equation 9:

= ⋅N L X  (9)
The FastICA method in the ICA model is adopted in this paper, which was proposed by Hyvarinen et al in 

1999 and has the characteristics of parallel computing and low memory consumption [21]. This algorithm is an 
iterative algorithm to quickly find the optimal solution. Compared with the common ICA algorithm, the con-
vergence speed is fast. Compared with gradient-based algorithm, Fast ICA does not need to select step param-
eters, indicating that the algorithm is easier to use. Fast ICA can directly find any non-Gaussian independent 
component by using a nonlinear function. For other algorithms, they must first estimate the probability density 
distribution function and then make nonlinear selection accordingly. In addition, the independent components 
of the Fast ICA can be estimated one by one, which can greatly reduce the amount of calculation when only a 
few independent components need to be estimated. Before using this algorithm, it needs to be pre-processed, 
including centralisation and whitening.

Centralised processing: the mean value of the data to be observed is subtracted from X so that the sample 
becomes zero mean:
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(10)

Whitening treatment: Usually, data covariance is processed by eigenvalue decomposition during whitening 
treatment. Here, the signal is simply multiplied by a whitening matrix:
Z V X= ⋅  (11)

After solving and calculating, the relatively independent real physiological characteristic signal S can be 
estimated. The independent components corresponding to the three channels R, G and B can be obtained by 
the FastICA calculation and analysis of the above processed data. This is shown in Figure 5.

Frame number

Figure 5 – ICA recovered signals

The signal in the G channel best reflects the pulse wave. This is because the highest degree of absorption 
of visible light is in the range of 510 nm to 590 nm. This wavelength range corresponds to yellow-green light, 
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so the blood has the highest degree of absorption of yellow-green light. Pulse wave signal can be obtained by 
filtering the signal of G channel.

To use Image filtering, image will be suppressed or the noise eliminated without damaging the important 
information. The quality of the image will be affected by the noise produced in the process of image acqui-
sition and signal transmission. The external environment is an important factor to image quality, such as the 
excessive light, insufficient light and light pollution. In addition, the stability of the data acquisition equipment 
itself, as well as the data distortion or loss in the process of data transmission, are also factors that cannot be 
ignored. Image filtering will greatly influence the subsequent experimental analysis.

The range of human heart rate is 50 bmp to 220 bmp. By converting the frequency range, it is about 0.8 Hz 
to 3.8 Hz, the band pass filter is used to filter the frequency outside the range, which can effectively eliminate 
the noise. The signal waveform after bandpass filtering is shown in Figure 6. Most of the noise has been filtered 
out. Compared with before processing, the signal curve becomes smoother and the signal periodicity after 
processing is more obvious.

Figure 6 – Pulse wave signal

3. EXTRACTED HEART RATE VARIABILITY INDEX BASED ON PULSE WAVE
3.1 Heart rate variability

Heart rate variability is the change in the difference between heart cycles. Heart rate variability is considered 
to reflect the activity of the autonomic nervous system and its influence on the cardiovascular system, since the 
heart beats by the autonomic nervous system to control the pacing of the sinus node and drive the contraction 
and relaxation of the whole heart. In medicine, heart rate variability is thought to reflect the coordination of 
sympathetic and vagus nerves in the heart. Reduced sympathetic activity or increased vagal activity can lead 
to reduced heart rate variability. Therefore, HRV is related to many physiological phenomena, and can be used 
to judge the rehabilitation of a variety of cardiovascular diseases [22], as well as to measure the health status 
of the general population, the ability of athletes to adapt to stress and whether drivers are tired-driving [23].

In this paper, firstly, the collected and pre-processed pulse wave signal is extracted for the time interval and 
the pulse wave time interval sequence is obtained. For the pulse wave intertemporal sequence, three methods 
can be used: time domain analysis, frequency domain analysis and nonlinear index analysis. When time-do-
main analysis is used for the heart rate variability analysis, its accuracy mainly depends on the length of the 
analysis recording time interval, so there is a large error for time-domain analysis in a short period. Therefore, 
this paper mainly adopts the method of combining the frequency domain index of heart rate variability and 
nonlinear index to detect and analyse human mental fatigue.

3.2 Analysis of the heart rate variability in frequency domain

Frequency domain analysis is a very effective and practical method for digital signal processing, which 
can be used to process periodic signals. Because pulse signal is a periodic signal, it can also be processed by 
frequency domain analysis. At present, the frequency domain analysis of the pulse wave is usually based on 
power spectrum. The application of power spectrum analysis to pulse can provide an auxiliary reference for 
disease diagnosis. In different frequency bands, the energy of human pulse wave is significantly different be-
tween normal state and fatigue state. Therefore, the spectral energy ratio of different frequency bands is usually 
used as the frequency domain characteristic when analysing the mental fatigue state based on pulse wave.

The frequency domain index analysis of heart rate variability is mainly based on the analysis of self-signal 
power spectral density (PSD), which is used to measure how the power is distributed with frequency. The 
power spectral density can be calculated by a variety of mathematical methods. The most common methods 
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include Welch, Blackman-Tukey and Lomb-Scargle periodograms and autoregressive modelling. The frequen-
cy domain analysis method of the Welch power spectrum diagram is simple and efficient, while the calculation 
process of the other analysis methods is complicated, long and obtaining data is very time consuming. There-
fore, the Welch power spectrum diagram is used for frequency domain analysis in this paper.

The Welch power spectrogram is obtained by first dividing the resampled sequence and windowing each 
segment to reduce the leakage effect. The frequency estimation is obtained by averaging the Fast Fourier 
Transform (FFT) spectrum at the window end. The Welch’s processing method is as follows: the obtained RRI 
is divided into L segments, each with a length of M, and each segment is allowed to overlap by half.

/ 2
/ 2

N ML
M
−

=
 

(12)

The data in paragraph i are labelled as follows:
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The data analysed in the frequency domain include the normalised components of High Frequency (HF) 
and Low Frequency (LF), which respectively represent the percentage of HF in HF+LF and the percentage of 
LF in HF+LF. The calculation formula is as follows:

100%norm
HFHF

TP VLF
= ⋅

−  (15)

100%norm
LFLF

TP VLF
= ⋅

−  (16)

Total Power (TP) represents the sum of HRV power in the frequency domain. Generally speaking, the 
frequency of Very Low Frequency (VLF) is set at 0.003-0.04 Hz, the frequency of LF is set at 0.04–0.15 
Hz and the frequency of HF is set at 0.15–0.4 Hz. Physiologically, the LF frequency band is associated with 
parasympathetic stimulation of the autonomic nervous system and the HF frequency band is associated with 
sympathetic stimulation of the autonomic nervous system [24].

3.3 Analysis of nonlinear indicators of heart rate variability
The nonlinear index of heart rate variability can be used to help describe the more complex cardiac dy-

namics in the process of cardiovascular regularisation, while the linear index cannot complete this complex 
process, so the nonlinear analysis of heart rate variability can effectively make up for the deficiency of linear 
analysis in this aspect [25]. Since the 1980s, with the rapid development of nonlinear dynamics, the nonlin-
ear analysis method of HRV has made a lot of progress. At present, HRV nonlinear analysis methods can 
be divided into graphic method and nonlinear parameter calculation method. The graphic method is mainly 
Poincare scatter diagram analysis. Fractal dimension analysis method, complexity analysis method, Lyapunov 
index, Kolmogorov entropy or measure entropy, approximate entropy analysis and so on are commonly used 
to calculate nonlinear parameters, which are all quantitative methods of nonlinear analysis. At present, scatter 
plot method is the most studied method and other methods are mostly limited to the theoretical stage, lack of 
clinical application and insufficient research.

The nonlinear index analysis in this paper uses the Poincare Plot based on the RR interval, which represents 
the correlation between the RR intervals as a scatterplot, which is a projection of the reconstructed attractor 
describing the dynamics of the cardiac system.

It takes RRn/ms as the abscissa and RRn+1/ms as the ordinate and displays a line composed of scattered 
points along a certain direction. Each Poincare scatter diagram drawn based on the RR interval can make a cor-
responding ellipse on the scatter line, whereas points perpendicular to and along the scatter line are the width 
and length of the ellipse. They are determined by the standard deviations SD1 and SD2, with SD1 reflecting 
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the short-term variability and SD2 reflecting the long-term variability [26]. For the convenience of calculation, 
the coordinate system of the figure is rotated counter clockwise. In the rotating coordinate system [27],

1

2 1

cos     -sin
sin      cos

n

n

RRx
x RR

θ θ
θ θ +

    
=     
      

(17)
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2 2 1

2 2 2n n n nSD D x D RR RR D RR RR+ +

 
= = + = +  

   
(19)

4. EXPERIMENTAL RESULTS AND ANALYSIS
4.1 Experimental design

In this paper, the author uses Lenovo R9000P laptop as signal acquisition equipment. The processor is 
AMD Ryzen 7 5800H with Radeon Graphics and the main frequency is 3.2 GHz. Set the camera resolution to 
1280×720, the sampling frame rate to 30 fps and the RGB colour depth of the pixel to 24 bits. Matlab software 
was used for offline data processing of the video.

The author selected 10 graduate students as subjects, age 23 to 27, in good health condition, with no neu-
rological disorders or heart disease. They were numbered A–J and were asked to take two tests. At 8 o’clock, 
each subject got in the car and ready to drive. In the meantime, the first videos were being recorded. The 
subjects then drove around the school for four hours, returning to school at 12 o’clock, after which the second 
batch of videos was recorded. In the video collection process, the subjects sat in front of the computer at about 
40cm. The experimental scene was shown in Figure 7. The videos were then analysed and the experimental 
design is shown in Figure 8. During the experiment, natural light was used as the incident light source and the 
sampling time was about 20 seconds.

Figure 7 – Experimental scene of subjects Figure 8 – the experimental design

4.2 Analysis of experimental results in the frequency domain
The frequency domain index of heart rate variability is mainly to analyse the ratio change of low frequency 

band (LF) power and high frequency band (HF) power. The very low frequency, low frequency and high fre-
quency spectra of volunteers can be obtained from the Welch power spectrum diagram.

In this paper, the pulse wave signals of 10 subjects were divided into two stages, and the LF/HF ratio of 10 
subjects was calculated according to the formula. The following figures are the power spectrum density map 
of one subject during two tests.

a

b c
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Frequency [Hz]

Figure 9 – Power spectral density map of subject A for the first test

Frequency [Hz]

Figure 10 – Power spectral density map of subject A for the second detection

LF/HF values of all subjects are shown in Table 1.

Table 1 – Statistical table of frequency domain indexes of 10 subjects

Subject serial 
number

LF/HF
(The first time)

LF/HF
(The second time)

A 0.9949 5.8431

B 0.6152 4.4785

C 1.1275 6.5259

D 0.7186 5.3741

E 0.5528 3.9726

F 1.4361 7.5283

G 0.5468 4.3025

H 0.8753 5.1679

I 0.9142 6.2794

J 0.7918 6.1326
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The results show that the ratio of LF to HF will increase in the fatigue state. When LF/HF is between 0 
and 3, the human body is awake; when LF/HF is greater than 3, the human body is in a state of fatigue [28]. 
The conclusion is in good agreement with this experiment. Cong Yu Wang et al. proposed a method based 
on indirect contact electrocardiography. Their experimental results show that the LF/HF index is feasible for 
evaluating fatigue degree [29]. Chao Zeng et al. extracted the frequency domain index LF/HF from the ECG 
signals to explore the influence of gender factors on drivers’ driving fatigue. The results showed that both men 
and women experienced and increase in LF/HF [30]. The experimental results and data in the above literatures 
are consistent with those in this paper.

4.3 Analysis of the nonlinear index of experimental results
In this paper, the pulse wave signals of 10 subjects at two stages were used to calculate the nonlinear indi-

cators SD1 and SD2 of heart rate variability according to the formula. SD1 and SD2 respectively represent the 
width and length of the ellipse of the Poincare diagram, which can effectively reflect the level of short-term 
and long-term heart rate variability of the body. The Poincare scatter plot of the RR time interval series of two 
times for one of the subjects is shown below.

Figure 11 – Poincare scatter plot of Subject A for the first 
test

Figure 12 – Poincare scatter plot of Subject A for the 
second test

Table 2 shows the SD1 and SD2 data after statistical summary by calculation.
Table 2 – Statistical table of nonlinear indexes of 10 subjects

Subject serial 
number

SD1/SD2
(The first time)

SD1/SD2
(The second time)

A 0.3433 0.5379

B 0.2546 0.4826

C 0.3854 0.5722

D 0.3161 0.5012

E 0.2347 0.4341

F 0.3978 0.5938

G 0.2549 0.4508

H 0.3204 0.4981

I 0.3692 0.5731

J 0.3094 0.4847
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Figure 11 – Poincare scatter plot of Subject A for 
the first test

Figure 12 – Poincare scatter plot of Subject A 
for the second test
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The shape of the Poincare scatter plot directly reflects the characteristics of the instantaneous heart rate 
curve. The scatter chart of the driver under normal condition is comet-like and most of the scatter chart is 
concentrated near the line at 45° angle in the figure, as shown in Figure 4.5. This suggests that the RR intervals 
between adjacent sinus beats in drivers are roughly equal. The scatter points in Figure 4.6 spread out around 
the 45° line, indicating that the driver has sinus arrhythmia and is in a state of fatigue. Studies show that under 
normal circumstances, the ratio of SD1/SD2 is around 0.25, but when the human body is in a state of mental 
fatigue, this ratio will show an upward trend and is significantly greater than 0.25 [28]. Laurent Mourot et al. 
evaluated the effectiveness of the Poincare graph analysis. Their research shows that the Poincare plot parame-
ters as well as the “width” of the scatter plot can be viewed as a substitute for HRV time and frequency domain 
analysis. Its standard deviation is significantly correlated with the main parameters of the time and frequency 
domain analysis, especially the parasympathetic indicators. They observed that the Poincare scatter plot was 
wider when people were fatigued and detailed data were provided to assess changes in human HRV caused by 
fatigue [31]. The conclusion is in good agreement with this experiment.

5. CONCLUSION
In this paper, camera and other equipment are used to collect the driver’s face information, to record the 

facial changes over a period and process the captured video. The pulse wave is extracted by blind source 
separation technology and then the frequency domain index and nonlinear index of heart rate variability are 
extracted by pulse wave sign. Finally, the fatigue of the driver is judged according to the index. According to 
the result in Chapter 4, when the human body is in a state of fatigue, the frequency domain indices and nonlin-
ear indices show an obvious upward trend, and the fatigue of the human body can be clearly judged according 
to the relevant literature [28–31]. In this study, the IPPG technology was used to realise non-contact driver 
fatigue detection to ensure safe and healthy driving. Compared with the non-contact detection method through 
identifying drivers’ blinking and yawning, the physiological signal adopted in this paper is more convincing. 
Compared with other methods that detect physiological signals to judge driver fatigue, the method in this paper 
has the advantages of being non-contact, fast, convenient and available for the cockpit environment.
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毕玖琚，秦训鹏，胡东锦，徐晨阳
基于成像光电容积描记法的疲劳驾驶检测方法

摘要
生理信号指标能准确反映疲劳程度，但接触式检测方法会对驾驶员的驾驶产生较大
影响。本文提出了一种非接触式疲劳驾驶检测方法。使用摄像头和其他设备收集有
关驾驶员面部的信息。记录一段时间内的面部变化并处理录制的视频，从中提取出
脉搏波。然后根据脉搏波特征提取心率变异性的频域指标和非线性指标。最后，
实验证明，该方法可以清晰地判断驾驶员是否疲劳。本研究采用成像光电容积描记
法技术实现非接触式驾驶员疲劳检测，与通过识别驾驶员眨眼和打哈欠的非接触式
检测方法相比，本文采用的生理信号更具说服力。与其他通过检测生理信号判断驾
驶员疲劳程度的方法相比，该方法具有非接触、快速、方便等优点，适用于座舱环
境。

关键词：

车辆安全系统;主动安全系统;智能座舱;疲劳检测; 成像光电容积描记法


