
ABSTRACT
The centrality of stations is one of the most important 

issues in urban transit systems. The central stations of 
such networks have often been identified using network to-
pological centrality measures. In real networks, passenger 
flows arise from an interplay between the dynamics of the 
individual person movements and the underlying physical 
structure. In this paper, we apply a two-layered model to 
identify the most central stations in the Beijing Subway 
System, in which the lower layer is the physical infrastruc-
ture and the upper layer represents the passenger flows. 
We compare various centrality indicators such as degree, 
strength and betweenness centrality for the two-layered 
model. To represent the influence of exogenous factors 
of stations on the subway system, we reference the al-
pha centrality. The results show that the central stations 
in the geographic system in terms of the betweenness are 
not consistent with the central stations in the network of 
the flows in terms of the alpha centrality. We clarify this 
difference by comparing the two centrality measures with 
the real load, indicating that the alpha centrality approx-
imates the real load better than the betweenness, as it can 
capture the direction and volume of the flows along links 
and the flows into and out of the systems. The empirical 
findings can give us some useful insights into the node cen-
trality of subway systems.

KEYWORDS
node centrality; betweenness; alpha centrality; subway  
system; passenger flow.

1. INTRODUCTION
Network characteristics of transportation present 

great opportunities, which can be analysed from the 
viewpoint of network science [1–4]. Meanwhile, in-
frastructure networks have been extensively studied 
and many valuable insights have also been obtained 
in recent years. Graphs derived from such networks 
were analysed on the examples of road networks 
[5–6], inter-urban transit networks [7–8], airline 
networks [9–10] and urban transit networks [11–
12]. Nevertheless, subway systems present small-
er-sized networks compared to most studied trans-
portation networks, and they exhibit a rich variety 
of fascinating network properties, which include 
scale-free structures [13–14], small-world proper-
ties [15–16], network efficiency [17–18], network 
vulnerability [19–20] and network growth patterns 
[21–22]. In this paper, we focus on one of the most 
important features of subway systems: node central-
ity.

The identification of the most central nodes in 
the complex systems is an important issue in net-
work characterisation [23–25]. Some scholars have 
also conducted research on the network centrality 
of urban transit networks. Derrible [26] applied the 
notion of betweenness centrality to 28 worldwide 
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poral density of passengers [42] for the Singapore 
Mass Rail Transit to revelling the urban spatial mo-
bility patterns [43] and hierarchical organisation of 
urban polycentricity [44] for the London Under-
ground. According to some studies, dynamic traffic 
flow in a network really matters in determining the 
relative importance of a station within the network, 
leading to the results that show that stations that ex-
perience more large passenger flows are more im-
portant or central in a subway system [38, 43, 44]. 
Therefore, the framework to analyse physical topol-
ogies and traffic patterns together should bridge the 
gap between static infrastructure network centrality 
and dynamic traffic flow process derived from hu-
man mobility in real transportation networks.

In addition to the above, in the case of a subway 
network, the passenger flow at each station is not 
only related to the transmission of passenger flow 
from adjacent stations, but also to the flow into and 
out of the station. The flow into the station from out-
side and the flow out of the network from the station 
are important exogenous factors, which are related 
to the population density, land use and urban func-
tions around that stations. Therefore, we introduce 
the alpha centrality [45] and consider the exogenous 
factors of stations, in order to highlight that station 
centrality should consider the communication be-
tween the station and the outside.

In this paper, we introduce a two-layered mod-
el to analyse subway networks, where the networks 
of traffic flows and physical infrastructures inter-
act with each other, and identify nodal importance 
and centrality based on trip data obtained from the 
Beijing Subway System. These results suggest that 
commonly used topological centrality measures 
such as degree centrality and betweenness fail to 
determine nodal prominence in a weighted flow 
network as well as to approximate the real load, but 
the alpha centrality with reference to traffic flow 
patterns works better in our dataset. Our findings 
confirm that layered view of transportation systems 
can be very helpful to capture the fundamental dif-
ferences between these coexisting topologies as a 
part of such networks, and understand the reasons 
standing behind the differences. The overloading of 
lines and stations is a real problem in many subway 
systems around the world. Our research results on 
critical nodes identification can help subway sys-
tems take measures to distribute flows and prevent 
bottlenecks and dangerous crowding levels at par-
ticular nodes.

subway systems based on a simplified network rep-
resentation and found that betweenness centrality 
becomes more evenly distributed with network size, 
which allows the systems to distribute the flow of 
passengers more evenly. Tang [27] constructed the 
subway and bus networks by L-space and P-space 
methods, respectively, and proposed an identifica-
tion method in Multiplex Network based on Demp-
ster–Shafer evidence theory (MNDS). On the other 
hand, the use of network centrality is mostly served 
as a basis to study matters of vulnerability [19–20], 
to measure the traffic flows as a load estimator  
[28–29], to study the relationship between urban 
structures and land use [30], and to explore the 
match between the subway system and the function-
al zoning of the city [31].

However, the traditional centrality measures, 
such as degree centrality [32] and betweenness cen-
trality [33], based exclusively on depicting configu-
rations of their physical infrastructure networks have 
strong limitations, as they do not take into account 
the real-life traffic flow patterns in the network. This 
may provide an incomplete view of network func-
tionalities because transportation of passengers or 
goods is the ultimate goal of every transportation 
system. In fact, the discussion about whether traffic 
flows can be approximated by network properties in 
urban street networks has lasted for decades among 
urban planning researchers [34–35]. Therefore, 
some studies on urban networks have focused on 
the “gap” between the centrality measure and the 
actual flow [36–37]. The most important nodes and 
links from a topological point of view may not nec-
essarily carry the most traffic flows [38]. In other 
words, the geographical patterns formed by traffic 
flows and betweenness differ substantially in the 
transit networks [28].

With the rapid development of information tech-
nology, large amounts of data over time and space 
are available to model urban dynamics. In particu-
lar, monitoring, recognising and analysing human 
mobility patterns is becoming a hot issue in trans-
port and urban planning [39–40]. Urban traffic aris-
es from an interplay between the dynamics of the 
individual movements and its underlying structure. 
For subway systems, passenger flow can be seen as 
person-trips aggregately distributed in the networks, 
which has motivated various studies based on trip 
data for inferring statistical properties of passenger 
flows in the Metropolitan Seoul Subway [41], and 
analysing the travel routes [38] and the spatiotem-
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Subway passenger flows can be seen as individ-
ual trips aggregately distributed in the subway net-
work. To analyse the passenger trip data of the BSS 
network, from this database, we construct the pas-
senger flow matrix B1 whose elements are defined 
to be the number of passengers taking trips between 
a pair of two adjacent stations over a given period 
of time. We also build another two flow matrices, 
B2 and B3, which describe the number of passen-
gers arriving at stations and leaving stations over 
a given period of time, respectively. It is important 
to note that the data of the day (from 5 a.m. to 24 
p.m.) serve as a basis for the nodal centrality analy-
sis presented in the next section. We also divide the 
entire trip data into half-hourly pieces, so 30 min is 
the time period for gathering the aggregated num-
ber of passenger movements. The analysis of these 
flow matrices will explicitly probe spatiotemporal 
patterns of nodal centrality discussed in Section 4.

2.2 Two-layered model of the subway 
system

Weighted networks provide a good description 
and explanation for the rich dynamics observed in 
the real-life subway systems [4]. However, in the 
presence of passenger flows through a subway 
network, one-layer weighted physical graph is not 
sufficient because the physical network is only a 
part of a larger complex system, where coexisting 
topologies such as the network of traffic flows and 
physical infrastructures interact with and depend on 
each other. Accordingly, borrowing from the gener-
al multilayer model [28, 36], we refer to the flows 
through a system as a two-layered model. In our lay-
ered model, the lower-layer topology represents the 
physical infrastructure network of a subway system 
and the upper-layer topology abstracts the passen-
ger movements within the system. Figure 1 presents 
a simplified example of the two-layered model and 
we explain it in detail below.

In Figure 1, the graph Gd is the physical structure 
of the subway infrastructure, and the graph Gf is the 
corresponding network of the passenger flows. The 
weights of directed links in the graph Gf represent 
the numbers of passenger flows.

For the lower layer, we represent the topology of 
the subway infrastructure based on L-space repre-
sentation [4, 17, 36] that depicts the original config-
uration of real transportation networks. In L-space, 
subway stations are nodes, and two stations are con-
nected only if they are physically directly connect-

This paper is organised as follows. In Section 
2, we describe the studied subway network and the 
dataset used in this study, and we introduce the lay-
ered model to facilitate the studied system. In Sec-
tion 3, we present the results from the nodal central-
ity analysis and compare them with each other. In 
Section 4, we discuss the relationship between the 
node centrality and the real load. Finally, Section 5 
contains our conclusions and future work.

2. METHODOLOGY

2.1 Study network and data description
We consider the Beijing Subway System (BSS), 

which serves as the major transportation mode in 
the urban and suburban districts of Beijing munici-
pality, China. The network in 2014 consisted of 16 
lines, 236 unique stations and 265 sections between 
them, connecting all major districts across the Bei-
jing city. The network has two operators, the state-
owned Beijing Subway Operation Corporation, and 
the Beijing MTR Corporation, a public-private joint 
venture with the Hong Kong MTR Corporation. 
Here, we study the importance of stations in a sub-
system, which is managed by the Beijing Subway 
Operation Corporation. Note that the subnetwork 
includes 14 lines, 203 unique stations and 227 sec-
tions.

Our data analysis is based on a dataset describing 
the passenger trip data on a single weekday, collect-
ed from the transaction data of the smart Yikatong 
card on April 15, 2014. This contactless smart card 
is currently the main payment method employed by 
the Beijing public transportation system, which is 
similar to the Singapore’s EZ-Link and Oyster card 
used in London. In the smart card-based electronic 
ticketing system, we are able to record individual 
person movements within the BSS network and to 
capture specific travel information such as the ori-
gin-destination stations as well as the corresponding 
travel time of the trip. Our database that is provid-
ed by the Beijing Subway Operation Corporation 
captures a total of 6,161,646 passenger individuals 
arriving at stations and leaving stations on a single 
weekday. These trip data serve as a basis to generate 
information on load profile, flow characteristics and 
spatiotemporal variation. The whole experiment is 
conducted by MATLAB 2016, a programming and 
numeric computing platform.
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direction. It is noted that the subscripts particularly 
refer to a pair of two adjacent stations unless other-
wise mentioned.

In addition to the flows between a pair of sta-
tions, a weighted flow graph Gf has a flow moving 
into node ni

f from outside the network and a flow 
moving out of the network from the same node. The 
flows from outside to node ni

f correspond to passen-
gers entering into the station from nearby areas or 
other transportation means. The flows from node ni

f 

to the outside correspond to passengers leaving the 
station to end their trip. We introduce the compart-
ment labelled 0 (zero) to present the network ex-
changing with the source of exogenous flows. Let 
the flow into node ni

f from outside be denoted by 
v0i, and the flow out of the network for node ni

f be 
denoted by ui0.

It is noted that the exogenous flows, v0i and ui0, 
can be derived from the flow matrices B2 and B3, 
respectively. Accordingly, building a weighted flow 
graph Gf from trip data guarantees that wf

ij always 
represents the passengers taking trips between ad-
jacent stations, while v0i/ui0 always represents these 
passengers entering into/leaving one station. There-
fore, the flow characteristics as network properties 
can be calculated at the node level.

3. RESULTS

3.1 Degree and strength
The degree of a node can be seen as the sim-

plest of the node centrality measures [46]. In the 
case of a directed network, the degree is classified 
into indegree and outdegree respectively; while 
in the case of a weighted network, the degree is  

ed. Let the subway infrastructure topology be rep-
resented as the weighted physical graph Gd with Nd 

nodes and Ld links, there are an associated adjacen-
cy matrix A={aij} and a weight matrix Wd={wd

ij} 
representing the physical distance between two ad-
jacent nodes ni

d and nj
d.

For the upper layer, we construct a directed 
weighted network of the passenger flows from to-
pology of the lower layer by incorporating passen-
ger trip data. This directed weighted network can 
be obtained by considering the directions and vol-
umes of the flows between two adjacent stations. 
Let the network of passenger flows be represented 
as the weighted flow graph Gf with Nf nodes and 
Lf links. The sets of nodes at both two layers are 
apparently identical in transportation systems, i.e. 
Nd=Nf, but without loss of generality, we will keep 
the superscripts d and f to make the description un-
ambiguous. Each logical flow link lf is mapped on 
the physical graph Gd as the physical paths connect-
ing the node ni

f and nj
f. These paths can be given ex-

plicitly by converting an un-directed physical link 
into two directed flow links since in reality, a pair of 
adjacent stations is often joined by a double-track 
section where the train services run on the up and 
down directions, respectively (i.e. typical travel is 
bidirectional).

We find that, after introducing directed weighted 
links [41, 43] to present the directionality of flows, 
it is easy to derive the weight matrix Wf={wf

ij} of the 
flow graph Gf from the flow matrix B1. An element 
wf

ij denotes the flow from the node ni
f to nj

f.
The above subscripts i and j appear as desti-

nation-source station, e.g. wf
ij denotes the flow of 

departure (outflow) of node ni
f, moving in the i→j 

1
2
3
4

A

A

F

F

3
4 1

2

4 2

12
4

34

2
4

3

B

B

G

G

H

H

E

E

D

D

C

C

Gf

Gd

Line 1

Line 2

Figure 1 – Schematic representation of the two-layered model
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The inset in Figure 2a is the distribution of P(sf), 
which can be approximately fitted by the Weibull 
distribution. In Figure 2b, the nodes in the network 
are placed into eight quartile groups, and the colour 
of nodes is proportional to the measured value.

The fact is clear that the most connected nodes 
with a topological measure of centrality may not 
necessarily carry the most traffic in transportation 
networks. We can also see from Figure 2a that al-
though many stations share the same connections, 
the traffic flows handled by each station differ sig-
nificantly in terms of volume. For example, hub 
nodes or transfer stations Guomao and Cishousi 
both possess the degree k=8 but handle significant-
ly different volumes of traffic, s=19992366 for the 
former station and s=537754 for the latter one, re-
spectively. To shed more light on the relationship 
between the nodes’ strength and degree, we investi-
gate the spatial distribution of node strength in the 
BSS network, as illustrated in Figure 2b. All stations 
are divided into 8 groups using a hierarchical classi-
fication method and are represented by different co-
lours. It is clear that the dependence of si

f on ki may 
not always follow the power-law distribution. For 
instance, Xizhimen station that possesses the high-
est degree (k=10) in the network has the strength 
s=950148, whereas Guomao station handles the 
higher volume of traffic, significantly greater (2.09 
times) than that of Xizhimen station. The reason for 
this violation is that node strength only takes into 
consideration a node’s total link magnitudes in the 
network, but fails to take into account the charac-
teristics (direction and volume) by which the flows 
move through a network. Therefore, our findings 
confirm the statement that the commonly used topo-
logical measures such as node degree and strength 
fail to approximate the most central stations in 
transportation networks.

3.2 Node centrality
In addition to knowing the degree and strength 

of nodes, we would like to further investigate the 
identification of the most central nodes in both the 
physical infrastructure network (graph Gd) and 
weighted flow network (graph Gf), and the differ-
ence between them. Degree and strength are the 
simplest of the node centrality measures by focusing 
solely on the local structure and information around 
nodes. However, more connected or loaded stations 
may not be necessarily more central in a subway 
network. There are other complex measures of the 

extended to the sum of weights on the links incident 
upon a node and labelled node strength [46–47]. For 
a given node i in the graph Gd, node degree is the 

number of links a node has, .k ai ij
J

N
=/  In the graph 

Gf, node degree is the sum of indegree and outde-

gree, ,k k k ai i
in

i
out

ij
J

N
= + =/  then the average degree 

in both graphs can be denoted by :k

k N k N a1 1
i ij

j

N

i

N

i

N
= = ///  (1)

Strength is the natural generalisation of node 
degree in weighted networks. Subsequently, a 
node’s strength in the graphs Gd and Gf is the sum 
of the weights on the links incident upon a node, 

,s a wi ij
J

N

ij$=/  and the average strength can be de-

noted by .s  It is important to note that in the case 
of the flow graph Gf, the node strength accounts for 
the total traffic handled by a station. As a load esti-
mator, this quantity is a natural measure of centrali-
ty in weighted flow networks [47].

s N s N a w1 1
i ij ij

j

N

i

N

i

N
$= = ///  (2)

The flow graph Gf possesses a low average node 
degree, ,.k 4 5320=  which indicates that the BSS 
network has a few hub nodes that allow transfer 
passengers to change from one route to the other 
route. To study the relationship between topologi-
cal centrality of nodes and the geographical patterns 
of flows, we obtain the strength, sf(k), as a function 
of node degree and its corresponding spatial distri-
bution of the subway system, as shown in Figure 2. 
It can be seen that the probability distribution P(sf) 
can be fitted by the Weibull distribution with pa-
rameters a=54439 and b=1.3772 rather than a broad 
law such as the power-law distribution suggested 
in [47]. However, we find that the strength sf(k) of 
nodes with node degree k follows a power-law be-
haviour sf(k)~kβ with β=1.3373. This value denotes 
strong correlation between the traffic handled by a 
station and the number of its connections. In fact, 
the strength sf(k) grows exponentially with degree  
k. In other words, the allometric growth of node 
strength indicates that the more connected station 
tends to have more traffic it handles, and the traffic 
will grow much faster than the number of connec-
tions, as shown in Figure 2a.
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in subway systems and thus can help design the in-
frastructure network to distribute the flow of pas-
sengers more evenly [26]. Let bi be the fraction of 
shortest paths that pass through node i and then the 
betweenness centrality of a node bi can be repre-
sented as:

b
i

i jk

jk

i j k N
v
v

=
!! !

^ h/  (3)

where σjk is the number of physical distance short-
est paths between two stations and σjk(i) is the 
number of paths that go through node i. Note that  

node centrality, such as betweenness and eigenvec-
tor-like centrality to identify which nodes are more 
central than others in a network.

In this study, we use two complex measures 
to identify the centrality of nodes in the graph Gd 
and graph Gf, respectively. For the physical graph 
Gd, we use the betweenness centrality measure, 
which highlights the importance of a node acting 
as a “bridge” for connecting different regions of 
the transportation network [26, 47]. This transfer 
characteristic is clearly of paramount importance  
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atively low and similar centrality scores. This is not 
surprising since the BSS network has a large frac-
tion, 80% of stations that do not offer transferring 
and thus necessarily help to the possible shortest 
path. From a topological point of view, these sta-
tions appear nearly equal in terms of importance. 
On the other hand, the stations with higher centrali-
ty scores (Groups 1-3) almost belong in the type of 
transfer stations. These most central stations host the 
Line 2 and 10, which are both rectangular loop lines 
to offer a majority of transferring in the network. 
From this analysis, we conclude that betweenness 
centrality can be viewed as an appropriate measure 
to determine which stations are topologically more 
central in the network, since it captures the impor-
tance of a station as transfer point to join pairs of 
nodes. Furthermore, our finding shows the evenly 
distributed betweenness in the network, which is 
similar with other worldwide subway systems [26]. 
Compared to other researches on the centrality of 
the Beijing subway network, our results are also 
similar. The top 10 stations with higher degree and 
betweenness in reference [33] are all within the top 
three groups in Figure 3a.

Compared with Figures 3a and 3b provides much 
of the same spatial pattern, but shows it in a way 
that allows one to determine the importance of a 
station in the system with reference to how passen-
ger flows are distributed through the network. It is 
evident that the identifications of the most central 
stations are roughly similar to these results present-
ed in Figure 3a. In Figure 4b, the alpha centrality score 
of stations ranges from 0.001 to 0.076 and its dis-
tribution can be well fitted by the Weibull distribu-
tion with parameters a=0.0016 and b=0.2921. This 
skewed distribution indicates that passenger flows 
are concentrated on a few centres and hub stations 
with the high alpha centrality, whereas many sta-
tions of little importance have less passengers flow-
ing into the station and out of the station. The result 
is compatible with our understanding of subway 
networks, namely the number of trips or traffic be-
tween adjacent stations is scale-free whose features 
are common to many subway systems. We also ob-
served that a station that has a high centrality score 
is one that is adjacent to stations that are themselves 
high scorers. As such, the centrality of a station is 
expected to depend on the centrality of its neigh-
bouring stations. This tendency accounts for the 
hierarchical organisation of the passengers flows 

betweenness relies on the identification of the short-
est paths. For transportation infrastructure networks, 
it is more appropriate to use physical distance rather 
than the network distance in identifying the shortest 
paths.

For weighted flow network of transportation sys-
tems, eigenvector centrality was used to measure the 
importance or centrality of nodes [38]. The concept 
of underlying eigenvector centrality is that those 
stations that are themselves receiving much traffic 
from others will be more central in transportation 
networks. However, this measure of centrality does 
not take into account stations’ external status char-
acteristics such as passengers entering into the sta-
tion and leaving the station. The flow into the station 
from outside and the flow out of the network from 
the station are important exogenous factors, and are 
related to the population density, land use, and ur-
ban functions around that station. Therefore, for the 
flow graph Gf, we use the alpha centrality measure 
[45], which allows stations to have external sourc-
es of influence. Besides, the influence of adjacent 
nodes on nodes in complex networks is considered 
[48]. Let ei be the amount of exogenous flows that 
node i receives, namely ei=v0i+ui0, and then the al-
pha centrality of a node ci can be defined as:

c a w c ei ji ji
f

j i
j

N

1
a= +

=
/  (4)

where α is a parameter that trades off the impor-
tance of exogenous factors against the importance 
of connectivity, which is influenced by the network 
topology. When α=0, only the consideration of the 
exogenous factors matters. When α is very large 
then only the connectivity matters, i.e. it reduces to 
the eigenvector centrality case. Generally, the pa-
rameter α has to be 1/λ, where λ is the largest eigen-
value of the weighted matrix W [45].

Figure 3 shows the spatial distributions of the be-
tweenness in the graph Gd and the alpha centrality 
in the graph Gf. Figure 4 shows their corresponding 
probability distributions. To make the node central-
ity scores comparable across graphs, we normalise 
them by the total value of centrality of each network. 
In Figure 3a, we measure the importance of stations 
in the physical infrastructure network, correspond-
ing to the nodes’ betweenness score ranging from 0 
to 0.095. The shape of the betweenness distribution 
is asymmetrical, being skewed to the left hand side 
and can be fitted by the Weibull distribution with 
parameters a=0.0025 and b=0.4309, as shown in 
Figure 4a. In fact, more than 80% of stations have rel-
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a) Betweenness b in the graph Gd

b) Alpha centrality c in the graph Gf
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Figure 3 – The spatial distributions of the betweenness and the alpha centrality
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the load pattern in a real-life transportation network. 
To study this question, we first define the real load 
of nodes in the weighted flow network. Borrowing 
from ecology [36], we refer to the sum of the flow 
weights of all links and the exogenous flows whose 
both paths traverse a node i as its real load, li:

l v u w wi i i ij
f

ji
f

jj
0 0= + + +//  (5)

where in a subway network li can be computed as 
the total amount of passengers moving into/out of 
the station and passengers arriving at/leaving the 
same station.

In Figure 5, we present the spatial distribution of 
the real load for the BSS network, which reveals a 
roughly similar pattern comparable to the patterns 
of the two node centrality measures. The nodes are 
classified into eight quartile groups. The probability 
distribution of P(l) is fitted by the Weibull distri-
bution of parameters a=579241 and b=1.2650. The 
difference can be observed in the geographical pat-
terns formed by the distributions of the real load, the 
betweenness and the alpha centrality, by comparing 
Figures 3a, 3b, and 5. To quantify these differences, we 
present the scatter plots of the two node centrali-
ty measures versus the real load l in Figure 6. In the 
top left corner of every plot, we give the value of 
the corresponding Pearson’s correlation coefficient. 
Unsurprisingly, it is found that in our data the alpha 
centrality approximates the real load, which is better 
than the betweenness, corresponding to their Pear-
son’s coefficients, 0.6945 and 0.3045, respectively. 
These results can be understood by the layered view 
of the subway system, which is described as below.

The physical graph Gd, which is mapped on the 
physical infrastructure network of a subway system, 
is undirected, weighted, with the weighted distribu-
tion of physical distance being skewed to the left 
hand side. The betweenness is a physical topological 
property of such physical networks, which is even-
ly distributed with large size for our studied network 
and other worldwide subway systems [26]. Indeed, 
betweenness can be viewed as the node load estima-
tor in transportation networks and any efforts in pre-
dicting traffic would therefore assume that the traffic 
flows through the network are completely affected by 
the geographical constraints of the network. Never-
theless, many authors took betweenness as a measure 
of load [28, 29, 49]. It is very far from being satis-
factory because of the fact that not all passengers use 
geodesic paths to travel and that the distribution of 
passengers in a subway network is not evenly dis-
tributed. The exponential distribution of flows arises 

through the network, which can be empirically ob-
served at an intra-urban level, in agreement with the 
studies for London Underground [44].

The results show that the spatial distribution of 
the alpha centrality is almost similar to that of the 
betweenness, but differences can be found. For in-
stance, Guomao station, which is ranked the 10th by 
betweenness centrality, is found to receive far more 
traffic than expected. Indeed, it is ranked the high-
est score by the alpha centrality. The reason is that 
Guomao is situated in the financial centre of the Bei-
jing city, the Beijing Central Business District (Bei-
jing CBD), even if it does not lie in the centre of the 
network geographically. Conversely, Shaoyaoju sta-
tion possesses the highest score of betweenness cen-
trality, but handles less flow of passengers. In fact, 
it is only ranked 31st by the alpha centrality. From 
the comparison, we conclude that in a subway net-
work the stations that are highly central in the geo-
desic-based processes such as the betweenness need 
not be highly central in the dynamic processes such 
as the passenger flow along links. This can serve as a 
basis for the better understanding of the node central-
ity in urban transit systems and may strongly affect 
the results of the network performance analysis based 
solely on topological measures.

4. DISCUSSION
For comparison, we have presented the two 

centrality measures based on the layered network 
framework. The first metric is betweenness cen-
trality b based exclusively on the physical network. 
The betweenness centrality quantifies the fraction 
of a station and acts as a “bridge” along the short-
est path between two other stations. The between-
ness of a node thus captures the amount of flows 
passing through the node. Indeed, existing studies 
have already taken betweenness as a measure of the 
load estimator either directly [28–29] or with slight 
modifications [49]. The second metric is the alpha 
centrality c under the consideration of the manner 
in which flows are distributed through the network. 
It seems that the stations with high centrality score 
carry more flows than the less central stations. In 
fact, node centrality turns out to be equivalent to the 
load in many networks, so there are two quantities 
to keep track of in our study, which we refer to as 
betweenness and alpha centrality.

Although we can easily compute the centrality 
of nodes with Equations 3 and 4, there is still a ques-
tion that whether the two load estimators can mimic 
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lution of nodal centrality therefore has clear benefits 
such as effective management of crowds and early 
detection of service breakdowns.

Conversely, stations’ betweenness centrality is 
static and deterministic unless the topological struc-
ture of the system is changed, such as the opening of 
new stations or lines. Accordingly, one advantage of 
the alpha centrality is that we can easily identify the 
nodes’ importance or centrality by taking consid-
eration of the temporal patterns of traffic demand. 
Such dynamic characteristics can be helpful to de-
fine a more effective response strategy regarding the 
operation of BSS services. Furthermore, our analy-
sis shows that the dynamic properties of a system 
may differ significantly with its topological prop-
erties, suggesting a change in thinking from static 
topology analysis to a dynamic (weighted) perspec-
tive. This changed in view strongly affects the re-
sults of the network performance based exclusively 
on the physical topology of a network. For example, 
the evolution of cascading failure or robustness in 
the past crucially depended on the topological mea-
sures [19, 20] and now it relies on dynamic flow 
processes or dynamic flow redistribution [50].

5. CONCLUSIONS AND FUTURE 
RESEARCH
Network methods are useful for studying trans-

portation systems. In this paper, we distinguish a 
subway system on two coexisting topologies de-
pending on each other, in which the lower layer is 
the physical infrastructure and the upper layer rep-
resents the passenger flows within the network. As 
an example of its application, we applied this lay-
ered approach to the identification of which stations 
are more central and important than other stations 
within the Beijing Subway System. We examined 
strength as a function of node degree in the weight-
ed flow network and suggested that using only node 
degree and strength in a weighted flow network is 
unsuitable for identifying the nodal centrality. We 
clarified that it only computes a node’s total link 
magnitude, but ignores the direction and volume 
of the flows along links. We further investigated 
the node centrality in the two coexisting layers of 
the system by using the corresponding appropriate 
measures (betweenness and alpha centrality). By 
comparing with the two centrality indicators, we 
found that stations that are more central in terms of 
betweenness in the weighted physical network need 
not be highly central in the weighted flow network 

from the interplay between the dynamics of traffic 
and the underlying structure. The concept of be-
tweenness largely neglects the dynamic flow pro-
cesses that unfold along the links of a network, and 
thus fails to approximate the real load in subway 
systems. We also expect to observe similar results 
in other transportation networks such as inter-urban 
rail network [28] and urban road network [6].

In contrast, the alpha centrality identifies the 
importance of nodes based on the weighted flow 
network. Such a logical network, which is derived 
naturally from the passenger movements within a 
subway network, is directed, weighted, with the 
flow weight distribution decaying exponentially. In 
fact, the characteristics of the flow process affect 
which stations will receive flows from other stations 
frequently and abundantly, and finally determine the 
importance of a station in the system. The empirical 
results, for the most part, support our claim that the 
alpha centrality is better able to determine important 
stations than betweenness because it more closely 
models the spread of flow on the subway system, 
which occurs via “broadcasts” from one station to 
its neighbourhood stations, and thus is more easily 
perceived and correlated with real traffic patterns 
such as the heterogeneity and hierarchical organisa-
tion of the flows.

The time evolution of passengers travelling be-
tween a pair of stations in a subway system can be 
modelled as a dynamic evolving system [41]. From 
a dynamic perspective, the alpha centrality can be 
viewed as a time-dependent measure for assessing 
nodal prominence and its value, possibly is stochas-
tic due to the uncertainty of travel demand patterns 
of the network. To uncover the time evolution of 
the nodal centrality, we present the spatiotemporal 
pattern of the stations’ alpha centrality of the BSS 
network, from 5 a.m. to 24 p.m. in intervals of 30 
mins, as shown in Figure 7. The colours indicate the 
normalised alpha centrality of stations at a certain 
time and location. Intuitively, the stations’ centrality 
has a distinct morning peak around 7:00. Likewise, 
the evening peak can be observed around 19:00. 
Such characteristics are very similar to those easily 
observed in the travel demand patterns of a subway 
system. This spatiotemporal pattern provides a basic 
understanding of what stations in the BSS network 
are more central in terms of passengers handled over 
a typical weekday. Better understanding of the evo-
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的动力学和底层物理结构之间的相互作用产生的。
在本文中，我们应用一个两层模型来识别北京地铁
系统中的大多数中心车站，其中下层代表物理基础
设施，上层代表客流。我们比较了两层模型的几种
中心性指标，如度、强度和介数中心性。为了表示
车站外部因素对地铁系统的影响，我们引入了Alpha
中心性。结果表明，物理基础网络中的中心车站的
介数中间性与客流网络中的中心车站的Alpha中心性
并不一致。我们将两个中心性结果与实际客流负载
进行对比来解释这一差异，表明Alpha中心性比介数
中心性更接近实际，因为它考虑了轨道上的客流的
方向和大小，以及进入和离开地铁系统的客流。这
些实证结果可以为我们深入了解地铁系统的节点中
心性提供一些有用的信息。

关键词
节点中心性；介数中心性；Alpha中心性； 

地铁系统；客流
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摘要

车站的中心性是城市交通系统中最重要的问题之
一。此类网络的中心车站通常使用网络拓扑中心性
进行识别。但在真实的网络中，客流是由个体运动
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