
ABSTRACT
With the rapid growth of flight volume, the impact of 

convective weather on flight operations in the terminal 
area has become more and more serious. In this paper, 
the typical flight paths (TFPs) are used to replace flight 
procedures as the routine flight paths in the terminal 
area, and the TFP of each flight is predicted by Random 
Forest (RF), Boosting Tree (BT) and K-Nearest Neigh-
bour (KNN) algorithms based on the weather and flight 
plan characteristics. A multi-flight rerouting optimisa-
tion model by bi-level programming is established, which 
contains a flight flow optimisation model in the upper 
layer and a single flight path optimisation model in the 
lower layer. The simulated annealing algorithm and the 
bidirectional A* algorithm are used to solve the upper 
and lower models. This paper uses the terminal area of 
Guangzhou Baiyun Airport (ZGGG) and Wuhan Tianhe 
Airport (ZHHH) for case analysis. The RF algorithm has 
better performance in predicting TFPs compared with 
the BT and KNN algorithms. Compared to the historical 
radar trajectory, the flight path optimisation results show 
that for the Guangzhou terminal area, while meeting the 
Terminal Airspace Availability (TAA) as constraint, the 
flight flow increases and the flight distance reduces, ef-
fectively improving the operational efficiency within the 
terminal.

KEYWORDS
terminal area; convective weather; typical flight path;  
terminal airspace availability; path optimisation;  
machine learning.

1. INTRODUCTION
In recent years, with the rapid growth of flight 

volume, flight delay has become increasingly serious, 
and convective weather is the most important cause 
of flight irregularities [1]. According to the operation 
monitoring centre of the Civil Aviation Administra-
tion of China (CAAC), the flight irregularity rate in 
China due to weather was 51.28%, 47.46%, 46.49%, 
57.31% and 59.56% between 2017 and 2021, with an 
average value of 52.42%, as shown in Figure 1. There-
fore, flight delay caused by convective weather is a 
key issue, affecting the sustainable and rapid devel-
opment of the air transportation industry. Reducing 
the impact of convective weather on flight operations 
and reducing flight delay is one of the most important 
research topics for the civil aviation industry in the 
future.

Terminal airspace is a narrow airspace connect-
ing en route and airport, in which the departure and 
arrival of flights are accomplished by changing the 
altitude, direction and speed [2]. As the terminal 
airspace is a convergence area of arrival and de-
parture traffic flow, it is characterised by complex 
route structure, intensive traffic activities, frequent 
flight conflicts and narrow mobile space. It is a 
bottleneck for air traffic management, and its abil-
ity to cope with weather changes is poor, which 
easily causes flight delays. With the accumulation 
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least fuel consumption as the objective function 
while multi-objective path optimisation consid-
ers multiple conditions comprehensively to form 
the objective function. Wang [10] et al. designed a 
three-stage method to study the reroute optimisa-
tion with the shortest distance as the objective and 
the minimum distance of segment, the danger zone 
and the turning angle as the constraints. Soler [11] 
et al. conducted 4D trajectory planning with mini-
mised fuel consumption, CO2 pollution, passenger 
flight time and sustained trajectory formation as 
the overall flight cost. Zhang [12] et al. identified 
scattered hazard areas based on the characteristics 
of the Bézier curves and Doppler radar, generat-
ed smooth and corner curve segments that make 
up the reroute, and obtained the optimal reroute 
through multi-objective planning. Taylor [13] et al. 
used a multi-objective genetic algorithm to gener-
ate selectable optimised flight paths for multiple 
flights based on multiple criteria of operational ac-
ceptability.

Flight path solving algorithms are mainly clas-
sified into graph-theoretic algorithms, meta-heu-
ristic optimisation algorithms and machine learn-
ing algorithms. The graph-theoretic algorithms 
mainly include algorithms such as the K shortest 
path algorithm [14] and A* algorithm [15]. The 
meta-heuristic optimisation algorithms mainly in-
volve the ant colony optimisation algorithm [16], 
genetic algorithm [17, 18], simulated annealing 
algorithm [19, 20] and the SB-RRT* algorithm 
(Scenario-Based Rapidly-exploring Random 
Tree*) [21]. Machine learning algorithms include 
the RNN algorithm [22], HMM algorithm [23], 
CGAN algorithm [24], etc.

So far, although many research results have 
been achieved on the flight path optimisation prob-
lem, the following deficiencies and potentials for 
improvement still exist: (1) the flight path opti-
misation failed to draw on historical flight expe-
rience and did not consider historical flight paths. 
(2) The flight path optimisation ignored the spe-
cific impact of the severity of convective weather 
on the capacity of the terminal area and regarded 
all the airspace affected by convective weather as 
unflyable airspace. (3) Most of the previous flight 
path optimisations only consider a single flight, 
and there are not many research results on the op-
timisation of multiple flight paths from the sys-
tem perspective. To overcome the above research 
shortcomings, this paper uses the RF, BT and KNN 

and propagation of flight delays, the operational 
efficiency of the local area and even the whole air 
traffic system can be reduced to a different extent.

Many scholars are interested in researching 
the impact of convective weather on flight opera-
tions [3–5]. This paper focuses on flight path op-
timisation in the terminal area under convective 
weather, aiming to enhance airspace utilisation, 
reduce flight delays and improve the operational 
efficiency of the air traffic system. Flight path op-
timisation refers to finding the optimal flight path 
with the goal of shorter flight distances or less 
fuel consumption under the condition of avoiding 
convective weather, obstacles and other restricted 
areas. Previous experts and scholars have studied 
the flight path optimisation problem from multi-
ple perspectives. According to weather changes, 
the flight path optimisation is divided into static 
path optimisation and dynamic path optimisation. 
Sridhar [6] used a playbook and coded departure 
paths to achieve tactical reroute near congested 
airspace, and Dwight [7] et al. considered weather 
forecasts and errors to achieve flight conflict res-
olution and reroute forecasts. They both imple-
ment static path optimisation. Isaacson [8] et al. 
provided Dynamic Routing for Arrivals in Weath-
er (DRAW) for air traffic controllers to reduce the 
impact of convective weather on arrival flight op-
erations. Wang [9] et al. predicted the boundary of 
the severe weather danger zone while achieving 
flight path optimisation. They both implement dy-
namic path optimisation. Flight path optimisation 
can also be classified as single-objective path op-
timisation [10] and multi-objective path optimisa-
tion [11–13] according to the number of objectives 
of the optimisation model. Single-objective path 
optimisation selects one of the conditions such 
as shortest flight distance, shortest flight time and 

500
450
400
350
300
250
200
150
100
50
0

M
ill

io
n 

so
rti

es

70

60

50

40

30

20

10

0

(%
)

Flight performance (million sorties)
Flight irregularity rate due the weather (%)

2017 2018 2019 2020 2021

403.9

51.28

434.58

47.46

461.11

46.49

352.06

57.31

439

59.56

Figure 1 – Number of flights and flight irregularity rate due to 
weather from 2017 to 2021



Wang S, et al. Multi-Flight Rerouting Optimisation Based on Typical Flight Paths Under Convective Weather in the Terminal Area

Promet – Traffic&Transportation, Vol. 34, 2022, No. 6, 907-926 909

the TFPs in the terminal area under clear weath-
er to reflect the real paths of historical flights. 
Here, the actual TFP obtained from the historical 
flight can be used as the initial condition for the 
path optimisation of the flight to be optimised de-
scribed in Section 3.3. Therefore, the flight path 
optimisation process could take into account the 
flight patterns under historical situations. While 
giving basic restrictions to the flight path, the 
optimisation results can be consistent with the  
objective flight tendency of pilots and the control 
habits of controllers in the terminal area under 
convective weather.

The process of OPTICS
In this paper, the Ordering Point to Identify the 

Cluster Structure (OPTICS) algorithm [25] is used 
to complete the trajectory clustering in two stag-
es-cluster sequence generation and cluster label 
acquisition. The details are shown in Figure 3.

The process of cluster sequence generation is 
shown in Figure 4a and the generation result shows 
that each trajectory only has two values: the core 
distance (coreDist) and reachable distance (reach-
Dist). Through the input parameters which are the 
neighbourhood radius ε and the minimum number 
of samples MinPts within ε-radius, the expansion 
sequence of all samples is generated by calculating 
coreDist and reachDist of each sample. The core-
Dist is the minimum neighbourhood radius that 
makes sample x a core object, as shown in Equation 1. 
The reachDist is the minimum neighbourhood ra-
dius that both makes sample x a core object and 
sample y directly reachable from sample x, that is, 
the bigger one of the coreDist of sample x and the 
distance from sample x to sample y, as shown in 
Equation 2. N(x) is the number of samples contained 

algorithms to predict TFPs and considers the corre-
sponding results as the initial conditions for flight 
path optimisation as well as calculates the airspace 
availability in the terminal area under convective 
weather as the constraints for flight path optimi-
sation. This paper takes into account the interests 
of terminal area airspace managers and flight op-
erators and constructs a multi-flight rerouting opti-
misation model with the objectives of maximising 
terminal area traffic and minimising reroute dis-
tance of every single flight to complete flight path 
optimisation in the terminal area under convective 
weather conditions.

The structure of this paper is as follows: Sec-
tion 2 describes the implementation and prediction 
method of TFPs and the calculation method of the 
TAA; Section 3 details the process of flight path 
optimisation in the terminal area, the composition 
of the multi-flight rerouting optimisation model, 
and the solution algorithm; Section 4 takes ZGGG 
and ZHHH terminal area as the research object, 
determines the prediction algorithm of the TFP 
and gives case analysis of the flight path optimi-
sation; Section 5 states the summary and research 
prospect.

2. MULTI-FLIGHT REROUTE 
OPTIMISATION

2.1 Obtaining TFPs by OPTICS algorithm
As shown in Figure 2, even under clear weath-

er, quite a few flights deviate from the flight pro-
cedure due to airspace environmental constraints 
and flight habits. To determine the actual flight 
paths in the terminal area, this paper first clusters 
the historical flight radar trajectories to obtain 
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Figure 2 – Radar trajectories and flight procedures in the terminal area
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Machine learning algorithms have a powerful 
ability to search complex structures and match re-
lationships within objects to predict problems with 
complex nonlinear features. Figure 6 shows the pro-
cess of prediction of the TFP using machine learn-
ing algorithms. For flights under convective weath-
er conditions, the features are weather information 
and flight plan data, and the labels are actual TFPs, 
which are input into the machine learning algorithm. 
Three machine learning algorithms are used for 
continuous training to minimise the error between 
the predicted TFPs and the actual TFPs, and finally, 
the prediction of the TFPs is completed. 

To comprehensively reflect the impact of intensi-
ty, altitude, range and duration of convective weath-
er on the selection of the TFP in the terminal area, 
eight weather features were selected in this paper, 
including 90th percentile CR, maxCR, 90th percentile 
ET, maxET, 90th percentile VIL, maxVIL, convective 
weather coverage and convective weather duration, 
where CR, ET and VIL are three important weather 
products, the 90th percentile represents the nineti-
eth percentile value of the CR/VIL/ET on a planned 
TFP, and max represents the maximum value. Con-
vective weather coverage refers to the percentage of 
convective weather area within the planned TFP, the 
VIL of which is corresponding to NWS Class 3 and 
above. There are 7 levels of the National Weather 
Service (NWS). In general, aircrafts are advised to 
avoid convective weather at NWS level 3 or above 
[26]. Convective weather duration refers to the 
duration of the convective weather with a level of 
NWS 3 or above and the area accounting for 10% or 
more within the planned TFP.

Features
In this paper, the planned arrival/departure gate, 

runway operation direction and the planned IAF 
point are selected to reflect the flight plan character-
istics. After trajectory clustering is achieved by Sec-
tion 2.1, the planned TFP for each flight is unique-
ly determined based on the above three flight plan 

in the ε-radius of sample x, and DF(y, x) is the dis-
tance from sample x to sample y. N xMinPts

f ^ h  is the 
object in x’s neighbour that makes N(x)=MinPts if 
the ε-neighbourhood of x has more than MinPts.

The process of cluster label acquisition is shown 
in Figure 4b. By inputting the clustering threshold εi, 
the reachDist and coreDist of each sample are com-
pared with εi, and the cluster label of each sample is 
generated to complete the trajectory clustering.

( )
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Determination of the TFP
After clustering of OPTICS, the outer track 

points on both sides of each cluster are extracted and 
called side points. Check the number of track points 
within the radius d of each side point. If less than 
the threshold, the side point is removed, otherwise 
retained. The two lines formed by the retained side 
points of both sides form the TFP. The side points 
on both sides of each cluster are matched with dis-
tance, and the two side points with the shortest dis-
tance are called matching point pairs. The line of the 
midpoint of all matching point pairs is the centreline 
of each cluster. This is shown in Figure 5. The cen-
treline is a TFP.

2.2 Predicting TFP by using machine 
learning algorithms

The actual TFP of each historical flight can be 
obtained directly through Section 2.1. However, 
due to the influence of weather conditions in the ter-
minal area, the actual TFP may not be the same as 
the planned TFP, so the weather information on the 
planned TFP needs to be used as features to predict 
whether the flight will be rerouted and which route 
the flight will take after being rerouted.

Extract side points Check side points Match points Find centreline

Figure 5 – The diagram of centreline determination
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the training samples. The above three algorithms 
have strong classification ability and applicability, 
so they are selected for the prediction of the TFPs.

In this paper, we evaluate the prediction algo-
rithm performance for the prediction of TFPs by 
calculating the accuracy and confusion matrix. The 
accuracy is calculated as shown in Equation 3, where   
y͂i is the predicted TFP, yi is the actual TFP used by 
historical flight, n is the number of samples of the 
historic flights, l is a binary variable, 1 when yi is 
the same as y͂i, 0 otherwise. The larger the accuracy, 
the higher it is, and the better the performance of the 
prediction algorithm. 

,
,

accuracy l y y

l
y y

n
1

1
0

is the same as
otherwise

i i

i i

= =

=

u

u

^ h

)

/
 (3)

2.3 Calculating the availability  
of the terminal airspace and TFP

In this paper, terminal airspace availability 
(TAA) represents the number of flights that the ter-
minal can accommodate under convective weather. 

characteristics. The weather features are obtained 
within the planned TFP to determine the extent, 
range and duration that the planned TFP is affected.

Labels
The label represents the actual TFP of each flight, 

where the flights that did not follow any TFP (by 
ATC) are labelled as 0, while the rest of the flights 
are labelled as the specific path number (see Figures 
12–15).

Machine learning algorithms
For machine learning prediction algorithms, the 

RF uses the decision tree as the base learner and adds 
random feature selection to increase the robustness 
and generalisation performance of the prediction. 
BT is an algorithm that upgrades a weak learner to a 
strong learner, which is weighted by training several 
base learners to combine for classification. KNN is 
a common supervised learning algorithm, which di-
rectly obtains the predicted value of the test sample 
based on the distance between the test sample and 

Input Machine learning
algorithms

RF

BT

KNN

Output

Predicting typical
flight paths

Feedback on typical
flight paths

Flight plan
characteristics

Weather
characteristics

Labels

Planned arrival/departure
point runway operation

direction planned IAF point

Actual typical
flight path

90th percentile VIL, maxVIL

90th percentile ET, maxET

90th percentile CR, maxCR

Convective weather coverage
Convective weather duration

Figure 6 – Process of prediction of the TFP
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TAA is finally calculated by Equation 4. The FT in 
Equation 4 is the peak hourly flow rate under clear 
weather in the terminal area and Bs is the score of 
each notional route. In Equation 5, ATFPq represents 
the availability of the qth TFP, The FR is the peak 
hourly flow rate of the qth TFP under clear weather 
and N is the number of the notional routes contained 
in the qth TFP.

TAA F
B

1 360T

s
s 1

360

$= - =f p/
 (4)

F
B

ATFP N1
s

s
R

N

q 1$= - =f p/
 (5)

3. MULTI-FLIGHT REROUTING 
OPTIMISATION
The variables and corresponding meanings of 

the flight flow optimisation model and the single 
flight path optimisation model are shown in Table 1.

Accordingly, the availability of a TFP (ATFP) refers 
to the number of flights that can be accommodated 
by the TFP under convective weather.

The prerequisite of flight path optimisation is 
to determine the degree and range of the impact 
of convective weather on airspace operations. Ac-
cording to the literature [27], this paper converts the 
seven-level weather map of the airspace given by 
VIL data in Figure 7a into the impact map of convec-
tive weather on airspace operations represented by 
three colours in Figure 7b. The white area in Figure 7b 
represents the clear weather area where flights are 
allowed to fly. The yellow area represents the mod-
erate convective weather area where limited flights 
are allowed to fly. The red area represents the strong 
convective weather area where flights are prohibit-
ed to pass. The red area and yellow area are called 
convective weather avoid polygon (CWAP). In or-
der to ensure flight safety, a safety margin of 1km is 
set during the formation of the CWAP.

The TAA [28] is calculated as follows: As shown 
in Figure 8, assuming that the airport is the origin, the 
black circle is the boundary of the terminal area, red 
represents strong convective weather and yellow 
represents moderate convective weather. A notional 
route pointing to the boundary of the terminal area 
is drawn at 1° interval, taking the airport as the ori-
gin, and so there are 360 notional routes in a termi-
nal area. When a red block is crossed by a notional 
route, the score of the notional route is recorded as 
0%, a yellow block is crossed, 50% is recorded, and 
if the notional route does not cross a red block nor 
a yellow one, a 100% is recorded. For example, the 
number near the scan lines is the score of the notion-
al route in Figure 8.
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The reasons for using bi-level programming in this 
paper are as follows: (1) the intrinsic link between 
the upper and lower models conforms to the defini-
tion of bi-level programming and (2) the transfer of 
the decision variables between the upper and lower 
model makes the problem not only clear and easy to 
understand but also fast and accurate in finding the 
optimised rerouting path for each flight under the 
capacity constrain of the TAA and TFP.

The multi-flight rerouting optimisation model is 
based on the following assumptions: (1) the aircraft 
for the arrival and departure flight is considered as 
a point mass; (2) the flight altitude is below 6000m; 
(3) since the weather data are all distributed along 
the horizontal direction, the flight path optimisation 
is set to be two-dimensional; (4) the flight conflicts 
and the separation between aircraft and terrain ob-
stacles in the terminal area are not considered; (5) 
the origin and destination points of each flight are 
fixed when optimising the flight path; (6) the weath-
er data in the middle of the optimisation period is di-
rectly used for flight path optimisation because both 
the optimisation period and the flight time within 
the terminal area are short.

3.1 Multi-flight rerouting optimisation 
process

According to the calculation of the TAA and  
ATFPq under convective weather and the prediction 
of the TFP, the multi-flight rerouting optimisation 
process is shown in Figure 9. The specific steps are 
described as follows.
Step 1: Acquisition of weather and flight plan data 
for the optimisation period.
Step 2: Based on the weather information in the ter-
minal area, Equations 4 and 5 are used to calculate TAA 
and ATFPq, and the machine learning algorithms are 
used to predict the actual TFP. The calculation and 
prediction results will be regarded as the constraints 
and initial conditions of the multi-flight rerouting 
optimisation model.
Step 3: The solving algorithm of the flight flow 
optimisation model is used to obtain the results of 
whether each planned flight can fly and whether it 
would adopt radar guidance or the predicted TFP. 
Then the result is passed to Step 4.
Step 4: The path searching algorithm is used to op-
timise the flight path for each flight, and the opti-
mised flight path is obtained if the maximum num-
ber of iterations is reached, otherwise the result of 
flight path optimisation is passed to Step 3.

In this paper, the multi-flight rerouting optimisa-
tion model is established by bi-level programming. 
The objective of the upper layer is to maximise the 
flow in the terminal area, accordingly, the flight 
flow optimisation model is called. To the single 
flight path optimisation model, the objective of the 
lower layer is to minimise the diversion distance 
of a single flight. In the upper model, while pursu-
ing the maximisation of flow, whether the flight is 
along the predicted TFP or guided by radar will be 
determined, that is, the decision variables xi and xi

q 
are determined, which is passed to the lower model 
as the constraint that affects the values of the de-
cision variables of the lower model. In the lower 
model, while pursuing the optimal flight path, the 
flight path length can be determined, that is, the 
decision variables of the lower model di and di

' are 
determined, which is passed to the upper model as 
the constraint that affects the values of the decision 
variables of the upper model. This circulation of cal-
culations leads to the final determinations of the op-
timal solution for the upper and lower layer models. 

Table 1 – Variables and meanings

Variables Meanings

n Total number of planned flights

xi

The binary variable of whether flight i 
performs radar guidance, 1 if ‘yes’, 0 
otherwise

xi
q The binary variable of whether flight i flies in 

the qth TFP, 1 if ‘yes’, 0 otherwise

Q Total number of TFPs in the terminal area

di
The flight path length for flight i by radar 
guidance

di
’ The flight path length for flight i follows the 

predicted TFP

Di The predicted TFP length

TAA Terminal Airspace Availability

ATFPq The availability of the qth TFP

Dmax The maximum permitted flight distance

CWAPr Red area

M Number of grids of the optimized path during 
the bidirectional A* algorithm implementation

CWAPy Yellow area

Ri The flight path of flight i

Ri
o The flight path of flight i guided by radar

Ri
q The flight path of flight i follows the predicted 

TFP
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Single flight path optimisation model
The single flight path optimisation model is de-

signed to optimise the flight path from the flight 
operator’s perspective based on the constraints of 
convective weather. The objective function is shown 
in Equation 12, which aims to minimise the rerouting 
distance by calculating the diversion between the op-
timised flight path and the predicted TFP. Equation 13 
represents that flights must avoid red areas with se-
vere convective weather, that is, flight paths must not 
intersect with red areas.
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3.3 Solving algorithms
The flight flow optimisation model is solved by 

the simulated annealing algorithm, and the single 
flight path optimisation model is solved by the bidi-
rectional A* algorithm.

Simulated annealing algorithm 
The simulated annealing algorithm is a heuristic 

algorithm, which introduces a random factor into the 
search process and accepts worse solutions with a 
certain probability when the temperature decreases,  

3.2 Model building

Flight flow optimisation model
The flight flow optimisation model is designed 

to maximise traffic from the perspective of ter-
minal airspace managers under the constraints of 
TAA, flight distance, etc. The objective function is 
shown in Equation 6. The flight number of terminal 
airspace is maximised by giving priority to flights 
with relatively shorter rerouting distances (ob-
tained by the single flight path optimisation model). 
Among them, Di/di and Di/di

’ can reflect the cost of 
flight i to reroute. When xi and the sum of xi

q equal 
0, flight i does not plan to fly. It indicates that this 
flight should delay/cancel its departure, or should 
be directed to an alternative airport if the flight were 
already airborne, and this depends on advance time 
of the weather forecast used in the model. When xi 
equals 1 and the sum of xi

q equals 0, flight i per-
forms radar guidance. When xi equals 0 and the sum 
of xi

q equals 1, flight i follows the predicted TFP. 
Equations 7 and 8 represent that the flight flow must 
not exceed the capacity limitation of the terminal 
area and of the corresponding TFP. Equations 9 and 10 
represent that the length of the optimised flight path 
must not exceed the maximum permitted flight dis-
tance. Equation 11 represents that xi and xi

q can only 
have at most 1 variable taking the value of 1.
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Path
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Figure 9 – Multi-flight rerouting optimisation process
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directional A* algorithm is an improved algorithm 
of the A* algorithm. It searches two paths from the 
origin point and the destination point: one from the 
origin point to the destination point and the other 
from the destination point to the origin point. Final-
ly, it takes the shorter of the two flight paths as the 
optimised path. The bidirectional A* algorithm can 
obtain two optimised flight paths and selects the op-
timal solution without reducing the computational 
speed, which is more efficient and accurate.

The bidirectional A* algorithm uses the full 
graph information to perform a directed and pur-
poseful search. The algorithm will perform path 
searching with an evaluation function F, where G is 
the Euclidean distance from each point to the origin 
point and H is the Manhattan distance from each 
point to the destination point, as shown in Equations 
14–16.

F G H= +  (14)

G X X Y YStart p Start p
2 2= - + -^ ^h h  (15)

H X X Y YEnd p End p= - + -  (16)

The process of the bidirectional A* algorithm is 
shown in Figure 9 and the specific steps are as fol-
lows:
Step 1: Add the origin point PStart to the open list.
Step 2: Repeat the following process: 
a. Iterate through the open list to find the path point 
PTemp with the smallest F and regard it as the current 
path point to be processed.
b. Move PTemp to the close list.
c. Judge and process each of the 8 neighbouring 
points (centre of a grid in this paper, the size of the 
grid is 0.01̊×0.01̊, which is 1 km×1 km, the basic 
unit of meteorological information storage) P of 
PTemp: if P is not reachable or P is in the close list, 
do not process it. If P is not in the open list, set PTemp 
as its father node and add P to the open list. If P is 
already in the open list, use G to check whether the 
path to P via PTemp is better. If it is, update its father 
node to PTemp, and recalculate its G and F value.
d. Determine whether to stop the path searching: 
stop searching when the destination point PEnd is 
added to the open list, or the search for PEnd with an 
empty open list has failed.
Step 3: Move along the father node of each path 
point from PEnd to PStart as the rerouting path. 
Step 4: Swap PStart and PEnd, and perform Step 1 to 
Step 3 at the same time.

so the simulated annealing algorithm can break 
through the local optimal solution and find the global 
optimal solution. The simulated annealing algorithm 
has good robustness and a simple computational pro-
cess, which is suitable for solving complex optimis-
ation problems.

Considering the cost of radar guidance and the 
TFP, the fitness function f(X) of the simulated anneal-
ing algorithm in this paper is the objective function of 
the upper model, as shown in Equation 6.

The process of the simulated annealing algorithm 
is shown in Figure 10 and the specific steps are as fol-
lows:
Step 1: Set the initial temperature T, the number of 
iterations L and the changing rate of temperature α, 
and randomly generate the initial solution X.
Step 2: Repeat Step3-Step4 for l=1, 2, ..., L.
Step 3: Generate the new solution X_new and calcu-
late the difference Δf between f(X_new) and f(X).
Step 4: Accept X_new as the new current solution 
if Δf>0, otherwise accept X_new as the new current 
solution with probability exp(-Δf/T).

Figure 10 – Process of the simulated annealing algorithm

When using the simulated annealing algorithm 
to implement the fitness function, the initial solu-
tion X is randomly generated and the roulette wheel 
selection method is used to obtain X_new, and the 
optimal solution takes the form of binary variables 
xi and xi

q for n flights.

Bidirectional A* algorithm
The A* algorithm starts searching from the or-

igin point until it reaches the destination point, 
which is a typical path searching algorithm. The bi-
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Fourth, to ensure that PEnd of arrival flights is in 
the terminal area and not too far away from IAF, 
‘a limited range’ mentioned in the second aspect is 
set to 3 km (48 grids of 3 circles around the orig-
inal PEnd).The initial direction of the search is the 
direction of the line between the original PStart and 
PEnd, which means for the same search radius, first 
searching the point on the line and then traversing 
clockwise through the points around the original 
PEnd from the first searching point until PEnd meets 
the requirement of no severe convective weather 
in ‘a certain range’. When the search point is out-
side ‘a limited range’ or outside the terminal area 
or in other unreasonable areas, the search stops to 
ensure path validity.

Finally, the two-direction search mentioned in 
Section 2 leads to two possible endpoints. In the 
paper, one of the two endpoints is selected if the 
path it forms is less affected by the weather. Oth-
erwise, the endpoint is selected which is further 
away from the nearest gate of arrival or departure 
than the other, in order to minimise the impact on 
the flight operation.

4. RESULT
In this paper, we selected flight data from 3 Au-

gust to 31 August 2018, including the flight plan, 
historical radar trajectory and weather data. The 
flight plan data include flight number, aircraft type, 
departure airport, arrival airport, planned path and 
other information. Historical radar trajectory data 
is updated at a rate of 8 seconds, including time, 
flight number, longitude, latitude and other infor-
mation. Weather data includes CR, ET and VIL, 
with an update rate of 6 minutes and stored in the 
form of 0.01°×0.01° (longitude × latitude). There 
are 10,551 arrival flights and 13,041 departure 
flights of the Guangzhou terminal area, while there 
are 6,345 arrival flights and 6,595 departure flights 
of the Wuhan terminal area.

4.1 TFP based on the OPTICS Algorithm
According to Section 2.1, the historical ra-

dar tracks of 10,551 arrival and 13,041 departure 
flights in the Guangzhou terminal area and 6,345 
arrival and 6,595 departure flights in the Wuhan 
terminal area were clustered based on OPTICS 
algorithm [30] to obtain TFPs. Figures 12–15 show 
the clustering results of the typical arrival and de-
parture flight paths. For example, the arrival radar 

Figure 11 – Process of the bidirectional A* algorithm

There are five aspects that need to be explained. 
Firstly, the PStart and PEnd of the predicted arrival 
TFP are set as the arrival point and IAF respective-
ly, and the PStart and PEnd of the predicted departure 
TFP are set as the first turn point after departure (if 
any, otherwise the airport) and departure gate re-
spectively. The purpose of this is to align the flight 
trajectory with the runway after take-off or during 
the final approach.

Second, PStart and PEnd of the predicted TFP 
may be located within the convective weather 
area. For arrival flights, if there is severe convec-
tive weather in ‘a certain range’ of PStart and PEnd, 
PStart will be moved 1 km at a time in both direc-
tions along the boundary of the terminal area. PEnd 
is searched within a limited range near the original 
PEnd (IAF) until PEnd meets the requirement of no 
severe convective weather in ‘a certain range’. If 
PEnd cannot be searched, then initial xi and xi

q are 
set to 0. For departure flights, the determination of 
PStart and PEnd corresponds to the determination of 
PEnd and PStart of arrival flights.

Third, if ‘a certain range’ mentioned in the 
second aspect is set too large, the conditions for 
obtaining the origin and destination points are too 
harsh. If the range is too small, there is a possibility 
that the origin and destination points are surround-
ed by convective weather, and the optimised path 
cannot be found. In this paper, ‘a certain range’ re-
fers to 1 km (8 neighbouring grids) around PStart 
and PEnd.
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Figure 12 – Clustering results of arrival flights of the Guangzhou terminal area

Figure 13 – Clustering results of departure flights of the Guangzhou terminal area

Figure 14 – Clustering results of arrival flights of the Wuhan terminal area
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Figure 15 – Clustering results of departure flights of the Wuhan terminal area
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learners is 30, the maximum number of splits is 20 
and the learning rate is 0.1; the k value of KNN 
is 3, the distance metric is Euclidean distance, the 
distance weight is equidistant and the input fea-
tures are normalised before prediction. The ten-
fold validation method is used in the calculation 
and the final accuracy of each algorithm is aver-
aged over ten experiments to evaluate the perfor-
mance of each algorithm.

Based on Equation 3, Figure 16 shows the com-
parison of the prediction accuracy of the three ma-
chine learning algorithms for typical arrival and 
departure paths of the Guangzhou and Wuhan ter-
minal area. The RF shows the best performance on 
all four datasets, ranging 2–8% higher than the BT 
and KNN algorithms, indicating the superior per-
formance of the RF in the prediction of the TFPs.

Figures 17 and 18 show the prediction results of 
the TFPs using the RF algorithm in the Guang-
zhou and Wuhan terminal area. The results show 
that the percentage with prediction accuracy over 
90% are 53.8% (No. 0, 4, 5, 6, 7, 10, 11 TFP), 
50% (No. 0, 1, 4, 7 TFP), 40% (No. 0, 5, 6, 9 
TFP), 21.4% (No. 0, 4, 5 TFP). The percentage 
with prediction accuracy over 75% are 61.5% 
(No. 0, 1, 4, 5, 6, 7, 10, 11 TFP), 62.5% (No. 0, 1, 
3, 4, 7 TFP), 70% (No. 0, 1, 2, 5, 6, 8, 9 TFP) and 
35.7% (No. 0, 1, 4, 5, 8 TFP). For flights with a 
label of 0 (Radar guidance), the prediction accu-
racy exceeded 92% on all four datasets. The most 
important reason for the prediction error is that 
the number of flights using some TFPs under con-
vective weather is low, resulting in the training 
samples of these TFPs being low. For example, 
No.11 to No.13 TFPs in Figure 18b have less than 
10 samples. It can be seen that with sufficient 
sample size, the RF algorithm can predict with 
high accuracy whether a flight performs radar 
guidance and which TFP to fly under convective 
weather conditions. Therefore, the RF algorithm 
is chosen to predict the TFP in this paper.

4.3 Case study

Convective weather condition
Figure 19 shows the radar trajectories of the 

Guangzhou terminal area from 11:30:00–12:30:00 
on 19 August 2018, and the Wuhan terminal area 
from 11:30:00–12:30:00 on 31 August 2018, re-
spectively. The base map is VIL, reflecting the se-
verity and range of convective weather. As seen 
in Figure 19a, there is a larger area of convective 

trajectory clustering results in the magenta colour 
at GYA of Figure 12a correspond to the trajectories 
centreline of the TFP in the magenta colour at GYA 
of Figure 12b, and the No. 1 TFP of Figure 12c. Fig-
ures 12a–15a show the trajectory clustering results 
of arrival and departure flights of the Guangzhou 
and Wuhan terminal area. The black polygon in the 
figure is the terminal area boundary, the blue as-
terisk point is the arrival or departure gate, the red 
pentagram is the location of the airport and differ-
ent colours represent different TFPs. The number 
of TFPs of Guangzhou arrival flights, Guangzhou 
departure flights, Wuhan arrival flights and Wuhan 
departure flights is 12, 7, 9 and 13 respectively. 
Referring to Figure 2, the number and location of 
TFPs of arrival and departure in the two terminal 
areas are indeed different from the published arriv-
al and departure paths, and it was also verified with 
local controllers in both terminal areas.

Figures 12b–15b show the centreline of the TFPs, 
indicating the information of the origin point, des-
tination point and trend. Figures 12c–15c show the 
percentage of trajectories in each TFP, with the 
number of flights (by radar guidance) that are not 
clustered into any of the TFPs in grey. As seen in 
Figures 12c–15c, the number of flights at each arriv-
al and departure gate with different runway oper-
ating directions varies, which results in different 
percentages of trajectories included in each TFP.

In addition, the percentage of flights marked in 
grey is also different for the Guangzhou and Wu-
han terminal area. Most of these flights performed 
radar guidance due to convective weather, which 
indicates the difference in frequency, range and 
intensity of convective weather, and the variation 
in the pilots' flight strategies and habits of the two 
terminal areas.

4.2 Algorithm determination of the TFP 
prediction

For the prediction of the TFPs, 5,405 arrival 
flights and 3,697 departure flights of the Guang-
zhou terminal area and 1,685 arrival flights and 
1,823 departure flights of the Wuhan terminal area 
under convective weather were selected as the 
training samples in this paper. 

The parameters of the prediction algorithm of 
the TFP are set as follows: the base learner of the 
RF is the decision tree, the number of learners is 
30; the base learner of the BT is the decision tree, 
the integration method is Adaboost, the number of 
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rections. As seen in Figure 19b, there is a large area of 
convective weather on the west side of the Wuhan ter-
minal, and there are several scattered small areas of 
convective weather on the northwest side, so most of 
the flights completed their arrival and departure from 

weather on the west side of the Guangzhou terminal 
area and a smaller area of convective weather on the 
north and southeast sides, so the number of flights in 
the west direction is low, and most flights complete 
their arrival and departure from the north and east di-
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Figure 17 – Prediction results using the RF algorithm in Guangzhou terminal area
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Tables 3 and 4 show the basic flight information 
and predicted TFPs for 51 flights of the Guang-
zhou terminal area and 34 flights of the Wuhan ter-
minal area, respectively.

Tables 3 and 4 show the basic flight information 
and predicted TFPs. In Table 3, the number of flights 
that are predicted correctly is 45, and incorrectly 
six. These six flights were all planned to arrive 
from IGONO, but actually arrived from ATAGA. 
The actual TFP is No.6 and the predicted TFP is 
No.8. The reason for the error is the relatively weak 
convective weather conditions on the planned TFP 
of the six flights during the prediction period, while 
the actual situation is that the pilots completed the 
arrival from ATAGA for flight safety and traffic con-
trol reasons. In Table 4, the number of flights that are 
predicted correctly is 32, and incorrectly two. These 
two flights are predicted to depart from the No.3 
TFP at LKO and are actually performed by radar 
guidance. The reason for the error is that although 
the convective weather on the No.3 TFP was strong 
during the prediction period, the convective weather 
only existed in part of the TFP and did not block the 
cross-section of the path, so the flights could still 
fly as planned. But in reality, the pilots took radar 
guidance to complete the departure for safety rea-
sons. It seems that both errors can be related to the 

the north and southeast directions, and the flights on 
the west side completed their arrival and departure 
from the interval of convective weather areas.

The calculation results of TAA and ATFP
Table 2 shows the planned flight number, actual 

flight number, the TAA and ATFP for the Guang-
zhou and Wuhan terminal area during the period 
of the case study. The planned flight number of the 
Guangzhou and Wuhan terminal area are 51 and 
34. The historical actual flight numbers are 42 and 
28 because of convective weather. The TAA is cal-
culated using Equation 4 to be 46 and 31, respective-
ly. According to Equation 5, the ATFP of each arrival 
and departure is affected then and the total ATFP 
in the Guangzhou and Wuhan terminal areas is also 
calculated.

The prediction results
As shown in Figure 6, 8 weather features includ-

ing the 90th percentile CR, maxCR, 90th percentile 
ET, maxET, 90th percentile VIL, maxVIL, convec-
tive weather coverage and convective weather du-
ration, as well as three flight plan features includ-
ing the runway operation direction, planned arrival 
and departure gates, and planned IAF points are 
put into prediction model obtained by the RF algo-
rithm to predict the TFP of each flight.
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Figure 19 – Radar trajectories and VIL information

Table 2 – Traffic count of Guangzhou and Wuhan terminal area

Guangzhou Terminal Area Wuhan Terminal Area

Planned/Actual/TAA 51/42/46 34/28/31

ATFP
(Arrival No. 6: 7; Arrival No. 8: 6; Arrival 

No. 11: 2; Departure No. 3: 1; Departure No. 
4: 9; Departure No. 7: 6;)

(Arrival No. 1: 7; Arrival No. 2: 2; Departure No. 
1: 6; Departure No. 4: 1; Departure No. 9: 3;)
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to perform radar guidance so that the flight flow in 
the terminal area can be maximised. The solution 
is carried out by Equations 6–15 with the objectives 
of maximising the flight flow and minimising the 
flight rerouting distance. The flight flow optimisa-
tion model uses the simulated annealing algorithm, 
and the parameters are set as follows: the initial 
temperature T is 1000, the number of iterations L is 
50, the temperature change rate α is 0.99 and Tmin 
is 1. The maximum number of iterations is 50.

In this paper, a computer configured with an i7-
9750H CPU processor and 16GB RAM is used to 
solve the model by using the Matlab software. The 
computation times for the Guangzhou and Wuhan  

fact that optimised trajectories are riskier than the 
actual practice. This suggests that people prefer to 
take safer paths conservatively, which would lead to 
more regulated workloads and flight times.

The multi-flight rerouting optimisation results
After obtaining the prediction results of the 

TFPs, refer to Figures 12b-15b to obtain the length 
of the predicted TFP for each flight and set the ini-
tial condition. In Equation 6, di and di

’ are equal to 
Di for flights with non-zero predicted value, other-
wise, di and di

’ are equal to 99·Di. The reason for 
this setting is that under the limitation of TAA, the 
upper model gives priority to the flights predicted 
to have specific TFPs and then arranges the flights 

Table 3 – Basic flight information and predicted TFPs (Guangzhou Terminal Area)

Flight 
number

Planned 
arrival and 
departure 

gates

Arrival/ 
Departure

Actual 
TFP

Predicted 
TFP

Flight 
number

Planned 
arrival and 
departure 

gates

Arrival/ 
Departure

Actual 
TFP

Predicted 
TFP

CSN6916 ATAGA Arrival 6 6 CSN3958 IGONO Arrival 6 8

CSH9304 LMN Departure 4 4 CSN3539 LMN Departure 4 4

CES5321 GYA Arrival 0 0 CDG1170 LMN Departure 4 4

CSN6341 ATAGA Arrival 6 6 CSN3103 YIN Departure 3 3

CCA4306 YIN Departure 3 3 CES5303 IGONO Arrival 6 8

CSZ9691 YIN Departure 3 3 CSZ9860 IGONO Arrival 6 8

CSN3415 VIBOS Departure 7 7 CSZ9956 IGONO Arrival 6 8

CES2301 GYA Arrival 0 0 CSN6790 VIBOS Departure 7 7

CBJ5737 GYA Arrival 0 0 CES5734 VIBOS Departure 7 7

CSN3245 YIN Departure 3 3 CSN3400 GYA Arrival 0 0

CSN3624 ATAGA Arrival 6 6 CSN3534 IGONO Arrival 6 8

CSN3000 ATAGA Arrival 6 6 CSN3950 GYA Arrival 0 0

CSN6563 YIN Departure 3 3 CDG4898 LMN Departure 4 4

CSN355 YIN Departure 3 3 CES5258 LMN Departure 4 4

CSN6742 VIBOS Departure 7 7 CSN3499 VIBOS Departure 7 7

CSZ9190 ATAGA Arrival 6 6 CSZ9442 GYA Arrival 0 0

CSN3883 LMN Departure 4 4 CES2551 ATAGA Arrival 6 6

CHH7310 YIN Departure 3 3 CHH7838 YIN Departure 3 3

CSN3517 LMN Departure 4 4 CXA8323 SHL Arrival 11 11

CQN2324 YIN Departure 3 3 CSN3443 YIN Departure 3 3

CSN3812 SHL Arrival 11 11 CSN3404 GYA Arrival 0 0

CSN3778 IGONO Arrival 6 8 CCA4335 ATAGA Arrival 6 6

CES5252 YIN Departure 3 3 CSN3327 VIBOS Departure 7 7

CES5182 YIN Departure 3 3 CCA1352 YIN Departure 3 3

CCA1318 YIN Departure 3 3 CSH9310 LMN Departure 4 4

CXA8386 LMN Departure 4 4
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ture while avoiding the convective weather area, 
such as the brown line in Figure 21a and the dark 
green line in Figure 21b. In areas where convective 
weather is weak or does not exist, TFPs are used as 
flight paths, such as the dark green in Figure 21a and 
the brown line in Figure 21b. Thus the effectiveness 
of the multi-flight rerouting optimisation model is 
demonstrated.

4.4 Analysis
Table 5 shows the calculation results of the op-

timised path in the Guangzhou and Wuhan termi-
nal area. After the optimisation, the flight flow in 

terminal area are 186 seconds and 158 seconds, re-
spectively, which are shorter than the update time 
of weather data (6 minutes) and meet the computa-
tion speed requirements for practical applications. 
Figure 20 illustrates part of the planned TFPs of the 
Guangzhou and Wuhan terminal area and Figure 21 
illustrates corresponding flight path optimisation 
results of the Guangzhou and Wuhan terminal 
area. As can be seen from Figures 20 and 21, large ar-
eas of severe convective weather are present to the 
west of the Guangzhou and Wuhan terminal area, 
and the optimised rerouting allows for a shorter re-
routing distance to complete the arrival and depar-

Table 4 – Basic flight information and predicted TFPs (Wuhan terminal area)

Flight 
number

Arrival and 
departure 

gates

Arrival/ 
Departure

Actual 
TFP

Predicted 
TFP

Flight 
number

Arrival 
and depar-
ture gates

Arrival/ 
Departure

Actual 
TFP

Predicted 
TFP

LKE9958 WTM Departure 0 0 CSZ9832 XSH Departure 9 9

CES2543 BIVIP Departure 4 4 CES2485 WTM Departure 0 0

CHH7875 ESDOS Arrival 1 1 CHH7789 LKO Arrival 0 0

HXA2807 ESDOS Arrival 1 1 CBJ5385 ESDOS Arrival 1 1

CES2460 WTM Departure 0 0 CSN3118 ESDOS Arrival 1 1

CSC8219 WTM Departure 0 0 CES2478 LKO Arrival 0 0

JOY1527 XSH Arrival 2 2 CES9735 GUGAM Arrival 0 0

CBJ5137 GUGAM Arrival 0 0 CCA8222 GUGAM Arrival 0 0

CES2473 ESDOS Arrival 1 1 CSN3705 LKO Arrival 0 0

CBJ5286 LKO Departure 0 3 CSN6513 ESDOS Departure 7 7

CSZ9127 ESDOS Departure 7 7 CSN3448 GUGAM Arrival 0 0

CUH2517 ESDOS Arrival 1 1 CSN6568 ESDOS Departure 7 7

CXA8338 XSH Departure 9 9 GCR7591 ESDOS Departure 7 7

CSN6608 ESDOS Arrival 1 1 CCA8258 LKO Arrival 0 0

RLH5302 ESDOS Departure 7 7 CES2506 XSH Arrival 2 2

LKE9891 GUGAM Arrival 0 0 CSN3663 ESDOS Departure 7 7

CHH7187 XSH Departure 9 9 CSC8725 LKO Departure 0 3

Table 5 – Comparison of historical flights and optimization results of the Guangzhou/Wuhan terminal area

Historical 
flights

Optimization 
results Compared to historical flight (%)

Total flights number 42/28 46/31 9.5/10.7

Number of flights crossing moderate convective 
weather areas 5(4)/3(0) 8(6)/7(5) 60/133.3

Number of flights flying on planned TFPs 10/7 14/9 40/28.6

Flight distance in moderate convective weather 
areas (km) 28/35 55/39 96.4/11.4

Total length of the flight path (km) 5732.2/4369.6 3920.7/3037.5 -31.6/-30.5
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the terminal area and reduces of flight distance. The 
second is conservative flight during actual operation. 
In order to achieve safer operation under convec-
tive weather, the airspace capacity under moderate 
convective weather was underutilised by historical 
flights. Many flights avoided moderate convection 
weather on TFPs and other airspaces in the terminal 
areas and operated in airspace without convective 
weather by radar guidance. The cost of this conser-
vative operation approach to flight safety is a longer 
total flight path length. The third possibility is that 
the safety margin of CWAP used in this paper is set 
relatively small. If the safety margin is set large, mul-
tiple CWAPs would be connected, and the airspace 
used for rerouting would be small, the rerouting dis-
tance would be increased, but the safety of flight op-
eration would also be increased. On the other hand, 
if the safety margin is set small or even if there is 
none, the airspace for rerouting would be increased, 
but the rerouting would be close to the convective 
weather, which would increase the operational risk 
of the flight. In this paper, a safety margin of 1 km is 

the Guangzhou and Wuhan terminal area increased 
by 9.52% and 10.71%, and the number of flights 
crossing moderate convective weather areas in 
the terminal area increased by 60% and 133.3%, 
where the number in brackets is the number of 
flights crossing moderate convective weather on 
TFPs. Flights flying on planned TFPs increased 
by 40% and 28.6% respectively. The three indi-
cators above illustrate the significant increase in 
effective airspace utilisation during convective 
weather conditions. The flight distance in moder-
ate convective weather areas increased by 96.4% 
and 11.4% and the total length of the flight path is 
reduced by 31.6% and 30.5% respectively. These 
two indicators show that while avoiding areas of 
strong convective weather, the total length of the 
flight path is reduced, flight safety is ensured and 
flight cost is saved.

There are four possible reasons for these results. 
The most important one is the model itself can well 
solve the optimisation of flight path under convective 
weather, which improves the utilisation of airspace in 
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Figure 21 – Flight path optimisation results
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suring flight safety, demonstrating reasonable and 
efficient flight path optimisation under convective 
weather conditions.
The optimised rerouting realised by the multi-

flight rerouting optimisation model can not only 
avoid convective weather to ensure flight safety but 
also increase the airspace availability in the terminal 
area, reduce flight delay and improve airspace utili-
sation.

In this paper, the safety margin of the CWAP is 
set to 1 km, which is also one of the reasons for the 
rerouting result. The ways to set the safety margin 
according to the weather information such as wind 
direction and the influence of the set size on the re-
routing effect will be the focus of future research. In 
addition, flight rerouting optimisation for avoiding 
convective weather in the terminal area is realised 
without considering the airspace environment, such 
as obstacles and three areas (prohibited area, restrict-
ed area, danger area) in the terminal area, which will 
directly affect the results of rerouting optimisation. 
This would also be the focus of the next steps in fu-
ture research work.
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终端区对流天气下基于典型飞行路线的航班路
径优化

摘要：

随着航班量的快速增长，对流天气对终端区航
班运行的影响愈加严重。本文以典型飞行路线替代
飞行程序作为终端区内航班的常规飞行路线，基于
天气特征和飞行计划特征，通过随机森林(Random 
Forest, RF)、提升树(Boosting Tree, BT)和K最邻近
(K-Nearest Neighbour, KNN)算法预测航班典型飞行
路线，构建包含上层飞行流量优化模型和下层单航
班飞行路径优化模型的双层多航班改航路径优化模
型，分别使用模拟退火算法和双向A*算法实现上下
层模型的求解。本文采用广州白云机场(ZGGG)和武
汉天河机场(ZHHH)终端区进行案例分析，相较于BT
和KNN，RF算法有着更好的预测航班典型飞行路线
性能；与历史雷达轨迹相比，航班路径优化结果表

adopted as a compromise. The ways to set the margin  
of the CWAP according to the wind in the terminal 
area should be studied in the future. Not only that, 
these results are also related to the cases we chose. 
It would be different in the case of different terminal 
areas under different convective weather at differ-
ent times and different controllers and pilots. But it 
can be expected that the trend, i.e. that the TAA will 
increase and total flight distance will decrease, will 
always be present by taking advantage of the avail-
ability of moderate convective weather.

5. CONCLUSION
In this paper, we use TFPs instead of flight pro-

cedures to reflect flight patterns within the terminal 
area and carry out the prediction of the TFPs by RF, 
BT, and KNN algorithms. Then we establish a multi-
flight rerouting optimisation model and take the 
Guangzhou and Wuhan terminal area as the research 
objects to complete flight path optimisation. The con-
clusions are as follows:
1) In the prediction algorithm determination of the 

TFPs, the accuracy of the RF algorithm in Guang-
zhou arrival dataset, Guangzhou departure data-
set, Wuhan arrival dataset and Wuhan departure 
dataset are 90.7%, 88.4%, 92.2% and 86.4% re-
spectively, with an average value of 89.0%, which 
is the best of the three algorithms.

2)  The TFPs of 51 and 34 flights during the desig-
nated time of the Guangzhou and Wuhan terminal 
area are predicted by the RF algorithm. The num-
ber of prediction errors is 6 and 2 respectively, 
which verifies the feasibility and effectiveness of 
the prediction of the TFPs;

3)  Taking TAA and ATFP under convective weather 
conditions as constraints and prediction results of 
the TFPs as initial conditions, the simulated an-
nealing algorithm and bidirectional A* algorithm 
are used to solve the upper and lower layers of 
the multi-flight rerouting optimisation model. The 
computation times are 186 seconds and 158 sec-
onds, respectively, which are less than the update 
time of weather data 6 minutes, meeting the com-
putational speed requirements of flight path opti-
misation under convective weather conditions.

4)  Compared to the optimisation results with the his-
torical flights, the total length of the flight path 
of the Guangzhou and Wuhan terminal area de-
creases while the flight flow increases under the 
condition of meeting the TAA restrictions and en-
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reroutes using simulated annealing. AIAA. 2010; 9017. 
doi: 10.2514/6.2010-9017.
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for strategic planning of aircraft trajectories using simu-
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[21] Eduardo A, et al. Informed scenario-based RRT* for air-
craft trajectory planning under ensemble forecasting of 
thunderstorms. Transportation Research Part C: Emerg-
ing Technologies. 2021;129: 103232. doi: 10.1016/j.
trc.2021.103232.

[22] Liu, Y, Hansen, M. Predicting aircraft trajectories: A 
deep generative convolutional recurrent neural networks 
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[23] Ayhan S, Samet H. Aircraft trajectory prediction made 
easy with predictive analytics. Association for Computing 
Machinery. 2016; 21-30. doi: 10.1145/2939672.2939694.

[24] Pang Y, Liu Y. Conditional generative adversarial networks 
(CGAN) for aircraft trajectory prediction considering 
weather effects. AIAA. 2020; 1853. doi: 10.2514/6.2020-
1853.

[25] Ankerst M, et al. OPTICS: Ordering points to identify the 
clustering structure. Association for Computing Machin-
ery. 1999;28(2): 49-60. doi: 10.1145/304181.304187.

[26] Krozel J, et al. Capacity estimation for airspaces with 
convective weather constraints. AIAA. 2007; 6451. doi: 
10.2514/6.2007-6451.
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convective weather avoidance polygons in en route air-
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明，对于广州终端区，在满足终端区空域可用性的
限制条件下，飞行流量增加，飞行距离减少，有效

提高了终端区内的运行效率。

关键词：
终端区；对流天气；典型飞行路线；
终端区空域可用性；路径优化
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