
ABSTRACT
Air traffic complexity indicators play an essential 

role in measuring operational performance and control-
ler workload. However, current studies mainly depend 
on the manual scoring method to scale performance or 
workload. This paper focuses on arrival operations and 
presents a data-driven strategy to establish the correla-
tion between complexity and performance to avoid the 
subjectivity of the currently used manual scoring method. 
Firstly, we present twenty-six indicators for describing 
air traffic complexity and two indicators for arrival op-
erational performance. Secondly, the clustering method 
distinguishes peak and off-peak situations for arrival 
operation. Moreover, clustering results are compared to 
investigate the correlation between complexity and per-
formance initially. Thirdly, the classification method is 
adopted to determine such correlation further. In addi-
tion, we also identify the affecting factors which could 
influence operational performance. Finally, trajectories 
of arrival aircraft landing at Guangzhou Baiyun Inter-
national Airport (ZGGG) are used for case validation. 
The results indicate that there is a strong correlation be-
tween complexity and performance. The accuracy and 
precision of classification are approximately 90%. Fur-
thermore, the number of aircraft significantly impacts the 
arrival operational performance within TMA.

KEYWORDS
air traffic; air traffic complexity; complexity indicators;  
performance; correlation.

1. INTRODUCTION
Air traffic management (ATM) plays an essen-

tial role in air transportation by accelerating air 
traffic flow in a conflict-free environment. Unfor-
tunately, the past two years witnessed a significant 
impact on air transportation due to the coronavirus 
(COVID-19) pandemic. As a consequence, air traf-
fic growth slowed down. However, the civil avia-
tion industry will regain its vigour with several 
control measures. At this time, the ever-increasing 
demand for air traffic is doomed to cause airspace 
congestion, substantial flight delays, excessive fuel 
consumption and consequential air pollutant emis-
sions, which pose a significant challenge to the ATM 
system [1]. Therefore, measuring air traffic control 
(ATC) performance and identifying the affecting 
factors could help enhance the levels of safety, ca-
pacity, efficiency and environmental sustainability 
[2]. Air traffic complexity is a critical limiting factor 
to increasing performance in the current ATC envi-
ronment [3].

Firstly, Laudeman et al. [4] presented a math-
ematical model of dynamic density, an aggregate 
complexity metric. Eight factors were combined to 
represent the controller’s workload. Unfortunately, 
the choice of factors is often related to the specific 
environment. Therefore, it hindered the efforts to 
form a unified definition of air traffic complexity. 
As a result, research on dynamic density has been 
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In most previous studies, it was the responsibil-
ity of air traffic controllers (ATCOs) to determine 
the complexity levels. However, the manual scoring 
process is time-consuming, leading to only small 
samples used for complexity analysis. Besides, the 
manual scoring process is a challenging task to avoid 
the problem of subjectivity. Therefore, this paper, 
on the one hand, substitutes complexity levels with 
the operational performance; on the other hand, it 
attempts to establish the correlation between air traf-
fic complexity and performance. Such methodology 
could ensure objective data-driven assessment during 
the entire process. Unfortunately, the results provided 
by Standfuss and Rosenow [24] showed that there is 
no statistically significant correlation between com-
plexity and productivity (operational performance). 
However, complexity and productivity indicators 
were derived from a macroscopic perspective, while 
our study will focus on the microscopic perspective. 
More specifically, our study attempts to establish the 
correlation between air traffic complexity and perfor-
mance for arrival operation within TMA.

2. METHODOLOGY

2.1 Overall framework
This paper proposes a method to identify air traf-

fic complexity, avoid manual scoring and further es-
tablish the correlation between air traffic complex-
ity and control performance. The proposed method 
could be divided into three steps, as summarised in 
Figure 1.

Step A: Data Preparation. The original data is 
aircraft tracking messages received by the Surveil-
lance Data Processing System (SDPS). After decod-
ing these aircraft tracking messages, raw data pMr^ h  
is obtained, including a sequence of trajectories 

., , , , ,tr tr trtr i m1 2 f f" ,  Each trajectory consists of 
a series of points: , , , ,p p pi i

L i
i

1 2 f ^ h# -  where L(i) rep-
resents the number of points in the trajectory pM. 
Each point contains the target aircraft’s timestamp, 
flight ID, position (latitude, longitude, altitude), 
heading and speed (ground and vertical speeds). 
Subsequently, the data pre-processing step is nec-
essary to identify and modify the target trajectories’ 
incomplete, incorrect or irrelevant parts. Moreover, 
the scope of the target trajectories should be defined 
according to arrival operation, which will be pre-
sented in Section 3.

further expanded to collecting affecting factors or 
variables [5]. For example, Masalonis et al. [6] se-
lected 12 metrics from a list of 41 potential com-
plexity metrics and used multiple regression anal-
ysis to determine the importance of the different 
metrics. They also analysed the correlation between 
dynamic density and complexity (controller work-
load). Besides dynamic density, Netjasov et al. [7, 
8, 9] developed a generic metric for measuring the 
complexity of Terminal Airspace (TMA). The met-
ric was defined from static and dynamic perspec-
tives and considered arrival and departure traffic.

Secondly, due to the subjective nature of the 
controller workload, some scholars did not believe 
there was a correlation between complexity factors 
and controller work [10]. Therefore, Delahaye et al. 
[11] tried to objectively evaluate the air traffic com-
plexity based on the intrinsic metrics derived from 
the geometric properties of the aircraft pairs, includ-
ing density, convergence/divergence and sensitivity. 
Furthermore, they extended the previous results and 
presented a new air traffic complexity metric based 
on a non-linear vector field model of air traffic [12]. 
In addition, they developed a novel macroscopic traf-
fic assignment model to mitigate the congestion of 
intensive urban air mobility operations [13]. Besides, 
Wang et al. [14] proposed a complex networks based 
method to describe air traffic complexity and elabo-
rate its evolutionary laws. Wee et al. [15] developed a 
dynamic tactical complexity model, Conflict Activity 
Level, by establishing an overall score for an entire 
region or sub-regions of interest. 

Thirdly, some machine learning methods have 
been implemented since it was hard to model the cor-
relation between complexity factors and controller 
work straightforwardly [16]. Gianazza and Guittet 
[17] summarised common complexity factors, used 
principal component analysis for factors reduction 
and implemented a neural network to find the cor-
relation between complexity and workload. Xiao et 
al. [18] developed an integrated classifier, Zhu et al. 
[19] presented a new ensemble learning model, and 
Cao et al. [20] proposed a learning framework based 
on knowledge transfer to construct the correlation 
between complexity factors and complexity levels. 
Radišić et al. [21] put forward novel complexity indi-
cators under trajectory-based operation, and Andraši 
[22] estimated the air traffic complexity using neural 
networks. Xie et al. [23] used images instead of com-
plexity factors to evaluate the operational complexity 
by deep convolutional neural networks.
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ty between the two clustering results is analysed to 
investigate whether there is a correlation between 
complexity and performance or not.

On the other hand, the classification method is 
employed on a data set to further explore the cor-
relation between complexity and performance. The 
data set comprises the complexity indicators, which 
are treated as features (input), and the clustering re-
sults of performance indicators, which are treated as 
labels (output). A detailed description will be pre-
sented in subsection 2.3.

2.2 Complexity and performance 
framework

Complexity indicators for arrival operation
Most attention has been paid to en-route opera-

tion in previous research on air traffic complexity. In 
this study, we focus on the complexity within TMA 
since operation in TMA plays a critical role in the 
whole ATM system [25]. Furthermore, the complexi-
ty of only arrival operations is considered for several 
reasons. First, arrival and departure operations are 

Step B: Indicator Calculation. This step focuses 
on two types of indicator calculation: one is com-
plexity indicator calculation, and the other is the 
performance indicator calculation. The former re-
flects the complexity of the control process, while 
the latter describes the performance of the control 
results. It should be noted that the process-oriented 
indicators are often defined as instantaneous met-
rics, and the results-oriented indicators are always 
defined as metrics over a period. Therefore, the pro-
cess-oriented indicators should be transformed into 
metrics over a corresponding period using the sta-
tistical analysis method. A detailed description will 
be presented in subsection 2.2.

Step C: Correlation Evaluation. This step em-
ploys machine learning methods to establish the 
correlation between process-oriented complexity 
indicators and result-oriented performance indica-
tors. Such methodology could avoid the subjectivity 
associated with the manual scoring. 

On the one hand, the clustering method is em-
ployed on complexity indicators and performance 
indicators, respectively. Subsequently, the similari-
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formed into the number of landings of arrival air-
craft within a given period. Flight time within TMA 
is a critical indicator for arrival performance mea-
surement related to flight efficiency and controller 
workload [29]. It is worth noting that flight distance 
and fuel consumption are significant ATC perfor-
mance objectives. However, those indicators highly 
correlate with flight time [27]. Therefore, number 
of landings and flight time are selected as candidate 
indicators for arrival performance measurement.

Unfortunately, arrival flight time is affected by 
different runway uses, entering fixes, aircraft types 
and arrival routes. Given that, EUROCONTROL 
proposes an additional ASMA (Arrival Sequencing 
and Metering Area) time [30] to address the impact 
of these factors. Therefore, the additional ASMA 
time, a proxy for the average arrival runway queu-
ing time on the arrival traffic flow, is selected as a 
substitute for arrival flight time. Please refer to [29] 
for a detailed definition and methodology of the ad-
ditional ASMA time (hereafter referred to as addi-
tional time).

The number of landings NLD within 15 min 
could be used directly for performance measure-
ment. However, the additional time TAdd within 15 
min needs to be further processed for performance 
measurement. Therefore, only the partial additional 
time of a specific aircraft should be allocated to the 
given target of 15 min. For example, as shown in 
Figure 2, the additional time within 15 min of arrival 
aircraft #AC3 is equal to the original additional time 
while the additional times within 15 min of #AC1, 
#AC2, #AC4, and #AC5 are 1/2, 4/7, 1/2, and 1/3 of 
the original additional time. These proportions are 
derived from the share of flight time within the giv-
en target of 15 min.

mutually independent in most airports around Chi-
na by lateral or vertical segregated methods. Second, 
arrival operation requires more attention from con-
trollers to maintain safe separation and establish an 
approach sequence. Third, the traffic situation of an 
arrival operation presents converging characteristics, 
which complexity indicators could describe.

Kopardekar [26] and Gianazza [17] laid the foun-
dation for complexity indicator definition. Most sub-
sequent studies derived complexity indicators from 
their initial efforts. In this paper, we presented the 
complexity indicators based on the combination of 
previous studies, as shown in Table 1.

It should be noted from Table 1 that several com-
plexity indicators are process-oriented and described 
as instantaneous metrics at each minute. Therefore, 
we need to transform these process-oriented instan-
taneous indicators into period metrics, i.e. interval 
indicators, to establish the correlation between com-
plexity and performance. Therefore, the time interval 
in this paper is determined as 15 min due to the same 
time interval having been used in the previous studies  
[26].

It is also worth mentioning that the complexity in-
dicators from previous work [17] were mainly used 
in the en-route phase. However, in the TMA domain, 
the complexity indicators, like density/convergency/
sensitivity/collision risk, will have unexpected values 
when the aircraft are on Final (the runway extension 
for landing aircraft to conduct the final approach). 
Therefore, we only take the arrival operation from 
the entry fix to the Final interception in our work. 

Performance indicators for arrival operation
After obtaining the complexity indicators, the 

performance indicators should be defined to estab-
lish the correlation between complexity and per-
formance for the arrival operation. Therefore, the 
selection of performance indicators for arrival oper-
ation becomes crucial. 

Key Performance Areas (KPAs) and Key Per-
formance Indicators (KPIs) are usually adopted to 
measure air traffic control performance. For arrival 
operation, we need to focus on three KPAs, i.e. ca-
pacity, efficiency and environment [27]. Four KPIs 
in our previous studies were proposed which close-
ly related to these KPAs, such as airport acceptance 
rate, final approach separation, flight time within 
TMA, and taxi-in time [28]. In this paper, taxi-in 
time is not considered since we only focus on the 
complexity indicators in the air. Airport acceptance 
rate and final approach separation could be trans-
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Table 1 – Definition of complexity Indicators

Item Description In our Study

Density Dij
. , ,D e e d x x x x0 5ij

d d
ij i j i j

ij ij2
$= + =a b- -^ ^ hh where α=0.002, β=0.01, and xi

represents the position of aircraft i
-

Maximum density DMax DMax=max{Dij} DMaxr

Accumulative density DSum D DSum
ij

j i

n

i

n

11
=

= +=
" ,// DSumr

Mean density DMean D
i

DMean

i

n

Sum

1

1=

=

-
/ DMeanr

Convergency Cij ,C v v D1ij ij ij ijR$ $ $= +v v  where vi represents the velocity of aircraft i -

Maximum convergency CMax max CC ij
Max = " , CMaxr

Accu. convergency CSum C CSum
ij

j i

n

i

n

11
=

= +=
" ,// CSumr

Mean convergency CMean C C
C

0Count
Mean

Sum

ij
= =Y^ h CMeanr

Sensitivity Sij S v v D1ij ij ij ijR$ $ 4 $= +v -

Minimum sensitivity SMin SMin=min{Sij} SMinr

Mean sensitivity SMean /S S C 0CountMean
ij ij

j i

n

i

n

11
= =

= +=
Y^ h" ,// SMeanr

Insensitivity Iij /I C Sij ij ij
2= -

Maximum insensitivity IMax IMax=max{Iij} IMaxr

Accu. insensitivity ISum I ISum
ij

j i

n

i

n

11
=

= +=
" ,// ISumr

Mean insensitivity IMean I I
I

0Count
Mean

ij

Sum
= =Y^ h IMeanr

Number of aircraft n Aircraft number of arrivals within TMA nr

Squared number of aircraft n2 Square of aircraft number of arrivals within TMA n2r

Controlled number of aircraft N Aircraft handled by controllers in current 15 minutes N
Arrival traffic level TL Mean number of aircraft in the last 15 minutes TL

Arrival traffic demand TD Number of aircraft entering the TMA 10-25 mins later TD

Speed average μGS Mean ground speed for arrivals within TMA GSnr

Speed variance σGS The variance of ground speed for arrivals within TMA GSvr

Altitude average μAlt Mean altitude for arrivals within TMA Altnr

Altitude variance σAlt The variance of altitude for arrivals within TMA Altvr

Heading average μH Mean heading for arrivals within TMA Hnr

Heading variance σH The variance of heading for arrivals within TMA Hvr

The ratio of medium class pM The percentage of medium-class aircraft pMr

The ratio of heavy class pH The percentage of heavy-class aircraft pHr

Approaching traffic MD5-10 The number of pairs whose distance is between 5 and 10 NM MD5-10

Collision risk CR
, ;

,CR

c
d

c
c

1 3
5

where is a weighting factor is a
normalisation constant nmijj i

n

i

n

11

m m
=

=
=m

= += b l
// CR
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performance. In addition, the RF method is also 
used for identifying the importance of different af-
fecting factors.

3. CASE STUDY

3.1 Data preparation
Guangzhou Baiyun International Airport 

(ZGGG) has been selected for the case study in this 
paper. ZGGG is one of the busiest airports in Chi-
na, with three runways: Runway 01/19, Runway 
02R/20L and Runway 02L/20R. The former two 
runways are used for landing, in which Runway 
01/19 is for mixed arrival and departure operation 
while Runway 02R/20L is only for arrival opera-
tion. To make a more explicit definition of the range 
of TMA in this study, we focus on the area within 
a black circle as shown in Figure 3, with a radius of 
65NM from the Aerodrome Reference Point.

The arrival trajectories in Figure 3 are obtained 
by pre-processing the original data received from 
the Central and Southern Regional Air Traffic 
Management Bureau, which is from 00:00 on 1 
December 2019 to 11:59 on 31 December 2019. A 

2.3 Correlation evaluation
The clustering method is used in this paper to 

figure out air traffic complexity and operational per-
formance levels based on the complexity indicators 
and performance indicators. It is different from the 
manual scoring method, which is widely adopted 
[18–23] but influenced by the prior experience of 
different experts. The K-means is exploited as an 
alternative algorithm to conduct clustering because 
it is simple and easy to implement [31]. After clus-
tering, the clustered labels could help identify the 
complexity and performance levels.

Subsequently, the correlation between complex-
ity and performance is evaluated from two perspec-
tives. On the one hand, the labels of complexity 
and performance are compared to analyse the cor-
relation between process-oriented complexity and 
results-oriented operational performance. On the 
other hand, the complexity indicators are treated 
as inputs (x) and performance labels as outputs (y). 
Then, classification methods, like Support Vector 
Machine (SVM) [32], Logistic Regression (LR) 
[33] and Random Forest (RF) [34], are utilised to 
evaluate the correlation between complexity and 
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The indicators, defined in subsection 2.2, could 
be obtained based on the pre-processed data. Firstly, 
the process-oriented complexity indicators at each 
minute are calculated. Secondly, these process-ori-
ented instantaneous indicators are transformed into 
interval indicators within 15 minutes. Thirdly, those 
interval indicators are presented from two perspec-
tives. One is from the perspective of time series, 
while the other is from statistical analysis.

Figure 6 provides interval indicators from the 
perspective of time series, in which there are two 
typical scenarios. One is from 03:20 to 05:44 on 
5 December, a typical scenario of free time, while 
the other is from 18:32 to 22:08 on 5 December, 
a typical scenario of rush hour. From Figure 6, we 
could find that the complexity indicators vary with 
time and depend on the traffic volume. More traffic 
volume leads to more significant complexity indica-
tors. Furthermore, the rise and fall of traffic demand 
result in the fluctuation of the complexity indicators.

Figure 7 provides the current number of arrival 
aircraft distribution, which could help present the in-
terval indicators from the statistical analysis perspec-
tive. For example, from Figure 7, we could find that 
the maximum number of aircraft within the ZGGG 
TMA is 24, while the most common situation is that 
there are 9 to 16 arrival aircraft within the TMA. 

Figure 8 provides the boxplots of interval indi-
cators from the perspective of statistical analysis, 
including the complexity indicators of density, 
convergence and sensitivity. It could be concluded 
from Figure 8 that: (1) the accumulative density and 
convergence rise with the current number of arrival 
aircraft increase; (2) the mean density, convergence 
and sensitivity remain unchanged. However, the 
mean density, convergence and sensitivity distri-
bution become more compact with the number of 
arrival aircraft increase. (3) The extremum densi-
ty, convergence and sensitivity rise or fall with the  

complete arrival trajectory contains the following 
information: flight ID, runway in use, timestamp, 
latitude, longitude, altitude, ground speed, and 
vertical speed.

After data pre-processing, 20,846 arrival trajec-
tories remain, as shown in Figure 3. Figure 4 provides 
three scenarios of data pre-processing. The first one 
is due to the starting point of arrival trajectory locat-
ed within the TMA, for example, a test flight. The 
second one is due to data missing, in which the end-
ing point of arrival trajectory is out of the TMA. The 
third one is due to the ending point of the arrival 
trajectory being far away from the runway but still 
on Final. Therefore, the trajectories in Scenario 1 
and Scenario 2 are discarded, and the trajectories in 
Scenario 3 are used in this research.

3.2 Indicator calculation

Figure 5 provides the distribution of daily traffic 
for the whole month. The number of daily number 
of arrival aircraft does not fluctuate much over the 
31 days in December.
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a) Typical off-peak scenario

b) Typical peak scenario
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current number of arrival aircraft increase. Fur-
thermore, the extremum density, convergence, and 
sensitivity tend to be unchanged when the number 
of arrival aircraft is more than 10.

Finally, the boxplot of the additional time with 
the current number of arrival aircraft is shown in 
Figure 9. The additional time rises with the current 
number of arrival aircraft increase. It indicates that 
more arrival aircraft within the TMA will lead to 
more possibilities for controllers to vector the arriv-
al aircraft for establishing sequence and maintain-
ing separation.
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aircraft number is higher than a certain threshold. 
Furthermore, the number of clusters is set to two, 
representing off-peak and peak situations of arriv-
al traffic during the clustering process on the per-
formance indicators. 

The K-means algorithm is used to cluster the 
performance indicators (number of landings and 
additional time), in which K=2. Figure 10 provides 
the clustering results on the performance indica-
tors when the thresholds of landing aircraft num-
bers are defined as 4, 5, 6 and 7. 

As shown in Figure 10, the distinction between 
the two clusters, off-peak and peak, is dependent 
more on number of landings and less on addition-
al time. We speculate mainly because arrival air-
craft within TMA do not need to be vectored to 
produce additional times in the off-peak situation. 
However, as landing demand increases, arrival air-
craft within TMA gradually need to be vectored 
to match the runway throughput, which results in 
unavoidable additional time.

Such speculation is also verified by the distri-
bution of number of landings and additional time 
of the clustering results, as shown in Figure 11.

From Figure 11, we can find that the median of 
additional time is less than 50 seconds and the me-
dian of number of landings is less than eight under 

4. RESULTS AND DISCUSSION

4.1 Clustering on performance 
and complexity indicators

The clustering is firstly conducted on the per-
formance indicators to avoid manual scoring. It 
is worth mentioning that we are interested in the 
busy time of arrival operation. For example, when 
the landing aircraft number is lower than a certain 
threshold, the air traffic is considered easy to con-
trol from the perspective of ATCOs. Therefore, 
this paper only focused on samples whose landing 
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ing off-peak and peak situations of arrival traffic, 
as clustering on performance indicators. Figure 13 
provides the clustering results on the complexity in-
dicators when the number of landings threshold is 
defined as five. 

all thresholds during the off-peak time. However, 
during the peak time, the median of additional time 
is nearly 100 seconds, and the median of number 
of landings is more than ten under all thresholds. 
These findings indicate that the clustering method 
based on performance indicators could be a viable 
alternative for performance evaluation instead of 
manual scoring. 

In this paper, the Silhouette Coefficient is also 
used to determine the best number of landings 
threshold by measuring the goodness of the cluster-
ing algorithm. As shown in Figure 12, the best thresh-
old in this study is five since the best clustering re-
sult is obtained under this situation.

The clustering is also conducted on the complex-
ity indicators to establish the correlation between 
complexity and performance. The K-means algo-
rithm is used to cluster the complexity indicators. 
The number of clusters is also set to two, represent-
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Secondly, we provide a comparison perspective 
based on the clustering results. Four metrics are ad-
opted to measure the correlation between the clus-
tering results of performance and complexity indi-
cators, including precision, recall, accuracy and F1 
score. 

Precision TP FP
TP= +  (1)

Recall TP FN
TP= +  (2)

Accuracy TP FP TN FN
TP TN= + + +

+  (3)

F Precision Recall
Precision Recall21 $

$= +  (4)

In these metrics, True-Positive (TP) and 
False-Positive (FP) are the numbers of peak situ-
ations correctly and incorrectly clustered. At the 

4.2 Clustering on performance 
and complexity indicators

This subsection offers three perspectives on the 
correlation between complexity and performance, 
including time series, comparison and classification.

Firstly, we provide a time series perspective 
based on the clustering results. For example, Figure 14 
presents the clustering results as a time series during 
a period on a specific day. In addition, the landing 
number threshold is defined as five. The majority of 
performance clusters coincide with the complexity 
clusters. However, there are two exceptions that can 
be seen from Figure 14. One is that the performance 
clusters sometimes change rapidly. The other is that 
sometimes there is a delay between the change of 
complexity clusters and the performance clusters, 
and sometimes there is not. 
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same time, True-Negative (TN) and False-Negative 
(FN) denote the numbers of off-peak situations cor-
rectly and incorrectly clustered. 

These four metrics under different thresholds are 
shown in Figure 15. The values of these four metrics 
in Figure 15 indicate that the complexity and perfor-
mance indicators are highly correlated. That is to 
say, there exists a correlation between complexity 
and performance. 

Thirdly, we provide a classification perspec-
tive for analysing the correlation between com-
plexity and performance. As shown in Figure 1, the 
data set for classification is defined by choosing  
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5. CONCLUSION
This paper proposed a framework to establish 

the correlation between process-oriented complexity 
and result-oriented performance indicators for arrival 
operation. The performance labels generated by the 
K-means algorithm were used as an alternative to the 
manual scoring method for avoiding subjectivity. 
1)  There is a significant correlation between air traf-

fic complexity and performance on arrival opera-
tions. However, delays exist between complexity 
and performance level from a time-series per-
spective.

2)  Six complexity indicators that significantly impact 
performance are closely related to the number of 
aircraft within TMA. In other words, scheduling 
arrival aircraft better could promote ATC perfor-
mance, especially in high inbound traffic demand.

3)  For future work, we will focus on two areas. One 
is that we should try better ways to acquire more 
instructive performance labels. The other is that 
we could predict the traffic situation based on the 
correlation between complexity and performance, 
which could help controllers make better deci-
sions for balancing workload and operational per-
formance.
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构建进场运行复杂度与管制效能的关联

摘要

空中交通复杂度指标在衡量运行效能和管制工
作负荷方面发挥着重要作用。然而，目前的研究主
要依靠人工打分方法来衡量管制运行效能或工作负
荷。本文聚焦于进场运行，提出了一种数据驱动的
方法建立复杂度和绩效之间的关联，以期避免现有

complexity indicators as inputs and the clustering 
results of performance indicators as outputs. Three 
classification methods (SVM, LR, RF) and four clas-
sification metrics (precision, recall, accuracy and F1 
score) are used for the correlation evaluation. 80% 
of the samples are chosen for training, and the re-
maining 20% for testing. The hyperparameters of the 
classification models (SVC and RF) are tuned via 
cross-validation. Figure 16 presents the classification 
results based on three different models. 

From the classification results on the test set, as 
shown in Figure 16, it can be seen firstly that the four 
metrics show an overall decreasing trend with the 
number of landings threshold increasing. Secondly, 
the four evaluation metrics are higher overall than 
the evaluation metrics of the clustering results, which 
indicates a non-linear correlation between the com-
plexity and performance, which the classification 
models capture. For example, the accuracy can reach 
a maximum of 0.91 and a minimum of 0.86. In addi-
tion, the F1 score can reach a maximum of 0.91 and 
a minimum of 0.84. Thirdly, comparing the different 
models, the performance of the three models is simi-
lar, with SVC being slightly better.

Finally, the RF model is used to determine the im-
portance of different complexity indicators that pose 
main effects on the peak and off-peak situations for 
arrival operation. As a result, Figure 17 provides the 
feature importance distinguished by the RF model in 
which the landing number threshold is five. Here we 
have selected features with feature importance great-
er than five percent for display which includes ,DSumr  

,CSumr  ,ISumr  ,nr  ,n2r  MD5–10. As shown in Figure 17, 
the most significant factor is DSumr which accounts 
for 22.02%. These significant factors are all related to 
the number of aircraft. Furthermore, controllers need 
to pay more attention to maintaining the separation 
and establishing the approach sequence.

Accumulative
density

Squared number of aircraft

MD5–10

Others

Number of aircraft

Accumulative
convergence

Accumulative
insensitivity

13.74%

30.04%
12.15%

6.13%

6.49%

22.02%

9.43%

Figure 17 – Indicator importance for distinguishing peak and 
off-peak situations
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研究中人工打分方法的主观性。论文首先梳理了描
述空中交通复杂度的26个指标和刻画进场运行效能
的2个指标。其次，引入聚类方法，区分进场运行
的高峰与非高峰状况。此外，对聚类结果进行比较
分析，初步研究了复杂度和效能之间的相关性。第
三，采用分类方法进一步确定两者之间的关联性，
同时开展了影响运行效能的因素分析。最后，采用
广州白云国际机场的进场轨迹实现案例验证。结果
表明，复杂度与管制效能之间有强关联性，分类的
准确性和精确度约为90%，而且终端空域航空器的
数量对进场运行效能有显著影响。
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