
Promet – Traffic&Transportation, Vol. 34, 2022, No. 6, 943-957 943

ABSTRACT
Data-driven forecasting methods have the problems of 

complex calculations, poor portability and need a large 
amount of training data, which limits the application of 
data-driven methods in small cities. This paper propos-
es a traffic flow forecasting method using a Nonlinear 
AutoRegressive model with eXogenous variables (NARX 
model), which uses a dynamic neural network Focused 
Time-Delay Neural Network (FTDNN) with a Tapped 
Delay Line (TDL) structure as a nonlinear function. The 
TDL structure enables the FTDNN to have short-term 
memory capabilities. At the same time, before the data is 
input into the FTDNN, the use of trend decomposition or 
differential calculation on the traffic data sequence can 
make the NARX model maintain long-term predictive ca-
pabilities. Compared with common nonlinear models, the 
FTDNN has structural advantages. It uses a simple TDL 
structure without the memory mechanism and the gated 
structure, which can reduce the parameters of the model 
and reduce the scale of data. Through the four-day data 
of Guilin City, the traffic volume forecast for five minutes 
is verified, and the performance of the NARX model is 
better than that of the SARIMA model and the Holt-Win-
ters model.

KEYWORDS
intelligent transportation system; traffic flow 
forecasting; time series; NARX model; traffic data.

1. INTRODUCTION
Traffic congestion has generated economic, so-

cial and environmental issues in many cities around 
the world. Accurate traffic flow forecasting meth-

ods can assist traffic managers in formulating traf-
fic policies to alleviate congestion. As urban traffic 
congestion becomes more and more serious, reli-
able short-term traffic forecasting becomes more 
and more important in Intelligent Transportation 
Systems (ITS) [1, 2].

The main objective of short-term traffic fore-
casting is the prediction of traffic measurements 
(e.g. travel time, traffic flow) in the near future, 
ranging from the next few minutes to up to sever-
al hours, based on historical traffic data [3]. Traf-
fic forecasting methods fall into two main catego-
ries. One method is model-driven, which combines 
mathematical statistics, time series analysis and 
other methods with traffic theory, such as Autore-
gressive Integrated Moving Average (ARIMA) 
[4, 5]. Exponential Smoothing (ES) [6, 7]. Tradi-
tional time-domain analysis methods often require 
homogeneity of variance and linear correlation of 
data variance, while traffic flow data often fails to 
meet the assumptions of this model, resulting in low 
prediction accuracy [8–10]. With the development 
of time-domain analysis in the case of heterosce-
dasticity and nonlinearity [11, 12], more prediction 
models are applied to traffic flow prediction, such 
as the Autoregressive Conditional Heteroskedas-
ticity (ARCH) model [13] and a series of extended 
models derived from it [14, 15]. The model-driven 
traffic forecasting method has a good explanatory 
ability and can describe the trend change character-
istics of the traffic flow state better. However, for 
the complex urban traffic system, the model-driven 
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analysis such as dimensionality reduction for data, 
while the DNN can avoid complex feature engi-
neering [25–27]. Recurrent Neural work (RNN) is 
a type of neural network with short-term memo-
ry capacity. RNN models form network structures 
with loops that accept information from upper neu-
rons as well as their own error information. It is 
better suited for the prediction of urban traffic flow 
through back-propagation algorithms. However, 
when the time series is long, the RNN model ex-
periences the gradient exploding problem and the 
gradient vanishing problem. Aiming at the problems 
in the prediction of long time series, the Long-Short 
Term Memory (LSTM) model introduces the gating 
mechanism to make up for the deficiency of the RNN 
model in long time series processing to some extent 
[28, 29]. 

The nonlinear method can predict the traffic vol-
ume very accurately under the condition of sufficient 
data, such as the scene of the highway. Table 1 shows 
the performance and sources of SOTA methods for 
several highway traffic datasets.

The linear prediction model represented by ARI-
MA has simple parameter calculation and good inter-
pretability. However, the limitation is that their ten-
dency to concentrate on the mean values of the past 
series data seems unable to capture the rapid varia-
tional process underlying traffic flow [36]. The non-
linear structure of the ML and DNN can capture more 
subtle relationships in the transportation system, but 

traffic prediction method needs to make a lot of 
assumptions about the model, and make elaborate 
and complex designs on the prediction model. This 
requires the forecaster to have rich traffic practice 
experience and statistical knowledge and it also 
makes the model too complex to solve [16].

As the variety and quantity of available traffic 
data provided by the ITS continues to increase, in 
recent years, data-driven traffic prediction meth-
ods have continuously developed [17-19]. The 
data-driven traffic forecasting method can get 
better forecasting results without making a lot of 
assumptions about the model. Forecasters do not 
need to have a deep understanding of urban trans-
portation systems to achieve better forecasting 
accuracy. Many well-known traditional Machine 
Learning (ML) methods have been applied to traf-
fic flow prediction, such as Support Vector Ma-
chines (SVM) [20], K-Nearest Neighbours (KNN) 
[21, 22], Random Forest [23, 24], etc. Machine 
learning methods can not only effectively capture 
the spatial and temporal relationships in the trans-
portation network, but also better process high-di-
mensional data and catch nonlinear relationships, 
so that the rich traffic data can be more fully uti-
lised by ML methods [17].

In recent years, Deep Neural Network (DNN) 
has attracted the attention of traffic researchers 
due to their excellent performance in accuracy and 
error. ML methods need to perform exploratory 
Table 1 – SOTA methods for highway traffic datasets

Dataset Methodology MAE Literature

METR-LA Traffic transformer 3.28 Traffic transformer: Capturing the continuity and periodicity of time series for 
traffic forecasting [30]

PEMS-BAY Traffic transformer 1.77 Traffic transformer: Capturing the continuity and periodicity of time series for 
traffic forecasting [30]

PeMS07 ADN 21.62 Structured time series prediction without structural prior [31]

PeMS-M ST-UNeT 3.38 ST-UNet: A Spatio-Temporal U-Network for graph-structured time series  
modeling [32]

PeMS04 SCINet 19.02 Time series is a special sequence: Forecasting with sample convolution and 
interaction [33]

PeMSD7 STG-NCDE 20.53 Graph neural controlled differential equations for traffic forecasting [34]

Q-Traffic hybrid Seq2Seq 8.63 Deep sequence learning with auxiliary information for traffic prediction [35]

PeMSD4 STG-NCDE 19.21 Graph neural controlled differential equations for traffic forecasting [34]

PeMSD8 STG-NCDE 15.45 Graph neural controlled differential equations for traffic forecasting [34]

PeMSD3 STG-NCDE 15.57 Graph neural controlled differential equations for traffic forecasting [34]
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2. MATERIALS AND METHODS

2.1 The ARX model
The AutoRegressive Model (AR) is a class of time 

series models commonly used in statistics, using the 
historical value of a variable Y to predict itself:

Y t Y t kK t
k

K

0
1
~~ f-= + +

=
^ ^h h/  (1)

where K is a hyper-parameter, which has to do with 
the property of the time series itself and can be 
determined by drawing autocorrelation diagrams 
of time series. The value of K is generally equal 
to the number of periods in which the autocor-
relation of the sequence decreases rapidly. When 
the time series has a long-term correlation, K can 
take a larger value, otherwise, it can take a smaller 
value. ω0,...,ωk is the autocorrelation coefficient, 
εt~N(0,σ2) is the noise, and t is the period of time.

The AR model can only predict a time series 
itself and cannot be applied to the problem of mul-
tivariate prediction. Different from the AR mod-
el, the AutoRegressive eXogenous (ARX) model 
contains an input term called exogenous variable, 
which can solve multiple prediction problems. Its 
general structure is as follows:

A q Y q B q t tk$ f= - +^ ^ ^ ^ ^h h h h h  (2)

A q a q a q1 n
n

1
1 f= + + +- -^ h  (3)

B q b b q b qm
m

1 2
1 1f= + + +- +^ h  (4)

where q is the delay operator, n is the order of au-
tocorrelation and m is the order of correlation in 
exogenous variables.

The ARX time series model is a linear repre-
sentation of the dynamic system in discrete time. 
However, there are complex relationships among 
urban traffic systems, which cannot be simply de-
scribed by linear relationships [36]. For example, 
the traffic flow at the downstream intersection will 
form an intermittent, high-density fleet due to sig-
nal control at the upstream intersection. Once up-
stream changes in flow, speed and density due to 
signal control or traffic jams, such traffic status is 
likely to be passed to downstream intersections.

2.2 The NARX model
The NARX can predict the nonlinear system, 

which can be represented as in Equation 5.

the more complex relationships make the model dif-
ficult to explain. Meanwhile, more parameters in the 
nonlinear structure make the model difficult to calcu-
late and require more data [37].

In order to avoid the insufficient data size in 
smaller urban region’s traffic flow prediction, this 
paper adopts the traditional NARX model and uses 
Focused Time-Delay Neural Network (FTDNN) as 
a nonlinear function for prediction, which makes the 
model simple and easy to calculate and adapt to the 
nonlinear change of traffic flow sequence. Through 
the introduction of nonlinear functions, the NARX 
model is able to adapt to complex predictions better. 
It is a commonly used statistical time series model 
with good interpretability and operability, it is easily 
solved and is widely used in various forecasting sce-
narios [38, 39]. In this paper, the FTDNN is used to 
construct the nonlinear function of the NARX mod-
el, so that the neural network has short-term memory 
and can effectively learn the short-term correlation of 
urban traffic systems. The FTDNN had the Tapped 
Delay Line (TDL) in the network, which can be 
distributed at the input to the first layer of the static 
feedforward or throughout the network. FTDNN has 
no gate control and TDL distributed in the network 
replaces the memory mechanism for network param-
eter states in RNN, which greatly simplifies calcu-
lation. The traffic flow data of the North Zhongshan 
Road in Guilin, China from 6 to 10 April 2020 were 
used for 5-minute traffic flow forecast to verify the 
model. The results show that the prediction perfor-
mance of the NARX model is better than that of the 
SARIMA model and Holt-Winters model. NARX 
can accurately predict urban traffic flow and it has 
the advantages of simple structure, easy calculation 
and needs less training data.

The rest of the paper is structured as follows. In 
Section 2, the structure of the NARX model is ex-
plained, including the series-parallel architecture 
used in training, the parallel architecture used in 
prediction and the TDL structure. In Section 3, the 
NARX model with FTDNN is verified and calcu-
lated by using traffic flow data of the city of Guili. 
Furthermore, trend decomposition methods and dif-
ference calculation methods are used to improve the 
performance of the model. In Section 4, the NARX 
model is compared with ARIMAS and Holt-Win-
ters model. Finally, Section 5 presents the main 
conclusions of this paper.

, , , , , , , ,Y t f Y t Y t m x t x t x t n x t n1 1 1n n1 1f f f f= - - - - - -^ ^ ^ ^ ^ ^ ^ ^h h h h h h hh                            (5)
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The TDL is an important structure that enables 
the NARX models to have short-term memory. It 
has several delay units in series and the number 
of delay units is related to the autocorrelation and 
cross-correlation of time series. When the time se-
ries can maintain the correlation for a long time, 
more delay units are needed. When TDL has one 
input and multiple delayed outputs, the structure is 
shown in Figure 3.

2.3 Comparison of the FTDNN model and 
the RNN model

The FTDNN model has more advantages than 
the RNN model when dealing with inputs with short 
sequence lengths and feature sizes. For example, 
traffic data collected from small cities is collected 
by detectors with lower density and longer sam-
pling intervals.

There is a sequence 
{(x1,1,x1,2,..., x1,n),...,(xm,1,xm,2, ...,xm,n)} whose se-
quence length is m and the feature size is n. Input 
this sequence into the single-layer FTDNN and 
RNN models with U hidden units. The RNN mod-
el is shown in Figure 4a and the FTDNN model is 
shown in Figure 4b.

The RNN model requires m forward computa-
tions to complete a complete forward propagation. 
Each forward computation shares the parameters of 
the model and the number of parameters required 
to be computed is (n+U+1)U. The FTDNN mod-
el only needs one forward calculation to complete 
the forward propagation and the number of param-
eters to be calculated is (mn+1)U. When the data 
collection interval is five minutes, the traffic vol-
ume is predicted based on the traffic data of four  

where f(·) is a nonlinear function, which can adopt 
the general nonlinear relationship or feedforward 
neural network, support vector regression and oth-
er learning models.

In this paper, the FTDNN is used as a nonlinear 
function f(·). The FTDNN's basic unit is shown in 
Figure 1 and the multi-layer basic unit forms a com-
plete nonlinear function.

The FTDNN is a kind of simple dynamic net-
work. As the training goes on, the value of d at 
the input terminal will change, thus affecting the 
structure of the neural network, so that FTDNN's 
dynamics is represented in the input layer of a stat-
ic multi-layer network [40].

In the process of network training, the real val-
ue of time series is available, therefore the NARX 
model is trained with a series-parallel structure. 
In the long-term prediction process, the time se-
ries has no real values. The NARX model takes 
the previous output as the estimated value of the 
next time series and feeds it back to the input of 
the feedforward neural network to form a paral-
lel structure. The structure of the NARX model is 
shown in Figure 2.

a) Series-parallel architecture b) Parallel architecture
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Figure 2 – Training and prediction structure of the FTDNN
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collectors increases, the number of related features 
will increase, and the number of parameters of the 
FTDNN model will increase rapidly, surpassing the 
RNN model and no longer having computational 
advantages. Figure 5 shows the number of parameters 
of the FTDNN model and the RNN model when the 
number of hidden nodes is 16, 32, 64 and 128. Due 
to the low quality of data collection in small cities, 
large data collection intervals and low detector den-
sity, which lead to short sequence lengths and small 
feature sizes of traffic data, the FTDNN model is 
more suitable for small city prediction calculations.

characteristics (speed, density, occupancy rate, traf-
fic flow) within half an hour. The RNN model with 
64 hidden units needs to perform six forward com-
putations for 5440 parameters; the FTDNN with 64 
hidden units needs only one forward computation 
for 1600 parameters.

By comparing the parameter number calcula-
tion formulas of the two models, it is found that 
the FTDNN model has computational advantages 
when the data sampling interval is large and the 
data feature size is small. As the data sampling time 
decreases, the sequence length of traffic data will 
increase. At the same time, when the density of data 
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p order k step difference operation on a time series 
[41]. Its functional relationship can be expressed in 
Equations 8-10.

3. EXPERIMENT

3.1 Data preparation
This paper uses the data of the city of Guilin 

to test the performance of the NARX model. The 
data includes the time, speed, license plate number 
and other information of vehicles passing through 
fixed monitoring points in the Guilin urban area 
from Monday, 6 April 2020 to Sunday, 12 April 
2020. In this paper, the monitoring data of some 
sections of the North Zhongshan road in Guilin was 
used for the experiment and the test area is shown 
in Figure 6. Taking the step length of five minutes 
as the time series, the traffic flow information of 
four detection points was counted and the traffic 
flow time series of 1.2.3.4 detection points were 
established respectively. The monitoring points are 
the Beichen Interchange, the Intersection of the 
Zhongshan North Road and the Qunzhong Road, 
the Intersection of the Zhongshan North Road 
and the North First Ring Road, the Intersection of 
Yushan Road and the Zhongshan North Road, in 
that order.

2.4 Long-term correlation of the NARX model
Although the TDL structure enables the NARX 

model to have short-term memory capacity, the 
daily change trend of traffic flow has a fixed cycle 
and has a significant influence on the traffic flow, 
which requires the model to have long-term mem-
ory. Trend decomposition methods and difference 
calculation methods are commonly used to im-
prove data.

According to the Cramer decomposition theo-
rem (the formula is as follows), any time series can 
be decomposed into two parts, one of which is the 
steady trend component and the other is the residu-
um component.

x t B at t t j
j

t
j

d

0
n f b }= + = +

=
^ h/  (6)

The Cramer decomposition theorem demonstrates 
that the fluctuations of any sequence can be regarded 
as both deterministic and stochastic effects. There-
fore, the daily change trend of traffic flow is regarded 
as a deterministic influence and dummy variables D 
are constructed according to the time period of the 
day in which the output variables to be predicted are 
located. When training the model, dummy variables 
are taken as dependent variables and the previous 
variables are trained together, so the NARX model 
with dummy variables will not only consider the traf-
fic flow data of the associated intersection but also 
comprehensively analyse the daily change trend of 
the intersection in the regression. Its functional rela-
tionship can be expressed in Equation 7.

The difference operation is also a simple and ef-
fective way to catch the deterministic trend of the 
time series. For the traffic flow data with a fixed pe-
riod, the difference calculation with cycle length as 
step length can better catch the daily change trend 
of the traffic flow.

The first order and C steps difference calcula-
tion is carried out on the traffic flow data and then 
the NARX model after difference operation train-
ing can effectively catch the daily change trend of 
traffic flow in the data, where c represents the cy-
cle length of traffic sequences, k

p
4  represents the 

1

2

3

4

Figure 6 – Diagrammatic drawing of the experiment road 
section

( ) ( ( ), , ( ), ( ), , ( ), , ( ), , ( ),Y t f Y t Y t d x t x t x t d x t d D1 1 1n n1 1f f f f= - - - - - -             (7)

, , , , ..., , ,Y t f Y t Y t d x t x Y t x Y t d Y t c1 1 1c c c c c n c c
1 1 1 1

1
1 1

1
14 4 4 4 4 4 4f f= - - - - - + -^ ^ ^ ^ ^ ^ ^ ^h h h h h hh h          (8)

Y t B Y t C Y t i1 1p p i
p
i

i

p

0
4 = - = - -

=
^ ^ ^ ^ ^h h h h h/                  (9)

Y t Y t Y t k B Y t1k
k4 4 4= - - = -^ ^ ^ ^ ^h h h h h                 (10)
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As the training progresses, the Mean Square 
Error (MSE) of the model decreases continuously. 
When the iteration process is carried out to the 10th 
operation, the MSE of the validation set and test 
set will not be reduced, and then the training of the 
model has been completed. The fitting residuum of 
the training set is smaller than that of the valida-
tion set and the test set, so there is some overfitting 
phenomenon. The training model in step 10 is taken 
for drawing Figure 9 and the analysis. For the three 
data sets, the predicted results are evenly distribut-
ed around the actual data and the predicted trend 
is consistent with the actual trend. Therefore, the 
training model can better fit the original distribution 
of traffic flow.

The time series diagram and residual diagram of 
detection point 4 from 6 April to 9 April is drawn, 
as shown in Figure 10. The model better fitted the 4 
days traffic trend.

Then, the traffic flow on 10 April is predicted 
according to the training model to test the predic-
tion accuracy. The time series diagram and resid-
ual diagram of observation point 4 on 10 April is 
drawn, as shown in Figure 11.

The variation trend of daily traffic volume in 
a week was counted and the graph was drawn in 
Figure 7. The weekday morning peak hour occurs at 
8 o'clock, earlier than on rest days, and the traffic 
increase rate in the morning peak on weekdays is 
higher than that on rest days. In addition, the eve-
ning peak hours of working days are basically the 
same as those of rest days, but the traffic is higher 
than that of rest days. Considering the difference 
in travel behaviour between working days and rest 
days, it is not suitable to use the same model to 
predict the traffic volume, so the subsequent pre-
dictions all use the traffic data on working days.

3.2 The NARX model with FTDNN
The traffic flow of detection point 4 was pre-

dicted by using the traffic flow of detection point 
4 and detection 1,2,3 as exogenous variables. The 
data from 6 to 9 April were used for the training 
of the model, and the time series was divided into 
the training set, validation set and test set according 
to a scale of 0.7:0.15:0.15 for training. The training 
process is shown in Figure 8.
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Figure 7 – Daily trends in traffic volume
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Figure 10 – The fitting performance of the NARX model with FTDNN on time series
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The time series diagram and residual diagram of 
detection point 4 from 6 April to 9 April is drawn, as 
shown in Figure 13. The NARX model after trend de-
composition also maintains a high fitting accuracy.

According to the NARX model after trend de-
composition, the traffic flow on 10 April is predict-
ed to test the accuracy of the model. The time series 
diagram and residual diagram of detection point 4 
on 10 April are drawn as shown in Figure 14. The pre-
diction model maintains a high prediction accuracy, 
and the deviation in the prediction is significantly 
improved at 3–4 and 4–7 hours.

3.4 The NARX model after difference 
operation

Before the training, the time series was calculat-
ed by difference according to its cycle, namely 288 
steps per day, and the calculation was carried out 
according to Equation 8. Due to the difference cal-
culation, the four-day data from 6 April to 9 April 
were reduced by 288 phases, only producing a total 
of 864 data phases over three days.

It is observed that the NARX model with the 
FTDNN can predict the traffic flow information 
well. But at 3 to 4 o'clock and 16 to 20 o'clock, 
the prediction model continuously gives larger or 
smaller predictions. Because the FTDNN could not 
accurately grasp the long-term daily change trend of 
the traffic flow time series, it gave a trend of wrong 
prediction in these two periods, which reduced the 
accuracy of the prediction.

3.3 The NARX model after trend 
decomposition

The traffic flow sequence after trend decompo-
sition is trained by the FTDNN model according to 
Equation 7. The training data are consistent with the 
data set of Subsection 3.1. The training process is 
shown in Figure 12. Due to the increase in the number 
of input variables, the training converges at step 13, 
which is slower than the ten steps of Section 1. On 
the other hand, the performance curves of training 
set, validation set and test set are very close, so the 
overfitting phenomenon has been significantly im-
proved.
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Figure 12 – The performance of the NARX model after trend decomposition in different epochs
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Figure 13 – The fitting performance of the NARX model after trend decomposition on time series
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Figure 16b, there is no continuous prediction devi-
ation like the residual plot in Figure 11. The NARX 
model after the difference operation has better fit-
ting accuracy and prediction accuracy and avoids 
the prediction deviation caused by the daily change 
trend of traffic flow. 

In order to confirm that the changing trend of 
daily time is caught fully by the difference oper-
ation, the autocorrelation function after the dif-
ference operation of the time series is drawn for 
checkout, as shown in Figure 15. With the increase 
of the lag phases, the autocorrelation coefficient 
decreases rapidly, which indicates that the time se-
ries after the difference operation is a stationary 
series, and the difference operation can effectively 
catch the daily change trend of the time series.

The time series diagram and residual diagram 
of detection point 4 from 7 April to 9 April are 
drawn as Figure 16a, then forecast of the traffic flow 
on 10 April and its time series diagram and resid-
ual diagram are drawn as Figure 16b. The NARX 
model after difference operation caught the tem-
poral correlation of the traffic flow sequence. By 
observing the residual plot on the lower side of 

100
50
0

-50R
es

id
ua

l e
rr

or
Tr

af
fic

 v
ol

um
e 

[v
eh

 / 
5 

m
in

]

180
160
140
120
100
80
60
40
20
0 4:00 8:00 12:00 16:00 20:00

Figure 14 – The prediction performance of the NARX model with dummy variables on time series
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Figure 16 – a) The fitting performance of the NARX model after difference operation from 7 to 9 April  
b) The prediction performance of the NARX model after difference operation on 10 April
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First of all, the data is pre-processed, the differ-
ence operation is carried out on the model to make 
the sequence stable and pass the white noise test. 
An autocorrelation graph of the time series is drawn 
as Figure 17, and a partial autocorrelation graph is 
drawn as Figure 17b, to judge the order of the model.

By observing the figure, it is found that the au-
tocorrelation function of the time series shows the 
second-order censored characteristic, and the par-
tial autocorrelation function shows the trailing char-
acteristic. Therefore, the SARIMA (0,0,2)×(0,1,0) 
288 model is adopted for prediction. The maximum 
likelihood method was used to estimate the param-
eters of the model and the prediction model was ob-
tained:

. . , ,x B B N1 0 81715 0 0 65 0 2092t t t288
1 2d +f f= + -t ^ ^h h  (11)

where B is the delay operator, , .B x
x

x
x Bt

t
t

t
1 2 2= = --

4.3 Establishing the Holt-Winters model
The solution of the Holt-Winters model is 

to calculate the three smoothing coefficients α, 
β and γ, which satisfy the following constraint:  
0<α,β and γ<1, and respectively represent the 
smoothing of horizontal series, trend series and sea-
sonal series. According to the judgment of the traffic 
flow time series, the linear growth trend of the traf-
fic flow has little influence on the traffic flow pre-
diction in short term, so parameter β is specified as 
1. Then, other parameters are calculated, α=0.0613, 
γ=0.548. The following model is constructed:

. .a x s a0 0613 0 9387t t t t288 1= - +- -t^ h  (12)

. .s x a s0 548 0 452t t t t 288= - + -t^ h  (13)

where at is the horizontal trend of the time series;  st 
is the daily change trend of the time series, {st} is 
a sequence of 288 values, depending on the value 

4. DISCUSSION

4.1 Comparison of the model fitting 
performance

By the MSE and coefficient of determination of 
the NARX model, the fitting performance was com-
pared. Table 2 shows the comparison of the fitting 
performance. The fitting residuum of the NARX 
model after trend decomposition is significantly 
larger than the NARX model after difference op-
eration and NARX model. All three methods have 
good fitting performance. Their coefficient of deter-
mination can be stable above 0.9, indicating that the 
fitting performance is significant.

4.2 Establishing the SARIMA model
To determine that the NRAX model has a bet-

ter prediction performance, the prediction results 
are compared with the SARIMA and Holt-Winters 
methods.

Table 2 – Comparison of fitted performance

Method
Fitting performance

Data set MSE R

NARX model

Training set 114.99 0.975

Validation set 223.01 0.952

Testing set 229.34 0.957

NARX model 
after trend  

decomposition

Training set 309.84 0.934

Validation set 341.01 0.929

Testing set 346.37 0.921

NARX model 
after difference 

operation

Training set 137 0.972

Validation set 180.11 0.961

Testing set 163.24 0.965
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Figure 17 – a) Autocorrelation diagram of time series after difference operation 
 b) Partial autocorrelation diagram of time series after difference operation
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The forecasting performance of the NARX mod-
el with the FTDNN is between the SARIMA of the 
Holt-Winters. Through trend decomposition or dif-
ference operation, the NARX model with FTDNN 
can better learn the long-term daily change trend of 
traffic flow, which has a minimum MSE and a max-
imum determination coefficient.

In addition, time series methods require a series 
of tests on the model, such as the stable and white 
noise test, which needs to judge the order of the 
model based on the experience of the analyst [42]. 
However, the NARX model with the FTDNN is not 
influenced by the experience of the analysts, so its 
forecasting stability is better than that of the time 
series methods.

5. CONCLUSIONS
The traffic prediction model based on the DNN 

has problems of complex calculation and large data 
size demand. This paper uses the NARX model with 
the FTDNN to predict the traffic flow sequence. It 
uses the estimation of the number of delay periods 
in the TDL instead of the estimation of the memory 
mechanism for the network parameter states in the 
RNN, which reduces the demand for data size and 

of t, there are different values of st. The prediction 
result figure of the SARIMA (0,0,2)×(0,1,0) model 
and Holt-Winters model is drawn and the residual 
diagram between the predicted value and the fore-
cast target are calculated, as shown Figure 18.

4.4 Comparison of the model prediction 
performance

The forecasting results of the SARIMA 
(0,0,2)×(0,1,0) model and Holt-Winters model were 
compared with the forecasting results of the NARX 
model, as shown in the Table 3.
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Figure 18 – The fitting performance and prediction performance of the time series analysis method

Table 3 – Comparison of predicted performance

Method
Prediction performance

MSE R2

NARX model with FTDNN 306.87 0.918

NARX model 
after trend decomposition 211.48 0.938

NARX model 
after difference operation 218.97 0.957

SARIMA 270.50 0.939

Holt—Winters 360.64 0.930
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使FTDNN具有短期记忆能力。同时，在数据输入
FTDNN之前，对交通数据序列进行趋势分解或差分
计算，可以使NARX模型保持长期预测能力。与常见
的非线性模型相比，FTDNN具有结构上的优势。它
使用了一个简单的TDL结构，没有记忆机制和门控
结构，可以减少模型的参数，降低数据的规模。通
过桂林市数据，对5分钟交通流量进行预测验证，所
提出预测方法性能优于SARIMA模型和Holt-Winters模
型。

关键字

智慧交通系统；交通流量预测；时间序列； 

NARX模型；交通数据
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用于小城市区域交通流量预测的具有外生变量
的非线性自回归模型

摘要
数据驱动的预测方法存在计算复杂、可移植性

差、需要大量训练数据等问题，限制了数据驱动的
方法在小城市的应用。本文提出了一种带有外生变
量的非线性自回归模型(NARX模型)的交通流预测
方法，该方法将具有抽头延迟线(TDL)结构的聚焦
时滞神经网络(FTDNN)作为非线性函数。TDL结构
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