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ABSTRACT
With the popularity of electric vehicles, they have become an indispensable part of traffic 
flow on the road network. This paper presents a reliability-based network equilibrium model 
to realise the traffic flow pattern prediction on the road network with electric vehicles and 
gasoline vehicles, which incorporates travel time reliability, electric vehicles’ driving range 
and recharge requirement. The mathematical expression of reliable path travel time is derived, 
and the reliability-based network equilibrium model is formulated as a variational inequality 
problem. Then a multi-criterion labelling algorithm is proposed to solve the reliable shortest 
path problem, and a column-generation-based method of the successive average algorithm 
is proposed to solve the reliability-based network equilibrium model. The applicability and 
efficiency of the proposed model and algorithm are verified on the Nguyen-Dupuis network 
and the real road network of Sioux Falls City. The proposed model and algorithm can be 
extended to other road networks and help traffic managers analyse traffic conditions and 
make sustainable traffic policies.

KEYWORDS
transportation engineering; reliability-based network equilibrium; electric vehicle; driving 
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1. INTRODUCTION
With the increased attention to traffic consumption and carbon emissions, electric vehicles (EVs) with low 

energy consumption and low emissions have been actively promoted worldwide [1]. According to the latest 
Global Electric Vehicle Outlook (2022) released by the International Energy Agency (IEA), the global sales 
of EVs doubled in 2021 compared to the previous year to a new record of 6.6 million, and the total number of 
EVs on the world’s roads up to about 16.5 million [2]. More than 30 countries, states and cities have announced 
their timetables of future gasoline/diesel vehicle bans [3]. In addition, at least 6 major automakers have pledged 
to work toward phasing out sales of new gasoline/diesel vehicles by 2040 worldwide. For example, Hainan 
province in China plans to ban the sale of gasoline vehicles (GVs) by 2030 [4], and BYD was the first automaker 
in the world to officially announce the cessation of GV production on 5 April 2022. The electrification of urban 
transportation will have a lasting impact on the transportation system, and the traffic flow on the road network 
will be a mixed flow of conventional GVs and EVs for a long term [5]. 

Predicting traffic flow patterns on the road network remains a hot subject in the field of sustainable 
transportation, which can help traffic managers and planners analyse traffic conditions and make sustainable 
traffic policies [6, 7]. The traffic assignment problem (TAP) based on the network equilibrium model has been 
the predominant method to predict traffic flow patterns on the road network since the Wardrop principle was 
proposed [8]. The famous Wardrop’s first principle known as “user equilibrium” (UE) describes such a traffic 
equilibrium condition that the travel time of all used paths for each origin-destination (O-D) pair is shorter than 
or equal to that of unused paths, and no traveller can improve their travel time by unilaterally changing paths in 
this state [9]. Building upon the basic UE principle, numerous extensions and variations have been developed 
to address specific complexities and nuances in network equilibrium modelling, including stochastic user 
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equilibrium [10, 11], dynamic user equilibrium [12], reliability-based network equilibrium [13, 14], multiclass 
network equilibrium [15], multimodal network equilibrium [16] etc.

In the UE and other extended network equilibrium models, traffic demand is assigned to the transportation 
network based on travellers’ path choice behaviour. Therefore, travellers’ path choice behaviour is the critical 
and fundamental process in building a network equilibrium model. To predict the traffic flow pattern of the 
transportation network with EVs, it is important to understand their path choice behaviour. EV travellers’ 
path choice behaviour is often considered different from that of GV travellers due to range anxiety, en-route 
recharge requirements and insufficient charging infrastructure [17, 18]. For example, EVs may opt for detours 
to pass by charging stations in order to avoid running out of charge. In other words, the path chosen by 
EV travellers may include detours and recharging actions with the consideration of driving range limits and 
recharge requirements. Due to the different path choice behaviour, the conventional network equilibrium model 
needs to be rebuilt to apply to the transportation network with both EVs and GVs. Recent network equilibrium 
models involving EVs can be divided into three categories according to EV travel characteristics.

The first category incorporates EVs’ environmental cost or operation cost into the network equilibrium 
models. Researchers believe that EV and GV travellers are different in terms of environmental awareness, and 
their travel costs are different in energy consumption and pollution emissions even when travelling the same 
path. Ma et al. incorporated the environmental cost into the travel cost function and built a stochastic user 
equilibrium model to analyse how the environmental cost affects the network utilities. They also extended 
it to the condition with elastic demand [19, 20]. Ahn et al. developed and investigated the impact of a multi-
objective user equilibrium on a large-scale city network considering the difference in energy consumption of 
EVs and GVs [21]. Ma et al. proposed a stochastic user equilibrium model considering the different operation 
costs of EVs and GVs to analyse the adoption of EVs in an urban transportation network [22]. These studies 
have been conducted on urban transportation networks for EVs’ intra-city travel, and EVs’ driving range limits 
and recharging requirements are not considered.

The second category takes into account EVs’ distance limit or range anxiety due to limited driving range. 
Jiang et al. built a path-constrained network equilibrium model, in which the distance-limited constraint of 
EVs was introduced into the UE model [23, 24]. Jing et al. proposed a stochastic user equilibrium model 
with a distance limit considering the perceived error of travellers and applied it to optimise the charging 
station location [25, 26]. Yan and Guo proposed a multiclass cumulative prospect theory-based stochastic 
user equilibrium model with path constraints in a degradable transportation network to handle jointly the 
range anxiety issue and the perfectly rational issue [15]. Li et al. built a day-to-day traffic assignment model 
to investigate the effect of the use of battery electric vehicles on traffic dynamics [5]. The limitation of these 
studies is that they do not take into account the recharging requirement of EVs.

The third category incorporates both limited driving range and recharge requirement into network equilibrium 
models. Xie et al. built the network equilibrium considering both factors of driving range limits and recharge 
requirements. Their results showed that both factors have a great influence on the traffic flow pattern on the 
road network [27]. He et al. assumed EV drivers select paths to minimise their driving times while ensuring 
not running out of charge and formulated three mathematical models to describe the network equilibrium of 
EVs, in which the recharging time and flow-dependent energy were considered [28]. Xu et al. developed a 
nonlinear minimisation model for mixed battery electric and gasoline vehicles in a transportation network with 
battery swapping stations by incorporating flow-dependent dwell time and effects of road grade on electricity 
consumption rate [29]. Zhang developed a novel convex programming formulation for a mixed-vehicular 
traffic assignment accounting for en-route multi-modal recharge, and EVs’ path choices were represented as a 
resource-constrained shortest path subproblem with recharge time [30].

The studies above mainly focus on the effect of EVs’ travel characteristics on path choice. However, the 
effect of travel time variation caused by unpredictable perturbations in the transportation network on path 
choice is significant and cannot be overlooked. Travel time reliability is a key indicator to reflect the travel time 
variation in the context of an uncertain transportation network, which is defined as the probability that travellers 
can reach destinations within a certain travel time [31, 32]. Facing the uncertainty of travel time, travellers 
focus not only on expected travel time but also travel time reliability when making path choices [33]. Some 
research found that the value of reliability is close to or even higher than the value of travel time, and travel 
time reliability needs to be incorporated into the cost function of path choice models [34]. For EV travellers, 
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path travel time uncertainty comes from both travel time uncertainty on roads and dwell time uncertainty at 
charging infrastructure caused by uncertain traffic flow and charging flow. Therefore, EV travellers may care 
more about travel time reliability than GV travellers. Recent researchers have paid attention to the effect of 
travel time reliability on the path choice of EV travellers, which is called the reliable shortest path problem for 
EVs. Tu et al. studied the constrained reliable shortest path problem for EVs in an urban transportation network 
[35]. Ruß et al. further studied the constrained reliable shortest path problem on stochastic time-dependent 
networks [36]. Shen et al. reformulated such a problem as a bi-objective model in which one objective is 
reliable travel time and the other is the energy consumption of EVs [37]. However, the reliable shortest path 
problem for EVs with driving range limits and recharge requirements remains a challenge, and few studies 
have focused on the corresponding network equilibrium problems.

Considering travel time reliability, EVs’ driving range and recharge requirements, this paper aims to propose 
a reliability-based network equilibrium model to predict the traffic flow pattern on the road network with EVs 
and GVs. In this model, reliable travel time is adopted to treat travel time and travel time reliability, which is 
derived as expected travel time plus a safety margin, and the safety margin is calculated according to travel 
time distribution and confidence level. Integrating travel time reliability into the network equilibrium model 
with EVs and GVs fills the research gaps, and our main contributions are summarised as follows:
1) We derived the reliable path travel time with the consideration of uncertain traffic demand as the source and 

formulated the reliability-based network equilibrium model with EVs and GVs as a variational inequality 
problem.

2) We proposed a multi-criterion labelling algorithm to solve the reliable shortest path problem and 
incorporated the method of a successive average (MSA) algorithm into a column generation framework to 
solve the reliability-based network equilibrium model.

3) We tested the proposed model and algorithm on the Nguyen-Dupuis network and Sioux Falls network. 
Results comparison and a sensitivity analysis were carried out to illustrate the essential ideas of the 
proposed model. Due to the Sioux Falls network being a real city network, the applicability of the proposed 
algorithm was also verified.

The remainder of the paper is organised as follows. Section 2 formulates the reliability-based network 
equilibrium model. Section 3 introduces the solution procedure to solve the formulated model. Section 4 
provides two numerical examples to illustrate the proposed model and algorithm. Section 5 concludes the 
study and suggests future research directions.

2. MODEL FORMULATION
Similar to previous studies, the uncertainty of travel time is assumed to mainly come from the stochastic 

traffic demand in this paper [13, 38, 39]. Some basic assumptions should be listed before modelling:
1) The traffic demand of the origin-destination (O-D) pair (i.e. O-D traffic demand) follows the lognormal 

distribution, and the variance-to-mean ratio is denoted as ρw for O-D pair w; 
2) The path flows follow the same probability distribution as the corresponding O-D traffic demand and have 

the same variance-to-mean ratio; 
3) The path flows are mutually independent; 
4) The link travel time and dwell time at charging infrastructure are mutually independent.

 These four assumptions are necessary to derive the flow distribution and reliable path travel time in the 
following sections 2.1.1 and 2.1.4. Similar assumptions can be also found in the literature related to the 
reliability-based network equilibrium models [13, 38–40].

It is noted that there are mainly 3 types of charging infrastructure, namely the AC charging pile, charging 
station and battery swapping station (BSS) [41]. For long-distance travel, the dwell time of en-route recharge 
is an important part of path travel time. The dwell time consists of waiting time and service time at charging 
infrastructure. The waiting time is affected by queue length and service time, and service time mainly depends 
on the type of charging facility for a certain recharge amount. Up to now, the service time at BSSs is considered 
to be the shortest, and it can achieve energy refuelling in a short time parallel to GVs [42]. In the future, with 
the development of fast charging technology, the fast-charging station is likely to provide a similar fast service 
experience to that of the BSS. Based on these reasons, the BSS is chosen as the charging infrastructure to build 
our model.
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2.1 Derivation of reliable path travel time
In the network equilibrium model, the path travel time is the determining factor affecting travellers’ path 

choice. Taking the stochastic traffic demand as the source, the mathematical expression of a reliable path travel 
time needs to be derived. According to the transfer process of variables, the derivation process of a reliable 
path travel time can be summarised as the following Figure 1.

OD traffic demand 
distribution

OD path flow 
distribution

Link flow

Node flow

Mean and variance 
of link travel time

Mean and variance 
of dwell time

Reliable path travel 
time

Path travel time
distribution

Mean and variance 
of path travel time

Figure 1 – The derivation process of reliable path travel time

Let Qw be the traffic demand between O-D pair w, w
kF  be the traffic flow on path k between O–D pair w, 

Xa be the traffic flow on link a, and Xi be the traffic flow at BSS node i. It is worth noting that Qw, w
kF , Xa and 

Xi are all stochastic variables. Based on the assumptions 1–3, the O–D traffic demands follow the lognormal 
distribution, and the distribution of path flow, link flow, node flow and their relevant parameters can be derived 
in the following Table 1, according to the method in the literature [13, 39].

Table 1 – Flow distribution and their parameters

Stochastic 
variables Probability distribution Mean Variance

O-D traffic demand ( )~ ,ü
q qü µ σ wq w w wqε ρ=

Path flow ( ), ,~ ,w w w
k f k f kF LN µ σ w

kf ,
w w w
f k kfε ρ=

Link flow ( ), ,~ ,a x a x aX LN µ σ ,
w w

a k a k
w k

x f δ=∑∑ , ,
w w w

x a k a k
w k

fε ρ δ=∑∑
Node flow ( ), ,~ ,i x i x iX LN µ σ ,

w w
i k i k

w k

x f δ=∑∑ , ,
w w w

x i k i k
w k

fε ρ δ=∑∑

In Table 1, w
qµ , w

qσ , ,
w
f kµ , ,

w
f kσ , μx,a, σx,a, μx,i and σx,i are the parameters of the lognormal distribution; ,

w
a kδ  

is a binary variable, , 1w
a kδ =  if link a is part of path k, , 0w

a kδ =  otherwise; ,
w
i kδ  is a binary variable, , 1w

i kδ =  if 
the path k passes the BSS node i and battery is swapped there, , 0w

i kδ =  otherwise.
The travel time on the link (i.e. link travel time) is dependent on not only the links’ attributes but also 

the traffic flow on the link, due to the traffic congestion effect. It is usually described by the link travel time 
function in the network equilibrium model. Here, the widely used standard BPR function is adopted [43].

4
0 1 0.15 a

a a
a

XT t
C

  
 = + ⋅ 
     

(1)

where 0
at  is the free travel time of link a, Ca is the link capacity of link a. In the travel time function, Xa is the 

only stochastic variables, and its n-order origin moment can be expressed as:
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where E[.] is the expectation operator. Based on Equation 2, the mean and variance of the link travel time can 
be derived as:
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(4)

The battery swapping service process complies with the M/M/1 queue model. The dwell time function at 
BSS node i adopts the following form [29, 44]:

2
0 1 i i

i i
i i

X XT t
C C

  
 = + +  
     

(5)

where 0
it  is the free-flow dwell time at BSS node i, and Ci is the capacity of BSS i. In the dwell time function, 

Xi is the only stochastic variable, and its n-order origin moment can be expressed as:

( ) ( )
2
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, ,2

n
i x i x i

nE X exp nµ σ
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(6)

Based on Equation 6, the mean and variance of BSS dwell time can be derived as:
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(8)

( ) ( ) 22
,t i i iE T E Tε  = −      (9)

Based on the assumption 4, the link travel time and dwell time at charging infrastructure are mutually 
independent. Then the mean travel time w

kµ  and travel time variance ( )2w
kσ  of the path k between O-D pair w 

can be expressed as:

, ,
w w w
k a k a i k i

a i

t tµ δ δ= +∑ ∑
 

(10)

( )2

, , , ,
w w w
k a k t a i k t i

a i

σ δ ε δ ε= +∑ ∑
 

(11)

According to the central limit theorem, for paths consisting of many links and nodes, the path travel 
time tends to follow normal distribution regardless of the link travel time distribution and BSS dwell time 
distribution. Travel time distribution w

kT  can be expressed as:

( )( )2
~ ,ü

üT N µ σ
 

(12)

Given confidence level α, reliable path travel time w
kT  can be decided by the following chance-constraint 

model [13, 39]: 

( ){ }min |w w w
k k kT P T T α≥ ≤

 (13)

        By solving Equation 13, reliable path travel time can be expressed as expected travel time plus safety 
margin as follows:
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( )1w w w
k k kT µ φ α σ−= +  (14)

where ( )1 .φ− is the inverse of the standard normal cumulative distribution function.

2.2 Reliability-based network equilibrium model
Reviewing the literature, variational inequality (VI) is one of the main methods to build the reliability-based 

network equilibrium model [33, 38]. We assume that there are m classes of vehicles on the road network, where 
m = 0 represents GVs, and m = 1 represents EVs. Besides the sequence of the link, path k can be also written 
by the sequence of the sub-path denoted by h which connects: (1) the origin node to the destination node; (2) 
or the origin node to BSS node; (3) or BSS node to BSS node; (4) or BSS node to the destination node [29, 
30]. The reliability-based network equilibrium model is formulated as a VI problem, which is to find a vector 

*
, Ùw

k m ff ∈Ωf  , such that

( )*
, , , 0w w w

k m k m k m
m w k

T f f− ≥∑∑∑
 

(15)

where Ωf  is the feasible path flow set defined by:

, ,  ,w w
k m m

k

f q m w= ∀∑
 

(16)

( ) , 0,  , ,h w
k m k md D f h k m− ≤ ∀

 (17)

, 0,  , ,w
k mf h k m≥ ∀  (18)

, , ,
w w

a m k m a k
w k

x f δ=∑∑
 

(19)

,
,

h w h
k a a k

a

d d δ=∑
 

(20)

where ,
w

k mT  is the reliable travel time on path k of vehicles m between O-D pair w; ,
w

k mf  is the flow on path k of 
vehicles m between O-D pair w; w

mq  is the traffic demand of vehicles m between O–D pair w; h
kd  is the travel 

distance of the sub-path h; Dm is the driving range of vehicles m; xa,m is the flow on link a of vehicles m; da is 
the travel distance of link a; h

a kδ  is a binary variable, , 1h
a kδ =  if link a is part of sub-path h, otherwise , 0h

a kδ = .
Proposition 1: the VI problem has at least one solution
Proof: According to Equations 16–20, the feasible path flow set Ωf is a compact convex set. Besides, according 
to the derivation process of reliable path travel time, ,

w
k mT  is a continuous function of the path flow *

,
w

k mf . Based 
on the variational inequality theorem, the solution of the proposed VI model exists.

Proposition 1 illustrates the solution existence of the proposed model. Therefore, an efficient algorithm can 
be designed to solve this model, which is introduced in the next section.
Proposition 2: the VI problem is equivalent to the following network equilibrium conditions:

*
,

, *
,

,   0
, , ,

,   0 

w w
m k mw

k m w w
m k m

if f
w k m

if f
π

γ
π

= >= ∀≥ =  
(21)

Proof: Equation 15 is equivalent to:
*

, , , , ,,   w w w w w
k m k m k m k m k m

m w k m w k

T f T f f≥ ∀ ∈∑∑∑ ∑∑∑
 
Ωf 

(22)

Therefore, *
,
w

k mf  is a solution to the VI model if and only if *
,
w

k mf  is a solution of the following mathematical 
programming:

,
, ,min  

w
k m f

w w
k m k mf m w k

T f
Ω∈
∑∑∑

 
(23)

The Karush-Kuhn-Tucker (KKT) conditions for the mathematical programming could be derived as:

( ), , , 0w h h w w
k m k m k m m k m

h

T d D fλ π 
+ − − = 

 
∑

 
(24)
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( ), , 0w h h w
k m k m k m m

h

T d Dλ π+ − − ≥∑
 

(25)

where ,
h
k mλ  is the Lagrange multiplier of Equation 17, and w

mπ  is the Lagrange multiplier of Equation 16. Let 
( ), , ,

w w h h
k m k m k m k m

h

T d Dγ λ= + −∑  represent the general travel cost (GTC) on path k of vehicles m between O-D

pair w, and w
mπ  represent the minimum GTC of vehicles m between O-D pair w; then Equations 24 and 25 can be 

rewritten as:

( ), , 0w w w
k m m k mfγ π− =

 (26)

, 0w w
k m mγ π− ≥  (27)

It is clear that Equations 26 and 27 are equivalent to Equation 21. 
Therefore, the VI problem describes such a network equilibrium condition that no traveller can improve 

their GTC by unilaterally changing paths. In other words, all used paths of vehicles m between each O-D pair 
have equal GTC, and unused paths have higher GTC. This is an extension of the traditional Wardrop first 
principle, and the solution method of the network equilibrium model can be adopted to handle this problem.

3. SOLUTION ALGORITHM
In this section, the multi-criterion labelling algorithm (MLA) is proposed to solve the reliable shortest 

path problem, and the column-generation-based method of the successive average algorithm (CG_MSA) is 
proposed to solve the reliability-based network equilibrium model.

3.1 Multi-criterion labelling algorithm
One of the essential tasks in addressing the reliability-based network equilibrium problem resolves around 

finding the reliable shortest path. With the consideration of travel time reliability, the reliable shortest path 
is the path with minimum reliable travel time among all paths between the O-D pair. Here, a multi-criterion 
labelling algorithm is designed to find the reliable shortest path for EVs with recharge requirements, which is 
an extension of the work done by Tu [35].

To describe the algorithm better, some notations and definitions should be introduced first. The link set, node 
set and BSS node set on the road network are respectively denoted as A, N and C. D is the driving range of EVs. 
The set of all non-dominated paths from origin node r to node i is denoted as pri, and the corresponding label set 
is defined as Lri. For the path ri ri

up P∈ , its multi-criterion label is denoted as ri ri
uL L∈  and ( ), , , ,ri ri ri ri ri

u u u u uL F t dσ=  
and ri

uF , ri
ut , ri

uσ  and ri
ud  respectively represent reliable travel time, expected travel time, standard deviation 

of travel time and travel distance of the path ri
up . To compare the paths in the path sets, the non-dominated 

path is defined as follows.
Definition 1. For two paths ,ri ri ri

u vp p P∈ , if and only if ri ri
u vF F≤ ,  ri ri

u vt t≤  and ri ri
u vd d≤ , and at least one of 

the inequalities is strict, then ri
up  dominates ri

vp  or ri
vp  is dominated by ri

up , denoted as ri ri
u vp p . 

Definition 2. The path ri ri
up P∈  is a non-dominated path, if and only if it is not dominated by any other path 

ri ri
vp P∈ .

An illustrative example is used to show how to compare the paths using Definition 1 and Definition 2. 
There are three paths (i.e. 1

rip , 2
rip , and 3

rip ) in the path set riP , and their multi-criterion labels are respectively 
( )1 1 1 1 112, 10, 2, 9ri ri ri ri riL F t dσ= = = = = , ( )2 2 2 2 211, 8, 3, 8ri ri ri ri riL F t dσ= = = = =  and ( )3 3 3 3 310, 7,ri ri ri ri riL F t d= = = = =

( )3 3 3 3 310, 7, 3, 10ri ri ri ri riL F t dσ= = = = = . Based on Definition 1, 1
rip  is dominated by 2

rip , because we have 2 1
ri riF F< , 2 1

ri rit t<  and 
2 1
ri rid d< . Another result based on Definition 1 is that 2

rip  and 3
rip  are not dominated by any other path in pri. 

Therefore, 2
rip  and 3

rip  are both non-dominated paths based on Definition 2.
Two sets are introduced to store the non-dominated labels (namely the non-dominated paths) in the 

algorithm process. One is the set S1 which stores the non-dominated labels that have not been extended at all 
nodes, and the other set S2 stores all the non-dominated labels at all nodes. There are three main processes in 
the multi-criterion labelling algorithm, namely node selection, path extension and label update. The process 
of the multi-criterion labelling algorithm is presented as follows to find the reliable shortest path from origin 
node r to destination node s.
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Step 1: Initialisation.
Let  ( ) ( ) ( ){ }0,0,0,0S1 S2 rrr r L= = = , and ( ) ( ) { }0, \rii i L i N r= = = ∀ ∈S1 S2 .

Step 2: Node selection.
If ( ) 0, ,S1 i i N= ∀ ∈  then stop; otherwise, continue.
From all nodes in N, select the node i with the minimum ( )1

ri ri ri
min uF min F F= … … .

If i = s then stop; otherwise, continue.
Step 3: Path extension.

For all links ija A∈ ,
If j C∉ , then let ( )ˆ S1rj

ijL i a= ⊕ , and if rj
ud D> , delete label ˆrj

uL  in ˆrjL .
If j C∈ , then let ( )ˆ S1rj

ijL i a=  , and if ,1rj
ud D> , delete labels ,1ˆrj

uL  and ,2ˆrj
uL  in ˆrjL .

Then let S1(i)=0.
Step 4: Label update.

Merge the label set rjL  and ˆrjL , and obtain the new non-dominated label set rjL .
Let rj rjL L= ,  ( )S2 rjj L= , and ( ) ( )( )ˆS1 S1rj rjj L j L= ∩ ∪ , turn to step 2.

In step 2, there are two termination criteria. One is ( )S1 i =∅0, which means no non-dominated paths can be 
extended. The other is that the node with the minimum ri

minF  among all nodes in N is node s, which means the 
reliable shortest path from node r to node s is found. If any termination criterion is satisfied, the algorithm ends; 
otherwise, the node with the minimum ri

minF  is selected for path extension.
In step 3, non-dominated paths are extended to the adjacent nodes of the selected node in step 2. There 

are two operators in the process of path extension. ( )S1 iji a⊕  means that every path ri
up  stored in S1(i) is 

extended to node j passing link Aija ∈  with attributes ( ), ,ij ij ijt dσ , and the new path rj
up  is generated with the 

label ( )ˆ ˆ ˆ ˆ, , ,rj rj rj rj rj
u u u u uL F t dσ= , in which ( )1ˆ ˆ ˆrj rj rj

u u uF t φ α σ−= + ,  ˆrj ri
u u ijt t t= + , ( ) ( )2 2

ˆ rj ri
u u ijσ σ σ= + ˆ .rj ri

u u ijd d d= +
( )S1 iji a  means that every path ri

up  stored in S1(i) is extended to node j passing link Aija ∈  with attributes 
( ), ,ij ij ijt dσ  and BSS node j C∈  with attributes ( ),j jt σ , and two new paths ,1rj

up  and ,2rj
up  are generated. The 

path ,1rj
up  has no battery swapping action at BSS node  j, and its corresponding label is ( ),1 ,1 ,1 ,1 ,1ˆ ,,ˆ , ,ˆ ˆrj rj rj rj rj

u u u u uL F t dσ=

in which ( ),1 ,1 1 ,1ˆ ˆ ˆrj rj rj
u u uF t φ α σ−= + ,  ,1ˆrj ri

u u ijt t t= + ,  ( ) ( )2 2
ˆ rj ri

u u ijσ σ σ= + ,  ,1ˆ rj ri
u u ijd d d= + ; the path ,2rj

up  has 
battery swapping action at BSS node j, and its corresponding label is ( ),2 ,2 ,2 ,2 ,2ˆ ˆ , , ˆ ,ˆrj rj rj rj rj

u u u u uL F t dσ= , in which 

( ),2 ,2 1 ,2ˆ ˆ ˆrj rj rj
u u uF t φ α σ−= + , ,2ˆrj ri

u u ij jt t t t= + + , ( ) ( ) ( )2 2 2,2ˆ rj ri
u u ij jσ σ σ σ= + + , ,2 0ˆ rj

ud = . However, if ˆ rj
ud D>  or 

,1ˆ rj
ud D> , the corresponding paths are not feasible, and their labels should be deleted. Because S1 only stores 

the unextended non-dominated labels, S1(i) should be set as 0 after the path extension.

In step 4, the new label set r̂jL  generated by the path extension and the current label set Lrj at node j are 
merged as the label set rjL  with the path-by-path comparison based on Definition 1 and Definition 2. Then 
the set of all non-dominated labels Lrj is updated by rjL  and stored in S2(j). The set of unextended non-
dominated labels is updated and stored in S1(j) by set operation. In detail, ( ) ˆS1 rjj L∪  represents the set of all 
unextended labels in which there may be some dominated labels, and Lrj includes all non-dominated labels, 
then ( )( )ˆS1rj rjL j L∩ ∪  presents the set of unextended non-dominated labels.

3.2 Column-generation-based method of successive average algorithm
The MSA algorithm has been widely used to solve the network equilibrium model, due to its simplicity 

and the forced convergence property [45]. Based on the proposed MLA algorithm, the MSA algorithm is 
considered to be incorporated into the column generation framework. The main idea is to generate an updatable 
working path set, which is used to store the paths that travellers may choose. In each iteration, the working path 
set is updated by the reliable shortest path for each O-D pair solved by the MLA algorithm, and the network 
equilibrium is solved in the updated working path set by the MSA algorithm. When updated working paths 
have little or no impact on the link flow pattern, the convergence condition is met, and the algorithm ends. 
It ensures that all used paths are included in the working path set, and an effective working path set can be 
generated after the algorithm is finished. The process of the CG_MSA algorithm is presented as follows:

/

/

/

/

/
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Step 1: Initialisation. Based on the free-flow travel time, find the shortest path for each class of vehicles 
between all O-D pairs, generate the working path set 0

mRS , perform all-or-nothing assignment to 
obtain the initial flow vector x0 (including link and node flow), set the outer iteration counter nn = 0 
and the outer tolerance error eout .

Step 2: Update link and node travel time. Based on the flow vector x(nn), update the mean and variance of 
link and node travel time.

Step 3: Update working path set. Based on the current link and node travel time, find the reliable shortest 
path for each class of vehicles between all O-D pairs using MLA, and update the working path set 

1+nn
mRS .

Step 4: Perform network equilibrium in the working path set.
Step 4.1: Initial network loading. Based on the free-flow travel time, perform all-or-nothing 
assignment and obtain the initial path flow vector f0, set the inner iteration counter n = 0 and the 
inner tolerance error ein.
Step 4.2: Update reliable path travel time. Based on the path flow, obtain the link and node flow, 
according to Equation 14, update the reliable path travel time.
Step 4.3: Find the search direction. Compare the reliable travel time of all paths and find the 
minimum one for each O-D pair, perform all-or-nothing assignment and obtain the auxiliary path 

flow ( )'nf .
Step 4.4: Update the path flow. Update the path flow ( ) ( ) ( ) ( )( )1 '1/n n n nn+ = + −f f f f .
Step 4.5: Convergence test. If ( ) ( ) ( )1 /  f f fn n n

ine+ − ≤  , then stop and output ( )1n+f  and the 
corresponding ( )1nn+x ; otherwise, set 1n n= +  and go to step 4.2.

Step 5: Convergence test. If ( ) ( ) ( )1 /  x x xnn nn nn
oute+ − ≤  , then stop; otherwise, set 1nn nn= +  and go to 

step 2.

To better illustrate the process of the CG_MSA algorithm, a flowchart is also presented as the following 
Figure 2.
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Figure 2 – The flowchart of the CG_MSA algorithm

4. NUMERICAL EXAMPLES
4.1 Nguyen-Dupuis network

The Nguyen-Dupuis network [46] is adopted to illustrate the essential idea of the proposed model, which 
is a widely used benchmark network for conducting numerical experiments related to network equilibrium 
models. As shown in Figure 3, this network consists of 4 O-D pairs, 13 nodes and 19 links. Due to its small scale, 
it is suitable to solve the proposed model and display the path-related results. For instance, all the paths in the 
network can be enumerated, and the working path set can be easily generated. Therefore, the steps regarding 



Promet ‒ Traffic&Transportation. 2024;36(1):83-99.  Transport Engineering

92

the working path set in the algorithm can be simplified, and the details of the path-related results can be well 
presented.
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Figure 3 – The Nguyen-Dupuis network

The traffic demand for each O-D pair (1-2, 1-3, 4-2 and 4-3) is, respectively, 400 pcu/h, 800 pcu/h, 600 
pcu/h and 200 pcu/h. Nodes 6 and 11 are the BSSs, their free-flow dwell time is set as 30 min, and their 
capacity is set as 300 pcu/h and 500 pcu/h. The link characteristics of the Nguyen-Dupuis network are shown 
in Table 2. There are 25 physical paths in the network, and if the recharge requirement is considered, there are 
70 active paths in total. However, not all the paths are feasible for EVs, and the number of feasible paths will 
change with the driving range of EVs as shown in Figures 4a and 4b.

Table 2 – Link characteristics of the Nguyen-Dupuis network

Link 
no.

Free-flow 
travel time

[min]

Capacity
[pcu/h]

Distance
[km]

Link 
No.

Free-flow 
travel time

[min]

Capacity
[pcu/h]

Distance
[km]

1 70 900 70 11 100 700 100

2 80 700 80 12 100 700 100

3 90 700 90 13 90 600 90

4 140 900 140 14 80 700 80

5 50 800 50 15 90 700 90

6 90 600 90 16 80 700 80

7 50 900 50 17 70 300 70

8 130 500 130 18 150 700 150

9 50 300 50 19 110 700 110

10 90 400 90

Firstly, we compare the traffic flow pattern on the road network predicted by different models. For 
simplicity, our proposed model is called RNE, and the network equilibrium model without considering travel 
time reliability (namely 0.5α =  and ( )1 0φ α− = ) is called NE. For the RNE model, the confidence level is set 
as 0.9α = . There are two classes of vehicles in the network, namely EVs and GVs (the driving range is set 
large enough). The proportion of EVs is set as 20%, and their driving range is set as D= 300 km. The link flows 
and their relative difference predicted by RNE and NE are presented as Figures 5a and 5b. As seen in Figure 5b, 
the relative increase on link 3 is up to 14.6%, and the relative decrease on link 14 is up to -26.4%. As seen in 
Figure 6, the node flow at BSS node 6 increases from 163 pcu/h to 182 pcu/h, and the node flow at BSS node 11 
decreases from 237 pcu/h to 218 pcu/h.
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Figure 4 – Number of feasible paths for EVs
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Figure 6 – Comparison of node flow predicted by RNE and NE

Following that, the path-related results of O-D pair 3 (4-2) are selected for illustration. The path flow, 
expected travel time, safety margin and reliable travel time of these paths for EVs and GVs in the RNE 
model are listed in the following Table 3. In the node sequence, n  means EVs have battery swapping action at 
BSS node n . In this O-D pair, there are 6 and 5 feasible paths for EVs and GVs. However, at the equilibrium 
state, there are only 4 used paths for them (2 paths for EVs and 2 paths for GVs). The cumulative probability 
distribution of paths’ travel time can be seen in Figure 7. According to the results, it is clear that travellers care 
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about both expected travel time and travel time reliability when making path choices. Because the results of 
EVs and GVs are similar, we take the results of GVs as an example. Though GV Path 4 has a higher expected 
travel time than GV Path 1 and GV Path 2, its travel time variance and safety margin are very low, so there 
are still many travellers choosing GV Path 4 with the consideration of travel time reliability. For GV Path 2, 
though it has a lower expected travel time than GV Path 4, its travel time variance and safety margin are much 
higher, and there are no travellers choosing it. Besides, we can also find that the reliable travel time of GV Path 
1 and GV Path 4 is shorter than that of other paths at the equilibrium state.

Table 3 – Path-related results of O-D par 3 in RNE model

Vehicle 
type

Path 
no. Node sequence Path flow Expected 

travel time
Safety 
margin

Reliable 
travel time

EVs

1 4-5-6-7-8-2 102.71 451.51 26.21 477.72

2 4-5-6-7-11-2 0.00 467.55 23.50 491.05

3 4-5-6-7-11-2 17.26 456.79 20.96 477.75

4 4-5-6-7-11--2 0.00 516.61 24.51 541.12

5 4-5-6-10-11-2 0.03 510.41 13.75 524.16

6 4-5-6-10-11-2 0.00 559.47 15.41 574.88

GVs

1 4-5-6-7-8-2 191.49 391.69 22.92 414.61

2 4-5-6-7-11-2 0.00 407.73 19.77 427.50

3 4-5-6-10-11-2 0.00 450.59 5.25 455.84

4 4-9-10-11-2 288.51 413.04 1.57 414.61

5 4-5-9-10-11-2 0.00 456.31 3.52 459.83

α=0.9

477.7w
kT = 414.6w
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Figure 7 – Cumulative probability distribution of paths’ travel time
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The driving range is one of the key factors affecting the path choice of EVs. The driving range is respectively 
set as 200 km, 250 km, 300 km, 350 km and 400 km to analyse its influence on traffic flow pattern. As Figure 
8a shows, the link flow on the road network changes with the variation of driving range. As Figure 8b shows, 
when the driving range is 200 km EVs between O-D pairs 1-3 and 4-3 need to swap battery twice to reach 
destinations, so the total node flow exceeds the number of EV traffic demand and reaches 600 pcu/h; when 
the driving range is 250 km, all EVs only need to swap battery once to reach destinations, but the BSS node 
11 is too far from the origin node, so all EVs swap battery at BSS node 6; when the driving range reaches 300 
km, which covers the distance from all origin nodes to BSS node 11, both of BSS nodes attract some EVs to 
swap battery; when the driving range is not lower than 350 km, EVs can reach the destination without en-route 
battery swapping, so the node flow on both BSS nodes is 0.

4.2 Sioux Falls network
The Sioux Falls network, which consists of 552 O-D pairs, 24 nodes and 76 links, is adopted to test the 

applicability of the proposed model and algorithm, as shown in Figure 9. The parameters of the network such as 
the O-D traffic demand and link capacity are the same as those in the reference [47]. To simulate the medium-
distance or long-distance travel scene, the free-flow travel time of the link is expanded to 10 times as that in 
the reference [47], and the distance of the link is set to twice its free-flow travel time. In this context, the free-
flow travel speed is 120 km/h, and the shortest travel distances of O-D pairs are distributed within the range of 
[24km, 276km]. There are 4 BSS nodes in this network, whose characteristics are shown in Table 4. There are 
two classes of vehicles in the network, namely EVs and GVs. The proportion of EVs is set as 20%, and their 
driving range is set as D=200 km. The variance-to-mean ratio is set as 10wρ = , and the confidence level is set 
as 0.9α = . The values of these parameters are set for case illustration, and they can be further calibrated by 
survey data in practical applications.
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Figure 9 – The Sioux Falls network

Table 4 – Characteristics of BSS nodes

BSS nodes Free-flow dwell time [min] Capacity [pcu/h]

5 20 8000

11 30 6000

15 30 6000

16 20 8000
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Firstly, the convergence process of the CG_MSA algorithm is illustrated. As Figure 10 shows, the proposed 
algorithm can converge to an ideal error with only 5 outer iterations. For the inner iteration with the given 
working path set at the last outer iteration, the algorithm approaches the convergence error 10‒3 at 235 iterations 
and 10‒4 at 1771 iterations.

1.00E+00

1.00E-01

1.00E-02

1.00E-03

1.00E-04

1.00E-05

C
on

ve
rg

en
ce

 e
rr

or

0 1 2 3 4 5
Number of iterations

a) Convergence process of outer iteration                   

1.0E+00

1.0E-01

1.0E-02

1.0E-03

1.0E-04

C
on

ve
rg

en
ce

 e
rr

or

0 200 400 600 800 1000 1200 1400 1600
Number of iterations

b) Convergence process of inner iteration                   
Figure 10 – Convergence process of CG_MSA algorithm

Following that, the convergence process of working paths’ reliable travel time is illustrated. The working 
paths of O-D pair 10-24 is selected as the example. There are 4 working paths for GVs, which are Path 1: 10-
15-22-21-24, Path 2: 10-15-14-23-24, Path 3: 10-11-14-23-24, Path 4: 10-15-22-23-4. There are 2 working 
paths for EVs, which are Path 1: 10-15 -22-21-24, Path 2: 10-15 -22-23-24. As Figure 11 shows, the reliable 
travel time of all GVs’ working paths converges to 427 minutes, and the reliable travel time of all EVs’ working 
paths converges to 549 minutes. It illustrates that the results satisfy the network equilibrium conditions, and the 
CG_MSA algorithm is practical and effective.
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Figure 11 – Convergence process of working paths’ reliable travel time 
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Finally, the working path set generated by the CG_MSA algorithm is analysed. The working path set totally 
consists of 1773 working paths, in which there are 747 working paths for EVs and 1026 working paths for 
GVs. The number distribution of working paths for O-D pairs is shown in Figure 12. It can be seen that the 
number of EVs’ working paths for each O-D pair is no more than 3, and that of GVs’ is no more than 5.

5. CONCLUSIONS
This paper presents a reliability-based network equilibrium model to predict the traffic flow pattern 

on the road network with EVs and GVs, in which travel time reliability, EVs’ driving range and recharge 
requirements are all considered. The derivation of reliable path travel time is presented, and the reliability-
based network equilibrium model is formulated as a VI problem. The existence of solutions and equivalent 
equilibrium conditions are analysed for the proposed model. Then the MLA algorithm is proposed to solve the 
reliable shortest path problem, and the CG_MSA algorithm is proposed to solve the reliability-based network 
equilibrium model.

The effectiveness and applicability of the proposed model and algorithm are verified on the Nguyen-Dupuis 
network and Sioux Falls network. The analysis results indicated that: (1) travel time reliability has a great 
influence on the traffic flow pattern on the road network, the relative difference of link flow on the Nguyen-
Dupuis network predicted by different models is up to -26.4%; (2) travellers’ path choice is affected by travel 
time reliability, travellers will choose the path with high expectation time but low travel time variance to ensure 
their reliable travel time is optimal; (3) the driving range of EVs affects the en-route recharge requirement of 
travellers, and the link flow and node flow will both change greatly with the variance of EVs’ driving range; (4) 
the proposed algorithm can quickly converge to the equilibrium conditions and it is applicable to the real city 
network. As these results conclude, our proposed model and algorithm can capture the travel time reliability 
and EVs’ travel behaviour, which present a more accurate traffic flow pattern. Benefiting from the flexibility 
of the proposed model, the method can be easily extended to other regions and cities by using corresponding 
traffic demand and road network data.

However, there are some limitations in our study that need to be further studied in the future. First, the 
values of some parameters are assumed for illustration, for example the parameters of traffic demand and 
travel time distribution, which should be calibrated by actual survey data.  Second, this problem is studied in 
the UE framework, which assumes travellers are rational and have perfect information regarding travel time 
over the entire network. However, we can extend it to the bounded rational user equilibrium and stochastic user 
equilibrium with the consideration of travellers’ bounded rationality and perceived error. Third, the uncertainty 
of the transportation system is assumed to mainly come from the stochastic traffic demand in this study, and 
other uncertainty sources can be further studied, for example road capacity and EVs’ driving range. Lastly, 
considering travellers’ feedback on the charging infrastructure location, our proposed model can be used to 
optimise the charging infrastructure location in a bi-level programming framework.
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凃强，李嫚嫚，吴永军

混入电动汽车和燃油汽车的可靠网络均衡模型

摘要：随着电动汽车的普及，它们已经成为道路网络交通流中不可缺少的一部分。
为实现电动汽车和燃油汽车混合道路网络的交通流分布预测，提出了一种基于可靠
性的网络均衡模型，该模型考虑了出行时间可靠性、电动汽车续航里程和充电需
求。推导了可靠路径出行时间的数学表达式，并将基于可靠性的网络均衡模型表述
为一个变分不等式问题。然后，提出一种多准则标号算法来求解可靠最短路径问
题，并提出一种基于列生成的相继平均算法来求解基于可靠性的网络均衡模型。在
Nguyen-Dupuis路网和Sioux Falls城市路网中验证了模型和算法的适用性和有效
性。本文的模型和算法可以推广到其他路网，帮助交通管理者分析交通状况，制定
可持续的交通政策。

关键词：交通运输工程，可靠网络均衡，电动汽车，续航里程，充电需求


