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ABSTRACT
Electric buses (EBs) have attracted more and more attention in recent years because of their 
energy-saving and pollution-free characteristics. However, very few studies have consid-
ered the impact of stochastic traffic conditions on their operations. This paper focuses on 
the departure interval optimisation of EBs which is a critical problem in the operations. We 
consider the stochastic traffic conditions in the operations and establish a departure interval 
optimisation model. The objective function aims at minimising passenger travel costs and en-
terprise operation costs, including waiting time costs, congestion costs, energy consumption 
costs and operational fixed costs. To solve this problem, a genetic algorithm (GA) based on 
fitness adjustment crossover and mutation rate is proposed. Based on the Harbin bus data-
set, we find that improved GA performance is 4.481% higher, and it can solve the models 
more accurately and efficiently. Compared with the current situation, the optimisation model 
reduces passenger travel costs by 20.2% and helps improve passenger travel quality. Under 
stochastic traffic conditions, total cost change is small, but passenger travel costs increase 
significantly. This indicates the high impact degree of random traffic conditions on passenger 
travel. In addition, a sensitivity analysis is conducted to provide suggestions for improving 
the EBs operation and management.

KEYWORDS
electric buses; public transit; departure interval; stochastic traffic conditions; genetic 
algorithm.

1. INTRODUCTION
FIn recent years, with the aggravation of the fuel resource shortage problem and the increasing environ-

mental pressure, the public’s attention to energy conservation and environmental protection has been greatly 
increased. In the sector of transportation, more and more fuel vehicles are being replaced by electric vehicles 
(EVs). Conventional fuel buses emit high levels of CO2 in the air, leading to various environmental problems 
and degradation [1]. Compared with fuel vehicles, EVs have the benefits of reducing on-road pollution and 
high-quality on-board experiences, which is of great significance to reducing carbon emission, optimising the 
energy structure, ensuring energy security and other aspects [2]. There is evidence showing that the role of EBs 
in public transport is very important if we are to slow down climate change and reduce the impacts of fossil 
fuels on the environment [3].

Recently, EBs have received significant attention from the world and have also been used on a large scale 
in several countries [4]. The large-scale use of EBs may be motivated by government incentives, such as the 
TIGER programme in the US and the Green Bus Fund Programme in the UK. The German government also 
initiated a programme, Electric Mobility, to motivate research and development of transportation electrifica-
tion [5]. According to Bloomberg New Energy Finance [6], the global market sales of EBs can account for 
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close to 80% by 2040, and EBs will account for more than 67% of the overall global bus fleet. The large-scale 
use of EBs may have started during the Beijing Olympics and the Shanghai World Expo. For example, more 
than 80 EBs were used in the Shanghai World Expo [4]. Among the world’s new energy buses, China contrib-
utes 95%, which has the world’s largest new energy bus fleet and has made remarkable achievements in the 
number of promotions.

Although EBs can achieve “zero emissions” in the operation process and are very environmentally friendly, 
they also have many shortcomings because of their construction. Compared with fuel buses, EBs have a lim-
ited battery capacity, leading to a shorter driving range per charge, which results in range anxiety [2]. Under a 
cold environment, the performance of the EBs power battery will be affected, which leads to great discharge 
instability [7]. By introducing EBs into the public transportation system, new challenges will appear in the 
ordinary public transportation operation and scheduling process [8]. Due to the limitations of the EBs technol-
ogies, the operation and scheduling mode of fuel buses is no longer applicable, and further adjustments have 
to be made to the current EBs transport planning and scheduling problems [9].

The bus operation and scheduling problem can be divided into three subproblems: timetabling, vehicle 
scheduling and crew scheduling [10]. These three subproblems are progressive relationships, in which the 
most basic one is the optimisation of the timetable. In the real operation process, bus operators/enterprises 
often make bus operation timetables to maximise their interests, which is unreasonable. Making bus operation 
timetables needs to comprehensively consider the interests of both operators and passengers so that the two 
can achieve a dynamic balance. The vehicle scheduling problem (VSP) aims to minimise the total number of 
vehicles used by rationally scheduling timetables and thus reducing total costs. When EBs are widely used in a 
public transport service, the scheduling problem is known as the electric vehicle scheduling problem (EVSP), 
which can be viewed as an extension of the VSP [11]. Unlike VSP, the EVSP is concerned with finding a ve-
hicle scheduling timetable that covers the trips and satisfies the driving range and recharging requirements of 
EBs while minimising operational costs [9]. According to the number of depots involved, it can be divided into 
single depot scheduling problems and multiple depot scheduling problems (MDVSP). In China, bus operation 
and scheduling are generally handled by multiple enterprises, and buses are not allowed to operate across the 
lines. Therefore, it can be regarded as a simple single depot scheduling problem, which can be further simpli-
fied to the optimisation of the scheduling timetable.

In terms of bus operation and scheduling problems, many scholars have studied the optimisation of the 
scheduling timetable. Shui et al. [12] proposed a vehicle scheduling approach based on a clonal selection algo-
rithm. An initial vehicle scheduling solution was produced and two heuristics were used to adjust the departure 
times of vehicles. Häll et al. [8] changed the timetabling and vehicle scheduling components with efficient and 
optimal methods considering the possibility of altering the existing network of routes. Jiang et al. [2] addressed 
a multiple depot EBs scheduling problem considering limited charging facility capacity and vehicle-depot 
constraint. Alwesabi et al. [13] have introduced joint and disjoint scheduling planning strategies for the current 
conventional bus fleet and the potential EBs fleet. Janoveca and Koháni [14] proposed a model for the EBs 
scheduling problem and tested the performance of the model on the dataset from the public transport system.

The above studies are all under certain traffic conditions. However, a lot of stochastic traffic conditions 
will add up to the scheduling process of public transport services when EBs are applied, such as stochastic 
passenger travel demand, stochastic bus speed, stochastic urban traffic conditions, battery discharge fluctua-
tions etc., which will prevent EBs from following the established scheduling timetable. Some scholars have 
studied the stochastic traffic conditions of EBs scheduling problems. Tang et al. [15] proposed both static and 
dynamic scheduling models for trip time stochasticity and stochastic traffic conditions, respectively. Hadas and 
Shnaiderman [16] proposed a new approach to service frequency setting, which integrated costs, stochastic 
demand and travel time. Bie et al. [17] developed a scheduling method for the EBs route considering stochastic 
volatilities in trip travel time and energy consumption. Shen et al. [18] proposed a novel probabilistic model of 
VSP with the objectives of minimising the total cost and maximising the on-time performance. Although some 
scholars have studied the impact of stochastic traffic conditions on EBs scheduling, they mainly focus on the 
phenomenon, which is inconsistent with the actual operating conditions.

VSP is an important class of problems studied by many researchers in operations research and most of 
them are NP-hard, which means exact methods often cannot solve large instances encountered in practice [19]. 
At present, Lagrangian algorithm, column generation algorithm and heuristic algorithm are commonly used 
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to solve these problems. Teng et al. [20] developed a multi-objective particle swarm optimisation to get the 
Pareto-optimal solution set. Perumal et al. [21] proposed an adaptive large neighbourhood search that utilises 
branch-and-price heuristics to tackle the E-VCSP. Potthoff et al. [22] presented an algorithm based on column 
generation techniques combined with Lagrangian heuristics to reschedule the crews when a disruption of the 
railway network occurred. Huisman et al. [23] presented two different algorithms based on a combination of 
column generation and Lagrangian relaxation for integrated vehicle and crew scheduling in the multi-depot 
case.

To address VSP considering stochastic conditions, GA has good global search ability and better algorith-
mic adaptability compared with other algorithms. Xiong et al. [11] investigated a mixed optimal scheduling 
problem of an EBs fleet and charging infrastructure based on the plug-in charging mode and a GA procedure 
was proposed to solve the scheduling problem. Jiang et al. [24] proposed a long short-term memory model 
to predict bus travel time, developing a GA to improve the model’s performance in terms of accuracy and 
efficiency. Gkiotsalitis et al. [25] developed a framework for allocating buses to lines in order to reduce costs 
and developed a GA meta-heuristic to solve the constrained optimisation problem. Li et al. [26] developed a 
hybrid intelligent algorithm to solve the model. Stochastic simulation and GA were both used to deal with the 
stochastic conditions.

As mentioned above, the current studies on the optimisation of EBs scheduling timetable are mostly based 
on determined conditions, seldom considering stochastic conditions in the scheduling process; in the studies 
discussing the stochastic conditions, most of them also ignore the stochasticity of EBs speed and the fluc-
tuation of battery discharge. To fill these gaps, this paper investigates stochastic passenger travel demand, 
stochastic EBs speed and the power battery discharge fluctuations in the process of operation and builds the 
departure interval optimisation model based on multiple costs consisting of the waiting time cost, congestion 
cost, energy consumption cost and operational fixed cost. Then, an improved GA programme is designed to 
solve this problem. The solution approach is tested in a real-life case study and the results show the effective-
ness of the proposed solution. At last, we perform sensitivity analyses to validate model features and make 
some reasonable suggestions. The main contributions of this paper are as follows.

It integrates passenger travel cost and enterprise operation cost and establishes a multi-cost departure inter-
val optimisation model. The model can maximise the social welfare of EBs by calculating the passenger and 
enterprise costs.

It breaks traditional EBs scheduling research limitations, considers the influence of stochastic traffic condi-
tions on EBs scheduling, and can more accurately achieve EBs scheduling optimisation.

It complements the traditional GA by optimising the crossover and mutation rates. The method can retain 
the advantages of the parents while ensuring the diversity of the population, making it possible to solve the 
problem more efficiently and accurately.

The remainder of this paper is organised as follows. Section 2 proposes the departure interval optimisation 
model and revises objective functions and constraints considering several stochastic traffic conditions. A GA 
that adjusted the process of crossover and mutation is developed to solve the departure interval optimisation 
problem. Then, section 3 provides a real-world case study by testing the solution approach and sensitivity 
analysis and discusses some suggestions to improve EBs operation. Finally, section 4 concludes the research 
findings and discusses further research directions.

2. METHODOLOGY
2.1 Problem description

The departure interval of EBs not only affects the passenger travel experience but also is closely related to 
the enterprise operation interest. Although shortening the departure interval can save passenger waiting time 
and reduce travel congestion, the fixed cost and the energy consumption cost will increase at the same time, 
which may cause unnecessary resource waste. On the other hand, the convenience of passengers will be great-
ly reduced with the departure interval increasing, which does not meet the attributes of public transportation. 
Therefore, determining the appropriate departure interval and setting a timetable is an important part of the 
operation and management of EBs.
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At the same time, passenger travel demand is constantly changing at different times one day, so to maximise 
social benefits, departure intervals need to be constantly adjusted to meet travel demand. In this paper, we con-
struct a multi-cost departure interval optimisation model by analysing the waiting cost, congestion cost, energy 
consumption cost and operational fixed cost. However, there are many stochastic traffic conditions in real 
operation, such as randomness in passenger travel demand, fluctuations in battery discharge and traffic status, 
and so on. General departure interval optimisation models are unable to respond effectively to this. We should 
analyse the impact of various stochastic traffic conditions on the operation, and optimise the departure interval 
optimisation model to calculate the optimal scheme of EBs departure interval in real operation scenarios.

2.2 Model assumptions 
To ensure the model’s simplicity and the data correctness, we make the following assumptions:

1) Passenger travel demand is evenly distributed at all stations.
2) We assume that the EBs are fully charged at the beginning of the day.
3) The traffic conditions up and down of EBs lines are the same.

The list of sets, parameters and variables for the model are given in Table 1.

Table 1 – Definitions of parameters and variables for the model

Variables Notation Units

Decision 
variables

The departure interval of time i ti min

The cost of type j Zj RMB

The cost weight of type j αi -

Model 
parameters

The congestion response of time i Ji -

The passenger travel demand of 
time i Ti Person

The speed of time i vi m/s

Unit waiting time cost φ RMB⋅min-1

The price of electricity β RMB⋅kWh-1

Unit passenger congestion cost γ RMB⋅Person-1

Unit task cost c0 RMB⋅count-1

EBs’ weight M0 kg

Fixed variables

Average weight of a passenger m0 kg

Fixed handover time tr min

Maximum battery capacity Qmax kWh

EB’s number N veh

EBs’ capacity C Person

EBs charging power P kW

Bus line mileage L m

2.3 Departure interval optimisation model based on multi-cost
Since the purpose of public transportation is to provide convenient travel for the public, we establish the 

objective function from the perspective of passenger travel and enterprise operation, including waiting time 
cost Z1, congestion cost Z2, energy consumption cost Z3 and operational fixed cost Z4. The objective function is

( ) ( ){ }1 1 2 2 3 4min Z Z Z Za a+ + +  (1)

Waiting time cost. EBs run at a certain speed during the period i, so the arrival interval is fixed, and the 
average waiting time is half of the departure interval 0.5w

i it t= . Waiting time cost is the sum of all passengers’ 
waiting time multiplied by the unit waiting time cost:
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Congestion cost. The congestion not only affects the comfort of passengers but also leads passengers to 
give up taking EBs. The congestion cost is the mixed product of unit passenger congestion cost, the congestion 
response as well as the number of passengers:
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Tang et al. [27] used a 100% congestion rate as the cut-off point for congestion cost response. However, in 
real life passengers will choose to stand although there are a lot of seats left, which means the personal space 
between each other is very narrow, resulting in congestion costs. So, we adjust the congestion response as:
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Energy consumption cost. We use the following formula to calculate the energy consumption per unit dis-
tance at a certain speed [15]:

21 1( ) cos sin
2 w ff v C A v Mg Mgr m a a

h
 = + + 
   

(5)

where f(v) represents the energy consumption per unit distance with respect to the prevailing driving speed 
v; the parameter r is the air density (kg/m3); Cw represents the coefficient of drag; Af denotes the frontal area 
of a bus (m2); m is the friction coefficient; M is the weight of a car (kg), included EB and passengers; g is the 
gravitational constant (m/s2); h is an efficiency parameter to account for all complexities of battery and various 
losses; a represents the angle of road (radians), which represents the road slope.
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Operational fixed cost. The fixed operating cost consists of battery loss, vehicle wear, driver labour cost, 
etc. incurred by each travel task:

1
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=
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(7)

We specify six constraints for the actual operation of EBs, as follows
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(13)

Equations 8 and 9 are constraints of departure interval to prevent waste of energy consumption and decline 
of passengers’ convenience. Equation 10 guarantees drivers get enough rest and provide enough handover time 
between two tasks. Equations 11 and 12 are constraints of congestion rate to guarantee a certain level of service. 
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Equation 11 avoids deadhead travel. Equation 12 allows only a certain overload for EBs. Equation 13 ensures that 
the state of charge (SOC) is maintained at a normal level. This paper uses 30% as SOC.

2.4 Departure interval optimisation model considering stochastic traffic conditions
In this section, we consider the impact of three stochastic traffic conditions on EBs operations. This paper 

then revises the objective function and constraints of the model based on their characteristics.

Stochastic passenger travel demand
Not only does travel demand change over different times but also the number of passengers is not constant 

at the same time. Passenger travel demand is a random variable, P(Ti = k) represents the probability that pas-
senger travel demand is k in time i.

Only when Ji > 0.6, congestion cost is calculated. When passenger travel demand is a random variable, the 
calculation of congestion cost needs to introduce the concept of probability. If passenger travel demand is k, 
congestion cost is:
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So congestion costs are integrated with respect to various probabilities, as:
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Since passengers travel demand is a random number, Equations 11 and 12 should be revised to:
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Equations 20 and 21 represent confidence level 1-a, which ensures that the congestion rate of electric buses is 
within the range [ , ]min max h h .

Stochastic speed
The speed of EBs on urban roads is not constant, and the fluctuations range also varies with time. Normal 

distribution is often used to describe the distribution of speed [28]. In time i the speed of EBs is ( )2~ ,  ,ii iv N v σ

where iv  and 2
iσ  are the mean and variance of EBs speed at time i, respectively.

When EBs speed changes, the delay of arrival caused by stochastic speed will affect passengers’ waiting 
time w

it .
Take any line as the research object, and divide it into m segments in equal parts. When considering the 

stochastic speed, each segment of travel time is related to each segment of speed. The total travel time tb of a 

task is the sum of each segment, so 
1 1

1m m
j

b
j jj j

l Lt
u m u= =

= =∑ ∑ , where lj and uj are the distance and speed of part j, 
and uj follows ( )2,N v σ .

Regardless of speed fluctuations, the travel time of a task is n
Lt
v

= .
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Thus, considering the speed fluctuations, passengers average waiting time at time i is:
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Then the passengers’ waiting cost is revised to:
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Battery discharge fluctuations
As the EBs battery discharge is easily affected by other factors such as urban traffic characteristics and EBs 

travel conditions etc., the energy consumption fluctuation is revised to:

21( )
2

i
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h
 = + 
   

(20)

where ki is the battery discharge correction factor, and it is a random variable.
In summary, under considering stochastic traffic conditions the objective function is the expectation of total 

cost:

( ) ( )( ){ }1 1 2 2 3 4m  in E Z Z Z Za a+ + +
 (21)

2.5 Genetic algorithm
The GA has good global search ability and can quickly search out a satisfactory solution in the solution 

space. The selection, crossover and mutation of GA have a great influence on itself, which means that the 
problem of premature convergence often appears due to the wrong crossover rate and mutation rate. Therefore, 
we optimise the crossover and mutation based on chromosome fitness to improve the efficiency and accuracy 
of GA.

The framework for this process is shown in Figure 1.

Initial population generation
This paper uses binary coding and the chromosome includes departure interval information in which each 

gene length is 5, so the chromosome length is 5n. Each gene is converted to decimal to calculate its phenotype, 
and the phenotype of the gene i can be calculated as:

max i
i

max

t xt
x

=
 

(22)

where xi is a phenotype of one gene; xmax is the biggest phenotype, in this model 52 1maxx = − .
In Figure 2 the departure interval of time 1 and time n are 5.9 min and 1.4 min, respectively.
Population initialisation uses the method of random generation, in which the optimal individual is selected 

to join the initial population and this process is repeated until the target population size is reached.

Crossover
During crossover, the parents’ chromosome fragments are exchanged to form the offspring. If the crossover 

rate is too large, it will cause the parent genotype with higher fitness not to survive to the next generation, so 
this paper modifies the crossover rate based on the fitness, and the crossover rate of chromosome i is



Promet ‒ Traffic&Transportation. 2023;35(5):722-737.  Transport Engineering

729

0
ave

i
i

fpc pc
f

=
 

(23)

where pc0 is the average crossover rate; fave is the average fitness of the population; fi is the fitness of chromo-
some i. When the population gap is not large, the difference in chromosomes’ crossover rate is also not large.

Figure 1 – Framework of the GA

Figure 2 – Schematic diagram of chromosomes

Since the departure interval of each time is independent of each other, this paper decides on the crossover 
range based on gene location in order to facilitate the child to fully obtain the advantages of parents. The start 
position of the crossover is randomly selected, and the end position of the crossover is the end of the gene 
where the starting point is located. As shown in Figure 3 below, the crossover position is selected at the second 
part of the second gene where the length of crossover is 4, and the result of the offspring is as follows.

Mutation
The mutation may be counterproductive when the fitness of the parent is already large, but a certain mu-

tation rate is conducive to maintaining population diversity. This paper adjusts the mutation rate based on the 
fitness and the mutation rate is small when the fitness of the parent is large, and vice versa. The mutation rate 
of chromosome i is calculated as:
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0
max i

i
max min

f fpm pm pm
f f

−
= + D

−  
(24)

where pm0 is the basic mutation rate, in order to ensure population diversity; fmin and fmax are the smallest and 
biggest fitness; Dpm is the change’s degree of mutation rate.

Figure 3 – Illustration of crossover

3. RESULTS AND DISCUSSION
3.1 Case study and parameters description

In this section, we test the model based on real-world data from line 206 in Harbin, China. The one-way 
travel distances are 26 km and the type of EBs used in line 206 is YUTONG E10 whose relevant technical 
indicators are shown in Table 2. Harbin’s speed data come from the AutoNavi Big Data Platform and Baidu Map 
Traffic Big Data Platform.

Table 2 – Values of relevant technical indicators

Technical indicators Value

M0 16,500 kg

Qmax 181 kWh

N 36 veh

Af 2.27 m2

η 0.9

Cw 0.29

μ 0.012

α 0

C 32

β 0.82 RMB⋅kWh-1

c0 50 RMB⋅count-1

In order to ensure a certain service level for EBs, we stipulate that tmin is 3 min and tmax is 15 min. The max-
imum congestion rate acceptable to passengers is 200%, and the minimum is 10%. Based on another study 
[29], the unit passenger congestion cost g is 0.69 RMB⋅People-1. According to Harbin’s minimum hourly wage 
regulations, the unit waiting time cost is 0.3 RMB⋅min-1.

3.2 General optimisation model solving
The parameters of the GA are set as follows: population size is 1,000, pc0=0.6, pm0=0.005, Δpm=0.005, 

MaxGen=1,000. All experiments were run on a PC with Windows 10, AMD Ryzen 9 5900HX, 3.30 GHz and 
32 GB RAM.
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Experiments are performed to test the difference between the solution results of the improved GA and the 
general GA. Table 3 shows the results of each algorithm including the average, minimum and standard deviation 
of the objective function of the last-generation population.

Table 3 – Results of each algorithm

Algorithm Average value Minimum Sd

Improved GA 5287.128 5056.680 186.667

General GA 5535.174 5107.690 276.877

As indicated in Table 3, improved GA has better performance than general GA. The value of its objective 
function is relatively small and the average can be decreased by 4.481%. Moreover, the standard deviation of 
the improved GA is small, indicating that it has better stability. So improved GA can solve the models more 
accurately and efficiently.

In China, some companies are in charge of the operation and management of EBs and they tend to value 
their profits, leading to the weight of enterprise operation costs on the high side. To facilitate government 
management of EBs, we calculate the model objective function under the different enterprise operating cost 
weights, as shown in Figure 4.

Figure 4 – Objective function and cost vary with enterprise operating cost weight

From Figure 4a, the value of the objective function first increases with the increase of the enterprise cost 
weight. When the weight is 0.5, the objective function is 5072.680 at most and then decreases as the weight 
increases. According to Figure 4b, the total cost of passenger travel and enterprise operation decreases with the 
increase of enterprise cost weight, and the decrease is very insignificant after being greater than 0.4. Moreover, 
when the cost weight of the enterprise is greater than 0.7, the passenger travel cost and the operating cost of 
the enterprise do not change much, which can indicate that if the enterprise attaches too much importance to its 
interests, the effect obtained is not obvious. By analysing each cost, we suggest that when dispatching electric 
buses, the cost weight of enterprises should be between 0.4-0.6 for the best effect. Therefore, we use 0.5 for 
the rest of the article.

From Table 4, we can find that when the weight of passenger travel cost and the weight of enterprise opera-
tion cost are both 0.5, the total cost of the optimisation solution decreases by 162.63 RMB. The passenger trav-
el cost decreases by about 20.2%, but the enterprise operation cost increases by about 21.6%. It can be found 
that the price of the lower passenger travel cost is the reduced departure interval and the increased enterprise 
operation cost.

Table 4 – Travel demand and departure interval during each period

Cost Current situation After optimisation

Passenger travel cost (RMB) 5713.430 4556.250

Enterprise operation cost (RMB) 4597.967 5592.517

Table 5 shows the optimised departure interval scheme and total cost of every period compared to the cur-
rent situation. The departure frequency of Line 206 is relatively fixed, the departure interval fluctuates within 
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10–15min. It is not adjusted in combination with passenger travel demand and urban traffic conditions, for 
example, passenger travel demand is larger at 9:00–10:00 and 11:00–12:00, but the departure frequency is 
lower, affecting the convenience and comfort of passengers. The departure interval is reduced in the optimis-
ation, especially in peak passenger travel demand, so that the social welfare of EBs improves significantly. In 
addition, we find that the change in total cost for each time between the current situation and after optimisation 
is not significant. But combined with the results of passenger travel cost and enterprise operation cost, we can 
find that the model is conducive to improving the level of passenger travel service.

Table 5 – Travel demand and departure interval during each period

Time Travel 
demand

Current 
departure 

interval [min]

Optimised 
departure interval 

[min]

Current total cost 
(RMB)

Optimised total 
cost (RMB)

7:00–8:00 173 10 7.3 1151.349 1151.308

8:00–9:00 205 10 7.7 920.939 936.490

9:00–10:00 211 15 13.1 1035.414 970.874

10:00–11:00 205 10 11.6 919.927 922.452

11:00–12:00 222 15 6.8 1087.579 1007.730

12:00–13:00 213 10 7.3 945.212 968.975

13:00–14:00 128 15 10.2 683.020 696.152

14:00–15:00 123 12 14.5 665.323 657.182

15:00–16:00 142 10 11.1 739.661 722.142

16:00–17:00 199 10 8.2 902.233 910.018

17:00–18:00 160 15 13.1 809.527 779.758

18:00–19:00 68 15 14.0 451.210 461.488

Figure 5 shows the change in congestion rates for Ebs before and after optimisation. In the current situation, 
most congestion rates are larger than 100%, which affects the comfort of passengers. After optimisation, con-
gestion rates decrease a lot and the average congestion rate after optimisation is 91.6%, indicating that it fully 
meets the travel needs of passengers and the Ebs’ resources are not wasted.

 
Figure 5 – Graph congestion rate variation

3.3 Model solving considers stochastic traffic conditions
We draw the speed box chart of Harbin at different times, as shown in Figure 6. We can find that the speed 

changes significantly in the morning. Moreover, when the average speed is low, the speed distribution is more 
concentrated; when the average speed is high, the speed distribution is more dispersed.
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Figure 6 – Box diagram of speed during each period

Figure 7 shows the passenger travel demand and the departure interval optimisation scheme at different 
times. It can be found that with considering stochastic traffic conditions, the departure interval is larger when 
the travel demand is low and the departure interval is smaller when travel demand peaks, which is caused by 
stochastic travel demand. It can indicate that based on stochastic traffic conditions we could cope with phe-
nomena such as peak passenger demand well.

Figure 7 – Comparison of departure intervals during each period

Further calculation yields Table 6. From Table 6, we can find that when considering stochasticity, the passen-
ger travel cost becomes larger but the enterprise operation cost becomes smaller, which suggests that various 
random factors in the operation of EBs have a great impact on passengers’ travel. In real bus operations, be-
cause of various stochasticity, enterprises often reduce costs at the expense of passengers’ convenience, which 
is not justified. Therefore, the government should strengthen the management of EBs to ensure the conve-
nience of passengers’ travel.

Table 6 – Comparison of different costs

Cost (RMB) General model Consider stochasticity Variation (%)

Waiting time cost 3165.53 3411.51 7.770

Congestion cost 1390.72 1518.74 9.205

Energy consumption cost 1123.01 1061.51 - 5.477

Operational fixed cost 4469.50 4203.18 -9.986

Total cost 10148.76 10194.94 0.455
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3.4 Sensitivity analysis
To explore the effects of the maximum mileage of the EBs’ capacity (C) and the bus line mileage (L) on the 

optimised results, different experiments are performed by varying their value settings.
Figure 8 shows the changes in passenger travel cost and enterprise operation cost at different EB’s capacities. 

We can find that the total cost decreases with the increase of EB’s capacity, but the decline is getting smaller, 
indicating that appropriately increasing the EB’s capacity is conducive to saving resources and improving 
service levels. Among them, the enterprise operating cost is not greatly affected by the capacity of EBs and 
shows a fluctuating trend. The passenger travel cost shows a clear downward trend with the increase of the 
EB’s capacity, which should be due to the decrease in congestion of EBs after the increase of capacity.

Figure 8 – Different costs vary with EB’s capacity

We solve the model without considering stochasticity, Figure 9 shows the changes in passenger travel cost 
and enterprise operation cost at different bus line mileage. In contrast to EB’s capacity, the total cost increases 
as the bus line mileage increases. With the increase in bus line mileage, the energy consumption cost of one 
task increases, and the enterprise operation cost increases significantly, while the relationship between passen-
ger travel cost and bus line mileage is not significant. However, the effect of capacity is reversed.

 
Figure 9 – Different costs vary with bus line mileage

From the above study, we can find an interesting phenomenon: the increase or decrease in passenger travel 
cost and enterprise operation cost is always the opposite, which is a contradiction and suggests it is important 
to choose the right departure interval of EBs. On the one hand, the government should strengthen the manage-
ment of bus enterprises. On the other hand, establishing a reasonable bus network and choosing the right EBs 
can reduce costs and improve the attractiveness and competitiveness of EBs.

3.5 Policy suggestions
According to the research and analysis above, this paper puts forward some reasonable improvements and 

suggestions for the development of EBs in Harbin:
Public transportation management perspective. Reduce the impact of stochastic traffic conditions and im-

prove the efficiency of passenger travel. On the one hand, public transportation management should improve 
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the operation as well as management of EBs and strengthen the management of EBs operating enterprises. 
Make the operating enterprises pay more attention to the passengers’ interests and social benefits. On the 
other hand, the public transport management can subsidise the enterprises according to the number of EBs 
dispatched to compensate for the increase in operating costs caused by lower passenger travel costs. At the 
same time, bus management should pay attention to the status of buses in urban transportation. The impact of 
stochastic traffic conditions can be reduced by improving the operating efficiency and improving the technical 
index of EBs to improve passenger travel quality.

Operating enterprises perspective. Improve the technical index of EBs and optimise the setting of bus 
routes. Enterprises can choose vehicles with high electrical energy conversion efficiency and stable operation 
speed. At the same time, enterprises can modify EBs to increase vehicle transportation capacity and improve 
passenger travel comfort. In addition, enterprises can optimise the layout of bus lines to improve travel effi-
ciency and reduce operating costs.

4. CONCLUSION
This paper presents a model for EBs departure interval optimisation, which considers the stochastic traffic 

conditions in EBs operation. The multi-objective function aims at minimising total cost including waiting time 
cost, congestion cost, energy consumption cost, as well as operational fixed cost. To solve this model, a GA 
was developed, in which the crossover rate and mutation rate of chromosomes are modified based on fitness. 
To verify the effectiveness of the solution, a case study is conducted based on EBs in Harbin and some sugges-
tions for the development of EBs are proposed based on the experimental results.

Some important conclusions regarding the proposed solution are listed as follows:
1) The performance of the improved GA is significantly better than the conventional GA, the objective function 

value is reduced by 4.481%, and the overall level of the population is better. The optimisation results show 
that the passenger travel cost decreases by 20.2% without increasing the total cost. Moreover, the model 
can effectively cope with the peak phenomenon of travel demand, which is conducive to the improvement 
of EBs service level.

2) Under the consideration of stochastic traffic conditions, the total cost of the scheme solved by the model 
does not change much, but the passenger travel cost increases, and the waiting time cost and congestion cost 
increase by 7.770% and 9.205% respectively, which is inevitable.

3) In the sensitivity analysis, the larger the capacity of EBs is, the lower the total cost is, among which the 
passenger travel cost decreases significantly, but the enterprise operation costs are not significantly affected. 
The larger the bus line mileage is, the higher the total cost is, and the passenger travel cost and the enterprise 
operation cost are both rising.
This paper is based on the single line of EBs operation, which lacks a specific analysis of the charging 

situation of each vehicle. In the follow-up research, multiple bus lines can be combined and optimised, and 
the problems caused by the scheduling of the vehicle and the specific charging time can be further studied. At 
the same time, it is interesting to consider the impact of charging on the grid and changes in the EBs number.
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邱振洋, 胡晓伟, 宋帅, 王宇

考虑随机交通现象的电动公交发车间隔优化

摘要
近年来，电动公交车因其节能和无污染的特点吸引了越来越多的关注。然而，很少
有研究考虑到随机交通现象对其运营的影响。本文重点讨论了电动公交的发车间隔
优化，这是运营中的一个关键问题。我们考虑了电动公交运营中的随机交通现象，
并建立了一个出发时间间隔优化模型。目标函数旨在最小化乘客出行成本和企业运
营成本，包括等待时间成本、拥堵成本、能耗成本和运营固定成本。为了解决这个
问题，我们提出了一种基于适应度调整交叉率和变异率的遗传算法。基于哈尔滨公
交车数据集，我们发现改进后的遗传算法性能提高了4.481%，它可以更准确、更有
效地解决模型。与公交运营现状相比，该优化模型降低了20.2%的乘客出行成本，并
有助于提高乘客出行质量。在随机交通条件下，总成本变化不大，但乘客出行成本
明显增加。这表明随机交通状况对乘客出行的影响程度很高。此外，本文还进行了
敏感性分析，为改进电动公交运营和管理提供建议。

关键字
电动公交；公共交通；发车间隔；随机交通现象；遗传算法.


