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ABSTRACT

Applying cognitive radio in the railway communication 
systems is a cutting-edge research area. The rapid motion 
of the train makes the spectrum access of the railway wire-
less environment instable. To address the issue, first we 
formulate the spectrum management of railway cognitive 
radio as a distributed sequential decision problem. Then, 
based on the available environmental information, we pro-
pose a multi-cognitive-base-station cascade collaboration 
algorithm by using naive Bayesian learning and agent theo-
ry. Finally, our experiment results reveal that the model can 
improve the performance of spectrum access. This cogni-
tive-base-station multi-agent system scheme comprehen-
sively solves the problem of low efficiency in the dynamic 
access of the railway cognitive radio. The article is also a 
typical case of artificial intelligence applied in the field of 
the smart city.
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1.	INTRODUCTION
In the early 1990s, the problem of spectrum scar-

city was in its infancy stage, and a large portion of the 
spectrum was available to be utilized. Wireless net-
works followed a fixed spectrum assignment policy. 
As the time goes by, however, the usage of bandwidth- 
hungry wireless applications increases, and the issue 
of a fixed spectrum assignment policy arises [1]. In 
order to solve it, the Federal Communications Com-
mission (FCC) approved that unlicensed devices can 
utilize the licensed spectrum in a way that the licensed 
user or the primary radio user would not be interfered. 
After this approval, cognitive radio (CR) appeared, as a 
promising solution for the fixed spectrum assignment 
policy by opportunistically utilizing the temporarily un-
used spectrum, known as spectrum holes or white 
spaces. The initial idea of CR is that an unauthorized 
device (also known as the cognitive user, the secondary 
user, or the CU) could share a wireless channel with an  

authorized device (also known as the primary user or 
the PU) with a dedicated spectrum, and the authorized 
device would have priority for occupation once it is de-
tected as active [2]. Mitola proposed the concept of 
cognitive radio in his dissertation [3], and Haykin, with 
his colleagues, did a lot of research on cognitive radio 
[4]. We argue that the intelligence of the wireless com-
munication system refers to the ability of learning and 
forecasting based on artificial intelligence (AI), which 
could change its working parameters, such as clock 
frequency, modulation method and transmit power 
etc., according to external environment. This definition 
highlights the importance of cognitive radio’s exter-
nal environment learning ability. With the expansion 
of the CR concept in increasingly dedicated wireless 
networks, research in this area has focused on appli-
cation issues, that is, seamless integration of the CR 
technology and the particularities of dedicated wire-
less networks [5, 6]. Wireless networks are normally 
deployed in a distributed manner without a centralized 
controller. These networks often need to cope with the 
high volatility of the available spectrum due to network 
dynamic topology changes, as well as different QoS re-
quirements of the users, such as the railway wireless 
network.

The structure of wireless communication networks 
in modern railways is obviously changing from con-
centrated to distributed. In addition to information ex-
change between the train and the control center (for 
example, download the track database, upload the 
train speed and location), an increasing number of sen-
sor devices have been deployed along with the railway 
lines and used to collect environmental data, surveil-
lance images and other devices status. A more import-
ant development trend is that the railway wireless com-
munication network is expected to provide large-scale 
broadband data services, which requires the base 
station to provide a spectrum wide enough to transmit 
the signal. In fact, the spectrum itself is an expensive 
and limited resource. [7] In order to cope with mobility, 
a typical wireless network architecture of the railway  
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[10]. Our work is motivated by the chain-like deploy-
ment of base stations along a railway line across large 
terrains where the train passes through quickly. Specif-
ically, the train moves along a fixed railway line. The line 
is usually overlaid by multiple base stations. Bayesian 
rules are utilized to update the probability distribution 
of channel switching when additional evidence is ob-
served. Therefore, we mathematically formulate the 
multi-agent cascade communication problem of these 
chain-like distributed cognitive base stations using 
Bayesian learning.

The basic structure of this article is organized as 
follows. Section 2 outlines the works of decentralized 
computation and distributed learning in the signal pro-
cessing community. Section 3 formulates the railway 
wireless environment and presents the correspond-
ing mathematical model, then further describes the 
multi-cognitive base station cascade collaborative 
work under distributed framework. Specific test cases 
and corresponding experimental results are given in 
Section 4. This article is summarized in Section 5, and 
the future research direction is discussed.

2.	RELATED WORK

2.1	 Railway cognitive radio

In the existing literature, the wireless communica-
tion technologies applied in today’s urban railway are: 
TETRA (trans-European trunked radio), GSM (global 
system for mobile communications), CDMA (code di-
vision multiple access), 4G (fourth generation mobile 
communication), Wi-Fi (wireless LAN) and so on. The 

[8, 9] has been given in Figure 1. This architecture 
makes the wireless spectrum environment more com-
plex and unique.

The typical structure of a railway wireless communi-
cation network is multi-layered, and composed of four 
layers: the application layer, the core layer, the access 
layer and the train layer. The train passenger, the ve-
hicle terminal and the trackside device’s sensors use 
the wireless transmission protocol to communicate 
with the base station.

–– A railway network covers a large geographical area. 
The train often encounters different electro mag-
nets and jamming. The channel quality may not be 
ideal during train transmission due to the inherent 
unreliability of the wireless channel.

–– The train travels along fixed lines and passes quick-
ly through coverages of multiple base stations. The 
distribution of these base stations is chain-like. 
Each base station has different authorized devices 
with their unique spectrum occupancy rules, which 
makes it difficult to forecast the PU busy-idle sta-
tion.

–– The train which comes into the coverages of some 
base stations needs to compete with other sec-
ondary devices for spectrum occupancy. The CU 
may suffer a collision with another concurrent unli-
censed user such as a wayside.
In this article, we are committed to solve the ubiq-

uitous uncertain problems in railway wireless commu-
nication by using the CR technology. Published studies 
have stuck in the stage of a general idea, and there is 
no practical radio network model and corresponding 
experimental verification for cognitive communication 
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tional. Under the railway wireless communication, the 
base station is usually composed of the baseband unit 
(BBU) and the wireless remote unit (RRU). The RRUs 
are usually deployed along the tracks. The BBU con-
nects several RRUs. The BBU and the RRU are used to 
process the baseband signal and the radio frequency 
signal, respectively. The communication between the 
base station and the train passenger is conducted by 
the RRU, the leak cable and the train access terminal 
(TAU). 

In this process, the base station becomes an in-
dispensable node in the wireless communication 
network. It has also become a preferred object for 
the rail cognitive engine. Based on this, we propose a 
new cognitive base station (CBS) with perceptual and  
decision-making capabilities. The basic function of the 
cognitive base station is to discover and to assign the 
spectrum hole to the cognitive user within the cover-
age of the cognitive base station while ensuring that 
the communication of the PU maintains undisturbed.

2.2	 MAC protocols in cognitive radio ad hoc 
networks

In [22, 23], the MAC protocol in the cognitive radio 
network generally has the functions of spectrum man-
agement, equipment coordination and power control. 
The design of the MAC protocol faces great challeng-
es because of lack of infrastructure. The existing self- 
organizing cognitive radio network MAC protocols can 
be divided into two major categories: negotiated ac-
cess and non-negotiated access MAC protocols. The 
negotiated access MAC protocol first uses the specific 
control channel to achieve the function of the spec-
trum allocation and then transforms the data. Most of 
the existing work falls into this category. Some of them 
use a fixed channel while others use a dynamically 
changing channel.

Many protocols have been drafted on the cogni-
tive radio network MAC [24–26]. The article proposes 
a new kind of time structure, which is defined in the 
MAC protocol. The timing structure is shown in Figure 2. 
Each beacon interval (BI) is divided into three stages: 
cognition stage, competition stage and data transmis-
sion or channel switching stage.

railless wireless communication network is expected 
to provide large-scale broadband data services, which 
requires that the base station provides a spectrum 
wide enough to transmit the signal [11].

In the past decade, the problem of distributed 
learning has been of high interest within the signal 
processing community. The latter has been propelled 
by the technological advances of the wireless sensor 
networks. The literature primarily includes articles on 
distributed detection and estimation. In this area, the 
important issues are information fusion of processed 
data by sensors and transmission to a fusion center, 
integration of transceiver design with the design of 
fusion algorithms, development of methods that are 
robust to node and link failures, the use of existing 
machine learning models and algorithms for nonpara-
metric distributed signal processing in wireless sen-
sor networks, consensus building, or, in general, self- 
organization in networked systems [12, 13]. The wire-
less communication technologies in railway can be 
divided into four modules. The sensing module uses 
CR spectrum sensing to observe the rail radio environ-
ment and obtain the current physical condition using 
physical sensors (e.g. GPS, acceleration sensors and 
temperature sensors). Many researchers have con-
tributed to addressing this issue in terms of spectrum 
sensing and management technique, PU busy-idle sta-
tion prediction and so on [14–16]. In [17], the Bayes-
ian method in PU prediction is shown. The orientation 
module studies how to match and meet the specific 
spectrum strategy and a specific optimization goal, 
which is considered in [18, 19]. The decision module 
provides the required configuration change strategy to 
accommodate different goals [20]. The action module 
applies spectrum sharing and mobility to perform a 
new configuration to change the radio environment, 
and the multi-agent opportunistic transmission sched-
uling is modeled [21]. Applications of naive Bayesian 
learning can be found in diverse fields. Based on these 
investigations, a cognitive engine (CE) usually does the 
cognitive work of the rail CR. 

The cognitive engine is responsible for learning 
and predicting the rules of the occupant and the cog-
nitive user’s spectrum occupancy in radio operations. 
In general, the carrier of the cognitive engine is op-

Beacon

Beacon interval #1 Beacon interval #N Beacon interval #N+1

Beacon Beacon Beacon Beacon

Perception stage Competition stage Data transmission or 
channel switching

Figure 2 – Timing structure
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from the current state to the next state according to 
the current state and the transition probability, while it 
has nothing to do with the previous state, that is, the 
system is not post-effect. If the channel is currently in 
the BUSY state, the probability that the next state of 
the channel will also be BUSY is p, while the probabil-
ity of the next state to be IDLE is 1-p. If the channel’s 
current state is IDLE, then its probability of remaining 
IDLE again is 1-q while the probability that in the next 
state, it will be in the BUSY state and occupied by the 
PU user is q. In this model, we take a uniform distri-
bution of this transition probability [0.0–1.0 random].

Tk
busy represents the exponential distribution time 

after the state transitions to the busy state, Tk
idle rep-

resents the exponential distribution time after the 
channel transitions to the idle state, and the expo-
nential rate parameters are mbusy and midle, that is, the 
occupied state or the idle state. The occupancy state 
duration function is f(Tk

busy; mbusy), and the idle state du-
ration function is f(Tk

idle; midle).

;

;
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3.2	 Distributed sequential decision using naive 
Bayesian learning

Now we use the multi-agent system with naive 
Bayesian learning ability to solve the distributed se-
quential decision problem for spectrum manage-
ment of multiple CBSs. For the given railway wireless  
communication network, we set that the goal of the 
CBS spectrum management is to minimize the block-
ing rate of the entire network and the number of chan-
nels switching to meet the needs of rapid train move-
ment.

In order to deal with the problem of spectrum allo-
cation in a single CBS by using naive Bayesian learn-
ing, we define a sample feature X, where X is a feature 
vector, and the dimension of X is set to M. According 
to the total probability formula, the features are inde-
pendent of each other, so the formula can be shown 
as follows:
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In the article, the naive Bayesian model is a repet-
itive training process. The input is represented by the 
vector xi

(N), where i represents the i-th feature, and the 
superscript represents the dimension of the feature:

, , ,X x x xi
N

i i i
N1 2 f= _^ ^ ^ ^ ih h h h 	 (5)

Because the train is running at high speed in a 
linear environment, due to various geographical envi-
ronments, the set of channels available for service is  

3.	METHODOLOGY

3.1	 System modeling

A typical cognitive radio network for the railway 
wireless communication consists of a collection of 
CBS agents, PUs and train CU agents. The spectrum 
decision of the CBS agent serves but is also indepen-
dent of the train CU agents in its coverage area. Each 
CBS agent has its own PU community and available 
spectrums. Under normal circumstances, a dedicated 
frequency band will be allocated to each PU for data 
transmission.

The channel to which the CBS provides services for 
the cognitive user is defined as: ch={ch1,ch2,...,chi,...,chN}, 
where i represents the number of channels available 
on each CBS. The train is scheduled to set out every 
day, with a specified arrival time, and always with a 
fixed time along a fixed route. Each beacon interval 
(BI) experienced by the train as it passes through the 
CBS is defined as: BI={BI1,BI2,...,BIj,...,BIM}. The ele-
ments in the state set S are defined as a combination 
of all the channel occupancy of the CBS agent and its 
BI, denoted as:
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The action set C contains NxM kinds of actions, 
allowing the CU to transmit or allocate the CU to the 
other channels, as shown in Formula 2.
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This is because the action behaviors of these CBS 
agents do not occur simultaneously, and because 
they occur in cascade. The utility function is defined 
to satisfy the goals of minimizing the blocking rate and 
minimizing the channel switching over all CBSs in the 
cognitive base-station multi-agent system. 

The two-state Markov chain model is widely used 
in the literature to model the PR user activity. The two 
states in this model are the BUSY state and the IDLE 
state. The BUSY state indicates that the channel is cur-
rently occupied by the PU and is unavailable for the CU. 
The IDLE state indicates that the channel is free and 
there is no PU activity on the channel. The PU changes 
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Figure 3 – Multi-cognitive base station

Then we have to calculate the conditional proba-
bility in the molecule. In view of a single base station, 
the number of dimensions is NxM. In a certain feature  
Sij=(chi,BIj), where xi

j is expressed as aij, the condition-
al probability under the given category cku  is:
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A given unclassified new instance X can be calcu-
lated by the probability above. The posterior probability 
P cy Xk= u^ hof the instance would be obtained. Be-
cause in all the categories the denominator values in 
Equation 4 are the same, we just need to calculate the 
fractional molecules. The specific steps go as follows.

First, calculate the probability that the category 
equals ,cku as shown in Formula 9.

P y c X y c y cp P X xk k k
j j
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u u u^ ^ _ ^ ^h h ih h% 	 (9)

Then, determine what kind of category should be 
selected by:

arg max p y c Xy
c

k
k

= = u
u
^ h 	 (10)

Therefore, we get the result of the classification 
which means the CU’s action. However, a small prob-
lem that remains unsolved is how to obtain the prior 
probability if the sample is zero. In Equations 7 and 8, 
in order to avoid the denominator being zero, we add a 
constant m to both the numerator and the denomina-
tor, where m=1. This is Laplace smooth. The updated 
equations are as follows:

y c N K

I y c
p k

N k
i

N

1
m

m

= = +

= +
=u

u

^
^

h
h/ 	 (11)

,
P x a y c

I y c L

I x a y c
j

ij k

N k j
i

N

i
j

ij N k
i

N

1

1

m

m

= = =
= +

= = +

=

=u
u

u
^

_

^
h

h

i

/

/
	 (12)

different among CBSs. Obviously, when a cognitive 
user chooses a suitable service channel, the CUs 
should not only avoid interfering with the quality of 
service of the primary user, but also the interference 
between two adjacent CBSs. We assume that there 
are several adjacent CBSs as shown in Figure 3. It 
can be seen that the CBSB and the CBSA, CBSC have 
overlapping coverage areas, thus they cannot share a 
channel. The CBSA and CBSD do not overlap, so they 
can share a channel. In a multi-CBS system, each CBS 
broadcasts its personal information to the neighboring 
CBS, i.e., channel occupancy and beacon interval mes-
sages. Here we set these two features (channel and 
BI) as interdependent inputs. So, the number of input 
parameter is NxM.

There are NxM kinds of output categories. In order 
to distinguish this category with a feature, the output 
in a certain BI would be expressed as:

, , , , , ,Y c c c c ci N1 2 3 f f= u u u u u" , 	 (6)

Next, we would calculate the conditional proba-
bility of the characteristic xi

(k) in the case of different 
categories. The prior probabilities of the category 
y can be calculated from the training set. Through 
the statistics of the training set, we can draw the 
conditional probability of the corresponding feature 
on each category. A large number of training sets

, , , , , ,x y x y x yi i i
N

N
1

1
2

2 f_ _ _^ ^ ^i i ih h h# -will be generated 
during the process of the train passing through the 
CBS. For a given sample, we first need to calculate the 
likelihood estimate of the prior probability p y ck= u^ h in 
Equation 7:
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I(·) is an instruction function; thus, if the feature or 
category occurs, I(·)=1, otherwise the instruction func-
tion is 0.
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learning module describes several typical learning al-
gorithms and some common functions, for the calling 
from the agent system module.

The PU-activity module uses the two-state Mar-
kov model to define the activities of the PU, such as 
transmission distance, interference range, spectrum 
occupation rules and PU locations which are shown 
in Figure 5a. The gray part represents the train run-
ning over the coverage of the previous CBS, or not yet 
reaching the next, or the channel being occupied by 
the nearby base stations. The red and blue portions 
represent the occupation of the PU. 

The railway wireless communication network envi-
ronment repository contains information on transmis-
sion power settings, train speed and location, base 
station locations and coverages, and different network 
protocols for railway environments. More details can 
be found in our previous publication.

Based on the above simulation platform, we as-
sume that there are 10 channels in the system. Each 
CBS covers three or four channels. The parameters of 
the train’s operation and the cognitive radio system  
are shown in Table 1, where the base station cover-
age area is converted to a linear distribution. All ex-
periments are conducted on average values to reduce 
contingency.

In order to evaluate the proposed scheme, we use 
the railway wireless communication network simula-
tion platform and compare the performance of the CBS 
multi-agent scheme based on naive Bayesian learn-
ing (CBS-BL) with the base station scheme using the 
round robin mechanism (BS-RR). The BS-RR scheme 
adopts the following principle: once the PU occupies 
the spectrum, the agent switches to the next chan-
nel. This method is simple, easy to implement and will 
not “starve to death”. f is a greedy parameter, rep-
resenting the probability of using Bayesian learning. 
When the random number is larger than f, the system 
uses a random mechanism, otherwise, it will learn by  

Where K is the number of categories, and Lj is the 
maximum value of the feature of the j-th dimension. 
The specific naive Bayesian learning algorithm imple-
mentation of multiple CBS agents is shown as Algo-
rithm 1 (Figure 4).

4.	EXPERIMENTAL EVALUATION
The construction of the railway environment, the 

functionality of the cognitive radio, learning and the 
decision mechanisms of agents are realized by an 
independent C++ module, in which the protocols of 
the physical layer, the link layer and the network lay-
er are modified accordingly. The agent system module 
provides the architecture of the multi-agent, which 
consists of agent declarations, agent cooperation 
mechanisms and agent communication protocols. The 

Table 1 – Simulation parameters

Number of CBSs 3
{A:50 m–230 m\B:200 m–376 m\C:356 m–471 m}

CBS coverage (X: initial position; Y: exit position) X:50 m Y:471 m

The average speed of train operation 301.76 km/h

Number of CBS channels 10

Number of primary users 10

Number of cognitive users 1

Beacon interval 1 ms

The location where cognitive user requests data transmission 200 m [base station B]

Cognitive user transmission time 2100 ms

Figure 4 – Algorithm 1: Pseudo code of naive Bayesian 
learning on CBS
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of epochs, but finally becomes stable. The blue curve 
represents the BS-RR. After approximately 1000 ep-
ochs, the CBS-BL scheme tended to reach 17% of the 
average probability of the blocking rate, while the BS-
RR remained at approximately 28%.

Figure 5c shows the average number of spectrum 
handovers using our test scenarios in the simulation 
platform. The red curve represents the performance 
of the CBS-BL scheme, which maintains good ability 
with the increase of epochs and finally becomes sta-
ble. The BS-RR switches its channel at each beacon 
interval (the number of switching channels is 2100). 
The results show that naive Bayesian learning can 
help the CBS multi-agent system to mine the spectrum 
hole in the railway wireless communication environ-
ment effectively, avoid the wrong actions of channel 
switching, and improve the efficiency of the spectrum 
management.

naive Bayesian learning. We consider using two perfor-
mance indicators, such as blocking rate and the num-
ber of spectra switching for the results of verification.

Figure 5a shows the occupancy of the primary 
user from the train’s starting position to 2100 bea-
con intervals. The gray part represents the train 
running over the coverage of the previous CBS, or it 
not yet reaching the next CBS, or the channel being  
occupied by the nearby base stations. The ordinary 
portion represents the information of the CBS's own 
channel and beacon interval, or the received neighbor-
ing base stations. 

Figure 5b shows the average probability of the block-
ing rate using our test scenarios in the simulation plat-
form. Each epoch consists of 2100 BIs. During this pe-
riod, the system calculates the prior probability. In the 
graph, the red curve represents the performance of the 
CBS-BL scheme, which decreases with the increase  
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Figure 5 – Experimental evaluation
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5.	CONCLUSION
Railway cognitive radio is the most recently 

launched cutting-edge research and is still in its infan-
cy stage. In this article, we propose a multi-agent rail-
way communication modeling for channel accessibili-
ty, using a fusion of prior and validation information. 
It is a typical case of artificial intelligence applied in 
the field of transportation to deal with the increasingly 
complex behaviors of railway wireless communication 
in order to meet communication requirements and im-
prove communication efficiency. We focus on address-
ing two major railway wireless communications issues, 
that is, the railway radio spectrum opportunistic ac-
cess and the spectrum efficiency improvement in fast 
movement. Experimental results show that the cogni-
tive base-station multi-agent system significantly im-
proves the data transmission performance and greatly 
reduces the number of wireless spectra switching.
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铁路认知无线电的贝叶斯顺序学习

摘要

在铁路通信系统中应用认知无线电是一个新兴研究领
域。列车的快速运动使得铁路无线环境的频谱接入具有不
稳定性。为了解决这个难点，首先，我们将铁路认知无线
电的频谱管理表示为为分布式顺序决策问题。紧接着，基
于可用的列车环境信息，我们提出了一种基于朴素贝叶斯
学习和智能体理论的多认知基站级联协作算法。最后，我
们通过仿真实验结果表明该模型对提高频谱接入性能的可
用性。该认知基站多智能体系统方案全面解决了铁路认知
无线电动态接入效率低的问题。本文也是应用于智慧城市

领域的典型人工智能案例。

关键词

铁路，认知无线电，MAC协议，朴素贝叶斯方法，频谱管

理
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