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ABSTRACT
Autonomous vehicles (AVs) and human-driven vehicles (HDVs) will share the roads for a 
long time, hence the need to study traffic flows mixing AVs and HDVs, especially during the 
AV introduction period. This paper aims to investigate the roadway and traffic characteristics 
that affect the impact of AVs on freeway traffic operations, using an adapted version of the 
HCM6 truck passenger-car equivalent (PCE) methodology. A large number of scenarios 
comprising different roadway characteristics, AV types and traffic flow compositions were 
simulated using Vissim to obtain AV PCEs. The results indicated that, for all scenarios 
considered, an AV has a 20% lower impact on the quality of service and operation than an 
HDV. A CART decision tree indicated that the most important factors affecting the AVs’ 
impact on traffic operations are vehicle-to-vehicle connectivity level and the capability 
of travelling in platoons. Maximum platoon length did not matter, and the increase in the 
number of traffic lanes reduced the positive impact of AVs on service quality. 
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1. INTRODUCTION
Autonomous vehicles (AVs) have been under development and become the focus of a large body of research 

over the last two decades. Research results suggest that AVs can affect road capacity, improve safety and 
increase flow efficiency as their presence in the traffic composition grows over time [1]. This indicates that the 
advent of AVs may bring radical changes to all aspects related to mobility [2]. In general, studies indicate that 
in an ideal future, where AVs will comprise 100% of the vehicles on the road, they will positively affect traffic 
operations. However, the transition from conventional vehicles, or human-driven vehicles (HDVs), to AVs is 
expected to last several years or even decades. The impact that AVs of different capabilities will have on traffic 
flow during this transitional phase is not yet sufficiently understood [3].

The consensus among experts is that HDVs and AVs will coexist and share the roads for a long time [4]; 
thus, investigating the impact that AVs will have on highway operations is of great importance, especially for 
transportation agencies that need to assess the quality of service. One of the gaps in the literature is the lack 
of studies that investigate the variables that affect the impact of AVs on road traffic. To fill this gap, the main 
objective of this study is to investigate which and how roadway and traffic characteristics are related to the 
impacts of AVs on traffic operations in scenarios that represent typical conditions encountered during the initial 
phase of introducing AVs on highways.

The AVs that were the focus of this study are level 4 vehicles in SAE’s taxonomy [5], which have size and 
physical characteristics compatible with conventional passenger cars, but with driving logic and behaviour that 
conform to the three classes of AV connectivity comprised in the CoEXist project [6]. The impact of such AVs 
on traffic flow was assessed using the passenger-car equivalent (PCE) method, which is similar to the method 
used in the Highway Capacity Manual (HCM) to estimate the impact of trucks on service quality and capacity 
[7, 8]. The method used to determine the road capacity and development of the AV PCE has been provided 
in a previous study [9]. The next sections of this paper are organised as follows: first, a concise overview of 
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the vast literature on AVs and their impact provides the backdrop and justification for this study, as well as 
a description of the AV PCE approach adopted. Next, the processes used to estimate the AV PCE values are 
described; followed by results and statistical analyses. The paper concludes with a discussion of the results and 
suggestions for future development.

2. BACKGROUND
The abundant literature on the subject shows that the advent of AVs will greatly impact mobility in most of 

its facets, including the ethical aspects of the introduction of driverless cars on public roads [10], impacts on 
road safety [11], benefits to people with reduced mobility [12], reduction in travel time [13], economic impacts 
[14], reduced energy consumption and emissions [15], impacts on traffic flow and operations [16, 17] and 
increases in road capacity [18].

The predicted advantages of AVs are not just due to their autonomy but also derive from the vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) connectivity, which will result in real-time exchange of 
information making the transportation system more coordinated, integrated and efficient [15]. This real-time 
data exchange provides AVs with the capability of faster and more assertive decision-making than human 
drivers; thus, enabling AVs to better anticipate the actions needed to keep inter-vehicular gaps short and 
maintain traffic flow stability – which leads to greater capacity, provided that the number of connected AVs 
(CAVs) in the traffic flow is sufficiently large [19]. Conversely, AVs without V2V and V2I connectivity are 
only able to detect immediately adjacent vehicles and cannot anticipate speed changes in the platoon to avoid 
string instability [20]. 

Despite the extensive literature on AVs, only a handful of studies address their impact on highway operations 
from the quality-of-service perspective, as defined in the Highway Capacity Manual (HCM). Using the Monte 
Carlo simulation, parameters from the HCM 2010 were adapted to account for the presence of AVs in basic 
freeway segments. Two types of AVs were considered: with and without V2V and V2I connectivity. The case 
study results indicated that 3% of connected AVs in the traffic share would improve the service level from D to 
C; while 7% of unconnected AVs would be required for the same effect [21].

The HCM’s capacity adjustment factor (CAF), defined as an adjustment to base capacity to reflect the 
impact of factors such as trucks, severe weather, incidents or work zones [7], is also a way to capture the 
effects of AVs on traffic flow. Adebisi et al. [22] developed CAFs for freeways carrying a mix of autonomous 
and conventional cars. AV penetration rates varied from 0% to 100% in 20% increments, for passenger-car 
only traffic flows on level, 2- or 3-lane merge, weaving and basic freeway segments. The results confirmed the 
positive impacts of AVs associated with increasing penetration rates. A subsequent study [23], based on the 
same approach, developed CAFs for signalised intersections. Another study based on CAFs [9] investigated the 
impacts of AVs on basic freeway segments focusing on the transition period during which AVs and HDVs share 
the roads and AV penetration rates are up to 60%. Based on a wide range of roadway and traffic characteristics 
(such as truck percentage, grade length and magnitude, number of lanes, maximum AV platoon length and 
AV level of connectivity), it concluded that, on average, five AVs have the same impact as four HDVs on the 
quality of service. 

The estimation of AV impacts on transportation facilities is a complex task that requires accounting for 
the interactions among vehicles in the traffic flow, the mix of AV vehicles and other roadway and traffic 
characteristics. The TRB’s HCM [7] is the most widely used tool to evaluate the operational performance of 
highway facilities and is considered the benchmark to estimate the capacity and level of service. The HCM 
procedures are designed to evaluate scenarios considering the environment-roadway-traffic interactions. One 
interesting aspect of the HCM is the use of passenger-car equivalents (PCE) to evaluate the impact that a 
certain vehicle class (trucks) has on the operation of a facility. PCE is the “number of passenger cars that will 
result in the same operational conditions as a single heavy vehicle of a particular type under identical roadway, 
traffic and control conditions” and provides tables with PCE values (ET) [7]. From the fraction of trucks in the 
traffic mix (PT) and ET, one can estimate the impacts of trucks on the quality of service. 

This research used the same approach to explore AV impacts on traffic flow, by means of an AV passenger 
car equivalent (AV PCE, denoted as EAV). This study addresses a research gap concerning the impact of AVs 
on freeway operations, specifically from a vehicle equivalence perspective. Level of service (LOS) assessment 
is crucial for highway system management, as it supports roadway improvement funding decisions. Traffic 
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monitoring stations (TMS), which provide data for LOS estimation, cannot easily distinguish AVs from HDVs. 
This requires using AV PCEs to represent the impact of AVs on specific highway segments. The objective of 
this paper is to discuss and analyse the roadway and traffic flow factors that affect AV PCEs, from the CAF 
viewpoint. We have specifically focused on the initial period of AV adoption when HDVs will still be the 
majority in the traffic mix and AV penetration rates will never be above 60% of the passenger car fleet.

2.1 Approach to evaluate AV impact on freeway segments
As AVs are still in the testing phase, the basis of the proposed method to estimate the impact of an AV on 

traffic flow is a passenger-car equivalent calculated using microsimulation. The procedure adopted is similar 
to the equivalent calculation for heavy vehicles adopted by previous studies [24, 8]. In the case of trucks, the 
HCM-6 adjusts demand using the following equation [7]:

p
HV

V
PHF N f

ν =
⋅ ⋅  

(1)

where vp is the flow rate in the busiest 5- or 15-minute period of the hour (cp/h/ln); V is the observed hourly 
volume (veh/h), PHF is the peak hour factor; N is the number of traffic lanes; and fHV is the adjustment factor 
for the effect of trucks, which is calculated by:
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where PT is the fraction of trucks in traffic and ET is an equivalence factor, which corresponds to the number of 
cars that have the same impact as a truck on the quality of service.

The research reported here adapted the HCM method to include the impact due to different types of AVs in 
the traffic flow in the service level estimation, through an fAV adjustment factor, which would result in Equation 
1 becoming
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where the fAV adjustment factor is calculated using the following expression:

( )
1

1  1AV
AV AV

f
P E

=
+ −  

(4)

where PAV is the decimal fraction of AVs in the traffic flow and EAV is the equivalence factor of the AVs [7].

3. METHOD
In addition to the approach used to obtain the EAV values, this section describes the characteristics of the 

simulated scenarios and the parameters adopted for the conventional vehicle and AV simulation.

3.1 Procedure to obtain AV PCE values
The calculation of the AV equivalence factor was carried out in a manner similar to that of the truck 

equivalence factor [25]. This involved comparing two traffic flows with the same capacity: a base flow 
comprising only cars and a mixed flow consisting of cars and the vehicle of interest, in this case, AVs. To 
calculate the EAV for a given scenario (a combination of traffic and road characteristics), the base flow and 
mixed flow capacities were initially calculated. These correspond to the 95th percentile of flow rates observed 
at 5-minute intervals, expressed in veh/h/ln [7].

As described in detail in [9], CAFi, the capacity adjustment factor due to the presence of AVs in the traffic 
flow for scenario i, is obtained from the relationship between the analysed scenario capacity and the base 
scenario:

i ,mix
i

i ,base

C
CAF

C
=

 
(5)

where Ci,mix is the capacity (veh/h) for the mixed flow in scenario i; Ci,base is the capacity (veh/h) for the base 
flow (only with conventional vehicles) in scenario i. The CAFi value represents the increase (or decrease) in 
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the capacity of the analysed scenario compared to the base scenario. In this study, base scenarios are those in 
which the traffic flow comprises only conventional vehicles and trucks, while in the mixed scenarios, the traffic 
flows also contain AVs, in addition to cars and trucks.

The passenger-car equivalent value is obtained from the following equation [8]:

( ) ( )1 1 i i
AV

i i

p CAF
E i

p CAF
− − ⋅

=
⋅  

(6)

in which EAV(i) is the passenger-car equivalence factor when considering scenario i; pi is the AV percentage 
in scenario i; and CAFi is the capacity adjustment coefficient due to the effects of AVs in the traffic flow, 
calculated for scenario i. The EAV(i) values for different scenarios can then be taken as an estimate of the overall 
impact of AVs on the highway operation, as compared to that of conventional passenger cars.

3.2 Vehicle parameter sets for the Vissim simulations
To represent the range of AVs and levels of automation that could exist during the transition period studied, 

three different types of AVs were used, in terms of driving behaviour parameters, in the car following and 
lane change processes [6]. The first type, AV1 (cautious), is an autonomous passenger car without V2V 
communication that can stop safely even if the vehicle in front of it stops instantly, which is safer, but requires 
greater headways. The second type, AV2 (normal), is an autonomous car without V2V communication, whose 
behaviour, although deterministic, is quite similar to that of a human-driven car and which can only obtain 
information from the first vehicle in front of it. The third type, AV3 (all-knowing or connected), is an autonomous 
car with V2V communication, which travels with headways that depend on the type of vehicle in front of it, 
and from which a more cooperative behaviour is expected as it can obtain information on the position and 
displacement of vehicles around it. These three types of AVs are level 4 vehicles in SAE’s taxonomy [5], and 
the main reason for choosing them is that they can be simulated by Vissim 20 [25, 26].

For AV3 speed, acceleration and headways functions were based on deterministic values, which did not vary 
for AVs of the same type. The settings adopted for platoon formation were the Vissim 20 default values, such 
as the maximum distance for vehicles to start the platoon of 250 m, headways of 0.6 s, and minimum distance 
of 2 m within a platoon of AVs.

To represent the conventional vehicle behaviour, the values used for the car-following, lane change and 
truck performance models were those obtained in recalibrations carried  out in previous studies, as well as the 
distributions of desired speeds and mass-power ratio of the trucks [27, 28].

3.3 Simulation scenarios
All scenarios studied were simulated in the same network, which represents a tangent stretch of freeway 

formed by three segments, whose vertical profile is shown in Figure 1. The initial segment (4 km long) enables 
vehicles to enter the network and stabilise the traffic flow. The intermediate segment, in which data were 
collected through five sensors, is 8 km long and its slope varies according to the simulated scenario. The exit 
segment is a 4 km long downgrade with a slope of -2%, to improve the dissipation of truck-led platoons past 
the last detector. The number of traffic lanes on the network depends on the simulated scenario.

Detectors

Entrance Variable

Exit

-2%

0%

4 km 8 km 4 km
Segment for data collection

Figure 1 – Vertical profile of the simulation network

The simulations were performed at five different flow levels that correspond to 50%, 60%, 75%, 90% and 
100% of the maximum possible flow, which was estimated as 2600 veh/h/ln [9].

The scenarios studied were created from variables related to traffic and highway characteristics, to analyse 
how these variables affect the AV equivalence factor. The variables used to create the scenarios are described 
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in Table 1. The combinations of the control variables resulted in 25,515 simulated scenarios. Each simulation 
had a warm-up time of 30 minutes and a data acquisition time of 60 minutes.

The fleet of AVs in the traffic flow consisted of different proportions of AV1, AV2 and AV3 vehicles, whose 
sum always totals 100%. The level of fleet connectivity described as low, medium and high connectivity are 
based on the proportion of vehicles AV3 (all-knowing or connected) in the flow, as shown in Table 2. However, 
the number of AVs in the flow depends on the PAV variable, the AV penetration rate in the traffic flow, which 
varies between 0% and 60%, as the objective of this study was to analyse scenarios with low AV penetration 
rates, representing the initial period of AV adoption.

Table 1 – Controlled variables in the simulation scenarios

Controlled variable Levels Description

PAV AV penetration rate 7 0, 10, 20, 30, 40, 50 or 60%

AV1 Fraction of cautious AVs 4 0, 25, 50 or 75%

AV2 Fraction of normal AVs 4 0, 25, 50 or 75%

AV3 Fraction of all knowing AVs 4 0, 25, 50 or 75%

L Distance travelled on grade 5 0.5, 1, 2, 4 or 8 km

Nf Number of lanes 3 2, 3 or 4

Np Max length of AV platoons 4 0, 2, 4 or 8

g Grade magnitude 3 0, 2 or 4%

PT Truck percentage 3 15%, 30% or 45%

Table 2 – AV fleet mixes and their level of V2V connectivity 

Fleet AV1 (%) AV2 (%) AV3 (%) V2V connectivity level

1 75 25 0 Low

2 50 50 0 Low

3 25 75 0 Low

4 25 50 25 Medium

5 25 25 50 Medium

6 25 0 75 Medium

7 0 75 25 High

8 0 50 50 High

9 0 25 75 High

4. RESULTS
Considering the results of 25,515 simulations, the EAV values for all 22,005 scenarios with PAV>0% were 

calculated using Equation 6. The mean EAV value, for all simulated scenarios, resulted in 0.804, which indicates 
that, on average, AV impact is smaller than that of conventional vehicles and that, therefore, they can increase 
the roadway capacity (Equation 4 shows that the lower the EAV value, the greater the positive impact of the AVs).

The mean EAV values, discretised by the V2V communication level, grade magnitude g, penetration rate of 
AVs (PAV) and truck percentage PT are shown in Tables 3, 4 and 5 and suggest that the EAV values are associated 
with the characteristics of the analysed scenarios. The following section analyses the effect of the controlled 
variables on AV PCE values.
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Table 3 – Mean AV PCEs for an AV fleet with low V2V connectivity (75% AV1 + 25% AV2)

g (%) PT (%)
AV penetration rate PAV

10% 20% 30% 40% 50% 60%

0

15 1.00 0.96 0.94 0.96 0.95 0.96

30 0.89 0.89 0.86 0.89 0.89 0.90

45 0.88 0.93 0.91 0.90 0.90 0.90

2

15 0.94 0.96 0.93 0.95 0.95 0.95

30 1.00 0.93 0.92 0.93 0.92 0.93

45 0.91 0.92 0.91 0.91 0.91 0.91

4

15 0.98 0.94 0.91 0.93 0.93 0.94

30 0.95 0.94 0.94 0.95 0.95 0.95

45 0.97 0.93 0.94 0.95 0.93 0.94

Table 4 – Mean AV PCEs for an AV fleet with medium V2V connectivity level (25% AV1 + 50% AV2 + 25% AV3)

g (%) PT (%)
AV penetration rate PAV

10% 20% 30% 40% 50% 60%

0

15 0.87 0.84 0.82 0.81 0.83 0.83

30 0.81 0.80 0.83 0.82 0.80 0.82

45 0.85 0.82 0.85 0.84 0.82 0.83

2

15 0.78 0.82 0.81 0.80 0.81 0.82

30 0.85 0.83 0.84 0.84 0.83 0.83

45 0.82 0.82 0.82 0.83 0.82 0.83

4

15 0.76 0.82 0.80 0.82 0.82 0.82

30 0.90 0.89 0.87 0.87 0.86 0.87

45 0.84 0.85 0.87 0.87 0.87 0.87

Table 5 – Mean AV PCEs for an AV fleet with high V2V connectivity level (25% AV2 + 75% AV3)

g (%) PT (%)
AV penetration rate PAV

10% 20% 30% 40% 50% 60%

0

15 0.78 0.75 0.72 0.72 0.71 0.70

30 0.71 0.75 0.75 0.73 0.73 0.73

45 0.74 0.77 0.79 0.76 0.76 0.76

2

15 0.75 0.74 0.71 0.70 0.70 0.69

30 0.82 0.78 0.77 0.75 0.75 0.74

45 0.78 0.77 0.77 0.75 0.77 0.77

4

15 0.71 0.72 0.72 0.72 0.72 0.73

30 0.84 0.82 0.80 0.80 0.78 0.78

45 0.81 0.81 0.81 0.81 0.81 0.81
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5. FACTORS AFFECTING AV PCE
CART (Classification and Regression Trees) is a method for exploratory data analysis frequently used in 

data mining to find relationships, patterns or trends within large data sets [29]. Starting from a root node, the 
algorithm repeatedly splits the data into binary nodes, based on the best attribute and a threshold value. This 
recursive partitioning progressively splits data into smaller groups (nodes) whose components are increasingly 
similar, while increasing the differences between newly created groups. The process is repeated until a stopping 
rule is met or there are no more splits that would improve the model [30].

 CART has advantages over other traditional statistical techniques due to its non-parametric nature, ability 
to handle various data types, robustness to outliers, ability to capture interactions and non-linear relationships 
and handling of missing data [30]. CART is particularly good for identifying patterns and relationships in 
complex datasets because it generates mutually exclusive groups that are easy to interpret and understand [29]. 
The main limitation is that the model does not result in a parametric equation and can experience overfitting, 
especially when the tree is very complex. Exploratory data analyses with CART have been used in many 
areas of transport engineering, including the assessment of service quality in public transport systems [31], 
to establish the relationship between variables as injury severity and driver/vehicle characteristics, highway/
environmental variables and accident variables [32, 33], to analyse relationships between socioeconomic 
attributes, land use and destination choices [34], and to analyse the importance of variables connected to urban 
destination choices [35, 36]. 

 CART decision trees can be a useful tool to explore and understand relationships within large data sets 
[30, 31, 34, 36, 37] when, as in this research, one is not particularly interested in predicting accurate values 
for the dependent variable. In this study, a CART model was used to identify the relative importance of the 
effects of each controlled variable on the AV PCE values. Features that are higher up in the tree and contribute 
to meaningful splits will generally have higher importance scores [29]. Therefore, the accuracy rate was not 
calculated as the decision tree was used to investigate the effects of the independent variables. Tables 3–5 provide 
mean values for selected AV fleet mixes.

To analyse how the controlled variables affect the AV PCE values, a decision tree model was trained with a 
CART algorithm, in which EAV is the dependent variable as the distribution of EAV values is significantly non-
normal, according to the Kolmogorov-Smirnov test (p<0.05).

The SPSS software package for statistical analyses was used to fit the CART model. To avoid model 
overfitting, the following parameters were used for the model: maximum tree depth = 5; minimum number 
of cases in child nodes = 10; minimum number of cases in parent nodes = 50; minimum improvement in the 
variance reduction = 0.00005; and average minimum error = 0.05.

The final tree consists of five hierarchical levels. Figure 2 schematically represents the decision tree map 
obtained with the independent variables used for the partition, complemented by Table 6. In Figure 2, node 0 
represents the initial node (the complete data set), and the subsequent nodes are child nodes, of which those 
shaded are terminal nodes, that is, the leaves. The sample used for the model (node 0, N=21870) excludes not 
only scenarios with PAV=0%, but also those identified as outliers after calculating the Mahalanobis distance. 
Figure 2 also presents the node segregation criteria.

From the hierarchical structure of the decision tree (Figure 2), one can observe the effect of each factor 
on the AV PCE value (EAV). The most important factor is V2V connectivity, as the first variable selected for 
segregation was AV3.

Node 1 represents scenarios containing only AVs without V2V communication capability (AV3=0%), in 
which the most important factor is the proportion of AVs travelling with headways similar to conventional 
vehicles (AV2). Traffic flows with AV2≤50% result in EAV=0.912 (at node 3); otherwise, the positive effect 
of AVs on the quality of service is greater, as EAV=0.855 (at node 4). The scenarios in which the traffic flow 
contained AVs capable of V2V communication (AV3>0%) were clustered in node 2 and presented a lower 
EAV, which indicates that AVs in these scenarios have a greater positive impact on the traffic flow. For the 
clustering of nodes 5 and 6, the proportion of trucks PT was selected as the decision variable, which makes it 
the second most important factor. This separation indicates that the scenarios with a high proportion of trucks 
(PT>15%), clustered in node 6, have EAV greater than those of node 5. That is, the higher proportion of trucks 
in the traffic flow reduces the beneficial effects of AVs, as compared to scenarios with a lower proportion of 
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trucks (PT≤15%, grouped in node 5). This suggests that the greater the proportion of trucks in the traffic flow, 
the smaller the positive impact of AVs on the service quality.

Figure 2 – CART decision tree for AV PCEs

Node 0

Node 1 Node 2

Node 3 Node 4 Node 5 Node 6

Node 7 Node 8 Node 9 Node 10

Node 11 Node 12 Node 13 Node 14 Node 15 Node 16

Node 17 Node 18

0.803

0.893 0.791

0.8050.7630.8550.912

0.737 0.788 0.790 0.837

0.8580.7950.8080.7710.7330.834

0.801 0.901

AV3=0 AV3>0

AV2<0.5 AV2≥0.5

AV1=0 AV1>0

AV1=0 AV1>0

PT≤0.15 PT>0.15

g≤2% g>2%

Np=0 Np>0 Nf=2 Nf>2

Nf>3Nf≤3

Figure 2 – CART decision tree for AV PCEs

Table 6 – Node definitions from CART decision tree for AV PCEs

Node Rule to define EAV

EAV Sample size

Mean Std. dev. N %

0 Initial node 0.803 0.108 21870 100.0

1 AV3=0.00 0.893 0.096 2430 11.1

2 AV3>0.00 0.791 0.104 19440 88.9

3 AV3=0.00; AV2≤0.50 0.912 0.093 1620 7.4

4 AV3=0.00; AV2>0.50 0.855 0.091 810 3.7

5 AV3>0.00; PT≤0.150 0.763 0.102 6480 29.6

6 AV3>0.00; PT>0.150 0.805 0.102 12960 59.3

7 AV3>0.00; PT≤0.150; AV1=0.00 0.737 0.094 3240 14.8

8 AV3>0.00; PT≤0.150; AV1>0.00 0.788 0.103 3240 14.8

9 AV3>0.00; PT>0.150; g≤0.02 0.790 0.101 8640 39.5

10 AV3>0.00; PT>0.150; g>0.02 0.837 0.097 4320 19.8

11 AV3>0.00; PT≤0.150; AV1>0.00; Np=0 0.834 0.114 810 3.7

12 AV3>0.00; PT≤0.150; AV1>0.00; Np>0 0.773 0.094 2430 11.1

13 AV3>0.00; PT>0.150; g≤0.02; AV1=0.00 0.771 0.100 4320 19.8

14 AV3>0.00; PT>0.150; g≤0.02; AV1=0.00 0.808 0.098 4320 19.8

15 AV3>0.00; PT>0.150; g>0.02; Nf≤2 0.795 0.095 1440 6.6

16 AV3>0.00; PT>0.150; g>0.02; Nf>2 0.858 0.091 2880 13.2

17 AV3>0.00; PT≤0.150; AV1>0.00; Np=0; Nf≤3 0.801 0.095 540 2.5

18 AV3>0.00; PT≤0.150; AV1>0.00; Np=0; Nf>3 0.901 0.121 270 1.2

Node 5 represents scenarios with V2V connectivity (AV3>0%) and a low volume of trucks. In these 
scenarios, cautious AVs (AV1>0%) were decisive for the partitioning at nodes 7 (EAV=0.737) and 8 (EAV=0.788), 
as the presence of AV1 in the flow significantly reduces the positive impact of AVs, due to its characteristics 
and limitations.
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Node 8 was subdivided according to the effect of AVs travelling in platoons (Np>0). This indicates that 
platoon formation leads to a significant difference between the equivalence factor of scenarios with AVs 
travelling in platoons (node 12, EAV=0.773) and scenarios without platoon formation (node 11, EAV=0.834). 
These results suggest that the AVs that can travel in platoons positively affect the quality of service.

From node 11 onwards, it can be seen that increasing Nf, the number of traffic lanes, reduces the positive 
impact of AVs as EAV=0.901 for node 18 (end node), which includes scenarios with 4 lanes of traffic, and 
EAV=0.801 for node 17 (end node) scenarios, where there are 2 or 3 traffic lanes.

Node 6 shows that, for scenarios with AVs with V2V communication (AV3>0%) and a greater volume 
of trucks (Pt>15%), grade magnitude becomes the factor that determines the impact of AVs on the traffic 
operation. For scenarios with steeper slopes (g>2%, node 10), the number of lanes is the most important 
variable to define the impact of the AVs: for 3 or 4 lanes, the positive impact of the AVs is smaller (EAV=0.858, 
node 16) than in scenarios where there are only two lanes of traffic (EAV=0.795, node 15). Furthermore, node 
6 shows that, for scenarios where there is no significant slope (g≤2%, node 9), the factor that determines the 
impact of AVs is the presence of “cautious” AVs: if AV1>0% (node 13), the positive impact of AVs is greater 
(EAV=0.771), compared to scenarios where AV1>0% (node 14, EAV=0.808).

5.1 Main factors affecting the AV PCE
The correlation analysis using Spearman’s ρ coefficient, shown in Table 7, indicates that AV1 is directly 

correlated with EAV – that is, a greater proportion of AV1 reduces the positive effect of AVs on the highway 
operation, as AV1 requires greater inter-vehicle gaps because they lack V2V communication.

Table 7 – Correlations between AV PCEs (EAV) and controlled variables, as measured by Spearman’s ρ

Controlled variable

AV1 AV2 AV3 PAV PT L Nf Np g

ρ 0.352 0.044 −0.339 −0.072 0.211 −0.0004 0.096 −0.256 0.131

p-value <0.001 <0.001 <0.001 <0.001 <0.001 0.580 <0.001 <0.001 <0.001

The correlation factor obtained for AV2 was low (ρ=0.044, indicating that this type of AV does not have 
a great impact when compared to HDVs, because their driving behaviour parameters are similar to those of 
human drivers. Truck percentage (PT) is positively correlated with EAV, which suggests that an increase in the 
proportion of trucks in traffic diminishes the positive effect of AVs.

On the other hand, AV3 and PAV correlation coefficients are negative, meaning that their increase leads 
to a reduction in EAV, which is explained by the fact that all-knowing AVs have V2V connectivity, perform 
manoeuvres that are more assertive and are able to travel with smaller headways. The correlation coefficient of 
Np is also negative, suggesting that AV platoons are correlated with a reduction in EAV.

Regarding the road characteristics, the correlation coefficients indicate that, in general, grade magnitude 
(g) and number of lanes (Nf) are associated with an increase in EAV. This can be explained by the fact that 
steep up grades impact the speed of trucks, which can create moving bottlenecks impeding AVs, and the 
literature suggests that the positive impact of AVs is lower in segments with a greater number of traffic lanes. 
As expected, the distance travelled on the slope by the AVs (L) does not have a significant correlation with EAV 
as the AVs studied are automobiles and, therefore, little affected by the slope length.

When comparing the absolute values of the correlation coefficients, it can be observed that the variables that 
most affect EAV are those related to the AV fleet mix, the ability of AVs to travel in platoons and the proportion 
of trucks in the traffic flow.

5.2 The impact of V2V connectivity level on the AV PCE
To assess how scenario characteristics affect the AV PCE average values for fleets with low, medium and 

high levels of V2V connectivity, linear regression models were calibrated in which the dependent variable 
is EAV and the controlled variables are the independent variables. From the standardised coefficients of the 
regressions, shown in Table 8, the impacts of each variable on the EAV value can be compared.
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Table 8 – Standardised linear regression coefficients

AV fleet Level of V2V 
connectivity

Standardised regression coefficients (β)*

PAV Nf Np PT g r**

1 Low 0.12 0.11 0.17

4 Medium 0.15 −0.15 0.09 0.81 0.24

9 High −0.08 0.15 −0.15 0.23 0.14 0.35

*All β coefficients are statistically significant (p<0.05); **Model’s correlation coefficient

Table 8 indicates that, for AV fleets without V2V connectivity (fleet 1, AV3=0%), the factors that most affect 
EAV are not directly related to AVs: truck percentage (PT) and grade magnitude (g). For fleets with an average 
level of V2V connectivity (fleet 4, with AV3=25%), the number of lanes (Nf) and maximum size of AV platoons 
(Np) are also significant factors. Only for fleets with a high level of V2V connectivity (fleet 9, with AV3=75%) 
was the penetration rate of AVs also significant to define the EAV value, albeit to a much lower degree than the 
other factors.

Figure 3 shows how EAV varies as a function of AV fleet and AV penetration rate. One can notice that there 
is a small reduction in EAV with an increasing penetration rate, but the effect of the V2V communication level 
(AV fleet type) is more significant.
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Figure 4 shows another important aspect related to V2V communication: the ability to form AV platoons 
(when Np>0) has a large positive impact (smaller EAV values), but maximum platoon length (Np) does not 
influence the AV PCE – at least for the scenarios studied, in which the penetration rate of AVs is relatively 
small to reflect the transition period.

When analysed by the AV fleet, it can be observed that traffic flows with compositions of a low level of 
V2V communication resulted in higher EAV values, which means a lower positive impact of AVs on highway 
operation. On the other hand, fleets with a higher level of V2V communication and fewer cautious AVs (fleets 
5, 6, 7, 8 and 9) have a higher positive effect on the traffic flow (lower EAV values), as can be seen in Figure 3.

Figure 5 shows the combined effect of the AV penetration rate, truck percentage and level of V2V 
communication of the AV fleet. The EAV values decrease as the V2V connection level increases, indicating the 
importance of AV platoons. Even in compositions with a low level of V2V communication, the values of the 
AV PCEs were less than one, indicating that the AVs have less impact than a conventional vehicle.
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Figure 5 – Effect of AV penetration rate (PAV), truck percentage (PT) and V2V connectivity level on average AV PCEs 
(low: fleet 1, medium: fleet 4, and high: fleet 9)

When grouped by the truck percentage and AVs in the fleet (Figure 5), the EAV values show that the AV PCE is 
higher in flows with higher proportions of trucks. It can also be observed that in scenarios with 45% of trucks, 
EAV is less sensitive to the increase in the AV penetration rate. This can be explained by the fact that the increase 
in the truck percentage reduces the total number of cars in the flow – including AVs that, in smaller quantities, 
no longer provide significant gains in capacity.

The results indicate that increasing the number of traffic lanes also causes an increase in EAV (Figure 6), 
which corresponds to a reduction in the positive impact of AVs. This phenomenon can be explained by the 
disturbances caused in the traffic flow due to the increase in lane changing manoeuvres by AVs that can be 
observed in a segment with more traffic lanes [38].
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6. CONCLUDING REMARKS
It is highly likely that AVs will share highways with conventional vehicles for the first few decades after 

being introduced. Therefore, understanding how AVs will affect the operational performance of highways is 
of great importance to maintain highway operations at acceptable service levels. In this context, the objective 
was to obtain the passenger-car equivalent values for the AVs and to investigate the main factors that influence 
their value. To meet this aim, this study used an adaptation of the procedure to obtain truck PCEs used in the 
HCM, based on traffic flows of equal capacity.

The mean EAV value, obtained from 22,005 simulated scenarios, was 0.804, which means that, on average, 
five AVs would have the same impact as four conventional automobiles on the quality of service. Therefore, 
the presence of AVs can increase capacity and improve the quality of service on highways such as the type 
studied. The magnitude of this impact depends on several variables. The following conclusions can be drawn 
from the analyses:

The level of V2V connectivity of the AV fleets was the factor that most contributed to the reduction in EAV 
values. AVs capable of forming platoons, sharing information and having a more cooperative car-following 
behaviour have a significantly greater positive impact than AVs that cannot travel in platoons.

AV platoons have a positive impact, but the maximum number of AVs in platoons does not seem to have 
much influence on the EAV value, at least for scenarios representing the introductory phase of AVs, where their 
penetration rate is relatively low.

The penetration rate of AVs is an important factor in determining the EAV value, but to a much smaller extent 
than the level of V2V connectivity, the proportion of trucks, number of lanes, magnitude of slopes and the 
presence of AV platoons.

The positive impact of AVs is greater in sections with 3 lanes of traffic, when compared to scenarios with 
2 or 4 lanes of traffic.

The CART method proved very useful to investigate the effect of the controlled variables on AV PCE 
values, as the importance of the controlled variables was identified by the variables used by the model to 
cluster the data into groups that are more homogeneous.

It is suggested, for future work, to extend AV PCE analysis to autonomous trucks and consider scenarios 
with urban highways, traffic lights and different types of intersections to understand the possible impacts of 
AVs on urban traffic. Furthermore, it could be interesting to study the effects of other factors, such as the posted 
speed limit, the inclusion of an exclusive traffic lane for trucks or AVs and adverse weather conditions. This 
study used the Wiedemann 99 model modified to represent the AV behaviour [6]; it would be interesting to 
compare its results with those from studies based on other car-following models for AVs.
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Renan Favero, José Reynaldo Setti

Fatores que afetam o impacto dos veículos autônomos nas operações em rodovias – 
uma análise exploratória usando PCEs

Resumo
A necessidade de estudar correntes de tráfego que misturam veículos autônomos (AVs) e 
automóveis convencionais conduzidos por humanos (HDVs) deve-se ao fato que esses dois 
tipos de veículo deverão compartilhar as vias por um longo tempo, especialmente durante 
a fase inicial advento dos AVs. O objetivo deste artigo é investigar como as características 
do tráfego e da via afetam o impacto dos AVs na operação de autoestradas, usando uma 
abordagem inspirada no fator de equivalência veicular (PCE) do HCM6. Os valores do PCE 
foram obtidos usando-se o software Vissim para simular um grande número de cenários 
combinando características da via, tipos de AV, e composições da corrente de tráfego. Os 
resultados obtidos indicam que, de um modo geral, o impacto de um AV no tráfego é 20% 
menor que o impacto de um HDV. Uma árvore de decisão CART mostrou que os fatores 
que mais afetam o impacto dos AVs no tráfego são a conectividade veículo-a-veículo e a 
capacidade de viajar em pelotões. O comprimento máximo dos pelotões de AVs parece não 
ter um efeito significativo, mas o aumento do número de faixas de tráfego está associado a 
um decréscimo do impacto positivo dos AVs na qualidade de serviço.  
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veículos autônomos; fator de equivalência veicular; árvores de decisão; autoestradas; 
microssimulação.


