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ABSTRACT
In the post-epidemic era, dynamic monitoring of expressway road freight volume is an im-
portant task. To accurately predict the daily freight volume of urban expressway, meteorolog-
ical and other information are considered. Four commonly used algorithms, a random forest 
(RF), extreme gradient boosting (XGBoost), long short-term memory (LSTM) and K-nearest 
neighbour (KNN), are employed to predict freight volume based on expressway toll data 
sets, and a ridge regression method is used to fuse each algorithm. Nanjing and Suzhou in 
China are taken as a case study, using the meteorological data and freight volume data of 
the past week to predict the freight volume of the next day, next two days and three days. 
The performance of each algorithm is compared in terms of prediction accuracy and training 
time. The results show that in the forecast of freight volume in Nanjing, the overall predic-
tion accuracies of the RF and XGBoost models are better; in the forecast of freight volume 
in Suzhou, the LSTM model has higher accuracy. The fusion forecasting method combines 
the advantages of each forecasting algorithm and presents the best results of forecasting the 
freight volumes in two cities.

KEYWORDS
road transportation; forecast of freight volume; machine learning; expressway; meteorolog-
ical information.

1. INTRODUCTION AND LITERATURE REVIEW
In recent years, with the development of the Chinese economy and society and the advancement of express-

way construction, transportation has progressively become a leading industry for the improvement of national 
comprehensive strength [1]. Expressway freight volume is the main indicator applied to measure the devel-
opment of the regional transportation industry and reflects its economic development [2, 3]. In new economic 
conditions, especially in the post-epidemic era, dynamic monitoring of road freight volume is a prominent 
task [3, 4]. Accurate prediction of regional freight production not only provides a basis for formulating urban 
development plans but is also of great significance for rationally steering the allocation of public transportation 
resources [5, 6]. Accordingly, in the era of increasingly abundant basic data resources and the rapid develop-
ment of deep learning and other technologies, the study of expressway freight volume forecasting methods has 
significant theoretical value and can provide ideas for different applications.

In recent years, with the development of the Chinese economy and society and the advancement of express-
way construction, transportation has progressively become a leading industry for the improvement of national 
comprehensive strength [1]. Expressway freight volume is the main indicator applied to measure the devel-
opment of the regional transportation industry and reflects its economic development [2, 3]. In new economic 
conditions, especially in the post-epidemic era, dynamic monitoring of road freight volume is a prominent 
task [3, 4]. Accurate prediction of regional freight production not only provides a basis for formulating urban 
development plans but is also of great significance for rationally steering the allocation of public transportation 
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resources [5, 6]. Accordingly, in the era of increasingly abundant basic data resources and the rapid develop-
ment of deep learning and other technologies, the study of expressway freight volume forecasting methods has 
significant theoretical value and can provide ideas for different applications.

Numerous studies have demonstrated that adverse weather can decrease road adhesion and visibility, which 
in turn reduces the capacity of freight vehicles. Regarding the analysis of the impacts of different weather con-
ditions on traffic flow parameters, rainfall is one of the most frequently analysed parameters [7–9]. Reduced 
road visibility caused by rainfall can make drivers more cautious while reducing speed and making journey 
times longer [10, 11]. Adverse weather conditions can also worsen road traffic and cause traffic congestion, 
leading to a range of adverse impacts, such as noise pollution and even traffic accidents [12, 13]. Hence, it is 
essential to integrate meteorological factors to forecast expressway freight generation trends.

The rest of the paper is organised as follows. Section 2 provides a literature review of relevant studies. 
Section 3 presents the data sources, the characteristics of the freight data set and the meteorological parameters 
employed. At the same time, the KNN, RF, LSTM, XGBoost and ridge regression algorithms principles are 
introduced. Section 4 proposes the experimental results and analysis of specific data sets, including the predic-
tion accuracy and execution time of the five types of models. Section 5 concludes this paper.

2. LITERATURE REVIEW
There are abundant researches on the prediction of traffic volume related to transportation. Existing fore-

casting methods adopted by domestic and foreign scholars are mainly divided into classical forecasting meth-
ods based on statistical probability, machine learning forecasting methods based on intelligent interdisciplinar-
ity and combined forecasting methods. Traditional forecasting methods generally include time series methods 
[14–16], regression analysis methods [17, 18] and gray forecasting methods [19]. The ARMA model [20, 21] is 
widely used in freight volume forecasting research as a classic time series forecasting method. The Gray-Mar-
kov forecasting model constructed by combining a gray prediction model and a Markov chain is more precise 
and efficient for prediction applications [22]. However, classical methods usually involve incompatible model 
assumptions and exhibit inferior performance in situations with complex traffic conditions [23].

Among the machine learning prediction methods, the commonly used traffic volume prediction models are 
the random forest (RF), extreme gradient boosting (XGBoost), k-nearest neighbour (KNN) and support vector 
machine regression (SVR). As a typical nonparametric method, the KNN model has received considerable 
attention. Many scholars have successfully applied a traditional KNN model to short-term traffic prediction 
[24–26]. Based on a traditional KNN model, Wu et al. [27] realised an enhanced model based on spatiotempo-
ral information and argued that it achieved better performance than models that only employ temporal informa-
tion. Filmon and Mecit [28] utilised an improved KNN algorithm to identify similar traffic patterns to forecast 
short-term passenger and freight traffic. Some authors applied an SVM to find the spatiotemporal correlation 
for traffic flow prediction. Feng et al. [29] utilised an adaptive multi-kernel SVM with spatial-temporal correla-
tion (AMSVM-STC) for short-term traffic prediction. Lu and Gao [30] submitted an improved random forest 
regression (RFR) method to forecast and analyse railway freight traffic and found that its prediction had high 
accuracy, strong generalisation ability and great robustness. Chikaraishi et al. [31] used an XGBoost model to 
predict the traffic volume, and the results show that the model had high prediction accuracy and can improve 
computational efficiency. Deep learning (DL) technologies are being applied as mainstream nonparametric 
algorithms for feature extraction, pattern discovery and learning [32]. In terms of DL algorithms, long short-
term memory (LSTM) neural network models are widely used for time series prediction [33, 34]. In addition, 
networks can draw on the mindset of human attention. Locations or features that require attention are assigned 
a higher weight. By incorporating an attention mechanism, a deep model can focus on fitting the attention fea-
tures, and the feature extraction and fitting abilities of DL networks can be enhanced [32, 35].

Combined forecasting methods are achieved through the combination of several models to give full play 
to the advantages of each model in forecasting and obtain more accurate forecasting results [36, 37]. Qiao et 
al. [38] proposed a short-term traffic volume prediction method based on a convolutional neural network and 
long short-term memory (DCNN-LSTM), which achieved good prediction results. Vidas et al. [39] applied and 
compared four different machine learning algorithms (i.e. DT, RF, XGBoost and LSTM) for short-term travel 
time prediction. At present, few studies introduced meteorological information to forecast freight generation, 
and most are combined with machine learning algorithms to study the impact of meteorological information 
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on expressway traffic flow forecasting. Soua et al. [40] used deep learning algorithms combined with weather 
data to forecast single-point traffic flow.

Literature review shows that machine learning models have been widely used in freight volume forecasting 
research. However, few studies take meteorological factors into account and analyse their impact on changes in 
freight volume and rarely utilise deep models with comparatively complex structures. In evaluating a model’s 
effect, researchers only used the error value as the evaluation standard, the pros and cons of the model are not 
comprehensively analysed from the perspectives of the periodic prediction accuracy rate and the stability of 
the prediction effect of different step lengths. Furthermore, there is also a lack of comparative analysis between 
multiple models applied to the same data set.

Therefore, based on expressway toll data, this study utilises the historical data of freight volume in Nanjing 
and Suzhou, meteorological data, date and other time external characteristics as input parameters, and uses RF, 
XGBoost, LSTM and KNN models to forecast the freight volume of the target area. In addition, the prediction 
performance of the four models is comprehensively analysed from the aspects of average error, prediction ac-
curacy and prediction effect stability under different prediction step sizes. Eventually, a fusion model based on 
ridge regression is proposed to comprehensively optimise the prediction ability of the four models.

The main contributions of this paper are as follows:
1)  We compare the prediction effects of the RF, XGBoost, LSTM and KNN models under the input of the 

same data set and analyse their differences in prediction accuracy, periodic prediction accuracy, prediction 
stability with different step lengths, as well as training and prediction durations.

2)  A fusion prediction model is proposed, which realises the fusion of multiclass models. It is proven that it 
has the highest prediction accuracy and the smallest prediction error.

3)  Integrating meteorological factors and time series in forecasting of freight volume has significance in ana-
lysing the impact of weather on transportation and making transportation decisions.

3. METHODOLOGY
3.1 Data sources

A roadway network centre platform stores national expressway toll and portal information. Through statis-
tics, the freight volume data of a research area can be obtained, which provides data support for the forecast of 
expressway freight generation. This research uses the expressway toll data of Jiangsu Province, and each row 
of data records the driving information of a motor vehicle, including vehicle type, the encrypted license plate 
index, entrance location, entrance time (accurate to seconds), exit location and exit time (accurate to seconds).

We performed a one-hot code for seven types of weather conditions (sunny, cloudy, overcast, hazy, light 
rain, moderate rain, heavy rain) for each day in the study area, and normalised wind level and temperature vari-
ables, which were combined with the normalised time, date, number of weeks, average freight volume and trip 
data of 6 categories of vehicles to form an input vector. Simultaneous input of data for consecutive days forms 
an input matrix. Furthermore, the training set and the testing set are divided on this data set, and the K-nearest 
neighbour algorithm is used to predict the freight volume.

d, dh and dp are used to represent the days of data coverage, the days of historical data and the days of pre-
diction, respectively, so the calculation formula of the input sample number Nin is:

in h pN d d d= − −  (1)
The input matrix X and the true value matrix Y can be expressed as:

(1) (2) ( )( , ,..., sX x x x=               (2)

1 2( , ,... )T
NY y y y=           (3)

where x(s) represents the s-th input feature. Then, the training set can be expressed as:
{ }1 1 2 2( , ) ( , ),( , ),..., ( , )N NT X Y x y x y x y= =                             (4)

The training process of each model seeks to find the optimal mapping from X to Y in the training set to mi-
nimise the error between the predicted value and the true value. This mapping is expressed as:

( )T SY Xφ=


 (5)
where ϕ represents the mapping from input to output and T represents the training set.
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The notations utilised in this paper are described in Table 1.
Table 1 – Notations and descriptions

Notations Descriptions

d The days of data coverage (364 days)

dh The days of historical data (7 days)

dp The days of prediction (1 day, 2 days and 3 days)

Nin The number of the input sample

X = (x(1), x(2),…, x(s)) Input matrix

Y = (y1, y2,…, yN)T True value matrix

T = (X,Y) Training data

Ŷ = ϕT,S(X) Forecasted data from models

3.2 Freight volume time series
Using the toll data of the expressway network centre platform for statistics, a set of time series containing 

the average freight volume and operating trip data of six types of vehicles is obtained. The formula for calcu-
lating the freight volume is as follows:

( )k k
h self

K
w w

AHCTV
K

−
=
∑

 (6)

where AHCTV represents the average load of each freight vehicle, k
hw  

represents the total weight of the k-th 
vehicle and k

selfw  
represents the self-weight of the k-th vehicle. K represents the total number of vehicles. 

According to the value recommended by the Ministry of Transport Planning and Research Institute, the self-
weight of different types of freight vehicles is shown in Table 2.

Table 2 – Self-weight of freight vehicles by model

Truck by model Cargo 1 Cargo 2 Cargo 3 Cargo 4 Cargo 5 Cargo 6

Self-weight [t] 2.036 5.728 10.547 13.565 15.290 16.298

This study takes Nanjing and Suzhou in China as the research objects, selects the charging data of the two 
cities in 2021 and counts the average freight volume and running data of six types of vehicles from 00:00 to 
23:59 throughout the day. According to the statistics, the daily freight volumes of Nanjing and Suzhou in 2021 
are shown in Figure 1. As seen from the figure, the cyclical changes in the freight volume data in Nanjing and 
Suzhou in 2021 are drastic and show a significant downward trend on weekends. In addition, during the Spring 
Festival and various holidays, the freight volumes of the two cities are at their lowest points of the year.

Date
 Nanjing      Suzhou

Figure 1 – Freight volumes of Nanjing and Suzhou in 2021
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3.3 Quantification of meteorological factors
The American “Handbook of Expressway Capacity” expounds on the effect of rainfall on expressway op-

erating speed and capacity [41], indicating that light rain will reduce the free-flow vehicle speed by approxi-
mately 1.9 km/h and heavy rain will reduce the free-flow vehicle speed by 4.8‒6.4 km/h. The impact of rainfall 
intensity on traffic capacity is shown in Table 3.

Table 3 – Changes in the influence of rainfall intensity on traffic capacity

Weather variable Rainfall intensity [inch/h] Capacity reduction ratio (%)

Rain

0‒0.1 1.2‒3.4

0.1‒0.25 5.7‒10.1

>0.25 10.7‒17.7

The air temperature primarily affects the temperature of the engine compartment temperature of a vehicle 
and the fatigue degree of a driver. The road temperature will affect the driving conditions of the vehicle tires. 
In summer, the high road temperature and the increased friction between the tires and the road lead to unstable 
tire pressure and the aging of tire rubber, which simply causes the vehicle to lose control. When the average air 
temperature along an expressway exceeds 33°C and the average road surface temperature exceeds 55°C, the 
incidence of traffic crashes increases. In winter, the temperature is low, the road surface is prone to freezing, 
the adhesion coefficient decreases and the tires of motor vehicles slip, which is similar to the decrease in road 
capacity caused by heavy rainfall.

This study primarily selects air temperature, weather conditions (sunny, cloudy, overcast, haze, light rain, 
moderate rain, heavy rain) and wind level as research factors to study and forecast the freight volume in Nan-
jing and Suzhou. The weather conditions during the year are illustrated in Tables 4–6.

Table 4 – Weather conditions in Nanjing and Suzhou in 2021

Weather Sunny Cloudy Overcast Haze Light rain Moderate rain Heavy rain

Nanjing (day) 93 135 74 3 41 12 7

Suzhou (day) 96 110 81 1 54 19 4

Table 5 – Nanjing and Suzhou wind levels in 2021

Wind level Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Nanjing (day) 4 36 170 134 20 1 0

Suzhou (day) 1 25 163 156 18 1 1

Table 6 – Temperatures in Nanjing and Suzhou in 2021

Temperature [°C] <0 [0,5) [5,10) [10,15) [15,20) [20,25) [25,30) >30

Nanjing (day) 7 22 52 72 54 38 113 7

Suzhou (day) 6 16 55 74 49 37 107 7

3.4 Methodological framework

K-nearest neighbour algorithm

KNN is a mode recognition algorithm based on an instance, whose basic principle is to correspond to any 
n dimensional input vector in the feature space and then extract the nearest data category label or predictive 
value of the nearest data as the output.

Using n as the capacity of the sample data set, K is the only hyperparameter in the KNN algorithm. Gener-

ally, its value is a small, odd number, whose range is often (1, )n .
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In the feature space, the distance between two instance points reflects the similarity between them. In KNN, 
the distance measurement function is defined as follows:

1

( ) ( )

1
( , ) | |

n p
l l p

p i j i j
i

L x x x x
=

 
= − 
 
∑

                                       (7)

where xi,xjRn. When p=2, the distance between points is the Euclidean distance, which is the most commonly 
used distance function.

To be used in regression, the KNN algorithm quantifies labels corresponding to data vectors, applying an 
average value method or weighted average value method to attain the predicted value of the test point. The 
weighted average value formula is defined as:

0
1 dist( , )

k

i
i

y y x t
k

= ⋅∑
 

                                               
(8)

where dist is the distance function between vectors and t


 is the data point classified by position.
For high-dimensional input, the radial basis function is often used to assign a weight to K near-neighbour-

ing points and the calculation method is:
2

0
0  1( , )

2
exp k

K k

x x
W x x

K K

  
 
 

−
=


−

                                       
 (9)

During KNN algorithm training, the K value can be adjusted to improve the fitting ability of the algorithm. 
The use of a KD tree to store data for search can solve the problem of slow speed caused by an excessive 
number of samples.

Random forest algorithm

An RF is a representative bagging integrated algorithm. Based on decision trees as a base learner, random 
selection features are introduced during the training process.

The principle is to select K attributes from all attributes randomly and then choose the best segmentation 
attribute as a node to establish a CART decision tree. For the quality of the division attributes and the division 
point, we use the average impurity G(xi,vij) of each child node to measure, and the calculation formula is as 
follows:

( , ) ( ) ( )left right
i ij left right

s s

n n
G x v H X H X

N N
= +

 
(10)

where xv, vij are a certain kind of segmentation attribute and its division value, nleft, nright, Ns are the number of 
training samples of the left and right nodes after the division and the total number of samples of the current 
node, Xleft, Xright is the collection of left and right child node training samples and H(X)is the impurity function 
of nodes. For regression, the mean square error (MSE) and mean absolute error (MAE) are usually used.

The training process of the decision tree is equivalent to an optimisation problem at a certain node, that is, 
to find the minimum segmentation attribute and dividing point of G:

,( *, *) arg min ( , )x v i ijx v G x v=  (11)

The RF adopts multiple different decision trees to increase the robustness and stability of the final model 
prediction results. Decision tree samples and bootstrapping are parameters used to control random sampling 
technology, indicating that training sample set D is repeatedly sampled N times and the parameters are returned 
each time. The probability selected for each sample is 1/N, so the probability of the selection after N time 
sample is:

1 1 1(1 1 (1 lim 1 1 0.633
N N N

NN N e→∞

     − − ⇒ − − = − ≅     
                     

(12)

By satisfying the randomness of characteristics and samples, the RF algorithm compensates for the short-
comings of decision trees in weak generalisation. During training, the number of decision trees and maximum 
depth can be adjusted to improve the fitting ability of the algorithm.
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Extreme gradient boosting

XGBoost is a boosting integrated learning algorithm whose base learner is a CART or linear classifier 
(gblinear) and the learning of the base learner is serial. The CART regression tree’s additional model can be 
expressed as:

1

ˆ ( ) ( ),  
K

i k k
i

y x f X f Fφ
=

= = ∈∑
 

(13)

where { }( )( ) ( : , )m T
q xF f x q R T Rω ω= = → ∈  is the function space comprising all regression trees. fk corre-

sponds to the leaf node score of an independent tree structure q. q is a function reflecting the sample point to 
the leaf point, and T, ωi are the number and score of the leaf nodes. Based on regularisation thought, for a given 

data set { }( , ),1i ix y i n≤ ≤ , it can be useful to learn the model by optimising the following target functions:

1 1

ˆmin ( ) ( , ) ( )
n K

i i kfk i k
L l y y fφ

= =

= + Ω∑ ∑
 

(14)

where 21( )
2

f T lγ λ ωΩ = + ⋅  . l is the loss function and Ω indicates the complexity of the tree. γ, λ are the

regularisation coefficients, which belong to the hyperparameter.
By finding a partial derivative for the loss function, the target function can be inferred as:

2
*

1

1
2

T
j

q
j j

G
L T

H
γ

λ=

= − +
+∑

 
(15)

*
qL is only related to the structure of the tree. It has nothing to do with the leaf nodes. The better the tree 

structure q is, the smaller *
qL  is.

The maximum depth, contraction and characteristic subspace sampling of the tree are restricted to relieve 
model overfitting.

Long short-term memory

LSTM is a deformation structure of a recurrent neural network (RNN). It adds memory units to each hid-
den layer, making the memory information on the time series controlled, thereby overcoming the long-term 
dependence of an RNN.

LSTM controls the deposition or addition of information through a gate to achieve the function of forgetting 
or memory. A forget gate is a sigmoid function belonging to ht‒1, the output from the last former unit and the 
xt input from this unit. Each item Ct‒1 ranged in [0,1] is used to control the forget level of the last former unit, 
which is shown as follows:

[ ]1( , )t f t t ff W h x bσ −= ⋅ +                                               (16)

The input gate contains the output  it of the sigmoid activation function and the output tC  of the tanh func-
tion, which controls what values can be used to update values and create new values, expressed as:

[ ]1( , )t i t t ii W h x bσ −= ⋅ +                                             (17)
[ ]1tanh( , )t c t t cC W h x b−= ⋅ +

                                       (18)
Based on this situation, we can update the cell status of this unit:

1t t t t tC f C i C−= ⋅ + ⋅   (19)
The output gate controls how much the cell status of this layer is filtered. First, the sigmoid activation func-

tion is used to obtain  ot with a range of [0,1]. Furthermore, each pair of cell states Ct is multiplied after the tanh 
function treatment. Finally, the model output ht can be obtained as follows:

[ ]1( , )t o t t oo W h x bσ −= ⋅ +   (20)
tanh( )t t th o C= ⋅                                                 (21)

Aiming at minimising the error of real values and prediction values, the loss function is built up:
( ) ( )

1

ˆmin ( ) loss( , )
T

t t

t
J y yθ

=

=∑
 

(22)
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LSTM performs parameter training with the use of a backpropagation algorithm by constantly adjusting 
weight and bias, which leads to the predicted value closer to the real value. The model framework of LSTM 
is shown in Figure 2.

Figure 2  – The model framework of LSTM

Ridge regression fusion model

Ridge regression is a regression model used to deal with situations where the number of characteristics is 
more than samples or multicollinearity between characteristics. It transforms the process of solving the regres-
sion coefficient ω into an optimisation problem with conditions and then solves it using the minimum daily 
method.

The target function of linear regression is:
2( ) ( )J y Xω ω= −∑  (23)

The ridge regression model adds a paradigm punishment item based on it. It is the regularisation coefficient. 
The expression of the loss function becomes:

2 2
2( ) ( )J y Xω ω λ ω= − +∑     (24)

Inferred from that, the regression coefficient is:
1( )T T

yX X I Xω λ −= +
 (25)

The addition of L2’s punishment items make (XT X + λI) full rank to ensure that it is reversible. λ can avoid 
the impact caused by precise correlation. Adjusting λ can control the offset of the parameter vector ω. The 
larger λ is, the more difficult it is for the model to be affected by multicollinearity. Nonetheless, when it is too 
large, the estimate ω has a large offset and cannot fit the real appearance of the data. Therefore, we need to find 
the best λ value of the model, the common methods include the ω ‒ λ ridge curve and cross-validation.

Ridge regression abandons the unbiasedness of the least squares method and obtains the regression coef-
ficient at the cost of losing part of the information and reducing accuracy. Moreover, it is a more actual and 
reliable method than linear regression, which can alleviate overfitting problems. 

Previous researches have shown that a proper assembly framework can take advantage of a set of learning 
algorithms and obtain better prediction than any single method [42, 43]. It is an effective way to ensemble 
multiple prediction methods in order to integrate various advantages from selected methods set [44].

Instead of selecting a single learning method for prediction, an assemble method based on ridge regression 
is developed to combine the strengths of multiple predictive modelling methodologies. Ridge regression has 
obvious advantages in solving the linear regression overfitting problem as well as ill-conditioned data, so 
we first use four commonly used machine learning models (random forest (RF), extreme gradient boosting 
(XGBoost), long short-term memory (LSTM) and K-nearest neighbour (KNN)) to find the nonlinear mapping 
of X‒Ŷ, and then use the ridge regression method to adjust the weights for linear fitting, so as to improve the 
prediction accuracy. More importantly, the experimental results also verify this point, and the fusion model 
combines the advantages of each prediction algorithm and can be used to obtain superior overall predictive 
performance. The framework of this prediction method is shown in Figure 3.
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Figure 3 – Framework of the fusion prediction model based on ridge regression

3.5 Model prediction performance verification index
The indexes used to evaluate the prediction accuracy include the mean absolute error (MAE), mean abso-

lute percentage error (MAPE) and mean square error (MSE).
The MAE avoids the positive and negative disappearance of errors, which can better reflect the actual situ-

ation of prediction errors. The calculation formula is:

1

1 ˆMAE
prN

i i
ipr

y y
N =

= −∑
 

(26)

The MAPE is the ratio of the absolute error to the real value. It is used to reflect the reliability of different 
measurement results. The calculation formula is:

1

ˆ100%MAPE=
prN

i i

ipr i

y y
N y=

−∑
 

(27)

The MSE can comprehensively refl ect the difference between the prediction value and the real value. The 
calculation formula is:

2

1

1 ˆMSE ( )
prN

i i
ipr

y y
N =

= −∑
 

(28)

In formulas 26–28, Npr is the number of prediction samples, yi is the real value of the i-th time series and ŷi is 
the predicted value of the i-th time series.

4. RESULTS
In the experiment, each model uses the same time step for prediction and output, the input step is 7 days 

and the prediction step is 1 day, 2 days and 3 days. We adopt the same input in the KNN model, RF model, 
LSTM model and XGBoost model, and the input to the ridge regression model is the output results of the first 
four models. For the data set division, the data from the first 255 days (1 January 2021 – 12 September 2021) 
are used as training samples, and the data from the last 109 days (13 September 2021 – 30 December 2021) 
are used as a test sample.

4.1 Analysis of prediction accuracy
The errors of each model under different prediction step sizes are shown in Tables 7–9 and Figures 4 and 5. It 

can be seen that the prediction error of each model generally increases with increasing prediction step size. For 
each step size, the errors of the RF, XGBoost and fusion models are lower than those of the KNN and LSTM 
models when predicting the freight volume in Nanjing, whereas the LSTM model has the lowest error when 
predicting the freight volume in Suzhou.
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Table 7 – Mean square error of different models

Prediction step (day)
MSE (E+09)

KNN RF LSTM XGBoost Fusion model

Nanjing

1 3.2685 1.1680 2.1626 1.1181 0.3889

2 3.6615 2.3021 3.8370 1.7573 0.3613

3 3.3824 2.1378 4.7663 1.8286 0.5087

Suzhou

1 12.2681 7.2708 6.5559 7.6312 3.0605

2 12.8291 14.5936 12.6203 14.0974 8.2204

3 11.3099 20.0618 12.4388 16.3079 7.0805

Table 8 – Mean absolute error of different models

Prediction step (day)
MAE (E+04)

KNN RF LSTM XGBoost Fusion model

Nanjing

1 4.0653 2.2945 3.6242 2.2169 1.4435

2 4.2002 2.9606 4.6809 2.6151 1.5046

3 4.0614 3.1079 5.3513 2.9107 1.7554

Suzhou

1 6.4989 5.0176 4.8117 5.5390 4.2763

2 6.7899 9.7297 6.8172 9.3463 6.3756

3 6.7492 12.2902 7.4637 10.6173 6.2023

Table 9 – Mean absolute percentage error of different models

Prediction step (day)
MAPE

KNN RF LSTM XGBoost Fusion model

Nanjing

1 0.1245 0.0695 0.1020 0.0664 0.0372

2 0.1277 0.0923 0.1332 0.0808 0.0377

3 0.1156 0.0888 0.1448 0.0836 0.0453

Suzhou
1 0.1524 0.1093

0.1789 0.1052 0.1152 0.0693

2 0.1559 0.1789 0.1482 0.1726 0.1017
3 0.1386 0.2036 0.1454 0.1778 0.1042

 a) MSE b) MAE c) MAPE

 1 day            2 days            3 days

Figure 4 – Error curves of each model under different prediction steps in Nanjing
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 a) MSE b) MAE c) MAPE
 1 day            2 days            3 days

Figure 5 – Error curves of each model under different prediction steps in Suzhou

To further compare and analyse the prediction effects of the four models, we used box plots and the cumu-
lative distribution function (CDF) to display the prediction errors. It can be seen from Figures 6 and 7 that the 
median and upper quartile of the MAPE of each model generally increase slightly with increasing prediction 
steps, and the maximum upper quartile is lower than 25%, which indicated the stability of the prediction per-
formance of each model under different step lengths. The CDF curves in Figures 8 and 9 show the cumulative 
distribution of errors in each model under the same step length. The abscissa of a point on the curve represents 
the value of the MAPE, and the ordinate represents the proportion of samples whose MAPE is lower than the 
abscissa of the point. From the figures, we can see that the fusion, RF and XGBoost models perform better than 
the KNN and LSTM models at the same time length for the fitting of Nanjing freight data. However, for the 
fitting of Suzhou freight data, the fusion and LSTM model performances are better.

Day

Figure 6 – Prediction error box diagram of each model under different prediction steps in Nanjing

Day

Figure 7 – Prediction error box diagram of each model under different prediction steps in Suzhou

22.0

17.6

13.2

8.8

4.4

0.0

15.0

12.0

9.0

6.0

3.0

0.0

0.25

0.20

0.15

0.10

0.05

0.00

K
N

N R
F

LS
TM

X
G

B
oo

st

Fu
si

on
 

M
od

el

K
N

N R
F

LS
TM

X
G

B
oo

st

Fu
si

on
 

M
od

el

K
N

N R
F

LS
TM

X
G

B
oo

st

Fu
si

on
 

M
od

el

le9 le4

Er
ro

r v
al

ue

0.5

0.4

0.3

0.2

0.1

0.0
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

KNN RF LSTM XGBoost Fusion-Model

M
A

PE

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
KNN RF LSTM XGBoost Fusion-Model

0.6

0.5

0.4

0.3

0.2

0.1

0.0

M
A

PE



Promet ‒ Traffic&Transportation. 2023;35(2):195-214.  Traffic Engineering

206

Figure 8 – CDF curve of each model under the same prediction step in Nanjing
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Figure 9 – CDF curve of each model under the same prediction step in Suzhou
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We selected 84-day data of Nanjing and 86-day data of Suzhou with obvious periodic changes, and the pre-
diction errors of each model under three step sizes were visualised. The results are shown in Figures 10 and 11. It 
can be seen that the prediction error of the LSTM model is relatively large in the forecast of freight volume in 
Nanjing, and the prediction abilities of the fusion, RF and XGBoost models are better. In contrast, the forecast 
results of freight volume in Suzhou reveal that the fusion and LSTM models have the best fitting effects, indi-
cating that the LSTM model has a better effect on the data set with significant periodic changes.

To sum up, the RF, XGBoost, LSTM and fusion models based on ridge regression may be selected for pre-
diction with a short prediction step, while the fusion model is the best choice for long-step prediction. More-
over, the LSTM and fusion models can be selected for prediction when periodic data set changes evidently.

4.2 Analysis of execution time
The training duration and prediction duration of each model are shown in Table 10, in which the LSTM 

model performed 100 rounds of training. During training, the KNN model only builds a fast search structure, 
while the other models store parameters, which results in a shorter training time for the KNN model. During 
prediction, the KNN model needs to calculate or find similar samples in the training set, leading to a longer 
prediction execution time. In contrast, the training times of the RF and XGBoost models are shorter than the 
LSTM model, and the prediction times are shorter than the KNN model. Meantime, the fusion model needs 
to perform feature fusion on the outputs of the four models, thus contributing to long training and prediction 
execution times. (Machine configuration, CPU: Intel Core i7-7700k 3.60 GHz; memory: 16.0 GB).
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Figure 10 – Prediction results and absolute percent error heatmap for Nanjing
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prediction execution time. In contrast, the training times of the RF and XGBoost models are shorter than the 
LSTM model, and the prediction times are shorter than the KNN model. Meantime, the fusion model needs 
to perform feature fusion on the outputs of the four models, thus contributing to long training and prediction 
execution times. (Machine configuration, CPU: Intel Core i7-7700k 3.60 GHz; memory: 16.0 GB).

550000

440000

330000

220000

110000
0 10 20 30 40 50 60 70 80 90

Day

Fr
ei

gh
t v

ol
um

e 
[t] KNN

RF

LSTM

XGBoost
Fusion
model

M
od

el

1 11 21 31 41 51 61 71 81
Day

0.35

0.28

0.21

0.14

0.07

0.00

MAPE

a) Prediction step of 1d

550000

440000

330000

220000

110000
0 10 20 30 40 50 60 70 80 90

Day

Fr
ei

gh
t v

ol
um

e 
[t]

KNN

RF

LSTM

XGBoost
Fusion
model

M
od

el

1 11 21 31 41 51 61 71 81
Day

0.35

0.28

0.21

0.14

0.07

0.00

MAPE

b) Prediction step of 2d

550000

440000

330000

220000

110000
0 10 20 30 40 50 60 70 80 90

Day

Fr
ei

gh
t v

ol
um

e 
[t] KNN

RF

LSTM

XGBoost
Fusion
model

M
od

el

1 11 21 31 41 51 61 71 81
Day

0.35

0.28

0.21

0.14

0.07

0.00

MAPE

c) Prediction step of 3d

── Ground truth    ── KNN    ── RF    ── LSTM    ── XGBoost    ── Fusion Model

Figure 10 – Prediction results and absolute percent error heatmap for Nanjing
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Table 10 – Training time of each model

Model Training time [s] Prediction time [s]

KNN 0.3823 0.9921

RF 2.4424 0.0232

LSTM 56.1782 0.4229

XGBoost 1.3229 0.1122

Fusion 60.7127 1.5491

5. CONCLUSIONS
In this study, the KNN model, RF model, LSTM model, XGBoost model and fusion model based on ridge 

regression are used to predict the freight volume of the Nanjing and Suzhou expressways with the introduction 
of meteorological information. The main contributions and findings can be summarised as follows.

We find that the prediction errors of the five models generally increased with increasing pre-diction step 
size, but the median and upper quartile of the MAPE increased slightly, and the maximum upper quartile was 
lower than 25%, which indicates that all models are relatively stable.

For different step sizes, in the forecast of freight volume in Nanjing, the prediction effects of the fusion, RF 
and XGBoost models are better than LSTM and KNN models. Among them, the LSTM model has the worst 

── Ground truth    ── KNN    ── RF    ── LSTM    ── XGBoost    ── Fusion model

Figure 11 – Prediction results and absolute percent error heatmap for Suzhou
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performance, which may be because there are two unbalanced sample data segments on the Nanjing freight 
data set, and the LSTN is prone to fall into local optimum, so it is more significantly affected than other models. 
When the prediction step is 1 day, the prediction accuracy of the fusion model reaches 96%, which is 3.2%, 
2.9%, 6.5% and 8.7% higher than the other four models, respectively. In the forecast of freight volume in Su-
zhou, the fusion and LSTM models have better prediction performance. When the prediction step is 1 day, the 
accuracy reaches 93% and 90%, respectively.

The results demonstrate that the fusion model based on ridge regression can automatically adjust the 
weights, integrate the advantages of each model and overcome the limitations of a single prediction method. 
Accordingly, it presents the best prediction effect.

The fusion prediction method of expressway freight volume proposed in this study can provide a basis for 
the transportation management department to master the freight situation of expressways and the dynamic 
monitoring of freight volume. Furthermore, it also helps for exploring the degree of economic development ac-
tivity in urban areas. In a follow-up study, we will further investigate the applicability of the prediction model 
at a smaller time accuracy, and more variables related to freight volume should be introduced to improve the 
accuracy of the model.
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高宁，洪源伯，陈军飞，庞崇浩 

引入气象信息的区域高速公路货运量预测算法

摘 要：
在后疫情时代，对公路货运量进行动态监测是一项重要的工作。高速公路在
公路货运中占据重要的地位。为准确预测整个城市高速公路每日货运量，引
入气象等信息，基于高速公路收费数据集，采用随机森林模型（RF）、极端
梯度提升模型（XGBoost）、长短时记忆神经网络模型（LSTM）、K最近邻
模型（KNN）等4种常用算法对货运量进行预测，并采用岭回归方法对各算法
进行融合，融合模型可综合各预测算法的优点，具有更高的精度和鲁棒性。
以2021年江苏省南京市和苏州市数据为例，利用过去一周的气象数据和货运
量数据，分别对未来1天、2天、3天的货运量进行预测，并从预测精度和训
练时长等方面对各算法的性能进行了对比分析，结果表明：南京市货运量预
测中，随机森林算法和XGBoost算法的整体预测效果更好；苏州市货运量预测
中，LSTM具有较高的精度；基于岭回归的融合预测方法综合了各预测算法
的优点，在两个城市的货运量预测结果中，均表现出最优的效果。
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