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_~ ABSTRACT
@ @ The current development of urban agglomeration greatly promotes the intercity connection
and elevates the significance of intercity mobility system. However, intercity mobility often

This work is licensed exhibits extreme spatiotemporal imbalances due to the diverse urban characteristics. This
under a Creative poses a huge challenge for traffic management and reveals the necessity on understanding
Commons Attribution 4.0 the urban attractiveness for intercity mobility, which is represented as spatial interaction
International License. gravity in this study. While recent works have explored relevant aspects, they failed to pro-
Publisher: vide insights into temporal variations in spatial interaction gravity or capture the determining
Faculty of Transport factors from multiple perspectives. To fill this gap, this study proposed a two-phase frame-
and Traffic Sciences, work to measure the urban spatial interaction gravity and developed determination approach-

University of Zagreb es utilising the large-scale location-based services (LBS) dataset. Specifically, the inverse

gravity model was adopted for the measure within multiple urban agglomerations and city
sets during weekdays, weekends and holidays. Then, we developed the fitting equations of
spatial interaction gravity by incorporating the correlated features associated with social,
economic, network accessibility and land use. The findings present spatial interaction gravity
across different periods and substantiate the distinct determination effects of features, with a
high fitting accuracy. They provide promising supports for the intercity mobility prediction
and pre-emptive traffic management.

KEYWORDS
intercity mobility; spatial interaction gravity model; inverse gravity model; determination
approach.

1. INTRODUCTION

The current development of urban agglomerations prominently promotes the intercity connection and
elevates the significance of intercity mobility system. It underscores the growing necessity for attention on
comprehending intercity mobility patterns, aiming to benefit traffic management in the domain of intercity
transportation. In contrast to urban transportation, intercity mobility commonly exhibits characteristics of
extended travel distance and prolonged travel duration. According to the spatial interaction theory in the
field of intercity mobility, the interaction strength is negatively correlated with the distance between cities,
demonstrating the weak spatial interaction between distant city pairs [1]. Spatial interaction reflects the
interdependence between different cities, which can be well characterised by multiple attributes of urban
development, geographical location and economic activity [2]. As a result, a comprehensive investigation
into urban characteristics helps to capture distinctive characteristics of spatial interaction and offers valuable
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insights into the mechanisms that drive urban attractions for intercity mobility [3].

The scale of spatial interaction between one city and other cities represents the magnitude of urban at-
tractiveness within the intercity mobility system, which has been widely represented as spatial interaction
gravity in the literature [4]. A greater spatial interaction gravity indicates a stronger attraction strength for
intercity mobility. Scholars have utilised a range of approaches to investigate the spatial interaction gravity,
specifically the four-step model [5] and attraction index model [6, 7] stand out as well-known. Zhu et al.
[5] used the four-step model to describe urban attractiveness with the network topological characteristics of
cities, encompassing strength, breadth, density and collaboration. In terms of the attractiveness index model,
Shen et al. [6] investigated the total attractiveness index ranking of Chinese cities from the perspective of
accessibility, while Zhang et al. [7] calculated the culture attractiveness index of different cities considering
cultural attributes. Moreover, the inverse gravity model was used as a common method to calculate various
types of spatial interaction gravity in the field regarding high-speed rail passenger flow [8], air passenger
flow [9], tourism flow [10] and social media check-in [11]. For instance, Zhang et al. [10] used travel record
data to calculate the attractiveness of 170 theme parks in the U.S. He et al. [11] used social media data to es-
timate the spatial interaction gravity of 348 cities in China. The findings from these works generally demon-
strate the outstanding applicability of inverse gravity model in understanding the spatial interaction gravity.

In recent years, several studies have been conducted to measure the spatial interaction gravity across dif-
ferent regions and analyse their spatial distribution [9, 12—13]. For instance, Xiao et al. [9] calculated the city
gravity based on air passenger data between major cities in China and analysed the developmental patterns of
air transportation in different cities over the years. Similar research was conducted by Ma et al. [12] for the
seven urban agglomerations in the Yellow River basin, China. In addition, some novel factors and models were
taken into account. Yan et al. [13] employed a coupled coordination model when measuring urban interaction
gravity. It is worth noting that recent works have predominantly focused on specific urban agglomerations
during the regular periods. However, holidays are far from receiving their deserved attentions in the field of
spatial interaction gravity, despite the significant variations in intercity mobility observed during holidays.

Alongside the prevailing research on spatial interaction gravity, extensive attention has been given to
its influencing factors and determination approaches [14—16]. Jin et al. [14] investigated the impact of so-
cio-economic factors such as the number of employees, production proportion and urbanisation level on
the city quality and used partial correlation analysis to select the influential variables for the city quality
determination. Khadaroo et al. [15] applied a gravity framework to identify the importance of transportation
infrastructure in determining the tourism attractiveness of a destination. Besides, Fofanova and Sychev [16]
analysed the diverse factors of the urban attractiveness using both qualitative and quantitative methods and
concluded that the availability of education and housing, as well as the environmental conditions, could con-
siderably influence the choice of the area. The above listed research demonstrates the correlation between
spatial interaction gravity and multiple urban attributes.

Drawing from the literature review, existing works have conducted extensive research on spatial interac-
tion gravity, yet they fall short in considering the variations across distinct spatiotemporal scales and a more
comprehensive range of determination factors. Firstly, previous works mostly conducted research on specif-
ic periods and analysed each of them separately. However, there is no related findings on the temporal vari-
ation in urban spatial interaction gravity. Secondly, the identified influencing factors of spatial interaction
gravity were concentrated on the macroeconomic and demographic attributes, such as GDP and population.
Unfortunately, these attributes are incompetent in capturing the intercity travel purposes, resulting in the
limited insights into the underlying mechanism behind spatial interaction gravity. Building upon the afore-
mentioned points, existing works have not studied spatial interaction gravity from a dynamic perspective,
and the current findings on influencing factors fail to provide reasonable explanations for this dynamism.
To address the aforementioned research gaps, Table I provides a summary of the determination factors and
spatiotemporal research scales related to spatial interaction gravity, with contrast to our research concerns,
demonstrating the research motivations of this study.
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Table 1 — The attribute, spatial and temporal scope of researches

Reference

Determination factors

Spatial scale

Temporal scale

Xiao et al. [9]

Population, tertiary-sector
percentage, tourism revenue

Main cities in China

Various years (not distinguishing
holidays and weekends, ND)

GDP, population, production

Jin et al. [14] proportion, urbanisation level Provincial capitals in China Single year (ND)
He et al. [17] Economy, society, environment Single urbanczﬁlglgomeratlon n Various years (ND)

Marrocu et al. [18] | Income, density, accessibility Provinces in Italy Single year (ND)
Gao et al. [19] Economy, population Prefecture-level cities in China Various years (ND)
Liu et al. [20] Population Prefecture-level cities in China Various days (ND)
Surya et al. [21] Economy, society, environment Single metropolis in Indonesia Various years (ND)

Xia et al. [22] Population Main cities in Australia Single year (ND)

This study

POI density, land use, economy,
society, network accessibility

Multiple study areas in China
(covering provincial capitals,
first/second- tier cities and urban
agglomerations)

Multiple periods (distinguishing
weekdays, weekends, traditional
holidays and modern holidays)

In this study, we aim to provide novel insights into the spatiotemporal variations in spatial interaction
gravity and identify the significant determination factors from multiple perspectives. The main contributions
of this study are summarised as follows:

- we proposed a two-phase framework to measure spatial interaction gravity across multiple spatial scales
and identify the determination factors from multiple perspectives, involving social, economic, network
accessibility and land use;

- we studied the temporal variations in urban spatial interaction gravity by distinguishing distinct periods,
including weekdays, weekends and holidays, and analysed the distribution characteristic of spatial inter-
action gravity in both large-scale and small-scale urban agglomeration;

- we quantified the correlation between spatial interaction gravity and determination factors, then devel-
oped the high-accuracy fitting models for spatial interaction gravity in each period.

This study extends the research on spatial interaction gravity to a perspective incorporating differences
across multiple spatiotemporal scales and refining its determination factors. It holds promising applications
towards the quantitative measurement of intercity connections of a city to other cities, thus providing valu-
able guidance for the pre-emptive management within intercity mobility systems.

The remainder of this study is organised as follows. Section 2 introduces the multi-source datasets. Sec-
tion 3 presents the methodology, including the inverse gravity model and the stepwise regression within the
proposed two-phase framework. Section 4 measures the spatial interaction gravity; Section 5 presents the
determination factors and develops the fitting models. Section 6 concludes this study and provides the future
research direction.

2. DATA SOURCE

2.1 Study area

The research area of this paper is divided into two aspects. One aspect focuses on the long-distance
intercity travel, including two city sets: provincial capital cities (Figure /a) and first- and second-tier cities
(Figure 1b). The second aspect focuses on the short-distance intercity travel, represented by three urban ag-
glomerations: the Yangtze River Delta Urban Agglomeration (Figure I¢), the Yangtze River Midstream Urban
Agglomeration (Figure 1d) and the Beijing-Tianjin-Hebei Urban Agglomeration (Figure /e) in China.

The selection of study areas considers their vast urban scale and strong intercity connections. Provincial
capitals and first- and second-tier cities have concentrated populations and active economies. The first- and
second-tier cities in China have a total population 0f 495.12 million, representing 35 percent of the country’s
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Figure I — Cities and urban agglomerations distribution of study area

total population. These cities also have a total GDP of 596 billion yuan, accounting for 49 percent of the
country’s total GDP. In addition, the three urban agglomerations contain most developed cities in China and
account for a large area. For example, the Yangtze River Midstream Urban Agglomeration contains 31 cities
with a land area of about 326,100 square kilometres. They all have gathered a large population and formed
the coordinated intercity traffic networks.

2.2 Data and processing

LBS data

Recently, due to the widespread use of mobile phones, the real-time location information of travellers
can be obtained from location-based services (LBS) provided by the mobile APPs. The LBS data is provid-
ed from the published migration data platform (https://qianxi.baidu.com/), which traced travellers based on
their location and recorded the intercity mobility for the data analysis. The platform currently has more than
1 billion users in most countries around the world, serves more than 650,000 active APPs and websites, and
responds to more than 120 billion global location service requests per day. Once travellers submit a location
request, current location will be stored with a unique label. By integrating this information, the platform can
provide real-time data on the intercity traffic flow between cities in China, offering a convenient means to
understand inter-city traffic demand and identify traffic hotspots.

The intercity mobility dataset from 1 January 2023 to 31 May 2023 was downloaded in this paper. This
dataset includes a total of 498,222 intercity flow records and contains the following information in each re-
cord: date, departure city, arrival city, intercity flow (i.e. OD flow), generation volume of departure city and
attraction volume of arrival city.

In order to present the temporal variation in intercity mobility, the daily traffic volume of the whole coun-
try was obtained, as shown in Figure 2a. It demonstrates the significant difference during various periods,
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such as weekdays, weekends and holidays (which contain the traditional holidays and modern holidays). On
weekdays and weekends, the traffic volume is the lowest at midweek and the highest at weekends, showing
a fluctuating trend. On modern holidays (Labour Day), the traffic volume increases sharply and emerges a
peak which is significantly larger than the traffic volume on weekdays and weekends. In addition, there is
a peak in traffic volume before and after the traditional holidays (Spring Festival), respectively. Consider-
ing the above stated differences, the following study focuses on the multiple periods, including weekdays,
weekends, the period before the Spring Festival, the period after the Spring Festival and Labour Day (which
is on 1 May in China). Among them, we have chosen 6 March to 26 March as the time range of weekdays
and weekends, 15 January to 21 January as the time range before the Spring Festival, 24 January to 30 Janu-
ary as the time range after the Spring Festival, and 29 April to 3 May as the time range of a modern holiday.
The temporal and spatial scope in this study is summarised in Table 2.

There are also differences in spatial interaction gravity between short-distance and long-distance urban
agglomerations. Figure 2b-2c exhibits their respective temporal variations by taking two specific origin-des-
tination (OD) pairs as examples. For short-distance city pairs, the travel volume is generally low during
midweek and high on weekends, exhibiting regular fluctuations. The overall traffic volume between cities is

Table 2 — The temporal and spatial scope in this study

Type Name Range Coverage

PCC Provincial capital cities 30 cities
) FSTC First- and second-tier cities 49 cities
SSE:;:;I YRDC Yangtze River Delta Urban Agglomeration 27 cities
YRMC Yangtze River Midstream Urban Agglomeration 31 cities
BTHC Beijing-Tianjin-Hebei Urban Agglomeration 13 cities

BSF Period before the Spring Festival from 15 January to 21 January 7 days

ASF Period after the Spring Festival from 24 January to 30 January 7 days

Tzr:aliz;al WDAY Weekdays in the time range from 6 March to 26 March 15 days

WEND Weekends in the time range from 6 March to 26 March 6 days

LD Labour Day period from 29 April to 3 May 5 days
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smaller, with travel volume fluctuating irregularly during weekdays and weekends. Considering the differ-
ent distribution of traffic volume, ensuing analysis will focus on the short-distance and long-distance urban
agglomerations, respectively.

City attribute data

To comprehensively analyse the factors contributing to temporal variations in urban spatial interaction
gravity during different periods, we have selected urban attribute data consisting of land use, social, eco-
nomic and network accessibility data for subsequent analysis.

The highway distances were obtained through the application programming interface (API) of an online
map with the latitude and longitude of departure and arrival cities. In this study, we utilised the points of in-
terests (POI), downloaded from the API of Gaode Map, to characterise the urban land use, as suggested by the
recent work [23-25]. Specifically, POIs are divided into eight categories: eating, business, shopping, finance,
accommodation, education, tour and entertainment. We calculated the POI density and the percentage of each
type of POI in this study. Data on GDP, population, area, primary industry proportion, secondary industry
proportion, tertiary industry proportion, airport runways number, rail lines number and expressways number
for each city were obtained from the National Bureau of Statistics to present the features related to social,
economic and network accessibility. The airport runways number mainly counts the number of runways of
civil transport airports. Finally, the name and description of each feature are summarised as shown in 7able 3.

Table 3 — The name and description of each feature

Type Index Name Unit Description
1 POID km? POI density
2 EAP / Proportion of eating category
3 BUP / Proportion of business category
4 SHP / Proportion of shopping category
Land use 5 FIP / Proportion of finance category
6 ACP / Proportion of accommodation category
7 EDP / Proportion of education category
8 TRP / Proportion of tour category
9 ENP / Proportion of entertainment category
. 10 POPU 10,000 people Population
Social feature
11 AREA km? Area
12 GDP 100 million yuan Gross domestic product
Economic 13 PRIP / The proportion of the primary industry
feature 14 SECP / The proportion of the secondary industry
15 TERP / The proportion of the tertiary industry
Network acces- 16 ARN / The number of airport runways
sibility 17 RLN / Number of rail lines
18 EWN / The number of expressways

3. METHODOLOGY

Figure 3 illustrates a two-phase framework for the spatial interaction gravity in the intercity mobility
system. Phase 1 measures the spatial interaction gravity across different spatiotemporal scales using the
inverse-gravity-based standard algebra model (SAM) [8]. This model quantitatively measures urban spatial
interaction gravity with the nodal attraction solved from the inverse gravity model, which have been proven
to have an excellent applicability by relevant research, such as [4] and [14]. Since the SAM takes advantages
in accurate computation of spatial interaction gravity for large scale network systems [8], this study adopts
it as the computing core of Phase 1. Phase 2 understands the relationship between spatial interaction gravity
and multiple urban attributes involving land use, social, economic and network accessibility. On this basis,
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Figure 3 — The two-phase framework for the urban spatial interaction gravity

the determination approach of spatial interaction gravity is developed with the stepwise regression, since it
can identify the significant explanatory variables and screen out variables that have multicollinearity issues
with other variables [26]. The detailed methodology is presented as follows:

Phase 1: Measuring the spatial interaction gravity
The expression for the gravity model is:
mA (xi,xi2, - )A;(xj1,% 2, )
Gi= F(dy) (1)
j

where Gl.j is the intercity traffic flow from city i to city j; m is a constant; 4, and Aj are the spatial interaction
gravity of city i and j, respectively; x,, x,,, X1> X}, A€ the social, economic, network accessibility and land
use features of city i and city j; F(dij) is the distance constraint function. Let the constant coefficient be
k=1/m, the inverse form of the gravity model is obtained by varying Equation I:

A[(Xil,XQ,"')Aj(le,XjZ,"'):kGyF(diJ), iaj: 1729"'9719 l%j (2)

where 7 is the number of cities. When there are #n cities, n(n-1)/2 equations like Equation 2 can be obtained.
In these equations, 4, appears (n-1) times. The specific steps for solving the spatial interaction gravity of a
city will be described below. Multiply all the equations together and extract a square root:

Ardods-A,="" T [kGysF(dy)] i#) 3)

i=1j=i+1

Multiplying the equations containing 4,, 4y, 43,", 4
A'f-z(AlAsz“An) =k H GyF(dy)

n’

Jj=2
p-1 n

Ay (A1 A2ds - An) =K [ GpF(dy) T] GuF(dy), 1 <p<n (4)
i=1 j=p+l1

n-1
AV (A14243--An) = k! H GuF(din)

i=1
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The spatial interaction gravity for each city is obtained by dividing each term in Equation 4 by Equation 2
and then rooting:

Ar=Vk-"2 TL GyF(ay)", | T1 [GyF(dy)]
j=2

i=1j=i+1

—JE Hc,pm,p) 11 GuFd)™ | 11 [GsF(d)]. 1<p<n 5)

j=p+1 i=lj=i+1

=Vk-"? HGmF(dm T [6sF(dy)]

i=1j=i+1

In this study, the average intercity flow of a certain period was selected as the measure of spatial interac-
tion between cities. The calculation of the inverse gravity model requires a symmetry matrix as it is general-
ly recognised that the intercity traffic exchange maintains equilibrium. This equilibrium has been validated
by the average Gl.j and Gﬂ. with close values in our dataset, thereby we use their summation to construct a
symmetry matrix of intercity flow.

In this study, a distance constraint function in the exponential form was utilised in the gravity model and
inverse gravity model, suggested by its widespread use in previous works [27, 28] to describe the distance
decay effect. The distance decay exponent is set to 0.6 and constant coefficient k is set to 100 according to
the practice of the gravity model in China [9]. The specific form of inverse gravity model is:

Ai(xi,xn, - )A;(xj1,x,+-) =100 G- d,] , Lj=1,2,-,n, i#] (6)

Phase 2: Development of influencing factors and determination approaches

The correlation analysis between the influencing factors and the spatial interaction gravity was firstly
performed by the Pearson correlation coefficient. The Pearson correlation coefficients for variables X and Y
are calculated as follows:

Z()ﬂ X)(Y:-7)
r= = (7)
;(Xi'Y)z ;(Y}-?)z

where X, Y, are observations and X, Y are their respective means. Variables with correlations greater than 0.5
were selected for the next regression modelling.

Stepwise regression is chosen for the determination approach as it stands as a widely employed tech-
nique for variable screening in multiple regression analysis and possess excellent interpretability. To be
more specific, the eligible variables are determined with the significance testing before inputting the model.
Moreover, variables that entered the model are tested again to exclude those that are not qualified, consid-
ering the possibility of non-significance or covariance of variable combinations. This approach ensures that
the explanatory variables finally retained in the model are both significant and not severely multicollinear.

Finally, by incorporating the urban attributes in social, economic, land use and network accessibility,
multiple linear fitting equations for the spatial interaction gravity can be constructed using stepwise regres-
sion, as follows:

A(x1,x0,-)=a+ D bixi, i€{1,2,--} (8)
where, a is a constant. b, is the coefficient of variable. x; is the selected variable.

4. MEASURING THE SPATIAL INTERACTION GRAVITY

We programmed the inverse gravity model with Python 3.10 on PyCharm Community Edition 2023.1.3
to measure the spatial interaction gravity in different spatiotemporal scales with intercity flow and distances.
For each urban agglomeration or city set, gravitational maps are depicted for periods characterised by the
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minimum and maximum average interaction gravity, serving as examples to illustrate spatial distribution of
interaction gravity. Moreover, the overall distribution of spatial interaction gravity across all periods is also
showcased in ensuing sections.

4.1 Spatial interaction gravity for long-distance urban agglomerations

The spatial interaction gravity among provincial cities during each period is shown in Figure 4. Regarding
spatial distribution, the spatial interaction gravity of megacities such as Beijing, Shanghai, Guangzhou and
Chengdu is the highest, exceeding 5,000. The spatial interaction gravity of central cities such as Chongg-
ing, Wuhan and Changsha is the second highest, ranging between 2,000 and 5,000. In contrast, the spatial
interaction gravity of western cities such as Xining, Lanzhou and Yinchuan is the lowest, below 1,500. The
overall distribution exhibits a “spindle” structure, with eastern cities demonstrating a relatively high attrac-
tiveness and western cities demonstrating a relatively low one.
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Figure 4 — Spatial interaction gravity for periods in the provincial capital cities

The spatial interaction gravity among first- and second- tier cities during each period is shown in Figure 5.
The spatial distribution is broadly similar to that of the provincial capitals, with a general trend of decreasing
from south-east to north-west. The difference is that the attractive cities are located in the coastal regions,
with the Yangtze River Delta and the Pearl River Delta forming two strongly attractive city clusters.

Comparing the average spatial interaction gravity among long-distance cities over different periods, we
find that, in descending order, the highest values are found on Labour Day, followed by weekends, weekdays
and post-Spring Festival, with the lowest values before the Spring Festival. It reveals that despite a signifi-
cant increase in the total intercity flow nationwide during the Spring Festival, interactions among developed
cities decrease compared to weekdays and weekends. Comparing between weekends and weekdays, the
higher intercity interaction gravity on weekends demonstrates a greater intention for long-distance trips. The
spatial interaction gravity after the Spring Festival is higher than that before the Spring Festival and that is
contributed by the attractiveness of large cities for people returning to work places. Regarding the variations

334



Promet-Traffic& Transportation.2023;36(2):326-344. Traffic in the Cities

Spatial inferacti ® 733 Yangtze o T Yangtze
Spatfal interaction .Harhm Yangzhou |[River Deltal S["“f“ly interaction .l-:;lz:’)"‘ Qangzhou River Dt'lta
gravity 1821 | hon @ grav.lt) 200 Changzhou-=
o 200 ST Nantong ) | Changchun 13 Nanwng
@ 5000 .Clmng&huu‘ .v1Vs77 1234 @ 5000 | @887 U waxi@) 1
@ 10000 104 G, P @ 10000 . Shepyafig " “h 2034]] Jﬁ N
UZ) y 2 N, Zho!
v v 3452 Shanghai . 17000 L od y [V1268g 5354
Beijng Tarfgshan p ® 9108 Beijing 2 " ‘hfsgofﬁ
L 865¢ ““‘;’j » : Hangzhou 1NN 85T Tangshian [angzhgu JiaXing
! ’ angz .0“ 917 P - e 267 < Dalian 9316 B
A Shaoxmg. Ningbo| 4 / Shma i Thll)um @20 Shﬂﬂxmg. ngb
718 - 2098@ - ' Taiyun @ 1582 S ang. Yantai 3275
uangzhou Hluzhou. Lanzhou 84 0 635 ‘}uunthou Huizhou
® 588 RO Qingdao v @ 0@
Dti%'g)uan g 26 Foshan () Dongguan
820

N 1302

S Shenzhen
Zhongshan % |
‘ L 5629, | « -
4631 Wahar Gy D) e | g Chcngg ) ¥ 7.9 @
(,hongqing 2897. 19« Jo 5904@ ) 478. 2728
@315 Zhuhai  [Pearl River] 5 Nunéhang
(4 @737 Delta g wiZhou
1500 e 1041 939 @ 2454 Ji'&'é“" 802
B S i S
L, .Filzal;)\l e .F“zshiml
Kunming .. XT:(I;“ Quanzhou ) <xla%e]n'Quamlmu
2425 ( 504 SN5e8
D,
annmg
1421
a) Before Spring Festival b) Labour Day
18000
E:. Bef Spring Festival b 8000 |-
= 16000 efore Spring Festival Z
g‘) 14000 = After Spring Festival gﬂ 5000 |5
g 12000 ‘Weekday g
é 10000 Weekend § 4000 |- .
§ 8000 ® Labour Day § 2o L o — 373 406
£ 6000 g
g 4000 ,§ o b
2 2000 H | ‘ ‘ S
@ o ‘ ||HMH‘MH\M\ l’lln“'ll\h Wmi‘llllnnm\.n b @ 2000 | i ! | | |
$ S S e, - -
x\&, Q\y &1@@«&;’& & ,z,é ‘\&&& "S@& 5&\243 1?‘\°°"&Vx°«{ o ff Before Sprlng After Sprlng Weekday Weekend Labour Day
& o o e.&\\\ a 4)° ¥ Festival Festival
City °
¢) Distribution of interaction gravity d) Average interaction gravity

Figure 5 — Spatial interaction gravity for periods in the first- and second-tier cities

in intercity interaction gravity during modern holidays, there is a concentrated trend towards large cities.
Central cities like Beijing, Shanghai, Chengdu, Xi’an and Wuhan have seen a large increase in spatial inter-
action gravity compared to regular periods, with increments of over 1,000. In contrast, small cities such as
Nanning, Urumqi, Shenyang, Foshan and Huizhou have the reduced spatial interaction gravity.

4.2 Spatial interaction gravity for short-distance urban agglomerations

The spatial interaction gravity within the Yangtze River Delta Urban Agglomeration in each period is
shown in Figure 6. The results demonstrate the concentrated gravity of Shanghai, with values exceeding
10,000 in all periods. Less attractive cities are primarily located along the Yangtze River and the southeast
coast. The spatial interaction gravity decreases from the eastern seaboard to the western hinterland.

The spatial interaction gravity within the Yangtze River Midstream Urban Agglomeration in each period
is shown in Figure 7. Similarly, central cities like Wuhan and Changsha have a larger spatial interaction grav-
ity. The gravity of cities around central cities commonly stays in a low level, which reveals the development
patterns of satellite cities within urban agglomerations.

The results of spatial interaction gravity within Beijing-Tianjin-Hebei Urban Agglomeration in each pe-
riod are shown in Figure 8. The distribution of cities is relatively dispersed in this urban agglomeration, with
concentrated gravity in provincial capital cities such as Beijing, Tianjin and Shijiazhuang. In addition, the
cities located between provincial capital cities have higher gravity compared to surrounding cities.

Comparing the average spatial interaction gravity for short-distance urban agglomerations in different
periods, common findings reveal the highest spatial interaction gravity on modern holidays, followed by
weekends, post-Spring Festival, pre-Spring Festival and weekdays. Compared to the results for long-dis-
tance urban agglomerations, the gravity during the Spring Festival is larger than that on weekdays. This
indicates that there is strengthened intercity mobility among short-distance urban agglomerations.
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Figure 6 — Spatial interaction gravity for periods in the Yangtze River Delta Urban Agglomeration
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Figure 7 — Spatial interaction gravity for periods in the Yangtze River Midstream Urban Agglomeration
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Figure 8 — Spatial interaction gravity for periods in the Beijing-Tianjin-Hebei Urban Agglomeration

Regarding the variations in spatial interaction gravity during modern holidays, there is also a concentrat-
ed trend towards large cities during modern holidays. For instance, the spatial interaction gravity of Shang-
hai in the Yangtze River Delta Urban Agglomeration on Labour Day is 20,258, much larger than that on
weekends, 13,695. Tianjin in the Beijing-Tianjin-Hebei Urban Agglomeration has a spatial interaction grav-
ity of 13,249 on Labour Day, with an increase of 57.41% compared to the weekend. In addition, small cities
exhibit a larger spatial interaction gravity during the Spring Festival compared to weekdays and weekends.
For instance, Huanggang, Yueyang and Yichun, located in the Yangtze River Midstream Urban Agglomer-
ation, exhibit higher gravity during the Spring Festival compared to weekdays and weekends. Moreover,
Anqing in the Yangtze River Delta Urban Agglomeration has even higher gravity during the Spring Festival
than that during Labour Day.

5. INFLUENCING FACTORS AND DETERMINATION APPROACH

5.1 Correlation coefficient analysis

The correlation coefficient is utilised to present the influencing degree of each factor on the spatial inter-
action gravity. For datasets in different spatiotemporal scales, Pearson correlation coefficients between the
spatial interaction gravity and urban attributes were calculated utilising the IBM SPSS Statistic 26 software,
as shown in Figure 9.

Both in long-distance and short-distance urban agglomerations, spatial interaction gravity shows a sig-
nificant correlation with both GDP and population, with GDP demonstrating the strongest association. Spe-
cifically, the airport runways number, tertiary industry proportion, expressways number and the proportions
of shopping and entertainment have a large influence on spatial interaction gravity within the long-distance
urban agglomerations. In addition, there exists a moderate correlation between POI density and spatial in-
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Figure 9 — The Pearson correlation coefficients of each influencing factor on urban spatial interaction gravity in different periods
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teraction gravity among provincial capital cities. However, among first- and second-tier cities, the influence
of the secondary industry proportion and the number of rail lines is found to be less significant.

The spatial interaction gravity of short-distance cities is strongly influenced by POI density, tertiary indus-
try proportion, airport runways number, rail lines number and shopping. The correlation of the expressways
number with spatial interaction gravity in the Yangtze River Delta and the Beijing-Tianjin-Hebei Urban
Agglomerations is significant. Moreover, the correlation of accommodation and entertainment is general
in the Yangtze River Midstream Urban Agglomeration, while education is strongly correlated with spatial
interaction gravity in the Beijing-Tianjin-Hebei Urban Agglomeration.

When comparing the correlation of influencing factors across different periods, the following patterns
can be captured. Population and airport runway numbers are strongly correlated with spatial interaction
gravity during the Spring Festival than other periods. The tertiary industry proportion has a significant im-
pact on weekdays, weekends and modern holidays. Within long-distance urban agglomerations, the propor-
tion of entertainment has the highest correlation during modern holidays while that of shopping is strongly
correlated with spatial interaction gravity on weekends. The correlation between POI density and spatial
interaction gravity is generally higher on weekdays, weekends and modern holidays compared to the Spring
Festival, within short-distance urban agglomerations. Rail line numbers have the greatest impact on the at-
tractiveness of the Yangtze River Delta Urban Agglomeration during modern holidays. Finally, educational
relevance is strong during the Spring Festival in the Beijing-Tianjin-Hebei Urban Agglomeration, which is
attributed to the intercity mobility of students returning home for the Spring Festival and then returning to
school after the Spring Festival.

Through correlation analysis, significant features whose correlation coefficient is larger than 0.5 were
selected for the determination approaches of spatial interaction gravity.

5.2 Regression result and analysis

Multiple linear fitting models were developed with the stepwise regression utilising the IBM SPSS Sta-
tistics 26 software. We took into consideration both the fitting goodness and the multicollinearity among
variables when developing the fitting models. Variance inflation factor (VIF) was used to characterise the
linear relationship between each independent variable and other independent variables. Concerning the VIF
threshold, researchers have extensively suggested a value of 10 [29, 30], which corresponds to the toler-
ance suggestion of 0.1. Drawn from the findings by [31-33], the VIF less than 10 (i.e. the tolerance greater
than 0.1) for each independent variable indicates that there is no multicollinearity issue between variables.
Hence, this study follows the VIF threshold of 10 to determine the multicollinearity between independent
variables considering that the rationality can be guaranteed by the common practice in the literature. Among
variables with multicollinearity, the ones that exhibit a stronger correlation with spatial interaction gravity
were chosen for selection. The final variable set includes GDP, population, POI density, tertiary industry
proportion, airport runways number, rail lines number and the proportion of entertainment, denoted as X,
X,, X5, X, Xs, X, X, respectively. Then, we developed the determination approach with the regression mod-
el and evaluated the model performance with adjusted R-square. The fitting results are summarised in Table 4.

By comparing the variables and variable coefficients across the fitting models, we know that: GDP, the
most highly correlated factor, is widely used for all periods in all city sets. In addition, the fitting models for
each spatial scale are respectively analysed below, along with the visual comparison between real values and
predicted values shown in Figure 10.

Among the provincial capital cities, the airport runways number is selected for the fitting models of the
Spring Festival, with a larger coefficient than that in the models of weekdays. The proportion of tertiary
industry is contained in the models for weekdays and weekends, which reveals that the development level
of provincial capital cities is primarily reflected in the tertiary industry. Furthermore, the proportion of en-
tertainment is included in the models for modern holidays. It demonstrates that our models are capable of
capturing the concentrated travel purpose in tourism and entertainment on modern holidays.
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Table 4 — The fitting equations of the spatial interaction gravity

Cities Periods Fitting equation Adjusted R?
PCC BSF -326.659+0.112X,+722.783 X 0.880
ASF -369.441+0.119X,+805.992X 0.858
WDAY -5503.017+0.136X,+8922.61X,+473.672X; 0.871
WEND -7586.23+0.186.X,+8329.127X,+213632.511.X, 0.880
LD -4335.66+0.267X,+346770.121.X, 0.800
FSTC BSF -1022.412+0.13X,+0.655X,+294. 25 L. X, +15.817X 0.954
ASF -2258.587+0.163X, +3287.357X,+451.394.X; 0.961
WDAY -4065.648+0.217X,+6654.612.X, 0.952
WEND -4151.006+0.22X,+6789.572X, 0.932
LD -7273.155+0.306X,+8524.807.X,+142775.141X, 0.966
YRDC BSF -426.5+0.242.X,+38.889.X, 0.948
ASF -517.139+0.24X,+50.18X, 0.948
WDAY -812.974+0.254X,+52.195X, 0.954
WEND -1058. 797+0.28X,+66.139.X, 0.951
LD -1441.737+0.408X,+90.815.X, 0.944
YRMC BSF -738.73+0.177X,+2.186X,+57.417.X; 0.973
ASF -659.092+0.167X,+2.813X,+47.159X, 0.970
WDAY -701.046+0.393.X,+56.084.X; 0.911
WEND -1003.05+0.445X,+80.048.X; 0.943
LD -1430.04+0.681.X,+125.301.X; 0.972
BTHC BSF -5508.312+0.184X,+3.241X,+10335.656.X, 0.944
ASF -6037.005+0.18X,+3.618X,+11585.881X, 0.945
WDAY -4464.38+0.28X,+12109.989.X, 0.946
WEND -5835.515+0.361X,+14509.422.X, 0.936
LD -9456.989+0.287X,+5.051X,+19122.532X, 0.920

Among first- and second-tier cities, intercity mobility concentrates on long-distance travels during the
Spring Festival, and the fitting models include the airport runways number and rail lines number. In addi-
tion, the tertiary industry proportion appears in the fitting models for weekdays, weekends and modern holi-
days, and the impact is greater during modern holidays. It demonstrates that first- and second-tier cities have
well-developed economies and large service sectors. Furthermore, the proportion of entertainment that appears
in the models for modern holiday highlights that first- and second-tier cities are good leisure destinations.

The rail lines number is incorporated in all fitting models for the Yangtze River Delta Urban Agglomeration,
which is attributed to the dense rail network and high accessibility. The effect of rail line number is greater during
the modern holiday when the number of traveling tourists increases. Moreover, the impact of rail line number is
greater during the regular period than Spring Festival. It manifests that the convenience of the rail is more signif-
icant when people engage in business travel and visiting friends and relatives on weekdays and weekends.

In the Yangtze River Midstream Urban Agglomeration, POI densities are incorporated in the fitting mod-
els for all periods, illuminating that cities with higher POI densities tend to be more attractive and there are
significant development gaps between cities. The effect of POI densities is greater during the modern holi-
day, which indicates that the level of development in a city’s culture, tourism, commerce and other aspects
has a significant impact on its attraction to passenger flow.

The proportion of tertiary industry is included in the fitting models of the Beijing-Tianjin-Hebei Urban
Agglomeration for all periods, proving the tertiary industries are prosperous. It has a noticeable influence on
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Figure 10 — The real and predicted spatial interaction gravity values of different urban agglomerations

the spatial interaction gravity on weekdays, weekends and holidays. In addition, spatial interaction gravity
is determined by population on the Spring Festival and Labour Day. The influence of population is amplified
during modern holidays when there is an influx of tourist arrivals.

6. CONCLUSION
This study focused on the spatial interaction gravity across multiple spatiotemporal scales. It yields new

insights into the influencing factors and determination approaches by incorporating the temporal variations

and spatial diversity. Specifically, a two-phase framework was proposed to measure and analyse the spa-
tial interaction gravity utilising the large-scale LBS dataset. The main contributions and findings are sum-
marised as follows.

Phase 1 measures the spatial interaction gravity across different urban agglomerations on weekdays,
weekends, the Spring Festival and Labour Day with the inverse-gravity-based standard algebra model. The
general findings are concluded:

- the average spatial interaction gravity on modern holidays is the highest. Within the long-distance urban
agglomeration, the average gravity on weekdays and weekends is greater than that on the Spring Festi-
val. However, in the short-distance urban agglomeration, the average gravity after the Spring Festival is
greater than that on weekdays.

- during modern holidays, the spatial interaction gravity exhibits a concentrated trend to large cities, while
the gravity of small cities is decreased.

- during the tradition festival like the Spring Festival, the spatial interaction gravity is increased for small
and medium-sized cities in short-distance urban agglomeration, with a higher value than that on week-
days and weekends.

Phase 2 captures the significant factors influencing the spatial interaction gravity by incorporating the
urban attributions in social, economic, land use and network accessibility, and develops the determination
approach with the stepwise regression. The high adjusted R-square indicates the superiority of the devel-
oped models. The general findings are concluded:
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GDP exhibits the strongest correlation with the spatial interaction gravity. Within the long-distance ur-
ban agglomeration, spatial interaction gravity is largely affected by the airport runways number, tertiary
industry proportion, expressways number and the proportion of shopping and entertainment. In contrast,
the key influencing factors are POI density, tertiary industry proportion, airport runways number, rail
lines number and the proportion of shopping for short-distance urban agglomerations.

in terms of spatiotemporal differences, population and airport runways number largely determines the
spatial interaction gravity on the Spring Festival, whereas the tertiary industry proportion has a notable
effect on weekdays and weekends and modern holidays. The proportion of entertainment has the greatest
correlation with spatial interaction gravity on modern holidays within long-distance urban agglomera-
tions. In contrast, this role is replaced with the POI density within short-distance urban agglomerations.
This study contributes to providing a practice towards the intercity mobility system by measuring the spatial

interaction gravity and analysing their spatiotemporal variations with the real-world LBS dataset. However,
due to the limited collection capability of urban attributes, we chose a relatively small alternative attribute set
to construct the fitting model of spatial interaction gravity. More urban attributes are expected for the proposed
framework to further refine the fitting model and improve the model accuracy. Moreover, in the future work,
we aim to incorporate the measured spatial interaction gravity and its key determination factors into the predic-
tion model driven by machine learning algorithms to accurately predict the intercity origin-destination (OD)
flow. Also, our findings on spatiotemporal difference of spatial interaction gravity presents a future research
direction in modelling the variations in traffic demand across special periods, such as holidays.
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