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1. INTRODUCTION
The current development of urban agglomerations prominently promotes the intercity connection and 

elevates the significance of intercity mobility system. It underscores the growing necessity for attention on 
comprehending intercity mobility patterns, aiming to benefit traffic management in the domain of intercity 
transportation. In contrast to urban transportation, intercity mobility commonly exhibits characteristics of 
extended travel distance and prolonged travel duration. According to the spatial interaction theory in the 
field of intercity mobility, the interaction strength is negatively correlated with the distance between cities, 
demonstrating the weak spatial interaction between distant city pairs [1]. Spatial interaction reflects the 
interdependence between different cities, which can be well characterised by multiple attributes of urban 
development, geographical location and economic activity [2]. As a result, a comprehensive investigation 
into urban characteristics helps to capture distinctive characteristics of spatial interaction and offers valuable 
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ABSTRACT
The current development of urban agglomeration greatly promotes the intercity connection 
and elevates the significance of intercity mobility system. However, intercity mobility often 
exhibits extreme spatiotemporal imbalances due to the diverse urban characteristics. This 
poses a huge challenge for traffic management and reveals the necessity on understanding 
the urban attractiveness for intercity mobility, which is represented as spatial interaction 
gravity in this study. While recent works have explored relevant aspects, they failed to pro-
vide insights into temporal variations in spatial interaction gravity or capture the determining 
factors from multiple perspectives. To fill this gap, this study proposed a two-phase frame-
work to measure the urban spatial interaction gravity and developed determination approach-
es utilising the large-scale location-based services (LBS) dataset. Specifically, the inverse 
gravity model was adopted for the measure within multiple urban agglomerations and city 
sets during weekdays, weekends and holidays. Then, we developed the fitting equations of 
spatial interaction gravity by incorporating the correlated features associated with social, 
economic, network accessibility and land use. The findings present spatial interaction gravity 
across different periods and substantiate the distinct determination effects of features, with a 
high fitting accuracy. They provide promising supports for the intercity mobility prediction 
and pre-emptive traffic management.
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insights into the mechanisms that drive urban attractions for intercity mobility [3].
The scale of spatial interaction between one city and other cities represents the magnitude of urban at-

tractiveness within the intercity mobility system, which has been widely represented as spatial interaction 
gravity in the literature [4]. A greater spatial interaction gravity indicates a stronger attraction strength for 
intercity mobility. Scholars have utilised a range of approaches to investigate the spatial interaction gravity, 
specifically the four-step model [5] and attraction index model [6, 7] stand out as well-known. Zhu et al. 
[5] used the four-step model to describe urban attractiveness with the network topological characteristics of 
cities, encompassing strength, breadth, density and collaboration. In terms of the attractiveness index model, 
Shen et al. [6] investigated the total attractiveness index ranking of Chinese cities from the perspective of 
accessibility, while Zhang et al. [7] calculated the culture attractiveness index of different cities considering 
cultural attributes. Moreover, the inverse gravity model was used as a common method to calculate various 
types of spatial interaction gravity in the field regarding high-speed rail passenger flow [8], air passenger 
flow [9], tourism flow [10] and social media check-in [11]. For instance, Zhang et al. [10] used travel record 
data to calculate the attractiveness of 170 theme parks in the U.S. He et al. [11] used social media data to es-
timate the spatial interaction gravity of 348 cities in China. The findings from these works generally demon-
strate the outstanding applicability of inverse gravity model in understanding the spatial interaction gravity.

In recent years, several studies have been conducted to measure the spatial interaction gravity across dif-
ferent regions and analyse their spatial distribution [9, 12–13]. For instance, Xiao et al. [9] calculated the city 
gravity based on air passenger data between major cities in China and analysed the developmental patterns of 
air transportation in different cities over the years. Similar research was conducted by Ma et al. [12] for the 
seven urban agglomerations in the Yellow River basin, China. In addition, some novel factors and models were 
taken into account. Yan et al. [13] employed a coupled coordination model when measuring urban interaction 
gravity. It is worth noting that recent works have predominantly focused on specific urban agglomerations 
during the regular periods. However, holidays are far from receiving their deserved attentions in the field of 
spatial interaction gravity, despite the significant variations in intercity mobility observed during holidays.

Alongside the prevailing research on spatial interaction gravity, extensive attention has been given to 
its influencing factors and determination approaches [14–16]. Jin et al. [14] investigated the impact of so-
cio-economic factors such as the number of employees, production proportion and urbanisation level on 
the city quality and used partial correlation analysis to select the influential variables for the city quality 
determination. Khadaroo et al. [15] applied a gravity framework to identify the importance of transportation 
infrastructure in determining the tourism attractiveness of a destination. Besides, Fofanova and Sychev [16] 
analysed the diverse factors of the urban attractiveness using both qualitative and quantitative methods and 
concluded that the availability of education and housing, as well as the environmental conditions, could con-
siderably influence the choice of the area. The above listed research demonstrates the correlation between 
spatial interaction gravity and multiple urban attributes.

Drawing from the literature review, existing works have conducted extensive research on spatial interac-
tion gravity, yet they fall short in considering the variations across distinct spatiotemporal scales and a more 
comprehensive range of determination factors. Firstly, previous works mostly conducted research on specif-
ic periods and analysed each of them separately. However, there is no related findings on the temporal vari-
ation in urban spatial interaction gravity. Secondly, the identified influencing factors of spatial interaction 
gravity were concentrated on the macroeconomic and demographic attributes, such as GDP and population. 
Unfortunately, these attributes are incompetent in capturing the intercity travel purposes, resulting in the 
limited insights into the underlying mechanism behind spatial interaction gravity. Building upon the afore-
mentioned points, existing works have not studied spatial interaction gravity from a dynamic perspective, 
and the current findings on influencing factors fail to provide reasonable explanations for this dynamism. 
To address the aforementioned research gaps, Table 1 provides a summary of the determination factors and 
spatiotemporal research scales related to spatial interaction gravity, with contrast to our research concerns, 
demonstrating the research motivations of this study.



Traffic in the Cities

328

Promet – Traffic&Transportation. 2023;36(2):326-344.

In this study, we aim to provide novel insights into the spatiotemporal variations in spatial interaction 
gravity and identify the significant determination factors from multiple perspectives. The main contributions 
of this study are summarised as follows:

 –  we proposed a two-phase framework to measure spatial interaction gravity across multiple spatial scales 
and identify the determination factors from multiple perspectives, involving social, economic, network 
accessibility and land use;

 –  we studied the temporal variations in urban spatial interaction gravity by distinguishing distinct periods, 
including weekdays, weekends and holidays, and analysed the distribution characteristic of spatial inter-
action gravity in both large-scale and small-scale urban agglomeration;

 –  we quantified the correlation between spatial interaction gravity and determination factors, then devel-
oped the high-accuracy fitting models for spatial interaction gravity in each period.
This study extends the research on spatial interaction gravity to a perspective incorporating differences 

across multiple spatiotemporal scales and refining its determination factors. It holds promising applications 
towards the quantitative measurement of intercity connections of a city to other cities, thus providing valu-
able guidance for the pre-emptive management within intercity mobility systems.

The remainder of this study is organised as follows. Section 2 introduces the multi-source datasets. Sec-
tion 3 presents the methodology, including the inverse gravity model and the stepwise regression within the 
proposed two-phase framework. Section 4 measures the spatial interaction gravity; Section 5 presents the 
determination factors and develops the fitting models. Section 6 concludes this study and provides the future 
research direction.

2. DATA SOURCE
2.1 Study area

The research area of this paper is divided into two aspects. One aspect focuses on the long-distance 
intercity travel, including two city sets: provincial capital cities (Figure 1a) and first- and second-tier cities 
(Figure 1b). The second aspect focuses on the short-distance intercity travel, represented by three urban ag-
glomerations: the Yangtze River Delta Urban Agglomeration (Figure 1c), the Yangtze River Midstream Urban 
Agglomeration (Figure 1d) and the Beijing-Tianjin-Hebei Urban Agglomeration (Figure 1e) in China.

The selection of study areas considers their vast urban scale and strong intercity connections. Provincial 
capitals and first- and second-tier cities have concentrated populations and active economies. The first- and 
second-tier cities in China have a total population of 495.12 million, representing 35 percent of the country’s 

Table 1 – The attribute, spatial and temporal scope of researches

Reference Determination factors Spatial scale Temporal scale

Xiao et al. [9] Population, tertiary-sector  
percentage, tourism revenue Main cities in China Various years (not distinguishing 

holidays and weekends, ND)

Jin et al. [14] GDP, population, production 
proportion, urbanisation level Provincial capitals in China Single year (ND)

He et al. [17] Economy, society, environment Single urban agglomeration in 
China Various years (ND)

Marrocu et al. [18] Income, density, accessibility Provinces in Italy Single year (ND)
Gao et al. [19] Economy, population Prefecture-level cities in China Various years (ND)
Liu et al. [20] Population Prefecture-level cities in China Various days (ND)

Surya et al. [21] Economy, society, environment Single metropolis in Indonesia Various years (ND)
Xia et al. [22] Population Main cities in Australia Single year (ND)

This study POI density, land use, economy, 
society, network accessibility

Multiple study areas in China 
(covering provincial capitals, 

first/second- tier cities and urban 
agglomerations)

Multiple periods (distinguishing 
weekdays, weekends, traditional 
holidays and modern holidays)
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total population. These cities also have a total GDP of 596 billion yuan, accounting for 49 percent of the 
country’s total GDP. In addition, the three urban agglomerations contain most developed cities in China and 
account for a large area. For example, the Yangtze River Midstream Urban Agglomeration contains 31 cities 
with a land area of about 326,100 square kilometres. They all have gathered a large population and formed 
the coordinated intercity traffic networks.

2.2 Data and processing

LBS data
Recently, due to the widespread use of mobile phones, the real-time location information of travellers 

can be obtained from location-based services (LBS) provided by the mobile APPs. The LBS data is provid-
ed from the published migration data platform (https://qianxi.baidu.com/), which traced travellers based on 
their location and recorded the intercity mobility for the data analysis. The platform currently has more than 
1 billion users in most countries around the world, serves more than 650,000 active APPs and websites, and 
responds to more than 120 billion global location service requests per day. Once travellers submit a location 
request, current location will be stored with a unique label. By integrating this information, the platform can 
provide real-time data on the intercity traffic flow between cities in China, offering a convenient means to 
understand inter-city traffic demand and identify traffic hotspots.

The intercity mobility dataset from 1 January 2023 to 31 May 2023 was downloaded in this paper. This 
dataset includes a total of 498,222 intercity flow records and contains the following information in each re-
cord: date, departure city, arrival city, intercity flow (i.e. OD flow), generation volume of departure city and 
attraction volume of arrival city.

In order to present the temporal variation in intercity mobility, the daily traffic volume of the whole coun-
try was obtained, as shown in Figure 2a. It demonstrates the significant difference during various periods, 

a) Provincial capital cities

c) Yangtze River Delta Urban
Agglomeration

d)Yangtze River Midstream Urban
Agglomeration

e) Beijing-Tianjin-Hebei Urban
Agglomeration

b) First- and second-tier cities

Figure 1 – Cities and urban agglomerations distribution of study area
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such as weekdays, weekends and holidays (which contain the traditional holidays and modern holidays). On 
weekdays and weekends, the traffic volume is the lowest at midweek and the highest at weekends, showing 
a fluctuating trend. On modern holidays (Labour Day), the traffic volume increases sharply and emerges a 
peak which is significantly larger than the traffic volume on weekdays and weekends. In addition, there is 
a peak in traffic volume before and after the traditional holidays (Spring Festival), respectively. Consider-
ing the above stated differences, the following study focuses on the multiple periods, including weekdays, 
weekends, the period before the Spring Festival, the period after the Spring Festival and Labour Day (which 
is on 1 May in China). Among them, we have chosen 6 March to 26 March as the time range of weekdays 
and weekends, 15 January to 21 January as the time range before the Spring Festival, 24 January to 30 Janu-
ary as the time range after the Spring Festival, and 29 April to 3 May as the time range of a modern holiday. 
The temporal and spatial scope in this study is summarised in Table 2.

There are also differences in spatial interaction gravity between short-distance and long-distance urban 
agglomerations. Figure 2b–2c exhibits their respective temporal variations by taking two specific origin-des-
tination (OD) pairs as examples. For short-distance city pairs, the travel volume is generally low during 
midweek and high on weekends, exhibiting regular fluctuations. The overall traffic volume between cities is 
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a) Daily traffic volume of the whole country b) Daily traffic volume of a short-distance specific 
city pair (Beijing-Shijiazhuang)

c) Daily traffic volume of a long-distance specific 
city pair (Beijing-Guangzhou)

Figure 2 – The daily traffic volume of different area

Table 2 – The temporal and spatial scope in this study

Type Name Range Coverage

Spatial 
scales

PCC Provincial capital cities 30 cities
FSTC First- and second-tier cities 49 cities
YRDC Yangtze River Delta Urban Agglomeration 27 cities
YRMC Yangtze River Midstream Urban Agglomeration 31 cities
BTHC Beijing-Tianjin-Hebei Urban Agglomeration 13 cities

Temporal 
scales

BSF Period before the Spring Festival from 15 January to 21 January 7 days
ASF Period after the Spring Festival from 24 January to 30 January 7 days

WDAY Weekdays in the time range from 6 March to 26 March 15 days
WEND Weekends in the time range from 6 March to 26 March 6 days

LD Labour Day period from 29 April to 3 May 5 days
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smaller, with travel volume fluctuating irregularly during weekdays and weekends. Considering the differ-
ent distribution of traffic volume, ensuing analysis will focus on the short-distance and long-distance urban 
agglomerations, respectively.

City attribute data
To comprehensively analyse the factors contributing to temporal variations in urban spatial interaction 

gravity during different periods, we have selected urban attribute data consisting of land use, social, eco-
nomic and network accessibility data for subsequent analysis.

The highway distances were obtained through the application programming interface (API) of an online 
map with the latitude and longitude of departure and arrival cities. In this study, we utilised the points of in-
terests (POI), downloaded from the API of Gaode Map, to characterise the urban land use, as suggested by the 
recent work [23–25]. Specifically, POIs are divided into eight categories: eating, business, shopping, finance, 
accommodation, education, tour and entertainment. We calculated the POI density and the percentage of each 
type of POI in this study. Data on GDP, population, area, primary industry proportion, secondary industry 
proportion, tertiary industry proportion, airport runways number, rail lines number and expressways number 
for each city were obtained from the National Bureau of Statistics to present the features related to social, 
economic and network accessibility.  The airport runways number mainly counts the number of runways of 
civil transport airports. Finally, the name and description of each feature are summarised as shown in Table 3.

Table 3 – The name and description of each feature

Type Index Name Unit Description

Land use

1 POID km2 POI density
2 EAP / Proportion of eating category
3 BUP / Proportion of business category
4 SHP / Proportion of shopping category
5 FIP / Proportion of finance category
6 ACP / Proportion of accommodation category
7 EDP / Proportion of education category
8 TRP / Proportion of tour category
9 ENP / Proportion of entertainment category

Social feature
10 POPU 10,000 people Population
11 AREA km2 Area

Economic 
feature

12 GDP 100 million yuan Gross domestic product
13 PRIP / The proportion of the primary industry
14 SECP / The proportion of the secondary industry
15 TERP / The proportion of the tertiary industry

Network acces-
sibility

16 ARN / The number of airport runways
17 RLN / Number of rail lines
18 EWN / The number of expressways

3. METHODOLOGY
Figure 3 illustrates a two-phase framework for the spatial interaction gravity in the intercity mobility 

system. Phase 1 measures the spatial interaction gravity across different spatiotemporal scales using the 
inverse-gravity-based standard algebra model (SAM) [8]. This model quantitatively measures urban spatial 
interaction gravity with the nodal attraction solved from the inverse gravity model, which have been proven 
to have an excellent applicability by relevant research, such as [4] and [14]. Since the SAM takes advantages 
in accurate computation of spatial interaction gravity for large scale network systems [8], this study adopts 
it as the computing core of Phase 1. Phase 2 understands the relationship between spatial interaction gravity 
and multiple urban attributes involving land use, social, economic and network accessibility. On this basis, 
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the determination approach of spatial interaction gravity is developed with the stepwise regression, since it 
can identify the significant explanatory variables and screen out variables that have multicollinearity issues 
with other variables [26]. The detailed methodology is presented as follows:

Phase 1: Measuring the spatial interaction gravity
The expression for the gravity model is:

, , , ,
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where Gij is the intercity traffic flow from city i to city j; m is a constant; Ai and Aj are the spatial interaction 
gravity of city i and j, respectively; xi1, xi2, xj1, xj2, are the social, economic, network accessibility and land 
use features of city i and city j; F(dij) is the distance constraint function. Let the constant coefficient be 
k=1/m, the inverse form of the gravity model is obtained by varying Equation 1:
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where n is the number of cities. When there are n cities, n(n-1)/2 equations like Equation 2 can be obtained. 
In these equations, Ai appears (n-1) times. The specific steps for solving the spatial interaction gravity of a 
city will be described below. Multiply all the equations together and extract a square root:
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Figure 3 – The two-phase framework for the urban spatial interaction gravity
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The spatial interaction gravity for each city is obtained by dividing each term in Equation 4 by Equation 2 
and then rooting:
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In this study, the average intercity flow of a certain period was selected as the measure of spatial interac-
tion between cities. The calculation of the inverse gravity model requires a symmetry matrix as it is general-
ly recognised that the intercity traffic exchange maintains equilibrium. This equilibrium has been validated 
by the average Gij and Gji with close values in our dataset, thereby we use their summation to construct a 
symmetry matrix of intercity flow.

In this study, a distance constraint function in the exponential form was utilised in the gravity model and 
inverse gravity model, suggested by its widespread use in previous works [27, 28] to describe the distance 
decay effect. The distance decay exponent is set to 0.6 and constant coefficient k is set to 100 according to 
the practice of the gravity model in China [9]. The specific form of inverse gravity model is:

, , , , , , , , , ,A x x A x x G d i j n i j100 1 2.
i i i j j j ij ij1 2 1 2

0 6$ $g g g= = =Y^ ^h h  (6)

Phase 2: Development of influencing factors and determination approaches
The correlation analysis between the influencing factors and the spatial interaction gravity was firstly 

performed by the Pearson correlation coefficient. The Pearson correlation coefficients for variables X and Y 
are calculated as follows:
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where Xi, Yi are observations and X̅, Y̅ are their respective means. Variables with correlations greater than 0.5 
were selected for the next regression modelling.

Stepwise regression is chosen for the determination approach as it stands as a widely employed tech-
nique for variable screening in multiple regression analysis and possess excellent interpretability. To be 
more specific, the eligible variables are determined with the significance testing before inputting the model. 
Moreover, variables that entered the model are tested again to exclude those that are not qualified, consid-
ering the possibility of non-significance or covariance of variable combinations. This approach ensures that 
the explanatory variables finally retained in the model are both significant and not severely multicollinear.

Finally, by incorporating the urban attributes in social, economic, land use and network accessibility, 
multiple linear fitting equations for the spatial interaction gravity can be constructed using stepwise regres-
sion, as follows:

, , , , ,A x x a b x i 1 2i i1 2 g g!= +^ h " ,/  (8)
where, a is a constant. bi is the coefficient of variable. xi is the selected variable.

4. MEASURING THE SPATIAL INTERACTION GRAVITY
We programmed the inverse gravity model with Python 3.10 on PyCharm Community Edition 2023.1.3 

to measure the spatial interaction gravity in different spatiotemporal scales with intercity flow and distances. 
For each urban agglomeration or city set, gravitational maps are depicted for periods characterised by the 
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minimum and maximum average interaction gravity, serving as examples to illustrate spatial distribution of 
interaction gravity. Moreover, the overall distribution of spatial interaction gravity across all periods is also 
showcased in ensuing sections.

4.1 Spatial interaction gravity for long-distance urban agglomerations
The spatial interaction gravity among provincial cities during each period is shown in Figure 4. Regarding 

spatial distribution, the spatial interaction gravity of megacities such as Beijing, Shanghai, Guangzhou and 
Chengdu is the highest, exceeding 5,000. The spatial interaction gravity of central cities such as Chongq-
ing, Wuhan and Changsha is the second highest, ranging between 2,000 and 5,000. In contrast, the spatial 
interaction gravity of western cities such as Xining, Lanzhou and Yinchuan is the lowest, below 1,500. The 
overall distribution exhibits a “spindle” structure, with eastern cities demonstrating a relatively high attrac-
tiveness and western cities demonstrating a relatively low one.
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b) Labour Daya) Before Spring Festival

d) Average interaction gravityc) Distribution of interaction gravity
City

Figure 4 – Spatial interaction gravity for periods in the provincial capital cities

The spatial interaction gravity among first- and second- tier cities during each period is shown in Figure 5. 
The spatial distribution is broadly similar to that of the provincial capitals, with a general trend of decreasing 
from south-east to north-west. The difference is that the attractive cities are located in the coastal regions, 
with the Yangtze River Delta and the Pearl River Delta forming two strongly attractive city clusters.

Comparing the average spatial interaction gravity among long-distance cities over different periods, we 
find that, in descending order, the highest values are found on Labour Day, followed by weekends, weekdays 
and post-Spring Festival, with the lowest values before the Spring Festival. It reveals that despite a signifi-
cant increase in the total intercity flow nationwide during the Spring Festival, interactions among developed 
cities decrease compared to weekdays and weekends. Comparing between weekends and weekdays, the 
higher intercity interaction gravity on weekends demonstrates a greater intention for long-distance trips. The 
spatial interaction gravity after the Spring Festival is higher than that before the Spring Festival and that is 
contributed by the attractiveness of large cities for people returning to work places. Regarding the variations 
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in intercity interaction gravity during modern holidays, there is a concentrated trend towards large cities. 
Central cities like Beijing, Shanghai, Chengdu, Xi’an and Wuhan have seen a large increase in spatial inter-
action gravity compared to regular periods, with increments of over 1,000. In contrast, small cities such as 
Nanning, Urumqi, Shenyang, Foshan and Huizhou have the reduced spatial interaction gravity.

4.2 Spatial interaction gravity for short-distance urban agglomerations
The spatial interaction gravity within the Yangtze River Delta Urban Agglomeration in each period is 

shown in Figure 6. The results demonstrate the concentrated gravity of Shanghai, with values exceeding 
10,000 in all periods. Less attractive cities are primarily located along the Yangtze River and the southeast 
coast. The spatial interaction gravity decreases from the eastern seaboard to the western hinterland.

The spatial interaction gravity within the Yangtze River Midstream Urban Agglomeration in each period 
is shown in Figure 7. Similarly, central cities like Wuhan and Changsha have a larger spatial interaction grav-
ity. The gravity of cities around central cities commonly stays in a low level, which reveals the development 
patterns of satellite cities within urban agglomerations.

The results of spatial interaction gravity within Beijing-Tianjin-Hebei Urban Agglomeration in each pe-
riod are shown in Figure 8. The distribution of cities is relatively dispersed in this urban agglomeration, with 
concentrated gravity in provincial capital cities such as Beijing, Tianjin and Shijiazhuang. In addition, the 
cities located between provincial capital cities have higher gravity compared to surrounding cities.

Comparing the average spatial interaction gravity for short-distance urban agglomerations in different 
periods, common findings reveal the highest spatial interaction gravity on modern holidays, followed by 
weekends, post-Spring Festival, pre-Spring Festival and weekdays. Compared to the results for long-dis-
tance urban agglomerations, the gravity during the Spring Festival is larger than that on weekdays. This 
indicates that there is strengthened intercity mobility among short-distance urban agglomerations.
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Figure 5 – Spatial interaction gravity for periods in the first- and second-tier cities
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Figure 6 – Spatial interaction gravity for periods in the Yangtze River Delta Urban Agglomeration

c) Distribution of interaction gravity

b) Labour Day

Figure 7 – Spatial interaction gravity for periods in the Yangtze River Midstream Urban Agglomeration



Traffic in the Cities

337

Promet – Traffic&Transportation. 2023;36(2):326-344.

Regarding the variations in spatial interaction gravity during modern holidays, there is also a concentrat-
ed trend towards large cities during modern holidays. For instance, the spatial interaction gravity of Shang-
hai in the Yangtze River Delta Urban Agglomeration on Labour Day is 20,258, much larger than that on 
weekends, 13,695. Tianjin in the Beijing-Tianjin-Hebei Urban Agglomeration has a spatial interaction grav-
ity of 13,249 on Labour Day, with an increase of 57.41% compared to the weekend. In addition, small cities 
exhibit a larger spatial interaction gravity during the Spring Festival compared to weekdays and weekends. 
For instance, Huanggang, Yueyang and Yichun, located in the Yangtze River Midstream Urban Agglomer-
ation, exhibit higher gravity during the Spring Festival compared to weekdays and weekends. Moreover, 
Anqing in the Yangtze River Delta Urban Agglomeration has even higher gravity during the Spring Festival 
than that during Labour Day.

5. INFLUENCING FACTORS AND DETERMINATION APPROACH
5.1 Correlation coefficient analysis

The correlation coefficient is utilised to present the influencing degree of each factor on the spatial inter-
action gravity. For datasets in different spatiotemporal scales, Pearson correlation coefficients between the 
spatial interaction gravity and urban attributes were calculated utilising the IBM SPSS Statistic 26 software, 
as shown in Figure 9.

Both in long-distance and short-distance urban agglomerations, spatial interaction gravity shows a sig-
nificant correlation with both GDP and population, with GDP demonstrating the strongest association. Spe-
cifically, the airport runways number, tertiary industry proportion, expressways number and the proportions 
of shopping and entertainment have a large influence on spatial interaction gravity within the long-distance 
urban agglomerations. In addition, there exists a moderate correlation between POI density and spatial in-
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Figure 8 – Spatial interaction gravity for periods in the Beijing-Tianjin-Hebei Urban Agglomeration
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Figure 9 – The Pearson correlation coefficients of each influencing factor on urban spatial interaction gravity in different periods



Traffic in the Cities

339

Promet – Traffic&Transportation. 2023;36(2):326-344.

teraction gravity among provincial capital cities. However, among first- and second-tier cities, the influence 
of the secondary industry proportion and the number of rail lines is found to be less significant.

The spatial interaction gravity of short-distance cities is strongly influenced by POI density, tertiary indus-
try proportion, airport runways number, rail lines number and shopping. The correlation of the expressways 
number with spatial interaction gravity in the Yangtze River Delta and the Beijing-Tianjin-Hebei Urban 
Agglomerations is significant. Moreover, the correlation of accommodation and entertainment is general 
in the Yangtze River Midstream Urban Agglomeration, while education is strongly correlated with spatial 
interaction gravity in the Beijing-Tianjin-Hebei Urban Agglomeration.

When comparing the correlation of influencing factors across different periods, the following patterns 
can be captured. Population and airport runway numbers are strongly correlated with spatial interaction 
gravity during the Spring Festival than other periods. The tertiary industry proportion has a significant im-
pact on weekdays, weekends and modern holidays. Within long-distance urban agglomerations, the propor-
tion of entertainment has the highest correlation during modern holidays while that of shopping is strongly 
correlated with spatial interaction gravity on weekends. The correlation between POI density and spatial 
interaction gravity is generally higher on weekdays, weekends and modern holidays compared to the Spring 
Festival, within short-distance urban agglomerations. Rail line numbers have the greatest impact on the at-
tractiveness of the Yangtze River Delta Urban Agglomeration during modern holidays. Finally, educational 
relevance is strong during the Spring Festival in the Beijing-Tianjin-Hebei Urban Agglomeration, which is 
attributed to the intercity mobility of students returning home for the Spring Festival and then returning to 
school after the Spring Festival.

Through correlation analysis, significant features whose correlation coefficient is larger than 0.5 were 
selected for the determination approaches of spatial interaction gravity.

5.2 Regression result and analysis
Multiple linear fitting models were developed with the stepwise regression utilising the IBM SPSS Sta-

tistics 26 software. We took into consideration both the fitting goodness and the multicollinearity among 
variables when developing the fitting models. Variance inflation factor (VIF) was used to characterise the 
linear relationship between each independent variable and other independent variables. Concerning the VIF 
threshold, researchers have extensively suggested a value of 10 [29, 30], which corresponds to the toler-
ance suggestion of 0.1. Drawn from the findings by [31–33], the VIF less than 10 (i.e. the tolerance greater 
than 0.1) for each independent variable indicates that there is no multicollinearity issue between variables. 
Hence, this study follows the VIF threshold of 10 to determine the multicollinearity between independent 
variables considering that the rationality can be guaranteed by the common practice in the literature. Among 
variables with multicollinearity, the ones that exhibit a stronger correlation with spatial interaction gravity 
were chosen for selection. The final variable set includes GDP, population, POI density, tertiary industry 
proportion, airport runways number, rail lines number and the proportion of entertainment, denoted as X1, 
X2, X3, X4, X5, X6, X7, respectively. Then, we developed the determination approach with the regression mod-
el and evaluated the model performance with adjusted R-square. The fitting results are summarised in Table 4.

By comparing the variables and variable coefficients across the fitting models, we know that: GDP, the 
most highly correlated factor, is widely used for all periods in all city sets. In addition, the fitting models for 
each spatial scale are respectively analysed below, along with the visual comparison between real values and 
predicted values shown in Figure 10.

Among the provincial capital cities, the airport runways number is selected for the fitting models of the 
Spring Festival, with a larger coefficient than that in the models of weekdays. The proportion of tertiary 
industry is contained in the models for weekdays and weekends, which reveals that the development level 
of provincial capital cities is primarily reflected in the tertiary industry. Furthermore, the proportion of en-
tertainment is included in the models for modern holidays. It demonstrates that our models are capable of 
capturing the concentrated travel purpose in tourism and entertainment on modern holidays.
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Among first- and second-tier cities, intercity mobility concentrates on long-distance travels during the 
Spring Festival, and the fitting models include the airport runways number and rail lines number. In addi-
tion, the tertiary industry proportion appears in the fitting models for weekdays, weekends and modern holi-
days, and the impact is greater during modern holidays. It demonstrates that first- and second-tier cities have 
well-developed economies and large service sectors. Furthermore, the proportion of entertainment that appears 
in the models for modern holiday highlights that first- and second-tier cities are good leisure destinations.

The rail lines number is incorporated in all fitting models for the Yangtze River Delta Urban Agglomeration, 
which is attributed to the dense rail network and high accessibility. The effect of rail line number is greater during 
the modern holiday when the number of traveling tourists increases. Moreover, the impact of rail line number is 
greater during the regular period than Spring Festival. It manifests that the convenience of the rail is more signif-
icant when people engage in business travel and visiting friends and relatives on weekdays and weekends.

In the Yangtze River Midstream Urban Agglomeration, POI densities are incorporated in the fitting mod-
els for all periods, illuminating that cities with higher POI densities tend to be more attractive and there are 
significant development gaps between cities. The effect of POI densities is greater during the modern holi-
day, which indicates that the level of development in a city’s culture, tourism, commerce and other aspects 
has a significant impact on its attraction to passenger flow.

The proportion of tertiary industry is included in the fitting models of the Beijing-Tianjin-Hebei Urban 
Agglomeration for all periods, proving the tertiary industries are prosperous. It has a noticeable influence on 

Table 4 – The fitting equations of the spatial interaction gravity

Cities Periods Fitting equation Adjusted R2

PCC BSF -326.659+0.112X1+722.783 X5 0.880

ASF -369.441+0.119X1+805.992X5 0.858

WDAY -5503.017+0.136X1+8922.61X4+473.672X5 0.871

WEND -7586.23+0.186X1+8329.127X4+213632.511X7 0.880

LD -4335.66+0.267X1+346770.121X7 0.800

FSTC BSF -1022.412+0.13X1+0.655X2+294.251X5+15.817X6 0.954

ASF -2258.587+0.163X1 +3287.357X4+451.394X5 0.961

WDAY -4065.648+0.217X1+6654.612X4 0.952

WEND -4151.006+0.22X1+6789.572X4 0.932

LD -7273.155+0.306X1+8524.807X4+142775.141X7 0.966

YRDC BSF -426.5+0.242X1+38.889X6 0.948

ASF -517.139+0.24X1+50.18X6 0.948

WDAY -812.974+0.254X1+52.195X6 0.954

WEND -1058. 797+0.28X1+66.139X6 0.951

LD -1441.737+0.408X1+90.815X6 0.944

YRMC BSF -738.73+0.177X1+2.186X2+57.417X3 0.973

ASF -659.092+0.167X1+2.813X2+47.159X3 0.970

WDAY -701.046+0.393X1+56.084X3 0.911

WEND -1003.05+0.445X1+80.048X3 0.943

LD -1430.04+0.681X1+125.301X3 0.972

BTHC BSF -5508.312+0.184X1+3.241X2+10335.656X4 0.944

ASF -6037.005+0.18X1+3.618X2+11585.881X4 0.945

WDAY -4464.38+0.28X1+12109.989X4 0.946

WEND -5835.515+0.361X1+14509.422X4 0.936

LD -9456.989+0.287X1+5.051X2+19122.532X4 0.920
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the spatial interaction gravity on weekdays, weekends and holidays. In addition, spatial interaction gravity 
is determined by population on the Spring Festival and Labour Day. The influence of population is amplified 
during modern holidays when there is an influx of tourist arrivals.

6. CONCLUSION
This study focused on the spatial interaction gravity across multiple spatiotemporal scales. It yields new 

insights into the influencing factors and determination approaches by incorporating the temporal variations 
and spatial diversity. Specifically, a two-phase framework was proposed to measure and analyse the spa-
tial interaction gravity utilising the large-scale LBS dataset. The main contributions and findings are sum-
marised as follows.

Phase 1 measures the spatial interaction gravity across different urban agglomerations on weekdays, 
weekends, the Spring Festival and Labour Day with the inverse-gravity-based standard algebra model. The 
general findings are concluded:

 –  the average spatial interaction gravity on modern holidays is the highest. Within the long-distance urban 
agglomeration, the average gravity on weekdays and weekends is greater than that on the Spring Festi-
val. However, in the short-distance urban agglomeration, the average gravity after the Spring Festival is 
greater than that on weekdays.

 –  during modern holidays, the spatial interaction gravity exhibits a concentrated trend to large cities, while 
the gravity of small cities is decreased.

 –  during the tradition festival like the Spring Festival, the spatial interaction gravity is increased for small 
and medium-sized cities in short-distance urban agglomeration, with a higher value than that on week-
days and weekends.
Phase 2 captures the significant factors influencing the spatial interaction gravity by incorporating the 

urban attributions in social, economic, land use and network accessibility, and develops the determination 
approach with the stepwise regression. The high adjusted R-square indicates the superiority of the devel-
oped models. The general findings are concluded:

d) Yangtze River Midstream Urban 
Agglomeration

e) Beijing-Tianjin-Hebei Urban 
Agglomeration

c) Yangtze River Delta Urban 
Agglomeration

b) First- and second-tier citiesa) Provincial capital cities

 
Figure 10 – The real and predicted spatial interaction gravity values of different urban agglomerations
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 –  GDP exhibits the strongest correlation with the spatial interaction gravity. Within the long-distance ur-
ban agglomeration, spatial interaction gravity is largely affected by the airport runways number, tertiary 
industry proportion, expressways number and the proportion of shopping and entertainment. In contrast, 
the key influencing factors are POI density, tertiary industry proportion, airport runways number, rail 
lines number and the proportion of shopping for short-distance urban agglomerations.

 –  in terms of spatiotemporal differences, population and airport runways number largely determines the 
spatial interaction gravity on the Spring Festival, whereas the tertiary industry proportion has a notable 
effect on weekdays and weekends and modern holidays. The proportion of entertainment has the greatest 
correlation with spatial interaction gravity on modern holidays within long-distance urban agglomera-
tions. In contrast, this role is replaced with the POI density within short-distance urban agglomerations.
This study contributes to providing a practice towards the intercity mobility system by measuring the spatial 

interaction gravity and analysing their spatiotemporal variations with the real-world LBS dataset. However, 
due to the limited collection capability of urban attributes, we chose a relatively small alternative attribute set 
to construct the fitting model of spatial interaction gravity. More urban attributes are expected for the proposed 
framework to further refine the fitting model and improve the model accuracy. Moreover, in the future work, 
we aim to incorporate the measured spatial interaction gravity and its key determination factors into the predic-
tion model driven by machine learning algorithms to accurately predict the intercity origin-destination (OD) 
flow. Also, our findings on spatiotemporal difference of spatial interaction gravity presents a future research 
direction in modelling the variations in traffic demand across special periods, such as holidays.
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王沁宇，于维杰，王炜，华雪东

面向城际交通系统：空间交互引力模型及确定方法

摘要

当前城市群的发展极大地促进了城际联系，提升了城际交通系统的重要性。然而，

由于城市属性的多样性，城际交通往往表现出极度的时空不平衡特征。这给交通管

理带来了巨大挑战，同时也揭示了理解城市吸引力（即空间交互引力）对城际交通

的必要性。虽然近期研究对相关方面进行了探索，但未能深入了解空间交互引力的

时间变化，也未能从多个角度捕捉决定性因素。为填补这一空白，本研究提出了一

个测量城市空间交互引力的两阶段框架，并利用大规模的定位服务（LBS）数据集进

行了实例分析。具体来说，逆重力模型被用来测量工作日、周末和节假日期间多个

城市群和城市集内的空间交互引力。然后，本文结合社会、经济、网络可达性和土

地利用等相关特征，建立了空间交互引力的拟合方程。研究结果展示了不同时期的

空间交互引力，证实了特征的显著决定效应，具有很高的拟合精度。以上研究及结

果为城际交通预测和先发交通管理提供了有力的支持。
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