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1. INTRODUCTION
With the rapid evolution of the logistics industry, seaports have assumed a pivotal role in the efficient 

global consolidation and movement of goods. These bustling hubs of commerce facilitate the exchange of 
cargo between land and sea transportation modes, making precise and optimised vehicle movement within 
seaport environments essential. However, the horizontal mobility of vehicles within seaports often encoun-
ters challenges due to obstacles such as stacked cargo containers and imposing container ships. These ob-
structions can lead to transient inaccuracies in GPS positioning, potentially compromising the accuracy of 
goods transloading and overall port operational efficiency.

In this dynamic context, accurately forecasting the trajectories of horizontally moving vehicles has emerged 
as a pressing concern. Mitigating transient inconsistencies in GPS positioning induced by obstructive elements 
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ABSTRACT
Existing tracking algorithms mostly rely on model-driven approaches, which can be prone to 
inaccuracies due to unpredictable human behaviours. This article aims to address the issue 
of transient errors in tracking port container trucks (PCTrucks) when encountering obstruc-
tions. A data-driven algorithm for predicting vehicle trajectories is proposed in this study. 
The approach involves preprocessing an extensive dataset of GPS information, training a 
DeepLSTM-Attention model, and integrating the proposed model with the population-based 
training (PBT) algorithm to optimise network hyperparameters. The objective is to enhance 
the accuracy of predicting trajectories for vehicles moving horizontally. The trajectory data 
used are collected from real-world port operations. This research is conducted across nine 
trajectory segments and benchmarked against traditional approaches like Kalman filtering, 
machine learning techniques such as support vector regression (SVR) and standard long 
short-term memory (LSTM) networks. The results demonstrate that the proposed prediction 
method, that is, DeepPBM-Attention, outperforms other techniques in several evaluation 
metrics, including root mean square error (RMSE), mean absolute error (MAE), F1 score 
and trajectory reconstruction error (TRE). Compared to LSTM networks, the performance 
of DeepPBM-Attention is improved by approximately 40%. The proposed data-driven tra-
jectory prediction algorithm exhibits high accuracy and practicality, which can effectively be 
applied to the positioning prediction of horizontally moving vehicles in port environments.

KEYWORDS
port container trucks; trajectory prediction; population-based training; deep long short-term 
memory; attention.



526

Promet – Traffic&Transportation. 2023;36(3):525-543. Transport Engineering

holds the potential to significantly enhance the precision and integrity of vehicle movements within seaports. 
By delving into the challenges highlighted in prior research, the critical challenge of accurately forecasting 
the trajectories of port container trucks (PCTrucks) within the dynamic confines of seaport environments is 
strategically addressed in this paper.

In confronting the challenge of predicting PCTrucks trajectories within seaports, it is essential to scru-
tinise the limitations of conventional methods and singular neural network models. Traditional approaches 
like Kalman filtering, while widely used, prove inadequate in dynamic seaport settings due to their reliance 
on predefined models, making them susceptible to inaccuracies from unpredictable human behaviours and 
dynamic obstacles. Similarly, standalone neural network models, exemplified by standard long short-term 
memory (LSTM) networks, may oversimplify the complexities of seaport dynamics, leading to suboptimal 
trajectory predictions for horizontally moving vehicles. Recognising these limitations, there is a compelling 
need for a sophisticated model that embraces diverse data and adapts to the unique challenges of seaport 
environments. The pursuit of an advanced prediction model stems from the inadequacies of current methods 
and the goal of achieving heightened accuracy in forecasting PCTrucks trajectories within the intricate and 
dynamic confines of the seaport. In response to the limitations of traditional methods, there arises a need 
for innovative approaches. A novel trajectory prediction approach named DeepPBM-Attention is presented 
here, leveraging the potential of data-driven techniques to meet this demand. The proposed method har-
nesses the power of deep learning, attention mechanisms and advanced optimisation strategies to accurately 
forecast the trajectories of PCTrucks within seaport environments.

Furthermore, the incorporation of innovative optimisation techniques fine-tunes the model’s hyperpa-
rameters, enhancing its adaptability to the unique characteristics of PCTruck trajectories within seaport 
settings. This holistic approach aims to provide accurate and robust trajectory predictions, mitigating the 
transient errors often encountered in seaport logistics.

The aim of this study is to leverage DeepBPM-Attention to develop a novel model for executing trajec-
tory prediction tasks for PCTrucks. This paper includes the following significant contributions:
1)  DeepPBM-Attention model: A novel model, termed DeepPBM-Attention, is introduced in this work, 

seamlessly amalgamating the deep long short-term memory (DeepLSTM) framework with an attention 
mechanism. This innovative structure effectively captures temporal dependencies and spatial relation-
ships in PCTruck trajectory data, offering a significant enhancement over traditional models.

2)  Application of population-based training (PBT): This study pioneers the use of the PBT algorithm to op-
timise the hyperparameters of the trajectory prediction network, thereby improving prediction accuracy. 
This novel optimisation method significantly enhances the performance of our model.

3)  Capitalisation on real-world operational data: Genuine operational data from ports are incorporated to 
scrutinise the trajectory predictions, effectively bridging the gap between theoretical underpinnings and 
real-world applicability. This strategy furnishes a more incisive evaluation of the model’s performance, 
grounding the validation in pracsticality.

4)  Pronounced enhancement in performance metrics: The proposed DeepPBM-Attention model outper-
forms traditional methods such as Kalman filtering, SVR and standard LSTM networks across multiple 
evaluation metrics. Notably, compared to LSTM networks, the performance metrics of DeepPBM-Atten-
tion improved by approximately 40%, representing a significant advancement.

5)  Elevated practical utility: The proposed DeepPBM-Attention model exhibits high precision and practi-
cality. It is capable of effectively predicting the movement of horizontal vehicles within ports. This novel 
application significantly enhances the accuracy of trajectory prediction in real-world scenarios.
In the subsequent sections, a structured exploration of the study unfolds. Section 2 is dedicated to a litera-

ture review, wherein a comprehensive examination of trajectory prediction methods employed by predecessors 
and those currently in vogue is undertaken. Section 3 focuses on elucidating the intricacies of data processing 
and model design. Section 4 details the experimental design tailored specifically for predicting PCTruck trajec-
tories. Subsequently, in Section 5, a thorough discussion of the experimental results is undertaken, concluding 
the entire study.
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2. LITERATURE REVIEW
Over the years, the vehicle trajectory prediction task has received significant attention from scholars, and 

several methodologies have been proposed. Initially, Park et al. [1] put forward a technique which utilises 
Kohonen networks and Kalman filters to assess the moving object’s trajectory. Hermes et al. [2], on the 
other hand, established a prediction approach with long-term benefits which integrated particle filtering and 
trajectory classification frameworks. Chen et al. [3] proposed a groundbreaking approach which adopted 
real-time and historical traffic data to construct the vehicle trajectories. Kim et al. [4] utilised a particle 
filter-based localisation method that relied on distance and bearing data extracted from fixed landmarks. Al-
ternatively, Zhang et al. [5] adopted a hybrid technique which combined model-based and data-driven meth-
ods, using Kalman filtering to forecast vehicle trajectories. Farahi et al. [6] proposed a probabilistic Kalman 
filter (PKF) that enhanced tracking estimation by considering stored trajectories, among other factors. Al-
though effective in linear and nonlinear trajectory estimation, these models are limited in complex dynamic 
environments. They depend on preset physical models and prior knowledge, compromising flexibility and 
accuracy with atypical patterns. Deep learning methods, especially neural network-based trajectory predic-
tors, are advancing to address these limitations through enhanced feature extraction and pattern recognition.

The development of machine learning and deep learning has attracted thousands of scholars who have 
applied these advanced techniques to tackle the issue of vehicle trajectory prediction, with remarkable 
achievements gained over the past few years. Agrawal et al. [7] introduced a unique trajectory prediction 
approach that leverages machine learning in combination with a least square curve fitting technique, leading 
to a novel extended Kalman filter and machine learning-based method. Similarly, Lin et al. [8] proposed 
a pedestrian trajectory prediction algorithm which employs a dual-mode extended Kalman filter. These 
innovative approaches enhanced the prediction and localisation accuracy, which also presented favourable 
results when tested in complex situations.

Deep learning has been extensively employed in traffic flow prediction. For instance, Chen et al. [9] 
introduced DeepTFP, a deep learning-based time series model, harnessing the capabilities of time series 
functions and deep learning for feature extraction in traffic flow prediction. Incorporating human factors 
into trajectory tracking has also been a subject of investigation. Chen et al. [10] presented a strategy that 
integrates driver behaviour prediction into trajectory tracking control.

Attention mechanisms and spatiotemporal considerations have been significant in trajectory prediction. 
Dai et al. [11] proposed ST-LSTM, which is based on spatiotemporal considerations. Attention mechanisms 
were employed by Lin et al. [12], who developed an attention-based LSTM model for predicting trajectories of 
heavy-duty vehicles in mixed-traffic environments. Furthermore, Yang et al. [13] introduced the spatial-tem-
poral attention (STA) module, capturing the dynamic characteristics of trajectories and employing multiple 
LSTM networks for different time scales. Subsequently, Desai et al. [14] investigated a novel time series fore-
casting model, which integrates temporal self-attention mechanisms, convolutional neural networks and con-
volutional LSTM (ConvLSTM). This model aims to address the challenges of accurately predicting multivari-
ate time series (MTS), but its performance has only been tested on specific datasets and applied to a particular 
use case (satellite state prediction). Moreover, the model may encounter issues such as lengthy training times 
and difficulty in learning long-term dependencies in cases where there are gaps in the sequence data, which is 
why there is consideration for incorporating deep LSTM networks in future work.

In the context of long-distance trajectory predictions, Xin et al. [15] used dual LSTM networks to address 
prediction accuracy in highly interactive driving environments. Another approach proposed by Sajanraj et al. 
[16] involved enhancing LSTM input sequences with station information to capture differences between var-
ious stations more effectively.

Liu et al. [17] proposed a deep learning-based algorithm, DeepMTT, for manoeuvrable target trajectory 
prediction, but it showed limitations in prediction accuracy when the estimated position error was substan-
tial. This led Yu et al. [18] to propose the DeepGTT algorithm to improve trajectory prediction in complex 
scenarios through standardisation and mapping of trajectory data. However, this approach might suffer from 
estimation delays due to observation noise and nonlinear errors.
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Finally, LSTM-based trajectory prediction techniques have been applied to other domains and compared 
with other models. For example, Siami-Namini et al. [19] compared bidirectional LSTM with ARIMA for 
financial time series prediction. Yin et al. [20] utilised LAG-LSTM for high-speed railway train trajectories, 
whereas Yang et al. [21] used Bi-LSTM for ship trajectory prediction. Lin et al. [22] focused on spatial-tem-
poral attention mechanisms and demonstrated superior performance in comparison to convolutional neural 
networks (CNN) and recurrent neural networks (RNN).

In summary, the literature shows a rich set of methodologies for trajectory prediction, especially employ-
ing deep learning. This research builds on these works and specifically addresses the issue of unexpected 
errors in tracking port container trucks. In light of the foregoing investigation, this study proposes a novel 
methodology employing a PBT-optimised LSTM-Attention network for predicting PCTruck trajectories.

3. METHODOLOGY
The DeepPBM-Attention model is employed for the prediction of horizontal movement trajectories of 

PCTrucks within a port environment. Figure 1 illustrates the comprehensive design process of the Deep-
PBM-Attention model, which encompasses three primary steps:
1)  Gathering and preprocessing raw positional data, including denoising and interpolation, followed by 

dataset division into training, validation and test sets.
2)  Iterative training of the model using the training and validation sets to determine the best trajectory pre-

diction model.
3)  Validation of the model using nine real vehicle trajectories from the test set, assessing performance met-

rics like training duration, prediction time and accuracy.

Figure 1 – Overall flow chart of vehicle trajectory prediction
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For a more in-depth exposition of the workflow’s internal dynamics, including the preprocessing of 
positioning data, the structure of the DeepPBM-Attention model and the validation steps, Figure 2 has been 
developed. It presents a detailed exploration of these processes. In subsequent sections, a more detailed 
exposition will be presented, focusing specifically on each of these crucial steps, from data cleansing to the 
sophisticated architecture and validation of the DeepPBM-Attention model.

The content of each step in Figures 1 and 2 will be introduced in detail in the following sections.

Figure 2 – Design details of the trajectory prediction model

3.1 Data preprocessing
The continuous collection of both temporal and spatial data is constituted by the trajectory data of hori-

zontally moving PCTrucks within the port constitutes. Faster convergence of models and higher prediction 
accuracy can be accomplished with proper processing. Additionally, computational complexity and the as-
sociated training costs can be diminished. Consequently, a meticulous preprocessing of the initial data has 
been undertaken to refine our prediction model. The detailed procedure of our data processing strategy is 
depicted in Figure 3.

Efficient trajectory prediction is enhanced through the acquisition of GPS data from PCTrucks within the 
port over 30 days, with a focused analysis conducted on a selected subset of seven days. The collected data 
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are subsequently processed to obtain meaningful findings. This process involved creating a time sequence 
for the data, extracting features such as timestamp, latitude, longitude, speed and direction, and applying 
filters to manage outliers. Python 3.7 was utilised for data processing.

Figure 3 – The pre-processing process of GPS raw data

The study began by parsing the collected GPS data from PCTruck, which were encoded in the NMEA-
0183 format. The data were parsed to extract important features such as time, latitude, longitude, speed and 
heading angle. These features were then stored in a data frame. To reduce the influence of noise and outliers, 
a filtering technique was applied in this study to remove abnormal and noisy data points.

The challenge of missing GPS coordinates, arising from signal interruptions and resulting in data gaps, 
was addressed. To maintain data integrity, interpolation was employed to handle these missing values. To 
estimate missing values, the preceding and succeeding values at the respective time points were used in the 
linear interpolation. The interpolated results were saved to the data frame, ensuring a continuous and com-
plete dataset.

The GPS data are segmented into time intervals and transformed into a supervised learning format for 
model training and prediction. The longitude, latitude, speed and direction from the previous time interval 
are used as input to the model, while the longitude and latitude from the subsequent time interval serve as 
the predicted output. The prediction accuracy can be enhanced due to this supervised learning structure by 
enabling the model to learn the relationship between input features and the desired output. Refer to Figure 4 
for an illustration of this data transformation process.

To expedite model training and improve prediction accuracy, it is essential to normalise the positioning 
data and standardise its data range within the interval of [0, 1].

The preceding paragraphs offer a comprehensive overview of the preprocessing steps involved with 
GPS data. These steps are contained by data integration, sorting, extraction, filtering, outlier management, 
missing value treatment, normalisation and the construction of the input structure for the model, which es-
tablishes a data foundation for subsequent model training and prediction tasks.
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Figure 4 – Data transformation into supervised learning data

3.2 Neural network model design
In the subsequent part of this section, the DeepBPM-Attention model is designed and presented along 

with an elaboration of the main neural network model employed by this framework, namely the LSTM mod-
el. Lastly, the hyperparameter optimisation algorithm will be introduced and adopted in this study.

LSTM
The LSTM is a variant of recurrent neural network (RNN) that employs gating mechanisms to regulate 

the flow of information and update its memory. For an individual LSTM cell, internal computations are 
performed as follows:

f W x W x W C bt xf t hf t cf t f1 1$v= + + +- -^ h  (1)
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tanhh o Ct t t= ^ h  (5)
In Equations 1–3, the σ function (sigmoid function) and the tanh function are defined as follows: 
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Exceptional capabilities in the realm of general time series modelling and prediction have been exhibited 
in LSTM, outperforming traditional recurrent neural networks (RNNs). This is accomplished by incorporating 
multiple threshold gates that balance memory retention and forgetting. As a result, LSTM is considered an 
effective approach for solving time series prediction problems. Each LSTM block  is comprised of a memory 
cell and three gates: the input gate (ht), the forget gate (ft) and the output gate (ot), as depicted in Figure 5. The 
critical aspect of LSTM lies in the storage of the memory cell state (Ct), represented by the horizontal line at 
the top of Figure 5. Additionally, the input and output of the LSTM are respectively denoted by the xt and ht.

Figure 5 – LSTM internal structure
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Given the effectiveness of LSTM in time series prediction tasks, the use of the stored memory cell state 
(Ct) essentially acts as an accumulator of state information. Upon receiving new input, the forget gate (ft) 
determines which information should be discarded from the memory cell state. Subsequently, the input gate 
decides which values need to be updated, and a new candidate value vector, denoted as Ct, is generated by 
the Tanh layer. This candidate value can be added to the memory cell state. These results are amalgamated 
for state updates. Finally, the output gate (ot) and Ct contribute to the generation of the final state, ht.

DeepLSTM-Attention
The challenge of predicting long sequence trajectories was addressed by employing a DeepLSTM-Atten-

tion model, which effectively captures complex temporal relationships and essential characteristics within 
vehicle trajectory sequences. By stacking multiple LSTM layers, our model was equipped to perform hi-
erarchical representation and modelling of vehicle trajectory sequences, effectively extracting higher-level 
abstract features and better addressing the long-term dependencies and intricate patterns in sequential data. 
The hidden state from the previous layer was performed as input for each LSTM layer with computations of 
gated units within it. As depicted in Figure 6, our DeepLSTM-Attention model initially processes the input 
data through two LSTM layers, facilitating the extraction of temporal features from the input data.

Figure 6 – DeepLSTM-Attention

An attention mechanism was incorporated to enhance the prediction of future vehicle trajectories. The at-
tention layer computes a weighted sum between each time step of the input and the model’s learned weights, 
resulting in an attention weight for each time step. This weight vector can be regarded as the attention 
assigned to different time steps in the input data, reflecting the importance assigned by the model to each 
time step. The computation of the attention mechanism in the DeepLSTM-Attention model consisted of two 
steps: score calculation and normalisation. Suppose the input sequence’s length was denoted by T, and the 
hidden state at each time step was represented as ht.

Score calculation. Assuming the length of the input sequence is denoted as T, and the hidden state at each 
time step is represented as ht. The attention mechanism utilises a multilayer perceptron (MLP) to map the 
hidden state ht into attention scores et:
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( )e MLP ht t=  (8)
where et represents the attention score at the t time step. By performing a nonlinear transformation and 
weighted summation of the hidden states, the attention mechanism enables the network to automatically 
focus on the relevant parts of the input sequence that are pertinent to the current task.

Normalisation. To obtain the attention weights ht, it is necessary to normalise the scores. Initially, the 
scores are transformed into positive values using the exponential function. Subsequently, the scores of all 
time steps are summed and normalised, resulting in the attention weights αt:
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In the DeepLSTM-Attention model, the output of the attention layer is concatenated with the output 
of the third LSTM layer, effectively amalgamating the information from these two key components. The 
third LSTM layer captures temporal patterns and relevant features in the vehicle trajectory data, while the 
attention layer enhances focus on different time steps. Due to concatenation, the input data can be grasped 
through this model comprehensively and holistically by considering all the diverse information these com-
ponents provide. Moreover, the attention layer can better utilise the output of the third LSTM layer through 
this operation, preserving more information and details for subsequent processing. Without this concatena-
tion, the attention layer would only operate on the LSTM’s output, limiting its use over the entire trajectory 
data and preventing it from accessing deeper-level information. Multiple experiments have been conducted 
to support this finding.

A dropout layer was added after the attention layer to address potential overfitting that may occur when 
randomly omitting a fraction of the neuron outputs.

After conducting extensive experimentation and result comparisons, it was recognised that incorporating 
the dropout layer at this point enhances the model’s ability to manage overfitting issues and improve its 
generalisation performance on the unobserved dataset.

The feature fusion strategy in this model combines the representational power of LSTM and attention 
layers to effectively capture input sequence features, enhancing overall performance.

In summary, the DeepLSTM-Attention model assimilates a multi-layer LSTM architecture, feature fu-
sion, an attention mechanism and a dropout layer, consequently delivering exceptional performance. The 
model’s superior function hinges on hierarchical representation and modelling, automatic prioritisation of 
vital sequence components, feature amalgamation and regularisation, all of which serve to effectively seize 
long-term dependencies and crucial information in sequential data. This, in turn, bolsters the model’s per-
formance and generalisation abilities. Future refinement of this model will entail the exploration of hyper-
parameter optimisation techniques, forming the subsequent progression of this investigation.

Figure 7 illustrates the four-dimensional input to the model. After data preprocessing, the input sequence is 
time-ordered. The four variables – longitude, latitude, speed and heading angle – are subsequently admitted  
into the model as inputs.

Figure 7 – Input and output of the model
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PBT optimised DeepLSTM-Attention
Population-based training (PBT) [23] operates as an evolutionary optimisation technique for hyperpa-

rameters. It cultivates a population of models, each endowed with distinct hyperparameters and weights. 
PBT interprets the training process as an evolutionary progression of a population, commencing with an 
array of neural networks alongside their associated hyperparameters. In every iteration, individuals within 
the population are processed utilising their allocated computing resources. Simultaneously, they “replicate” 
to yield new individuals possessing modified hyperparameters, thereby updating the population.

This process bears a resemblance to genetic algorithms where individuals learn and compete with each 
other. Presented below is the principal computational procedure of PBT:
f P f1i i$= -^ h  (10)
f P fj j$=  (11)

where fi and fj denote the fitness values of the i-th and j-th individuals in the population, respectively, 
whereas P represents the probability of pruning an individual. According to Equation 10, an individual with 
a higher fitness value, i, will have a probability of (1-P) to be retained. Equation 11 implies that an individual 
with a lower fitness value, j, will be pruned with a probability of P. Below is a detailed description of the 
implementation procedure:
Step 1: Population initialisation. Randomly selecting hyperparameters from the hyperparameter space to 
initialise neural networks and thus create an initial population.
Step 2: Individual training. The neural network corresponding to each individual in the initial population is 
trained using its hyperparameters and performance metrics are obtained.
Step 3: Individual replication and training. Each replicates itself and generates new individuals by slightly 
modifying their hyperparameters. Respective hyperparameters are utilised to train neural networks and 
compete with each other within these new individuals.
Step 4: Inter-individual competition. In each iteration, the individuals in the population compete with each 
other to determine the individuals to be retained. This process presents an opportunity for individuals to 
learn from the successes of their peers and potentially get replaced by others.
Step 5: Population update. The next generation population is formed by removing the individuals with poor-
er fitness and adding the individuals with better fitness.

Due to the significant effect hyperparameters have on neural network performance, the BPT algorithm 
was employed to optimise the hyperparameters of the proposed DeepLSTM-Attention network (DeepBPM 
-Attention). This allowed us to find the optimal hyperparameters and create the best model.

4. EXPERIMENTAL DESIGN AND RESULTS
In this segment, an empirical assessment of the DeepPBM-Attention algorithm is presented using au-

thentic container terminal data. Initially, the experimental scenario and data source are elucidated, followed 
by formulating experiments for horizontal trajectory prediction of PCTruck. Several methodologies, includ-
ing Kalman filtering, support vector regression (SVR), LSTM, DeepLSTM, DeepBiLSTM and the proposed 
DeepPBM-Attention are deployed and juxtaposed. In conclusion, a thorough assessment and comparison of 
various algorithms are conducted to highlight the advantages of DeepPBM-Attention in addressing horizon-
tal positioning errors for PCTrucks at container terminals in practical scenarios.

The data from daily activities at Shanghai Port forms the foundation for PCTrucks’ trajectory prediction 
research. To accomplish the automation revamp and conversion of traditional container terminals, installing 
GPS positioning systems on a total of 117 PCTrucks at the terminal is essential. Consequently, the GPS po-
sitioning data for a month were collected without interruption and seven days of these are analysed deeply. A 
substantial amount of NMEA-0183 formatted data were provided for this study. Following this, the harvest-
ed data were subjected to preprocessing, resulting in the generation of the experimental dataset requisite for 
this study. The integration of this dataset enhances our understanding of the complex behaviours exhibited 
by PCTrucks as they navigate the intricacies of seaport settings.
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4.1 Model and parameter design for trajectory prediction

Kalman filter
The Kalman filter, a recognised probabilistic method, is employed for estimating state variable values in 

dynamic systems. In the context of this article’s comparative analysis, the algorithm operates in a cyclical 
process of measurement updates and prediction steps. In the measurement update phase, the state estimate 
integrates new measurements (y) with the current state (x), heavily relying on the measurement noise covari-
ance matrix R. Set as a diagonal matrix with 1 element, R reflects the estimated uncertainty in measurement 
noise.

In the ensuing prediction phase, the future state is forecasted using the state transition matrix (A), where 
the process noise covariance matrix Q is of crucial importance. Configured as a diagonal matrix with each 
element valued at 0.1, Q denotes the assumed uncertainty in the system’s process noise. The configuration 
of Q and R critically affects the balance between reliance on the system’s dynamics and the measurement 
data, thus influencing the Kalman filter’s overall performance and accuracy in tracking and predicting state 
variables.

SVR
Support vector regression (SVR) is a machine learning algorithm applied for predicting continuous vari-

ables, acting as an extension of the support vector machine (SVM) algorithm in the realm of regression anal-
ysis. SVR seeks to find an optimal hyperplane that minimises the average distance between the training data 
points and the hyperplane, thereby aiming to yield accurate predictions. Within this study, SVR is employed 
to predict the latitude and longitude of vehicles by evaluating the provided features and latitude-longitude 
data. Once the model is trained, it is applied to forecast the vehicle’s latitude and longitude at new locations.

LSTM and its variants
The hyperparameter settings of the neural network are shown in Table 1. Extensive experiments were con-

ducted on the task of predicting the trajectories of horizontally moving vehicles, with a special focus on deep 
learning methodologies. LSTM and its variant models were leveraged to fulfil this task, and several adjust-
ments were made to the hyperparameters of each model. Additionally, the BPT algorithm was leveraged to op-
timise the hyperparameters of our proposed model, DeepBPM-Attention. Through this process, four superior 
models were devised, along with their respective parameters, as depicted in Table 1. In the subsequent section, 
the experimental evaluations and comparative analyses of the aforementioned designed models are presented.

Table 1 – Hyperparameter settings

Models The number 
of training set

The number 
of validation 

set

Number of 
neurons in 

hLSTM1

Number of 
neurons in 

hLSTM2

Number of 
neurons in 

hLSTM2

optimiser epochs batch_size

LSTM 729,000 81000 128 \ \ Adam 200 3600
DeepLSTM 729,000 81000 128 256 256 Adam 200 3600
DeepBiL-

STM 729,000 81000 128 256 256 Adam 200 3600

DeepBPM- 
Attention 729,000 81000 128 256 256 Adam 200 3600

4.2 Result and analysis

Experiment and analysis of model training efficiency
The efficiency of training deep learning models is often regarded as a crucial evaluation metric. In light of our 

advancement from a solitary LSTM neural network to the integration of multiple layers of LSTM and additional 
neural network components, such as attention, it is essential to devise experiments that meticulously assess and 
compare the training efficiency of each model. Such comparative analyses are essential for a more compre-
hensive assessment of the predictive models.
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In this experiment, the hyperparameter configurations for each model are outlined in Table 1. Under 
equivalent hyperparameter settings and an equal number of datasets, the training efficiency of each model 
is presented in Table 2.

Table 2 – Comparison of training efficiency of various models

Model Training time (s)
Kalman filter \

SVR \

LSTM 65.4090625

DeepLSTM 227.2934141

DeepBiLSTM 550.7698176

DeepBPM_Attention 245.1058742

Due to the increased depth of the LSTM neural network and the incorporation of an attention layer, our 
model becomes more intricate, enabling a better understanding of vehicle trajectory data within the port 
context. Consequently, the training time for our designed model is approximately four times that of a single 
LSTM neural network. In future investigations, the training efficiency of complex models will be focused 
on studying.

Analysis of prediction results of the DeepPBM-Attention model
The proposed DeepPBM-Attention network is utilised in our study to predict the trajectories of PCTrucks 

within a harbour region. Individual predictions for longitude, latitude and the PCTruck trajectories are ex-
ecuted by leveraging processed data. The predicted outcomes are subsequently juxtaposed with the actual 
PCTruck trajectories. A comparison of the model’s forecasted longitude values with the real data is graphi-
cally exhibited in Figure 8.
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Figure 8 – Comparison chart of true longitude and predicted longitude

Likewise, Figure 9 shows the predicted latitude values juxtaposed against the actual data.
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Figure 9 – Comparison chart of real latitude and predicted latitude
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Lastly, in Figure 10, the model’s overall trajectory predictions contrasted with the real trajectories are exhibited.
From Figures 8–10, it becomes clear that our model demonstrates substantial accuracy in predicting the 

horizontal motion of PCTrucks within the port vicinity, whether considering longitude, latitude or trajectory 
prediction. In the following sections, the DeepPBM-Attention model with other trajectory prediction models 
is juxtaposed to conduct a thorough evaluation of our proposed methodology.
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Longitude

Figure 10 – Comparison chart of real trajectory and predicted trajectory

Comparison of the experimental results of each model
The goal of this research was to perform a comparative analysis of six trajectory prediction methods 

to verify their predictive capabilities. RMSE, MAE, F1 score and TRE are utilised as evaluation metrics. Da-
ta-driven neural network algorithms showcased superior predictive performance compared to the model-driven  
Kalman filter approach, as per the analysis results. These algorithms excelled over the latter method in 
terms of RMSE, MAE, F1 score and TRE. Moreover, data-driven neural network algorithms more precisely 
grasped the shape and curves of the predicted trajectories, thereby aligning them more accurately with re-
al-world scenarios. The specific comparison of the efficacy of different methods is undertaken in predicting 
PCTruck trajectories. The evaluated methods included Kalman filtering, SVR, LSTM, DeepLSTM, Deep-
BiLSTM and DeepPBM-Attention. The predictive performance and errors of these methods are scrutinised 
to thoroughly assess their applicability. The subsequent section introduces the experimental findings.

Figures 11a and 11b respectively display the predictions of longitude and latitude for the PCTruck made by 
various models, while Figure 11c shows a comparison of the predicted trajectories composed of the predicted lon-
gitudes and latitudes. From Figure 10, it can be observed that regardless of whether it is longitude or latitude, the 
results predicted by our proposed DeepPBM-Attention model are superior to those of other models. The findings 
imply that the DeepPBM-Attention method is proficient at predicting PCTruck trajectories in harbour settings.

Nine trajectories, depicted in Figure 12, were utilised to evaluate the model’s generalisation capacity. The 
model’s competence to predict PCTruck movements beyond the scope of the training and testing datasets 
was validated through these trajectories.

In the task of vehicle trajectory prediction, the prediction times vary among different models when using 
the same test set. Furthermore, the time taken to predict trajectories of the same length is a crucial metric for 
evaluating model performance. A robust trajectory prediction model should strive to deliver more accurate 
predictions within shorter time frames. To assess this aspect, the tests on the prediction times for various 
models on nine trajectory segments are conducted, as depicted in Figure 12. The comparative results are pre-
sented in Table 2. It is noteworthy that the experiments were conducted on a computer with an Intel Core i7 
CPU, an RTX 1050 GPU and 16 GB of RAM.

The experimental results indicate that model-driven approaches exhibit significantly lower prediction times 
compared to data-driven methods. Within the realm of data-driven methods, our designed DeepBPM-Attention 
model outperforms other models in 5 out of the 9 test segments. Despite the increased complexity of our model 
structure, it demonstrates competitive prediction speeds compared to alternative methods.
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Figure 12 – Nine trajectory segments for testing

a) Comparison of longitude prediction results b) Comparison of latitude prediction results

c) Comparison of trajectory prediction results
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Figure 11 – Comparison chart of PCTruck trajectory prediction results of each model
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A comparative analysis was performed on the prediction accuracy for the nine trajectories. By juxtapos-
ing the forecasted values with the actual ones, the RMSE, MAE, F1 score and TRE for each method were 
computed.

RMSE is defined as follows:

RMSE N y y1
t
i

t
i

i

N
2

1
= -

=
t^ h/  (12)

MAE is defined as follows:

MAE N y y1 i i

i

N

i i
1

= -
=
t/  (13)

F1 Score is defined as follows:

F Score Precision Recall
Precision1 2 $= +  (14)

Within the Equation 14, the computation methods for precision and recall are as follows:

Precision TP FP
TP= +  (15)

Recall TP FN
TP= +  (16)

True positives (TP) signifies the count of samples that the model accurately predicts as positive exam-
ples. False positives (FP) denote the count of samples that the model erroneously predicts as positive when 
they are negative examples. False negatives (FN) represent the number of samples that the model mistaken-
ly predicts as negative when they are positive examples.

Table 3 – Comparison table of prediction time of each modelå

Model
The number  

of validation set
Test time 

(s)

The number  
of validation 

set

Test time 
(s)

The number  
of validation 

set

Test time 
(s)

Trajectory1 Trajectory2 Trajectory3

Kalman filter

2068

0.268

2069

0.286

2069

0.268

SVR 0.009 0.014 0.008

LSTM 1.328 1.344 1.297

DeepLSTM 1.073 1.108 1.072

DeepBiLSTM 2.173 2.153 2.360

DeepBPM_Attention 1.138 1.158 1.310

Trajectory4 Trajectory5 Trajectory6

Kalman filter

2069

0.255

2069

0.253

2069

0.263

SVR 0.007 0.009 0.008

LSTM 1.325 1.437 1.379

DeepLSTM 1.223 1.442 1.193

DeepBiLSTM 2.215 2.472 2.243

DeepBPM_Attention 1.149 1.344 1.131

Trajectory7 Trajectory8 Trajectory9

Kalman filter

2069

0.243

2069

0.254

2069

0.273

SVR 0.007 0.008 0.009

LSTM 1.302 1.355 1.426

DeepLSTM 1.366 1.149 1.209

DeepBiLSTM 2.696 2.228 2.335

DeepBPM-Attention 1.307 1.129 1.191
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TRE is defined as follows:

TRE y yi
i

n
2

1
= -

=
t^ h/  (17)

where yi represents the real value, ŷ  represents the predicted value, and n represents the number of samples.
Table 4 showcases the experimental outcomes, illustrating that the DeepPBM-Attention accomplished the 

highest accuracy in the trajectory prediction task.
Table 4 – Experimental results of RMSE, MAE, F1 and TRE for different models predicting trajectories

Model Trajectory1 Trajectory2 Trajectory3
Evaluation RMSE MAE F1 TRE RMSE MAE F1 TRE RMSE MAE F1 TRE

Kalman filter 0.228 0.204 0.863 14.648 0.216 0.202 0.740 13.875 0.229 0.214 0.816 14.751
SVR 0.062 0.052 0.956 4.017 0.064 0.056 0.950 4.147 0.071 0.065 0.892 4.553

LSTM 0.017 0.014 0.995 1.097 0.012 0.007 0.992 0.753 0.013 0.009 0.992 0.857
DeepLSTM 0.017 0.014 0.990 1.067 0.014 0.012 0.981 0.896 0.016 0.014 0.983 1.049

DeepBiLSTM 0.016 0.012 0.993 1.058 0.015 0.011 0.990 0.969 0.016 0.012 0.995 1.026
DeepBPM-At-

tention 0.010 0.008 0.997 0.618 0.008 0.005 0.992 0.505 0.010 0.007 0.992 0.621

Trajectory4 Trajectory5 Trajectory6
Evaluation RMSE MAE F1 TRE RMSE MAE F1 TRE RMSE MAE F1 TRE

Kalman filter 0.253 0.234 0.906 16.263 0.231 0.225 0.967 14.867 0.237 0.228 0.817 15.239
SVR 0.051 0.042 0.932 3.296 0.053 0.043 0.974 3.438 0.056 0.045 0.947 3.594

LSTM 0.017 0.012 0.996 1.063 0.011 0.008 0.997 0.727 0.013 0.009 0.991 0.824
DeepLSTM 0.020 0.018 0.932 1.265 0.014 0.012 0.995 0.881 0.014 0.012 0.982 0.921

DeepBiLSTM 0.019 0.014 0.996 1.200 0.015 0.012 0.996 0.974 0.016 0.013 0.934 1.059
DeepBPM-At-

tention 0.012 0.010 0.941 0.755 0.007 0.005 0.998 0.453 0.008 0.005 0.996 0.518

Trajectory7 Trajectory8 Trajectory9
Evaluation RMSE MAE F1 TRE RMSE MAE F1 TRE RMSE MAE F1 TRE

Kalman filter 0.230 0.219 0.819 14.797 0.180 0.149 0.967 11.566 0.199 0.172 0.928 12.790
SVR 0.068 0.062 0.853 4.397 0.059 0.053 0.981 3.785 0.058 0.044 0.985 3.713

LSTM 0.010 0.008 0.995 0.670 0.010 0.007 0.998 0.641 0.013 0.010 0.996 0.822
DeepLSTM 0.014 0.012 0.995 0.906 0.013 0.009 0.998 0.814 0.010 0.008 0.992 0.675

DeepBiLSTM 0.015 0.012 0.894 0.951 0.010 0.008 0.995 0.651 0.013 0.009 0.995 0.808
DeepBPM-At-

tention 0.006 0.004 0.998 0.415 0.004 0.003 0.999 0.232 0.006 0.003 0.998 0.359

5. DISCUSSION AND CONCLUSIONS
The proposed method is superior to other recent methods, including model-driven methods, such as the 

Kalman filter, and data-driven methods, such as LSTM, as shown in the last section. Different from other 
model-driven methods [1–8] mentioned in the literature review section, the proposed method is a fully da-
ta-driven algorithm. Model-driven methods are based on physical models and statistical principles, facilitating 
ease of comprehension and interpretation, eliminating the need for extensive data collection and delivering 
high inference efficiency. However, their efficacy dwindles in the face of complex and nonlinear scenarios, 
where adapting and implementing physical models becomes a formidable challenge. Our experiments further 
corroborate this, revealing model-driven methods’ relatively inferior performance in forecasting PCTruck 
trajectories. In contrast, data-driven approaches excel in extracting a broader spectrum of features in com-
plex settings, thereby ensuring superior accuracy. Similarly, other researches, for example [12, 15–18, 20–
22], also utilised data-driven algorithms, such as LSTM or its variants with/without an attention mechanism, 
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for higher accuracy. Although the scenarios and datasets in the works of literature differ from the proposed 
algorithm, most of these algorithms, such as LSTM, etc., were compared with the proposed one in the previ-
ous section. From the results of the last section, it is clear that the proposed method achieves a lower error in 
this scenario and dataset, and it does so without incurring significant additional training time as a trade-off. 
Additionally, the proposed method not only exhibits good computational efficiency but also achieves this 
efficiency without the cost of excessive training time, positioning it as the state of the art.

In the comparative experiments of this study, which are also based on data-driven methods, utilising the 
same dataset and computational resources, the DeepPBM-Attention model requires a significantly longer 
training duration compared to a standard LSTM model, about four times as lengthy. This indicates its higher 
complexity, attributed to its advanced ability to decode intricate data patterns and dependencies. Though 
the extended training time might limit practicality in some scenarios, the model’s sophisticated approach 
effectively handles complex tasks. In terms of post-training prediction time performance, the DeepPBM-At-
tention model outshines other deep learning models in PCTrucks trajectory prediction, achieving the lowest 
prediction times in the majority of nine tests, reflecting its efficiency and consistent reliability. Moreover, it 
excels in predictive accuracy, outperforming other models across four key metrics: RMSE, MAE, F1 score 
and TRE. The model’s application in GPS trajectory prediction within container terminals, particularly in 
mitigating positioning errors from obstructions like stacked containers and cranes, demonstrates its supe-
riority over traditional methods such as Kalman filtering, machine learning methods like SVR, and other 
deep learning approaches, including LSTM. It shows a notable 40% improvement over LSTM in PCTruck 
trajectory prediction, emphasising its high accuracy and effectiveness.

This study not only underscores the DeepPBM-Attention model’s proficiency in harbour positioning 
but also highlights potential research areas, including its application in complex environments like ur-
ban and mountainous terrains. The exploration of integrating additional sensors such as radar and LiDAR 
could enhance GPS reliance, improving accuracy and robustness. Additionally, merging this model with 
advanced navigation and path planning algorithms may significantly advance automation and efficiency 
in PCTruck transport, fostering the development of smarter port logistics. Overall, our research places the 
DeepPBM-Attention model at the vanguard of PCTruck trajectory prediction, offering innovative solutions 
for specific situational challenges.
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叶海雄，栾开荣，杨楣，张希靓，周悦

基于DeepPBM-Attention的港口集装箱卡车的轨迹预测

摘要：

大多数目标跟踪算法均基于模型驱动的方法，受制于人为动机未知而影响算法准确

性。本研究旨在解决港口集装箱卡车的定位在被遮挡时存在短暂误差的问题，提出

一种基于数据驱动方法的车辆轨迹预测算法。该方法通过预处理海量GPS数据和训

练DeepLSTM-Attention模型，并结合PBT(Population Based Training)算法优化网络超

参数，从而提高预测水平运转集卡车辆轨迹的准确性。轨迹数据为真实港口采集的

定位数据，这项研究分别在9条不同的轨迹段上对比了传统方法如卡尔曼滤波、机器
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学习方法如支持向量回归(SVR)和常见的LSTM网络，结果表明基于PBT优化的Deep-
LSTM-Attention模型(DeepPBM-Attention)的轨迹预测方法在均方根误差(RMSE),平
均绝对误差(MAE),F1得分和轨迹重建误差(tre)上的表现均优于其他方法，性能相较

于LSTM网络提升了约40%。本研究所提出的基于数据驱动方法的目标轨迹预测算法

具有高精度和实用性，可有效应用于港口水平运转车辆的定位预测。

关键字：

港口集卡车；轨迹预测；基于群体的神经网络训练；深层长短期记忆神经网络；注

意力机制


