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1. INTRODUCTION
Playing an important role in supporting intercity travel, the highway is one of the essential parts in the 

transportation system. Nevertheless, the travel pattern is susceptible to external factors, including weather 
conditions, critical events and transportation restriction policies [1]. The COVID-19 pandemic has had 
a significant impact on travel behaviour and society as a whole, affecting more than 200 countries and 
approximately 700 million people [2, 3]. To mitigate the transmission of the virus, various transportation 
restrictions were implemented during the pandemic and post-pandemic stages, including stay-at-home or-
ders, remote education, limitations on non-essential activities within cities or provinces, and, in some cases, 
unrestricted movement. Consequently, understanding the effects of the pandemic on travel behaviour and 
how individuals respond to different restriction policies has become crucial. 

In particular, Guizhou province, situated in the southwestern region of China, poses unique challenges due 
to its mountainous and hilly terrain, with over 90% of its area characterised by such topography. Consequently, 
highways have emerged as the primary transportation corridors within Guizhou, given the lack of alternative 
routes. The diffusion of the COVID-19 pandemic in China has exhibited the characteristic pattern of “case 
clustering and mobile diffusion” [4, 5]. As a result, the Chinese government has implemented diverse re-
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ABSTRACT
The examination of highway travel behaviour during the COVID-19 pandemic can provide 
valuable insights into the impacts of the pandemic and associated policies on human mobility 
patterns. This paper proposes a comprehensive examination, measurement and characterisa-
tion approach in the perspective of network and community structure. To capture the changes 
in travel behaviour, four stages were defined based on four consecutive Augusts from 2019 
to 2022, during which varying levels of restrictions were implemented. The findings reveal 
interesting trends in travel patterns. In 2020, after the clearance of pandemic cases, there was 
a remarkable increase of over 10% in highway trips. However, in 2021, with the emergence 
of COVID-19 variants, there was a significant decline of over 30% in highway trips. By 
employing complex network analysis, key metrics of the primary network, including link 
weight, node flux and network connectivity, exhibited a notable decrease during the pan-
demic. These changes in network properties also reflect the spatial heterogeneity of highway 
travel demand. Moreover, the outcomes of community detection shed light on the evolution 
of the highway community structure, highlighting the efficacy of a community-collaboration 
strategy for highway management during public emergency events, as it fosters strong local 
interaction within the community.
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striction policies, constantly adjusting them across different cities and stages of the pandemic transmission [6, 
7]. Strict measures, including blocking highway entrances and exits, limiting public transport and implementing 
community closures, have gradually been eased and lifted. However, as the COVID-19 pandemic has persisted 
for the past three years, it has significantly affected travellers’ perceptions and behaviours [8]. Therefore, conduct-
ing an investigation into highway travel patterns in this western mountainous province remains meaningful, as it 
can provide valuable insights to support traffic management and operations during emergency events. 

Additionally, extensive of research studies have been conducted to investigate the interaction between 
the COVID-19 pandemic and travel behaviour of highway system. In order to quantify the impacts, vari-
ous measurements and statistics, such as province-wide traffic variation [9], weekly average daily traffic 
(WADT) and traffic accidents [10], state-wide highway volume [11] and national logistic level [12], are 
introduced. However, existing research studies mainly examined the spatial-temporal pattern of highway 
travel in statistical methods, and few studies attempted to deeply understand the travel behaviour from net-
work perspective.

Simultaneously, development of information technology, such as electronic payment systems and elec-
tronic toll collection (ETC) technology, provide detailed highway travel information and support the further 
analysis of travel characteristics during the pandemic. Compared to the existing research on highway travel 
patterns during the COVID-19 in terms of the traditional detectors [13], the electrical transaction technology 
made the travel information to be fixed to “unique vehicle and unique ID”. According to the statistics from 
the Ministry of Transport of China, the market penetration of ETC for freight and passenger car exceed 50% 
and 70%, respectively [14]. Nevertheless, rare research studies have been conducted to examine the high-
way travel behaviour with detailed transaction data.

In light of the aforementioned context, this paper aims to enhance the understanding of the correlation 
between COVID-19 and highway travel patterns through providing a comprehensive examination, measure-
ment and characterisation approach, during the outbreak and recovery stages of the pandemic. Spatial-tem-
poral analysis and the concept of complex networks are employed to furtherly examine the community 
structure of the highway network in Guizhou province. Thus, valuable insights can be gained regarding the 
impact of the pandemic on highway travel behaviour and the subsequent recovery process. This research 
seeks to contribute to the existing body of knowledge in the field and provide useful implications for trans-
portation planning and management in times of crisis. The remainder of this paper is organised as follows. 
Section 2 provides a comprehensive review of the relevant literature. Section 3 presents the methodology 
employed for the analysis, while Section 4 showcases the results of the analysis and provides discussions. 
Finally, the conclusions and implications derived from the study are presented in the concluding section.

2. LITERATURE REVIEW
Analysing highway travel patterns has always been a significant area of interest for researchers and 

traffic practitioners. A wealth of literature has been dedicated to investigating, understanding and predicting 
these travel patterns, utilising various data sources [15]. Generally, stationary data and probe data have been 
extensively used as the two major types of data source. Among them, the sensor data is the most widely-uti-
lised stationary data, which collects various traffic parameters, including traffic volume, speed and density, 
etc. Cao et al. utilised the speed and density to construct the traffic state index (TSI), on the basis of fuzzy 
logic [16]. Regarding spatial-temporal analysis, a short-term convolutional neural network (CNN) model 
was developed by Wen et al. to forecast significant traffic attributes [17]. A number of researchers also ex-
plored multiple source dataset in the analysis. For instance, the data derived from local detectors and probe 
sensor in vehicles were fused to measure the traffic congestion level [18]. However, the sensor data is anon-
ymous data without the origin and destination. 

Different from stationary data, the probe data are mainly collected by GPS, floating vehicles and even 
cellular devices [19]. Taxis constitute the primary source of the GPS dataset, which encompasses vehicle 
identity, precise coordinates and timestamps ranging from 5 seconds to 1 minute, depending on the GPS 
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device’s performance. [20–22]. The trajectory analysis has been commonly utilised to explore the GPS 
dataset. Other probe dataset has also been introduced to investigate the traffic characteristics. Huang et al. 
proposed a long short-term memory (LSTM) to predict the peak hour congestion through bus driving time 
derived from GPS device [23]. In recent years, the cellular data, revealing the spatial-temporal mobility 
patterns of travellers, was also introduced to measure the traffic flux on roads [24, 25]. Specifically, Jia et al. 
measured the human movements from Wuhan to the rest of China based on the cellular data, and predicted 
the spread rate of COVID-19 throughout the country [26]. Nevertheless, the probe dataset would be restrict-
ed by the sampling size due to the limited usage of GPS or cellular devices.

On the other hand, the human travel behaviour is significantly affected by the global spread of COVID-19 
pandemic, which has not been explored in earlier research [27]. Researchers made huge effort to examine 
the changes in travel behaviour due to the outbreak of pandemic. Beck et al. attempted to illustrate the 
changes of travel behaviour during the COVID-19 outbreak based on a household survey [28]. The results 
indicated the public transit faced the largest hurdle to recover. Based on the traffic survey through smart-
phones, Parker et al. found that the transit riders were significantly affected by the pandemic, while over 
70% of transit riders reported less trips [29]. Similarly, questionnaire survey, paper-based panel survey 
and web-based survey were also employed as a fundamental means to analyse the travel behaviour. As the 
contrast, some researchers collected the real-world traffic volume for analysis. Parr et al. compared the 
spatial-temporal patterns of traffic volume across Florida for 2019 and 2020 [30]. The pandemic impacts on 
freeway appeared earlier than on arterial. Through cellular network-based data, Gu et al. reconstructed the 
trip trajectory on highway between two cities [13]. The computed highway flows indicated the fluctuation 
trend during and after the pandemic. Considering the structural changes in intercity travel, Zhang et al. pro-
posed a weighted stochastic block model (WSBM) to examine the network structure before, during and after 
the pandemic break in China [12].

Another consideration of existing research is the interaction between governmental policies and travel 
patterns. He et al. found that the traffic lockdown and “activity restrictions” limited both the spread of 
COVID-19 and the festival-related travel in China [31]. Similarly, Parr et al. investigated the impacts of 
travel bans on traffic volume in 10 U.S. states [30]. The results indicated the heterogeneous distribution of 
decreased traffic volume across time and space. Patra et al. employed two Wi-Fi MAC Scanners to under-
stand the short-term changes of road traffic patterns [29]. Interestingly, Wang et al. found that the number of 
cars increased to 142%, while the number of trips by driving and transit dropped to 76% and 88%, respec-
tively, during the reopening strategies in New York [32]. However, due to the data accuracy and size, the 
analysis from the network perspective has been rarely performed.

To the best of our knowledge, although extensive research studies have conducted the analysis on high-
way travel behaviour, few studies attempted to examine the mobility patterns through the outbreak and 
recovery stages of COVID-19 pandemic from the perspective of network and community structure. It is 
still meaningful to explore the highway mobility patterns and emergency response of highway travellers. 
Despite the traditional network indicators, such as node degree, weight and clustering coefficient, network 
efficiency, Gini coefficient and spatial autocorrelation were introduced with the consideration of spatial 
and temporal interaction between highway tollbooths. On the basis of highway transaction data, this paper 
aims to propose a systematic approach that measures the impacts of the COVID-19 pandemic on highway 
mobility patterns from a network perspective. By adopting this approach, a comprehensive understanding of 
the changes in highway travel behaviour during the pandemic and its subsequent recovery can be achieved.

3. METHODOLOGY
3.1 Network properties analysis

Complex network theory has been widely applied in various domains for network analysis, encompass-
ing social relationship networks, supply chain networks and multiple-mode transportation systems [33–34]. 
In this study, the highway travel behaviour in Guizhou in four consecutive Augusts from 2019 to 2022 were 
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examined by the complex network properties. Specifically, the highway travel pattern experienced a recur-
rent outbreak process during the COVID-19 pandemic. In order to represent the highway system, tollbooths 
are considered as nodes, while the connection between pairs of tollbooths is regarded as links. Additionally, 
the unique number (e.g. i), is assigned to each tollbooth. The connectivity between nodes is presented by 
the adjacent matrix A. A link between nodes i and j is established and assigned a value of 1 if there are more 
than one highway trips recorded between them. Otherwise, the link is not built. Furthermore, the link weight 
ωi,j represents the trip counts between node i and j. To further investigate the network properties, the specific 
network properties are addressed as follows.

Node degree. Generally, the node degree is the most direct and understandable characteristic to measure 
the node centrality. The number of nodes connecting to a given node can be represented by node degree and 
can be calculated using the adjacent matrix. Consequently, higher node degree means the higher activity and 
importance for the network. In this study, both the in-degree and out-degree are considered, as the highway 
network is constructed as a directed graph. The in-degree represents the number of incoming links or con-
nections to the node, while the out-degree represents the number of outgoing links or connections from the 
node. Then, the node degree can be defined as follows:

D a ai ij ji
j V

= +
!

^ h/  (1)

where V presents the adjacent set of nodes for node i, and aij and aji represents the connectivity between i 
and j in both directions, which can be derived from the adjacent matrix.

Network connectivity. Saberi et al. stated the network connectivity could illustrates the systematic view 
of link and node, which is another commonly used network property analysis [33]. In this study, it can be 
expressed as follows:
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where the count of nodes is represented by n, while the number of links by L.
Node flux. Similar to the link weight, the count of trips can be presented by the node flux. However, 

node flux introduces the trips either begin or end for one selected highway tollbooth. Therefore, it can be 
expressed as Equation 3.
NFi ij

j
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where ωij is the link weight.
Clustering coefficient. Fishman et al. and Chen et al. employed the clustering coefficient in previous study 

to measure the performance a specific network, which also reveals the degree to which two adjacent nodes are 
likely to connect themselves [34, 35]. Thus, the clustering coefficient can be introduced as Equation 4 for node i.
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where CCi represents the clustering coefficient for node i. The directed triangle numbers are presented by 
Ti, while Di is the node degree. 

Network efficiency. In the network perspective, the traffic information transmission between nodes can 
be measured by the network efficiency, as expressed in Equation 5.

E N N d1
1 1

iji j
= - =Y^ h/  (5)

where the shortest distance between nodes can be presented by dij. The dij will be set to +∞, if there is no 
highway trip between nodes. Therefore, the value of E ranges from 0 to 1, while a large value means the 
high efficiency of the network.

Gini coefficient. The Gini coefficient is well known for measuring the income distribution and was in-
troduced to deal with the heterogeneous distribution of travel demand within traffic system [36, 37]. In this 
study, the general Gini coefficient format is as follows:
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where the Gini coefficient is ranged from 0 to 1. The high value of the Gini coefficient means the high in-
equality. xi is the service rate for highway tollbooth.

Spatial autocorrelation. Generally, the spatial autocorrelation analysis should calculate the Moran’s In-
dex within the regional network structure. The definition of Moran’s I is as follows:
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where n is the number of highway tollbooth. yi is the observed point for node i, while Wi,j is the spatial weight.

3.2 Detection of community structure
On the other hand, the community detection is regarded as one of the most effective methods for visu-

alising and understanding the underlying structure of a network or graph [38]. Indeed, the techniques for 
inferring communities in networks have found extensive applications in various fields such as sociology, 
biology and computer science. In the context of this study, inferring communities in the highway network 
involves dividing tollbooth sites into disjoint clusters, where tollbooths within the same cluster exhibit 
stronger connections in terms of highway travel behaviour. This approach allows for a closer examination 
of the relationship and patterns among tollbooths within the network. In total, communities in the network 
must demonstrate similarities in mobility patterns.

Over the past decades, an extensive number of literature has conducted the community detection. Specif-
ically, the most popular modularity mass function, proposed by Newman and Girvan, attempts to discover 
the likely existence of clusters by comparing the true edge density with the expected density in a subgraph 
[39]. In relation to the number of links and node degree, the expected number of edges between pairs of 
nodes can be estimated. Therefore, the difference between actual and estimated number of edges for all node 
pairs within the same community can be computed. Thus, the modularity function is expressed as follows:
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where Aij is the adjacent matrix. Di is the node degree for i. If node i and j are in the same community, the 
value of δ function is 1, otherwise zero. l is the number of links in the highway network.

4. RESULTS AND DISCUSSION
4.1 Study area and data source

The study area, Guizhou province, China, is majorly composed of mountainous and hilly plateaus, which 
is presented in Figure 1. Thus, highway plays an important role in transportation corridor, which is easily 
affected by the COVID-19 pandemic. Specifically, Guizhou is famous worldwide for the mountain tourism 
and over 70 national and provincial scenic districts attract a large amount of tourists. The tourism period is 
also the highest traffic volume period for the highway. Additionally, the pandemic experienced the process 
of recurrent outbreak and clearing, while traffic restrictions adjusted simultaneously. Therefore, this paper 
selects four consecutive Augusts as the study period, which can be divided to four distinct stages as follows:
Stage 1  (August 2019): Normal condition without the COVID-19 pandemic. In August 2019, there was no 

restriction on travel in Guizhou.
Stage 2  (August 2020): From the COVID-19 pandemic outbreak in Wuhan, the patient cases were clearing 

in March 2020 and the traffic restriction was eased in the second half of the year. In August 2020, 
the intercity travel within and outside the province was allowed.

Stage 3  (August 2021): The Delta variants of COVID-19 was spread to China in April 2021. The recurrence 
of the pandemic resulted in a strict traffic control policy on non-essential trips. In August 2021, the 
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intercity and interprovincial travel was strictly limited in Guizhou.
Stage 4  (August 2022): As the infection of COVID-19 was sporadic, the prevention of the pandemic was 

adjusted to “Normal prevention policy” in August 2022. The nucleic acid detection was essential 
for travellers outside the city, and the isolation time was up to 14 days if a traveller was from the 
medium-high risk area.

Figure 1 – The terrain of the study area Guizhou province

The utilised highway transaction dataset took four months, including four consecutive Augusts from 
2019 to 2022. Highway transaction dataset provides detailed travel information. The entrance and exit sta-
tion illustrate the origin and destination for a highway trip, which also indicates the spatial distribution of 
traffic. Other available attributes, such as ID, vehicle plate, time and payment, are shown in Table 1.

Table 1 – Highway transaction data format
Field Data type Description

Transaction ID Int The Transaction ID of records
Vehicle plate Var Vehicle plate number, unique

Entry station ID Var The station ID where vehicle enters highway
Entry time Date The date and time when vehicle enters highway

Exit station ID Var The station ID when vehicle enters highway
Exit time Date The date and time when vehicle enters highway

Transaction fee Float Fee for highway toll
Other fields

Moreover, transaction records may contain the missing value or incorrect information, which should 
be modified or removed. After the cleansing process, over 6 million records are involved. In this paper, 
the vehicles are divided into passenger cars and freight vehicles, which play different roles in the highway 
transportation system.

4.2 Spatial-temporal analysis
The highway transaction dataset was also cleansed with removing the erroneous records. Those extreme-

ly long or short highway trips within the Guizhou province are considered as invalid trips, which should be 
discarded to avoid the bias results.

Subsequently, the temporal analysis for passenger and freight cars from 2019 to 2022, respectively, as 
Figure 2 shows. Interestingly, in 2020, i.e. stage 2, there was a significant increase up to 15% in total traffic 
volume when compared to the stage 1 in 2019, which demonstrates the recovery of highway trips to normal 
levels. The clearing of COVID-19 cases and easing travel policy resulted in the increase in traffic. However, 
the traffic volume of passenger cars was fluctuated, while the traffic volume of freight cars was relatively 
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stable, which is mainly caused by the flexibility of travellers, especially for the tourists. For stage 3 in 2021, 
there was a dramatic decrease up to 30% in traffic volume, as the COVID-19 Delta variant exploded in 
China. The strict traffic control policy constrained a large amount of intercity and inter provincial highway 
travel. Similarly to the stage 3, the stage 4 was also under the strict traffic control policy, as the COVID-19 
cases were not clearing. Additionally, people’s perception of the pandemic also improved the self-control of 
long-range trips. As a result, the traffic volume during stage 4 is basically equal to that in stage 3. Moreover, 
the comparison of hourly traffic volume is presented in Figure 3. Specifically, the highway travel volume in 
Guizhou province illustrates the similar single-peak trend from 2019 to 2022. Nevertheless, the traffic vol-
ume in stage 3 and 4 has not been recovered to the amount in stage 1 and 2, due to the strict traffic control 
policy. These fluctuations highlight the dynamic nature of travel behaviour during the recovery stage and the 
influence of the evolving pandemic situations.
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Figure 2 – The daily traffic volume for passenger and freight cars
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Figure 3 – The comparison of hourly traffic volumes from 2019 to 2022

Moreover, the highway travel duration and toll amount were examined and compared in terms of cu-
mulative density and shown in Figure 4, which illustrates the significant difference between various stages. 
Notably, the average highway trip duration in August 2021 and August 2022 is the lowest within the study 
period. The observed changes can be primarily attributed to the outbreak of the COVID-19 pandemic and 
the subsequent implementation of travel restrictions, which decreases the long-range trip between cities. 
Specifically, there is no significant difference for average toll amount in four stages, which is believed to 
be affected by the adjustment of highway toll policy. For instance, the highway trips for the patients or an-
ti-pandemic materials are toll free.

1.0

0.8

0.6

0.4

0.2

0.0
0 600500400300200100

Duration (min)

Pr
op

or
tio

n

2019_August
2020_August
2021_August
2022_August

1.0

0.8

0.6

0.4

0.2

0.0
0 1250 1500 17501000750500250

Toll amount (CNY)

Pr
op

or
tio

n

2019_August
2020_August
2021_August
2022_August

 
Figure 4 – Cumulative density for travel duration and toll amount
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Furtherly, the spatial distribution of highway travel behaviour in each tollbooth for various stages was 
presented in Figure 5. The study found that there is a relatively homogeneous distribution of highway travel 
demand in Guizhou from 2019 to 2022. The central district and north-eastern district demonstrate the high 
travel demand in the study period, mainly due to the mountainous terrain and concentrated population. Even 
though the total number of highway trips decreased significantly in stage 3 and 4, the central district sur-
rounding the provincial capital keeps the high travel demand.

 
Figure 5 – Spatial characteristics of monthly average highway trips from 2019 to 2022

4.3 Discussions of complex network analysis
As described in data source section, four consecutive Augusts from 2019 to 2022, namely stage 1 to 4, 

were selected as the study period. Specifically, the COVID-19 pandemic experienced the outbreak, clearing 
and variant process, which resulted in various traffic restriction policies for the highway. Therefore, the 
highway transaction dataset was extracted to construct the complex network. Table 2 summarises the network 
performance of the highway network from 2019 to 2022 in the study. 

Table 2 – Network properties in each stage

Property 2019
Stage 1

2020
Stage 2

2021
Stage 3

2022
Stage 4

Node 461 521 554 583
Link 10670 12530 11277 13936

Connectivity 0.10 0.11 0.07 0.08
Mean degree 46.29 48.10 40.71 42.81
Max degree 422 464 496 511

Mean weight 146.27 149.76 129.11 110.44
Max weight 40212 56059 34587 37519
Mean flux 3684.78 3745.35 2760.49 2766.31
Max flux 191580 250256 217452 203468

Network efficiency 0.54 0.55 0.53 0.53
Clustering coefficient 0.22 0.23 0.17 0.18

Gini coefficient 0.939 0.942 0.940 0.941
Moran’s I 0.26 0.33 0.19 0.24
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The results show the increasing number of nodes by year while the links number is oscillating. It is main-
ly caused by the construction of a new tollbooth and decreased trips between tollbooths. Interestingly, the 
clearing of pandemic patients and loosing traffic restrictions may induce the recovery and even increase of 
highway travel. Thus, the network connectivity value increased approximately by 10% from 2019 to 2020. 
However, the COVID-19 variant and strict traffic restrictions in 2021 resulted in the significant decrease of 
intercity travel, which is proved by the lowest network connectivity 0.07. For stage 4 in 2022, the connec-
tivity recovered slowly as the recurrence of the pandemic.

The node degree demonstrates the number of tollbooths connected to the selected tollbooth. As expected, the 
mean node degree increased in 2020 and decreased in 2021 and 2022, which indicates the interaction changes 
between highway tollbooths. For instance, under the strict traffic policy, some highway tollbooths were closed 
and highway trips were forbidden. Nevertheless, the tollbooths with the highest node degree always provided 
the important service from 2019 to 2022. These tollbooths, providing excellent highway service for essential 
trips even under the COVID-19 pandemic, must be considered in the traffic policy against emergency. 

Furthermore, the link weight represents the number of trips between tollbooths, while the node flux 
indicates the total number of trips that either originate from or terminate at a selected highway tollbooth. 
These metrics provide insights into the intensity of traffic flow and the importance of specific tollbooths in 
the highway network. Similar trend was found in both link weight and node flux. For instance, the fast clear-
ing of COVID-19 cases induced a significant increase of link weight and node flux in 2020. However, the 
maximum link weight decreased approximately 40% in 2021 due to the COVID-19 variant and strict traffic 
restrictions. The highway travel has not been recovered to the normal condition in 2022. 

The average clustering coefficient measures the level of node interaction in the network. The low value 
in 2021 indicates the worse local connection in highway network due to the COVID-19 variant and traffic 
restrictions. Additionally, the measurement of network efficiency demonstrates the overall performance of 
the highway system in stage 1 and 2. Specifically, the Gini coefficient is over 0.9 from 2019 to 2022, which 
indicates the extremely uneven distribution of highway travel demand. This can be attributed to the concen-
tration of highway travel demand in the central capital district.

Furthermore, the Moran’s Index indicates the spatial correlation for the highway trips. The highest value 
of Moran’s Index in 2020 is over 0.3, which indicates the potential community structure of the highway 
network. In addition, the local Moran’s Index was employed to analyse the spatial clustering characteristics 
of highway travel patterns, as presented in Figure 6. The results presented the concentration of highway trips 
in the central capital district in Guizhou province, where the population is concentrated and transportation 
facilities are well built. On the contrary, the marginal area in Guizhou is composed of highway tollbooths 
with low travel demand. There exist similar spatial clustering characteristics from 2019 to 2022.

To further understand the network structure, the community detection approach was utilised to exam-
ine the highway community structure in four consecutive Augusts from 2019 to 2022. Figure 7 illustrates 
the detected communities in each period, in terms of the modularity-based approach. Generally, the major 
structure of the highway network is consistent in four stages. Community 2, 3 and 4 are found from 2019 
to 2022. Community 2, as identified within the highway network, is situated in a mountainous area with a 
moderate altitude, while community 3 is located in the mountainous area with medium altitude. Community 
4 is composed of hilly area. It is mainly determined by the terrain in Guizhou. Community 1 experienced 
significant changes that were influenced by the outbreak of the COVID-19 pandemic and the subsequent 
implementation of traffic restrictions. These changes likely impacted the connectivity and travel patterns 
within this community, leading to notable shifts in its composition and characteristics. In 2019 and 2020, 
community 1 covered a large area, which indicates the connection of long-range highway trips. In 2021, 
intercity travel is strictly limited, and community 1 was split into community 1 and 5 with small size. With 
the adaption to the traffic policy, people actively reduce the long-range highway trips, which mainly results 
in the disappearance of community 1 in 2022. The community structure addresses the gradual adjustment of 
highway travel behaviour.
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The findings of this study hold significant implications for the highway management authorities. The 
study suggests the adoption of a community-collaboration strategy for highway management during pub-
lic emergency events such as the COVID-19 pandemic. This strategy involves fostering collaboration and 
communication among different tollbooth communities, allowing for better coordination and response to 
changing traffic conditions and restrictions. Specifically, the tollbooths with high node degree, which can 
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Figure 6 – Spatial clustering characteristics for highway trips
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Figure 7 – Community structure for highway system from 2019 to 2022
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provide stable connection to other tollbooths, should be considered to be maintained in priority during an 
emergency.

On the other hand, the proposed methodology for measuring the impacts of the COVID-19 pandemic on 
highway mobility patterns from a network perspective has the potential for broader application beyond the 
specific context of this study. For instance, the methodology can be scaled up to analyse highway transaction 
data from different regions, or even countries. As long as the necessary data is collected, the approach can 
be applied to understand the impacts of the pandemic on highway mobility patterns in various geographical 
contexts. Additionally, the methodology can be used to evaluate the effectiveness of transportation policies 
and interventions implemented during the pandemic. By examining the network-level impacts of specific 
measures, such as travel restrictions or infrastructure changes, policymakers can assess their effectiveness 
and make informed decisions for future crisis management.

5. CONCLUSION
In contrast to the existing research on highway travel behaviour, this paper proposes a systematic ap-

proach to deeply understand the spatial-temporal characteristics in the network perspective on the basis 
of highway transaction data. Specifically, stages with various factors, such as the clearance of COVID-19 
cases, the emergence of COVID-19 variants and traffic restrictions, are investigated. By considering these 
stages, the study provides a more holistic understanding of how the highway travel behaviour evolves in re-
sponse to changing circumstances during the ongoing pandemic. The utilisation of the highway transaction 
dataset allows for a detailed spatial-temporal analysis of mobility patterns, enabling the identification of 
trends and changes in travel behaviour over time and across different locations. Moreover, the construction 
of a highway complex network based on the dataset helps uncover the underlying community structure and 
connectivity of the highway system. To further understand the network structure, community detection was 
used for the highway community structure in the study period:

 – Although the COVID-19 pandemic seriously influenced the transportation system, the highway trips in-
creased over 10% in 2020 due to the clearing of pandemic cases and easing traffic policy. In contrast, the 
outbreak of COVID-19 Delta variants resulted in a dramatic decrease of highway trips in 2021.

 – From a network perspective, major metrics such as link weight, node flux, network connectivity and 
clustering coefficient experienced a noticeable decrease during the pandemic. This indicates a change 
in the network properties of the highway system, reflecting the impact of the COVID-19 pandemic on 
travel demand.

 – Despite the influence of the mountainous terrain on the basic community structure in Guizhou, the community 
detection approach utilised in this study reveals the evolution of the highway community structure. This evo-
lution indicates the impact of changing traffic restrictions on the organisation of tollbooth communities within 
the highway network. The identification of evolving community structures provides insights into the dynamic 
nature of highway travel behaviour and the adaptation of tollbooths to changing conditions.
From a policy perspective, this paper offers a valuable and in-depth understanding of the impact of the 

COVID-19 pandemic and traffic restrictions on highway travel patterns. The findings highlight the impor-
tance of managing tollbooths collaboratively during emergency events. Given the strong local connections 
within communities, it is crucial to establish a collaborative approach to tollbooth management. In particular, 
tollbooths with high node degrees, indicating stable and significant connections to other tollbooths, should 
be prioritised and maintained to support essential highway trips during emergencies. These tollbooths play 
a crucial role in maintaining connectivity and ensuring the smooth operation of the highway network, es-
pecially during critical times. By focusing resources and attention on these key tollbooths, policy-makers 
can effectively manage and support essential transportation needs during emergency events. From the local 
government perspective, a community-collaboration strategy is recommended, which requires active par-
ticipation and engagement from highway management authorities, tollbooth operators and relevant stake-
holders. It involves establishing communication protocols, sharing real-time information and coordinating 
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responses to dynamic traffic conditions and restrictions. By adopting this strategy, highway management 
authorities can enhance their capabilities to manage emergencies, mitigate disruptions and ensure the safety 
and well-being of highway users.

Indeed, the proposed approach has great potential to be utilised in other regions or areas with highway 
and for the understanding of mobility behaviour in response to the pandemic and other public events. Fur-
ther research can be conducted to delve deeper into individual mobility patterns during unexpected disrup-
tions, such as public emergency events. One approach could involve implementing a demographic survey to 
examine the behaviour and preferences of travellers in adjusting their planned highway trips during emer-
gency situations. This would provide valuable insights into how individuals react and adapt to disruptions, 
allowing for a better understanding of their decision-making processes and potential mitigation strategies. 
In addition, the detected community in the highway network can also be considered in the planning and 
construction of the highway.
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刘卫铮，陈艳艳

探索COVID-19疫情影响下的高速公路出行模式：以贵州省为例

摘要：

通过对COVID-19大流行期间高速公路出行行为的研究，可以为了解疫情及相关政策

对人类流动模式的影响提供有价值的见解。本文提出了一种以网络和社区结构视角

的综合研究方法，对高速公路出行行为进行研究、评估和描述。为了捕捉出行行为

的变化，研究将时间划分为四个阶段，基于2019年到2022年连续四个8月份的数据，

这期间实施了不同程度的限制措施。研究结果揭示了出行模式的有趣趋势。在2020
年，疫情病例清零后，高速公路出行量显著增加了10%以上。然而，在2021年，随

着COVID-19变异株的出现，高速公路出行量显著下降了30%以上。通过采用复杂网

络分析，主要网络的关键指标，包括链路权重、节点流量和网络连通性，在疫情期

间表现出明显的下降。这些网络属性的变化也反映了高速公路出行需求的空间异质

性。此外，社区检测的结果揭示了高速公路社区结构的演化，突出了在公共紧急事

件期间采用社区协作策略进行高速公路管理的有效性，因为这有助于促进社区内的

本地互动。
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