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ABSTRACT
The emergence of battery electric buses (BEBs) can alleviate environmental problems 
caused by tailpipe emissions in transit system. However, the high cost of on-board batteries 
and range anxiety hinder its further development. Recently, the advent of dynamic wire-
less power transfer technology (DWPT) has become a potential solution to promote the 
development of BEBs. Hence, this study focuses on the application of DWPT in flex-route 
transit system. A mixed integer non-linear model is proposed to simultaneously optimise 
the bus routing and the selection of corresponding bus types considering the constraints of 
passengers’ travel time, battery size and bus capacity. The objective is to minimise both tran-
sit agency cost and passengers’ travel time cost. A tangible hybrid variable neighbourhood 
search (HVNS) consisting of simulated annealing (SA) and variable neighbourhood search 
(VNS) is developed to solve the proposed model efficiently. Compared with GAMS (DI-
COPT solver) and VNS, the proposed algorithm can considerably improve computational 
efficiency. The results suggest that the proposed model can effectively determine the BEBs’ 
routing and bus type for flex-route transit system powered by DWPT through a case study in 
Xi’an China. A comparative analysis shows the proposed model takes 12.97% less total cost 
than the alternative model with terminal charging technology (TCT).

KEYWORDS
flex-route feeder transit; electric bus; dynamic wireless charging; opportunity charging; 
hybrid variable neighbourhood search.

1. INTRODUCTION
The global transportation system is confronted with several environmental challenges (e.g. low energy 

efficiency and greenhouse gas emission). As reported in International Energy Agency 2019, the emissions 
from the transportation sector account for 27% of global emissions, which is expected to reach 30% by 2030 
and to approach 50% by 2050 if no key measures are undertaken [1]. To mitigate the emission problems, 
many countries and agencies have adopted policies to electrify the transportation system in recent years, 
especially for the urban transit system. The battery-electric engine is considered the best alternative to re-
place the gasoline or diesel engine. Compared with the traditional fossil fuel counterpart, battery-electric 
buses (BEBs) provide immense potential for urban livability and sustainability, because the direct tailpipe 
emissions of BEBs is zero and it operates with higher efficiency [2]. With sufficiently large on-board battery, 
BEBs can have comparable driving range as a traditional diesel bus. However, the weight and cost of the 
battery will increase with the increase of battery capacity, and the on-board battery for a long-range BEBs 
can account for 25% of the total weight and 39% of the capital cost [3], which hinder its popularity [4]. 
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Meanwhile, there are also some specific problems in the actual operation process, such as short mileage, 
long charging time, and unbalanced charging stack distribution during peak hours [5].

In the past few years, some fast-charging technologies (e.g. conductive fast charging and inductive fast 
charging) have been developed, and the peak charging rate can even reach 300–500 kW [3]. Thus, the oppor-
tunity charging, which allows BEBs to charge during the operation (especially when passengers get on and 
off), can be achieved. Recently, dynamic wireless charging technology (DWPT), allowing BEBs to charge in 
motion, has been proposed and deemed as the most potential way to achieve opportunity charging as well as to 
reduce battery capacity and costs, while alleviating the battery range limitation of BEBs [6]. The DWPT can 
effectively reduce the required battery size for BEBs by providing them frequent on-route charging opportuni-
ties. Several feasibility studies about DWPT have been conducted by Korea Advanced Institute of Science and 
Technology [7] and Texas USA [8]. The results suggested that DWPT charging devices can be deployed along 
the road in the closed experimental environment. While in the open environment (real urban bus system), they 
can only be deployed in the bus stop area due to the difficulties in their deployment and maintenance.

Several previous studies [6–12] have focused on the joint optimisation of battery size and the deployment 
of charging devices in the fixed-route bus system powered by DWPT. When passing through the bus stops 
installed with DWPT charging devices (recharging stops), the fixed-route BEBs can be recharged as required.

Unlike the fixed-route counterpart, the flex-route transit system (also known as demand responsive tran-
sit) can offer door-to-door service for passengers [13]. In the context of the internet, the flex-route transit 
system can greatly meet passengers’ personalised and customised travel demands. The emergence of DWPT 
can promote the further development of BEBs, and alleviate the charging anxiety. The application of DWPT 
to the flex-route transit system can reduce battery costs while meeting passengers’ demands, because the 
flex-route BEBs in the DWPT transit system can recharge energy during operation. As this study focuses 
on flex-route feeder transit, also known as demand-responsive feeder transit, the operational length and 
passengers’ demands vary for each route. Therefore, employing different vehicle types for various routes is 
necessary and meaningful to meet the diverse passengers’ demands. Thus, a fundamental question is cor-
respondingly raised, “how to optimise the flex-route feeder bus routing as well as corresponding bus types 
in DWPT system?” To fill this gap, this study develops an electrified flex-route feeder transit service with 
DWPT, and the main contributions of this study are summarised as follows.
1) To minimise passengers’ travel time cost, bus operating cost and bus depreciation cost, a novel mixed in-

teger non-linear programming (MINLP) model is proposed to simultaneously optimise the flex-route bus 
routing as well as corresponding bus types (consisting of different battery sizes, capacity sizes, energy 
consumption rate and unit operating costs). The operating time and the charging time can be allocated to 
balance the transit agencies cost (including bus operating cost and bus depreciation cost) and the custom-
er cost (passengers’ travel time cost), which can improve efficiency and competitiveness.

2) To solve real-world cases, a tangible HVNS consisting of SA and VNS is developed to solve the problem 
efficiently.

3) Based on the proposed model and the case study from the real world, the results and sensitivity analysis 
suggested the impact of DWPT on the flex-route bus system, which can help decision-makers further 
assess its performance.
The remainder of the paper is organised as follows. An overview of the recent literature is provided 

in Section 2. Section 3 introduces the background information and states the formulation of the proposed 
model. The HVNS is detailed in Section 4. Section 5 covers the case study from the real world, where the 
experimental results and sensitivity analysis are discussed. Finally, Section 6 presents the concluding re-
marks and future research directions.

2. LITERATURE REVIEW
To our best knowledge, few previous studies have ever focused on the optimisation of the flex-route 

transit service based on the DWPT transit system. We will review the state-of-the-art of these problems from 
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three aspects, i.e. (1) flex-route bus service optimisation; (2) application of wireless charging technology in 
transit bus service; and (3) solution algorithm.

The first subsection focuses on flex-route bus service optimisation. Quadrifoglio et al. [13] employed a 
simulation tool to study the optimisation of demand-responsive transit service considering zoning service. 
Later, they further designed a special flex-route transit mode “Mobility Allowance Shuttle Transit” (MAST) 
[14] and corresponding insertion heuristic algorithm [15]. Kim et al. [16 – 18] presented the closed-form 
equations to study the coordination between conventional and flex-route transit services from different per-
spectives (e.g. variable bus types [16], timed transfer at the transfer hub [17], and maximum net benefits 
[18]). Yu et al. [19] further extended the model to a bi-level nonlinear counterpart and constructed a tabu 
search with different local neighbourhood search strategies. Pan et al. [20] studied flexible feeder transit 
service optimisation for irregular shapes and presented a corresponding gravity heuristic algorithm. Pei et 
al. [21] considered passenger demand and willingness to pay into a flexible transit system. Wang et al. [22] 
proposed a multi-objective optimisation model to optimise centralised dispatching of flexible feeder transit, 
and then designed genetic algorithm to solve it. Cheng et al. [23] proposed a bi-level programming model 
to optimise flex-route transit service. Wu et al. [24] offered a global optimisation method for the flex-route 
service optimisation considering ride-matching and shuttle bus dispatching. Most of studies discussed in 
this section only focused on traditional flex-route service optimisation, and there are also some studies on 
the optimisation of flex-route service for BEBs [25 – 28]. However, the application of DWPT in the flex-
route service was rarely considered in previous studies.

The second subsection relates to the application of wireless charging technology in transit bus service. 
Unlike the plug-in charging technology, the wireless charging technology can be installed in some bus stops 
and offer the opportunity to charge during BEBs operation. Ko and Jang [29] presented a mixed integer linear 
programming (MILP) model to simultaneously optimise the locations of DWPT devices and battery size for a 
single bus route. Later, they enhanced the model in both a closed experimental environment [7] and an open 
environment, which aimed to reduce DWPT installation and battery costs [9]. Liu et al. [8] extended the study 
of DWPT in transit service and presented a deterministic MILP model to optimise the locations of DWPT de-
vices and battery size for the multi-route bus network. Then, Liu and Song [10] reformulated the model with a 
robust optimisation methodology and took the uncertainty of energy consumption and travel time into account. 
He et al. [30] further considered the energy storage system (ESS) in the model. Hence, the deployment of ESS 
and fast charging devices, as well as battery size, has been jointly optimised. Chen et al. [31] focused on the 
application of DWPT on feeder bus network planning. An MINLP model was proposed to comprehensively 
optimise feeder bus routing, DWPT locations and battery size. In the context of DWPT, Yıldırım and Yıldız 
[32] optimised the bus fleet composition and the schedules, which are critical for taking advantage of these 
emerging technologies and enabling the electrification of public transport in a cost-effective way. Luo et al. 
[33] proposed a model to jointly optimise the electric supply system and the transit service in the fixed-route 
bus system considering wireless charging facilities. The above studies only investigated the application of 
DWPT in the fixed-route bus system (e.g. conventional and feeder bus systems), but the impact of DWPT and 
bus types on the flex-route bus system was rarely considered in previous studies.

The third subsection reviews the solution algorithm of routing optimisation problems. Routing optimis-
ation problems (e.g. dial-a-ride problem (DARP) and electric vehicle routing problem (EVRP)) have been 
proved to be combinatorial and hard to be solved in an acceptable time if the scale of the problem is large. 
For DARP, Kirchler and Wolfler Calvo [34] proposed a granular tabu search algorithm (GTS) and Muelas et 
al. [35] further designed a VNS algorithm, and the results showed that the performance of VNS outperforms 
GTS. Masmoudi et al. [36] combined local search strategy with genetic algorithm (GA) to solve the hybrid 
DARP considering different bus types. Then Masmoudi et al. [25] further proposed three enhanced evolu-
tionary variable neighbourhood search (EVO-VNS) algorithm to solve the DARP with electric vehicles and 
battery swapping stations (DARP-EV). For EVRP, Felipe et al. [37] presented a hybrid VNS to solve EVRP 
with partial recharge and multiple recharging technologies. Goeke and Schneider [38] designed an adaptive 
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large neighbourhood search algorithm (ALNS) to solve EVRP with mixed vehicle types. Hiermann et al. 
[39] proposed a branch-and-price algorithm as well as ALNS to solve EVRP with time windows, recharg-
ing stations and mixed vehicle types. Hof et al. [40] introduced an adaptive variable neighbourhood search 
(AVNS) algorithm to solve electric location routing problems (ELRP) with battery-swapping stations. For 
some variants of EVRP with many practical considerations, similar heuristics was also used, such as two-
stage heuristics based on large neighbourhood search (LNS) [41], the approach based on VNS and variable 
neighbourhood descent (VND) [42], and an ALNS algorithm embedded in the speed optimisation subrou-
tine [43, 44]. Previous research in this section illustrated that the neighbourhood search and its enhanced 
counterparts (e.g. VNS, AVNS, and ALNS) show good performance in optimising routing-related problems. 

To address the research limitations that are discussed in the preceding paragraphs, this paper further 
expands the applicability of the traditional flex-route electric bus service optimisation model in the wireless 
charging mode, which can offer the opportunity to charge during BEBs’ operation. Moreover, the bus type 
matching problem is also considered to explore more effects brought by the wireless charging mode. Re-
garding the solution method, a tangible HVNS combined SA with VNS is developed to solve the problem. 
The efficient search efficiency of the SA algorithm makes up for the deficiency of VNS. Therefore, we adopt 
HVNS as the general framework of the solution algorithm.

3. PROBLEM DESCRIPTION AND FORMULATION
In this section, the research background of the DWPT powered flex-route optimisation problem consid-

ering variable bus types is firstly introduced, followed by discussing the DWPT and its components. Then, 
the model, including assumptions, objectives and constraints, is detailed.

The electric flexible bus route transit system provides demand-responsive service for passengers, es-
pecially for commuters between home and transfer hub. As is illustrated in Figure 1, there are some DWPT 
devices on the fixed bus route, and some demand points with different locations. They all have the demand 
to transfer from the current location to the transfer hub. Therefore, flex-route feeder transit bus service aims 
to optimise their service routes. The demand requests can be collected in advance (one day or several days 
ahead of time). The passengers should provide their trip information, for instance, boarding point and ar-
rival time. Then, the system will consider the traffic environment near the boarding point provided by the 
passengers and designate the final boarding point (which may or may not be the boarding point provided 
by the passenger), however, the final boarding point must be in the vicinity of the location provided by the 
passengers. This interesting work is not discussed in depth in this paper and will continue to be investigated 
subsequently. Taking the lowest cost as the goal, each bus route as well as its bus type is simultaneously 
determined and optimised, which starts and terminates at the transfer hub. Finally, the bus scheduling time-
table and routing plan will be determined and fed back to passengers, subject to meeting their travel times. 
It is noted that some bus stops have been equipped with DWPT devices on the fixed bus route, which can be 
utilised by BEBs. Also, the flex-route BEBs can recharge as needed when passing through these recharging 
stops. 

The electric bus and the recharging stop installed with DWPT devices are presented in Figure 2. A set of 
DWPT devices is composed of one inverter and several electric transfer pads beneath the ground. Compared 
with swap battery or plug-in charging technology, electric buses (e.g. fixed-route bus or flex-route bus) 
can be recharged while passing through or dwelling at those recharge stops without human intervention. In 
the case where the charging stops coincides with the passenger demand point, the bus can utilise the time 
passengers spend boarding or alighting for recharging, and all of this charging process may be completely 
unknown to passengers. Another benefit of DWPT technology is that it could substantially reduce on-board 
battery size. The battery downsizing not only makes electric buses more affordable, but also offers addition-
al energy savings, due to reduced vehicle weight. These advantages of DWPT can reduce the capacity of on-
board batteries while meeting passengers’ demands. Thus, different bus types are considered in the model 
and the cost of on-board batteries can be greatly reduced without reducing the level of public transportation 
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service. It is noted that in the open city transit system, the DWPT devices can only be installed in the bus 
stops area due to the high maintenance cost [9].

 
Figure 1 – Process of flex-route bus system planning

 
Figure 2 – The battery electric bus and DWPT devices

Based on the flex-route bus system and DWPT, we propose a novel model to simultaneously optimise bus 
routes and types. The model should meet the energy, bus capacity and passenger service time requirements. 
Then, we can minimise the total costs of transit agency (e.g. bus depreciation and operating costs) and 
passengers (e.g. travel time cost). As the wireless charging technology has great development potential, the 
model proposed in this paper is based on the fact that the technology has matured in the future. The proposed 
model is formulated based on the following assumptions:
1) Wireless charging facilities have covered some fixed bus stops near the transfer hub and the flex-route 

BEBs can recharge as needed when passing through these recharging stops.
2) A set of demand requests as well as the location of recharging stops are given.
3) Each request is served by only one bus and the recharging stop can be shared and revisited by several buses.
4) Each bus begins and terminates at the transfer hub and the number of buses in the transfer hub is suffi-

cient for each type of bus.
5) Each bus is fully charged before conducting the first trip from the transfer hub.
6) There is only one bus service on one route, and after serving all passengers, the system will re-plan the 

bus route based on next booked requests.



Intelligent Transport Systems 

659

Promet – Traffic&Transportation. 2024;36(4):654-672.

7) Partial recharging is considered as the recharging scheme for flex-route BEBs. 
8) The traffic congestion and bus bunching are not considered in the model.

Let G(B,S,R) denote the flex-route bus network, where B is a set of bus types. Bus capacity, battery size, 
operating cost and fixed cost may vary with different types. S={N,C',0,n+1} is the union of all nodes in 
the network. N is a set of demand points. C' is the set of recharging stops. 0 and n+1 in the set S represent the 
same transfer hub, which are the starting and ending points of the bus route, respectively. It is noted that in 
the network, multiple visits to recharging stops are allowed, thus, some dummy recharging stops, also called 
the copies of recharging stops, are added into set C'. In the recharging stops, partial recharging is allowed, 
and the recharging time is given as an input parameter. R is the set of bus routes. The notations of all sets, 
variables and input parameters used in the developed model are listed in Table 1.

Table 1 – Notation list
Sets Definitions

N Set of demand points, i.e. pick-up points of passengers
C' Set of recharging stops containing recharging stops and several copies of recharging stops.

0,n+1 Transfer hub
S Set of all nodes S={N,C',0,n+1}
S0 Set of demand points, recharging stops and starting bus terminal, S0={N,C',0}

Sn+1 Set of demand points, recharging stops and ending bus terminal, S0={N,C',n+1}
B Set of bus types, B={1,2,...,v}
R Set of bus routes, R={1,2,...,K}

Parameters Definitions
K Number of bus routes
M A sufficiently large number
dij Distance between point i and j
pi Passenger demand of request i, i.e. the pick-up passengers of node i
gv Unit depreciation cost for bus type v
ov Unit operating cost of bus type v
Cv Bus capacity of bus type v
Qv Battery size of bus type v
wv Energy consumption rate of bus type v
r Wireless electric charging rate
Si Dwell time of the bus at demand point i or recharging stop i
Tu Latest time of arrival allowed at the transfer hub
Ts Bus departing time at the transfer hub
υ An average bus operating speed
φ1 Upper bound of battery level
φ2 Lower bound of battery level
λt Value of passengers’ time
τ Slack time, i.e. the rest time of bus between two service routes

Variables Definitions
xijk xijk=1, request i precedes request j on bus route k; xijk=0, otherwise
yvk yvk=1, bus type v is applied by route k; yvk=0, otherwise
eik Battery level of the bus arriving at point i of route 
ATi Arrival time at the node i!S, AT0 indicates the departure time of the bus at the transfer hub
TTk Total travel time of route k

The objective of the developed model (denoted as Z) is divided into two parts, including passenger travel 
time and transit agency cost. As shown in Equation 2, passenger travel time consists of two sections (e.g. bus 
running time, and dwell time at demand point or recharging stop), which is transferred into travel cost denot-
ed as Z1 through multiplying the value of passengers’ time λt. Equation 3 represents the cost of a transit agency 
(denoted as Z2), including bus operating cost and bus depreciation cost. It is worth noting that the depreciation 
cost of the recharging stops is not considered in this model, because it has been amortised and considered in 
the fixed-route DWPT bus system [30, 31]. Bus operating cost is determined by the unit operating cost of bus 
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type v denoted as ov and travel distance dij, while bus depreciation cost is only determined by the unit depre-
ciation cost for bus type v. Note that these costs are amortised in hours.
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The constraints of the proposed model consist of four sections (e.g. bus routing, energy, capacity and 
time constraints), which are discussed as follows.

Bus routing constraints: Equation 4 ensures that each bus route should depart and terminate at the trans-
fer hub. Equation 5 restricts the number of dispatched electric buses cannot exceed the bus fleet number K. 
Equation 6 guarantees the node flow conservation, ensuring that one bus route which enters into a node (e.g. 
demand request nodes and recharging stops) must leave from the same node. Equation 7 enforces that each 
demand request can be served exactly once by one bus route. Equation 8 ensures that each copy in the set C' 
including recharging stops and dummy recharging stops, is visited at most once by one bus route. Equation 9 
represents the bus type conformity constraint, ensuring that only the same type of bus is allowed to operate 
in one bus route.

x x k R1, ,
''

j n k jk
j N Cj N C

1 0 6 != =
,, !!

+ //  (4)

0
'

      jk
k R j N C

x K
∈ ∈ ∪

≤∑ ∑  (5)

0 1, ,
0

n

ijk jik
k R i S i j k R i S i j

x x j S
+∈ ∈ ≠ ∈ ∈ ≠

− = ∀ ∈∑ ∑ ∑ ∑  (6)

,
1ijk

k R j S i j
x j N

∈ ∈ ≠

= ∀ ∈∑ ∑  (7)

,
1 'ijk

k R j S i j
x i C

∈ ∈ ≠

≤ ∀ ∈∑ ∑  (8)

1vk
v B

y k R
∈

= ∀ ∈∑  (9)
Energy constraints: Equations 10–11 link the battery level at nodes j and i denoted as ejk and eik, respectivelyThe 

battery level drops due to the energy consumption of bus type v denoted as w y dv vk ij
v B!
/  between nodes j and i. 

As formulated in Equation 11, if node i is the recharging stop, the bus can recharge energy ir s⋅  at the recharging 
stop i. The amounts of energy consumed and recharged are related to the energy consumption rate of bus type 
denoted as wv and wireless charging rate r. Equation 12 links the battery level between the transfer hub and the first 
node that the electric bus visits, enforcing that each bus is dispatched from the transfer hub with a fully charged 
battery. Equations 13–14 restrict that the battery cannot be overcharged and over-discharged.
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Capacity constraint: Equation 15 ensures that the number of passengers on route k cannot exceed the ca-
pacity of bus type k used on the same route denoted as Cv.
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Time constraints: The time-related constraints are expressed in Equations 16–19. The starting time of the 
bus at the transfer hub denoted as AT0 is set as Ts in Equation 16. Equation 17 links the time between nodes j and 
i, and the time at node j denoted as ATj is determined by the time at last node i denoted as ATi and travel time 
between nodes j and i denoted as dij/v. Equation 18 is formulated to calculate the total travel time of bus route 
k. Equation 19 restricts that the bus must travel back to the transfer hub before the time uT , where τ is the slack 
time at the transfer hub of flexible feeder bus.
AT Ts0 =  (16)
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Decision variables: Equations 20–21 ensure that binary variables yvk and xijk pertaining to bus type and bus 

routing are either 0 or 1.
, ,y v B k R0 1vk 6! ! !" ,  (20)
, , ,x i S j S k R0 1ijk n0 16! ! ! !+" ,  (21)

4. SOLUTION ALGORITHM
The proposed model is a mixed integer non-linear problem, which is the extension of the vehicle routing 

problem considering capacity constraints, energy constraints and mixed vehicle types. Several previous 
studies have proven its NP-hard complexity [39, 40], so it is difficult to find an exact solution in an ac-
ceptable time. To solve it efficiently, a tangible HVNS is developed in this section, which is a combination 
of VNS and SA. VNS was applied to solve routing-related combinatorial optimisation problems by many 
researchers, which shows good performance in searching for the best solution [39, 40]. SA can guide the 
solution algorithm to search the solution space efficiently [37]. The detailed process of the HVNS is dis-
cussed next.

4.1 Main algorithm
Algorithm 1 details the structure of the proposed HVNS. The input is the yielded feasible solutions by 

the initialisation algorithm while the output is the optimised solutions. It can be seen that the worst-case 
time complexity of HVNS is O(iSA·pmax·nmax) where iSA is the number of iterations, pmax is the number of 
shaking neighbourhood structures and nmax is the number of local search neighbourhood structures. The 
main algorithm is divided into four parts (e.g. initialisation, objective evaluation, VNS and SA), which are 
discussed next.

Algorithm 1 – Main Algorithm (Hybrid VNS with SA)

Input: Initial feasible solutions denoted as Z.
Output: Optimized solutions denoted as Z*.
Set VNS shaking neighborhood structures p=1,2...,pmax.
Set VNS local search neighborhood structures n=1,2...,nmax.
Set number of iterations i=1,2...,iSA
Set starting temperatures ts.
Set a random number a!(0,1).
For (i ≤i SA) do
 t ← temperature ((iSA-i/iSA)ts.
 a ← randomly generated between 0 and 1.
 For (p=1,2...,pmax) do
  Select a random solution Z'=p(Z) from shaking perturbation.
  While n≤1,2...,nmax do
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   Find the best solution in Z*=n(Z) neighborhood structure n.
   If (S(Z*) ≤ S(Z)) then
    Set Z=Z* and n=1. 
   Else if (exp((-(S(Z*)-S(Z)))/t) ≥ a) then
    Set Z=Z* and n=1
   Else
    Set n=n+1.
   End if
  End while
 End for
End for

Initialisation: We aim to generate various initial feasible solutions in a short and acceptable time, further 
accelerating and improving the performance of the developed HVNS. The pseudocode of the initialisation 
algorithm is illustrated in Algorithm 2. The input is the collected information of passengers and some pre-set 
parameters, and the output is the yielded initial feasible solutions.

The initialisation algorithm starts from demand request i=0 and bus route k=1. Travel time, passenger 
load and energy are considered as the constraints to ensure the feasibility of the yielded solutions. We find h 
unserved demand requests which are closest to i. The large h means high diversification of yielded solutions 
while the initial solutions with high quality can be obtained if h is small. One unserved demand request is 
randomly selected from h and added into bus route k. As the recharging stops do not have to be used during 
the bus’s operation, thus, only if the energy constraint is not satisfied, the nearest recharging stop is added to 
bus route k. Otherwise, a new bus route is created k=k+1. This process is repeated until all unserved demand 
requests are served. It is noted that the proposed initialisation algorithm mainly focuses on the feasibility 
and diversification of the yielded solutions. Therefore, only one bus type with the largest battery size is 
considered, which will be improved in the main algorithm.

Algorithm 2 – Initialisation Algorithm

Input: Information of bus network and demand request.
Output: Initial feasible solutions Z.
Set demand request i=0 and bus route k=1.
Repeat
Set travel time ATi=Ts

Set bus passenger load p
i
=0.

Find h unserved demand requests which are closest to demand request i and reachable according to capacity and time availability.
Find the recharging stop which is the closest to demand request i.
Randomly select one demand request from h denoted as j.
Apply the bus type v with the largest battery size to bus route k (eik=Qv).
If (The bus can reach the transfer hub directly from j) then
 demand request j is added into bus route k.
else if (The bus can reach the transfer hub from j by visiting a recharging stop in between) then
 recharging stop j is added into bus route k.
else
 transfer hub n+1 is added into bus route k.
set k=k+1 and i=0.
end if
until all demand requests are served.

Objective evaluation: In most previous studies, VNS allows infeasible solutions during the searching 
process. Thus, the objective function can be extended as S(Z) in Equation 22, where Z denotes the original 
cost in Equation 1, SP(Z) is the bus capacity violation, ST(Z) is the travel time violation and SB(Z)is the energy 
violation. θ, η and λ are their input penalty factors respectively, which are initialised from θ0, η0, λ0, then 
dynamically updated in each iteration between lower limit θmin, ηmin, λmin and upper limit θmax, ηmax, λmax.
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S Z Z Z ZZ S S SP T Bi h m= + + +^ ^ ^ ^h h h h  (22)
Equations 23 – 24 calculate the bus capacity and travel time violations of single bus route k denoted as Sp(k) 

and ST(k) respectively, which are total passenger load and travel time TTk (including slack time) minus the bus 
capacity Cv and latest time of arrival allowed at the transfer hub Tu correspondingly. The total violations of bus 
capacity and travel time can be obtained from Equations 25 – 26.

v( ) max{ , 0}P i ijk vk
i S j S

S k p x C y
∈ ∈

= −∑∑  (23)

( ) max{( ) , 0}T k uS k TT Tt= + −  (24)
( ) ( )P P

k R
S Z S k

∈

= ∑  (25)
( ) ( )T T

k R
S Z S k

∈

= ∑  (26)

Unlike violations of bus capacity and travel time, the energy violation is based on the recharging stops 
and the transfer hub. Equation 27 calculates the energy violation of bus k before visiting the recharging stop j 
or back to the transfer hub. The total energy violation can be obtained by Equation 28.

( ,  )=max{ , 0}   ' {0}B 2 vk v jkS j k y Q e j Cj − ∀ ∈ ∪  (27)

{ \ }
( ) ( ,  )B B

j S N k R
S Z S j k

∈ ∈

= ∑ ∑  (28)

VNS: The procedure of the original VNS is described as follows. At first, a set of shaking perturbation 
neighbourhood structures pmax and local search neighbourhood structures nmax are preset. The initial feasible 
solution Z is input and passes through the shaking process, which generates temporary neighbouring solu-
tions Z'. Then, the local search process n=1,2,...,nmax is applied on Z' to yield an optimized solution Z*. If Z* 

improves on Z', n=1; if Z* is worse than Z', n=n+1. This process is repeated until the terminating condition is 
satisfied. It can be seen that neighbourhood structures play a vital role in VNS. In every iteration, pmax is to 
diversify the current solutions to avoid VNS being trapped into the local optima, and nmax facilitates VNS to 
search for better solutions.

In the shaking process of HVNS, the cyclic-exchange is introduced to diversify the solutions, which has 
been successfully applied in many routing-related problems. The sample cyclic-exchange used in this study 
is shown in Figure 3. Random nodes are exchanged between different bus routes. The neighbourhood struc-
tures of cyclic-exchange are illustrated in Table 2, where the number of bus routes involved varies from two 
to four while the number of exchanged nodes ranges between one and four. It is noted that the exchanged 
nodes may contain both demand requests and recharging stops.

 
Figure 3 – Sample cyclic-exchange

Table 2 – Structure of cyclic-exchange
p* 1 2 3 4 5 6 7 8 9 10 11 12

Selected bus routes 2 2 2 2 3 3 3 3 4 4 4 4
Maximum exchanged nodes 1 2 3 4 1 2 3 4 1 2 3 4

p* is the number of the neighbourhood structures in the shaking perturbation process.

In the local search process of HVNS, six general neighbourhood structures are specially designed and 
used, among which 1) – 4) only exchange the nodes while 5) and 6) exchange the selected bus type as well.
1) Inter-route 2-opt: In Figure 4, similar to intra-route 2-opt, two edges in two different bus routes (dashed 

line) including four nodes (blue and red nodes) are randomly selected and inversed. Note that the two 
involved routes should use the same bus type. 
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Figure 4 – Sample inter-route 2-opt

2) Intra-route 2-opt: As is shown in Figure 5, two edges (dashed line) in one bus route including four nodes 
are randomly selected and inversed. 

 
Figure 5 – Sample intra-route 2-opt

3) Relocate: In Figure 6, one node is removed from its bus route and inserted into another bus route, where 
the dashed lines represent the removed bus routes while the red lines represent the added routes 

 
Figure 6 – Sample relocate

4) Recharging stop insertion and removal: In Figure 7, a recharging stop is randomly inserted or removed 
from one selected bus route, where the red triangle represents the added recharging stop while the trian-
gle represents the removed recharging stop.

 
Figure 7 – Sample recharging stop insertion and removal

5) Resize: In Figure 8, the bus type of two different routes is selected and exchanged. 

 
Figure 8 – Sample resize

6) Relocate and resize: In Figure 9, one node is removed from its bus route and inserted into another bus 
route. At the same time, the corresponding bus types are exchanged between two involved bus routes.

 
Figure 9 – Sample relocate and resize
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SA: As is illustrated in Algorithm 1, Simulated Annealing is introduced as the framework to further diversify 
and intensify the search. The number of iterations iSA, starting temperatures ts and a random number a!(0,1)  
are pre-set. Different from the original VNS, the deteriorating solutions are also accepted according to the 
probability exp((-(S(Z*)-S(Z)))/t) ≥ a. It is worth noting that at the beginning of the algorithm, the deteriorating 
solutions are accepted in high probability, which can diversify the search. The temperature as well as the prob-
ability of accepting the deteriorating solutions is continuously decreasing at the rate of ((iSA-i)/iSA)t after each 
iteration, which gradually intensifies the search. Finally, only improved solutions are accepted.

4.2 Algorithm performance analysis 
In this section, a set of instances based on the real case (from 5 to 20 demand requests) are randomly 

generated and solved by GAMS (DICOPT solver), VNS and HVNS. The obtained results are compared with 
the performance of the proposed HVNS. The upper bound of the running time is set as 7200s. The proposed 
HVNS and VNS are coded in JAVA on a personal laptop (Intel Core i5, 8GB, 2.4GHz). The penalty param-
eters θ0, η0 and λ0 are all set as 10, θmin, ηmin and λmin are all set as 0.5, and also θmax, ηmax and λmax are all 
set as 5000. Some calculating parameters are determined experimentally in accordance with the scale of 
the instances, which yields the optimised solution with the least objective and minimum running time. The 
obtained results, along with the running times of GAMS, VNS and HVNS are the average of 30 runs and are 
compared in Table 3 and Figure 10.

Table 3 illustrates the optimised results of the instances with the different numbers of requests and re-
charging stops. The difference between optimised results obtained by VNS and HVNS against those ob-
tained by GAMS is denoted as ΔVNSand ΔHVNSrespectively. It can be found that GAMS, VNS and HVNS all 
can solve small-scale instances. When the number of demand requests increases to 15 (all nodes increase to 
20), the solutions obtained by GAMS are worse than those obtained by VNS and HVNS. Because GAMS 
cannot calculate the optimal solution in the specified time and can only give a feasible solution. As the scale 
of the instances keeps enlarging, GAMS fails to find the solutions. It can be observed from Figure 10 that the 
running time of GAMS exponentially increases while the times of VNS and HVNS are less than those of 
GAMS. Also, HVNS is generally superior to VNS, particularly as the scale of the instances keeps expand-
ing. Table 3 also indicates that HVNS shows good performance in searching for solutions.

,Z Z
Z ZZ Z

VNS
GAMS

VNS
GAMS

VNS GAMSVNS GAMS
H

H
D D = -= -  (29)

Table 3 – Optimised results of different instances with GAMS, VNS and HVNS

Instance GAMS VNS ΔVNS(%) HVNS ΔHVNS(%)
7 (5, 2) * 102.32 102.32 0 102.32 0
8 (5, 3) 105.61 105.61 0 105.61 0

14 (10, 4) 185.23 186.61 0.75 185.23 0
15 (10, 5) 187.42 187.42 0 187.42 0
22 (15, 7) 227.15 217.74 -4.14 215.42 -5.16
23 (15, 8) 235.47 221.56 -5.91 219.81 -6.65
29 (20, 9) — 274.16 — 270.21 —
30 (20, 10) — 275.41 — 275.41 —
46 (35, 11) — 432.19 — 432.19 —
47 (35, 12) — 445.28 — 440.04 —
63 (50, 13) — 787.62 — 772.42 —
64 (50, 14) — 795.41 — 784.13 —

a (b, c) *: a, b and c denote the number of all nodes, demand requests and recharging stops.
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Figure 10 – Running times with GAMS, VNS and HVNS

5. CASE STUDY AND RESULTS
In this section, a case study from Xi’an, China based on Chen et al. [31] (see Figure 11) is employed to 

explore the relationship between the optimised solutions, decision variables and some input parameters. 
The developed model and HVNS are applied to simultaneously optimise the bus routing as well as corre-
sponding bus types. As is shown in Figure 11, there are many fixed bus routes near Fengwulu Metro station, 
such as line 134, line 209 and line 234. We assume that near Fengwulu Metro station (seen as the transfer 
hub) some recharging stops are scattered in these fixed bus routes, which can also be utilised by flex-route 
bus during operation [31]. The number of stops on flexible feeder bus service routes is smaller than that of 
traditional bus service routes. In this case, there are 16 recharging stops and 22 demand points in the study 
area, some demand points are located at recharging stops. These demand requests are collected and assumed 
to be from their home to the transfer hub, which is estimated from historical data. Each electric bus starts 
from the transfer hub with fully charged, serves several demand requests, and travels back to the transfer 
hub within the time limit. Note that each demand request can be served by only one bus while the recharging 
stops allow multiple visits by buses.

 
Figure 11 – The study area from Xi’an, China

5.1 Input parameters
As suggested in previous studies, the bus types used in this study are divided into six and listed in Table 4. 

It can be observed that the battery size varies from 10 to 60 kWh while the bus capacity ranges from 15 to 25 
pass/veh [31]. The corresponding unit bus operating cost, bus depreciation cost and energy consumption rate are  
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assumed to increase with the increase of battery size and bus capacity. The wireless charging rate is assumed to be 
200kW [3]. The battery level is limited to between 20% and 80% [45]. Bus operating speed is assumed to be 35 
km/h [46]. The value of passenger time is set as 8 $/h [47]. The slack time, starting time and latest time of arrival 
allowed at the transfer hub are assumed to be 0.1h [48], 7:45 a.m. and 8:30 a.m., respectively.

Table 4 – Detailed information of different bus types

Bus types 1 2 3 4 5 6
Battery size Qv (kWh) 10 20 30 40 50 60
Bus capacity Cv (pass/bus) 15 15 20 20 25 25
Bus operating cost ov ($/veh-km) 2.1 2.3 2.7 2.9 3.3 3.5
Bus depreciation cost gv ($/veh-h) 8.9 9.6 11.3 12.0 13.7 14.4
Energy consumption rate wv (kWh/km) 1.18 1.18 1.24 1.24 1.34 1.34

5.2 Results analysis
In previous studies, some scholars incorporated Terminal Charging Technology (TCT) into their models, 

meaning that bus charging could only occur at depots and no in-route charging is allowed [27, 38]. It is note-
worthy that the prevailing charging method for BEBs in Xi’an mandates a return to the depot for charging, 
utilising plug-in charging, which aligns with the TCT approach. This section will present and compare the 
optimised results with both DWPT and TCT in the flex-route transit system, which may further help estimate 
the economic benefit of DWPT. 

The optimised results (e.g. bus routing and bus type) with DWPT and TCT are graphically shown in 
Figures 12a and 12b respectively. It can be observed that both systems (e.g. DWPT and TCT) contain four bus 
routes, and in the DWPT system, seven charging stations were selected, namely R1, R3, R7, R8, R10, R11, 
R14. The bus routing with DWPT slightly differs from that with TCT, because the bus system with TCT 
requires buses with larger battery sizes and bus capacity due to the non-use of DWPT devices. Table 5 details 
the different optimised costs with DWPT and TCT. It was found that compared to the TCT system, the total 
cost with DWPT can be reduced from 393.44 $/h to 342.43 $/h (i.e. 12.97% reduction). Both bus depreci-
ation and operation costs with DWPT decrease because of the small-battery bus employed in the DWPT 
system. It is noted that the passenger cost with DWPT is only 6.65% higher than that with TCT, which may 
indicate that battery recharging in the recharging stops has a slight impact on the passenger travel time in 
flex-route planning. 

a) DWPT system                                                        b) TCT system 
Figure 12 – The optimised results of different technologies in the flex-route transit system

Table 5 – Optimised costs with DWPT and TCT

Total cost ($/h) Passenger cost ($/h) Bus operation cost ($/h) Bus depreciation cost ($/h)
DWPT 342.43 80.52 133.17 128.74
TCT 393.44 75.16 150.24 168.04
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5.3 Sensitivity analysis
The sensitivity analysis is conducted to identify the relative importance of input parameters and to ex-

plore the relationships among input parameters, decision variables and optimised results. The cost-related 
parameters (e.g. value of passengers’ time and slack time) are varied in the probable range, and the output 
variables are analysed and illustrated in Figures 13–14.

As can be seen from Figure 13, with the value of passenger time increasing, the average travel time is 
greatly reduced. This is mainly because more buses have been operated in the network. Meanwhile, buses 
equipped with larger on-board battery capacity have been adopted, which further reduces the number of 
charging times of buses in wireless charging facilities, thereby reducing the travel time of the bus and the 
travel time of passengers.

In the real bus system, several uncertainties (e.g. traffic jams and passenger delays) may occur during op-
eration. Thus, slack time plays a vital role in BEBs operation. If it is ignored by the policymakers, some is-
sues may arise. Figure 14 illustrates the output decision variables under different slack time. When slack time 
gradually increases, passenger travel time gradually decreases and more BEBs (from 3 to 6) are required to 
serve the passengers. This is due to the increase in slack time compressing the available bus running time, 
which also leads to a reduction in visits to charging facilities. Therefore, larger bus types and more buses 
will be selected to meet the travel needs of all passengers in the process of bus operation.

 
Figure 13 – Output results under different value of passenger time

 
Figure 14 – Output results under different slack time
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6. CONCLUSION AND FUTURE RESEARCH
This study focuses on the optimisation of flex-route transit services powered by DWPT. A MINLP model 

was formulated to simultaneously optimise the bus routing as well as corresponding bus type with the ob-
jective of minimising costs for both transit agency and passengers. The proposed model, which incorporates 
considerations for battery size, bus capacity and travel time constraints, can be applied to various electric 
bus networks. A tangible HVNS consisting of VNS and SA was designed to efficiently solve the model, and 
the performance of HVNS was demonstrated by the numerical experiments in comparison with the original 
VNS and GAMS (DICOPT solver) in terms of running time and obtained results. In order to demonstrate the 
practical applicability of the proposed model, a case study was conducted using a real-world bus network. 
The results suggested that the model can solve the optimal planning problem for DWPT-powered flex-route 
transit service optimisation efficiently. Additionally, the relationship between the output results and some 
input parameters was investigated through the result and sensitivity analyses. The key findings contain:
1) The comparison between the DWPT and terminal charging flex-route bus system demonstrates that 

DWPT can effectively reduce total costs, bus operation cost and depreciation cost, while the passenger 
cost slightly increases, and the total cost with DWPT can be reduced from 393.44 $/h to 342.43 $/h (i.e. 
12.97% reduction).

2) The passenger travel time tends to decrease as the increase of value of passenger time, but the BEBs 
requires a larger battery and bus fleet.

3) More slack time reserved accounts for larger battery size and bus fleet, but less passenger travel time.
The proposed methodology (e.g. the model and corresponding algorithm) offers a wide range of applica-

tions, which can provide practitioners with a powerful tool to plan a DWPT-powered flex-route bus system. 
However, there are still some limitations to our model. Firstly, the recharging time at the recharging stops 
was predetermined as the input parameter for simplicity. Secondly, the model and algorithm proposed in this 
study are based on static demand requests, and dynamic demand requests is very complex, which would be 
discussed in future study. An immediate extension of this study may be the optimisation of the flex-route bus 
system based on many-to-many demand.
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高天洋，胡大伟，陈刚，Steven CHIEN，马冰山

动态无线充电模式下电动灵活接驳公交服务优化研究

摘要

电动公交车的出现可以缓解交通系统中尾气排放造成的环境问题。然而，车载电池

的高成本和里程焦虑阻碍了其进一步发展。近年来，动态无线充电技术的出现已成

为推动电动公交车发展的潜在解决方案。因此，本文重点研究了动态无线充电技术
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在灵活接驳公交系统中的应用。提出一种混合整数非线性规划模型，在考虑乘客出

行时间、电池容量和公交车容量约束的情况下，同时优化公交线路和公交车型，以

最大限度地降低车辆成本和乘客的时间成本。为了高效求解模型，本文提出了一种

由模拟退火和变邻域搜索算法组成的混合变邻域搜索算法。与GAMS商业求解器和变

邻域搜索算法相比，所提算法可以显著提高计算效率。求解西安市实际案例的结果

表明，所提模型能够有效地确定动态无线充电模式下的灵活接驳公交路线和公交车

型。与采用终端充电技术的模型相比，所提模型的总成本降低了12.97%。
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