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1. INTRODUCTION
Urban traffic congestion has caused problems around the world, which not only impair residents’ experi-

ence while travelling but also increase travel times [1]. To enhance the operational efficiency of urban road 
networks, numerous strategies have been devised to alleviate traffic congestion. Among these strategies, 
traffic management and control systems have gained heightened importance. The categories of traffic man-
agement and control systems include reactive systems and proactive systems [2]. In contrast to reactive sys-
tems, proactive systems heavily depend on precise predictions to optimise their functionality. Consequently, 
accurate short-term traffic forecasting stands as a pivotal element within proactive traffic control systems.

Short-term traffic prediction has attracted attention from scholars around the world over the past decades, 
and many methods have been proposed. Intuitively, most traditional prediction methods implement accurate 
and effective forecasts with sufficient and complete data [3], however, these methods cannot obtain accurate 
prediction results under limited data conditions. Therefore, Deng [4] proposed the use of grey prediction 
methods, which can effectively handle this forecasting problem with limited data. Since grey prediction 
methods were first proposed, they have been improved to adapt to different domains, e.g. stock prices [5], 
energy markets [6–8] and transportation [9].

While several grey prediction methods have been devised, their forecasting outcomes are confined to 
level predictions and fail to capture crucial uncertainty information, such as prediction intervals, essential 
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ABSTRACT
Anticipating uncertainty in short-term traffic flow is crucial for effective traffic management 
within intelligent transportation systems. Various methods for predicting uncertainty have 
been proposed and implemented. However, conventional techniques struggle to provide ac-
curate forecasts when confronted with sparse data. Hence, this study focuses on developing 
an uncertainty prediction model for short-term traffic flow under limited data conditions. A 
novel grey model that considers the volatility of the traffic data is proposed, which extends 
the grey model (GM) by integrating two techniques: smooth pre-processing and background 
value construction. The performance of the proposed novel grey model is mainly illustrated 
by comparing the novel grey model with the traditional GM model. Our results, in terms of 
uncertainty quantification, demonstrate that the proposed model outperforms the GM model 
regarding mean kick-off percentage (KP), width interval (WI) and width amplitude.
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for decision-makers. To address this challenge, researchers have made efforts to generate interval predic-
tion results through the development of grey interval prediction models. Nevertheless, conventional grey 
interval prediction models exhibit certain limitations: (i) do not consider the volatility of the traffic data; (ii) 
subjectively partition the original data into upper and lower sequences. Hence, these grey interval prediction 
methods lead to increased forecast error. To reduce the forecast error, it is necessary to study a novel grey 
model that considers the volatility of traffic data and investigate the interval prediction results of short-term 
traffic flow.

The objective of this study is to yield a prediction interval of traffic flow for reflecting the uncertainty 
of prediction under limited data conditions. Specifically, a novel grey model, which extends the grey model 
(GM) by integrating two techniques: the smoothness operators of volatility sequence and background value 
construction, was proposed in this study. Traffic flow data collected from the road network of Furong Dis-
trict in Changsha were used. To facilitate model comparison, we evaluated and contrasted the traditional 
GM model with the newly proposed model. Two key indicators, namely, the mean kick-off percentage (KP) 
and width interval (WI), were employed to gauge the accuracy of traffic flow interval predictions made by 
these models. The subsequent analysis delves into the performance of the novel grey model in short-term 
traffic interval prediction. The main contributions of the study are: (a) a novel GM model that considers the 
volatility of traffic data was proposed by integrating two techniques (smooth pre-processing and background 
value construction) in this paper and compared to the traditional GM model; and (b) the results of interval 
prediction can be yielded using the proposed novel GM model.

The paper is structured as follows: Section 2 offers a comprehensive literature review. Section 3 eluci-
dates the specifics of the proposed model. Section 4 presents an empirical study showcasing the efficacy of 
the model. Lastly, Section 5 encapsulates our study’s conclusions.

2. LITERATURE REVIEW
In the past few decades, various traffic prediction methods have been proposed and applied in point pre-

diction [10–15]. Compared with point prediction, the studies of traffic uncertainty quantification are fairly 
limited [16–18]. Traditionally, the input uncertainty and model uncertainty are two main aspects that are 
used in uncertainty quantification analysis [19, 20].

Several literatures of input uncertainty usually assumed that the input variables are statistically distrib-
uted and then randomly extracted from these distributions [21, 22]. Uncertainty can be quantified by exam-
ining the variance across all runs of the input variables employed in model executions. Various methods for 
quantifying model uncertainty have been proposed, typically relying on analytical expressions to compute 
the variance of endogenous variables, thereby characterising prediction uncertainty. For instance, the jack-
knife method creates subsamples from the original dataset by systematically excluding a small fraction 
of the data, enabling the calculation of standard errors [23]. Additionally, the Bootstrap method involves 
random sampling with replacement from the original dataset to determine proper standard errors for model 
coefficients. Recently, the generalised autoregressive conditional heteroskedasticity (GARCH) model has 
been borrowed from the economy field for uncertainty quantification [24]. Although the above methods 
have been applied, the forecast results of these models are limited to sufficient and complete data and cannot 
yield more useful information under limited data conditions.

In light of this, several grey prediction methods have been utilised to derive interval forecasts, serving 
as representations of prediction uncertainty. These methods encompass the grey straight horn band interval 
(GPBI) prediction model [25], the grey wrapping band interval (GWBI) prediction model, and the grey en-
velop prediction model (GEPM) [26]. The GPBI model and GWBI model are very similar. The difference is 
that the former model divides the sequence into upper group and lower group by using straight lines, where-
as the latter uses the exponential line. Furthermore, the GEPM has the capability to determine the upper and 
lower bounds of the prediction interval based on the maximum and minimum envelope curves generated by 
the GWBI model. These models can yield interval prediction results. However, these models usually use 
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subjective classification methods to classify the original sequence into upper group and lower group [27]. 
This will result in a larger prediction interval, affecting the interval prediction accuracy. It's worth noting 
that these grey interval prediction methods do not account for the inherent volatility within traffic flow data.

3. METHODOLOGY
This study proposes a novel grey model that considers the volatility of traffic data, which extends the grey 

model (GM) by integrating two techniques: the smoothness operators of volatility sequence and background 
value construction to yield an accurate prediction interval. The modelling procedure is shown in Figure 1.

Oscillation sequence 
(Not suitable for constructing

grey prediction model)

Smoothness sequence
(Can be used to construct
grey prediction model)

Smoothness operator 
of oscillation sequence

Building the novel
GM(1,1) model for

smoothness sequence
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original sequence

Establish a line with
residual value of 0

Smoothness operator
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smoothness sequence

Combining the traffic
flow prediction sequence

with upper (lower) residual
sequence

Generating grey
prediction sequence

Residual sequence

Dividing the residual sequence
into two groups, including upper

sequence and lower sequence

Smoothing upper sequence
and lower sequence

individually

Predicting the upper and
lower residual sequence

Obtain the grey forecast
interval for traffic

flow sequence
 

Figure 1 – Modelling procedure of interval prediction

3.1 GM(1,1) revisited
The fundamental structure of the grey model involving a first-order differential equation and a single 

variable is commonly denoted as GM(1,1). Assume that X(0)=(x(0)(1),x(0)(2),...,x(0)(n)) denotes an original 
sequence and X(1)=(x(1)(1),x(1)(2),…,x(1)(n)) is an accumulation sequence of X(0) by the accumulating oper-
ations. The basic first-order accumulated generating operation (1-AGO) structure is defined as in Equation 1.

( ) ( ), , , ,x t x i i t1 2( ) ( )

i

t
1 0

1
f= =

=
/  (1)

where t is the time index.
The original form of the GM(1,1) is defined as in Equation 2

( ) ( )x t ax t b( ) ( )0 1+ =  (2)
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where a, b are the coefficients of least-squares estimation.
The mean sequence of x(1)(t) is defined as z(1)(t) for t=2,3,…,n, which can be calculated by Equation 3.

( )z t x t x t1
2

( )
( ) ( )

1
1 1

= +-^ ^h h
 (3)

The basic form of GM(1,1) is given as Equation 4.

x t az t b( ) ( )0 1+ =^ ^h h  (4)
Its parameters are estimated by using the least squares estimate method as Equation 5.
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The whitenisation equation of the GM(1,1) model is given as Equation 6. 

( )dt
dx ax t b

( )
( )

1
1+ =  (6)

Assume that x̂ (1)(t) and x̂ (0)(t) represent the accumulated forecast sequence and the forecast sequence of 
GM(1,1) at time t, respectively. Then, the former can be calculated by solving Equation 7. The restored values 
of x̂ (0)(t) are obtained according to Equation 8.

( ) ( ) , , , ,x t x a
b e a

b t n1 1 1 2( ) ( ) at1 0 f+ = + =- -t a k  (7)

( ) ( ) ( ) ( ) ( )x t x t x t e x a
b e1 1 1 1( ) ( ) ( ) ( )a at0 1 01+ = + = -- - -t t t ta k  (8)

where x̂ (0)(t) is the forecast sequence; x̂ (1)(t) is the accumulated forecast sequence.

3.2 Volatility sequence and smoothness operator
The GM(1,1) model can yield satisfactory prediction accuracy when modelling a monotonic increasing 

(or decreasing) sequence. However, the GM(1,1) model’s predictive accuracy falls short when dealing with 
sequences exhibiting volatility characteristics. To solve this problem, it becomes imperative to implement a 
smoothing algorithm to mitigate the amplitude of volatility. The volatility sequence and smoothness opera-
tor are defined as follows.

Volatility sequence. Suppose that the original sequence is X(0)=(x(0)(1),x(0)(2),…,x(0)(n)), then
a) If for 6t=2,3,…,n, x(0)(t)-x(0)(t-1)>0 then the original sequence is named a monotonic increasing se-

quence;
b) If for 6t=2,3,…,n, x(0)(t)-x(0)(t-1)<0 then the original sequence is named a monotonic decreasing se-

quence;
c) If for 7t, t ́=2,3…,n, x(0)(t)-x(0)(t-1)>0 and x(0)(t́)-x(0)(t́ ́-1)<0 then the original sequence is named a vola-

tility sequence. Suppose that M=max{x(0)(t)}, m=min{x(0)(t)}, and the amplitude of volatility sequence 
can be calculated as T=M-m.
Smoothness operator. Suppose that the volatility sequence is X(0)=(x(0)(1),x(0)(2),…,x(0)(n)), then the 

structure of smoothness operator is as Equation 9, and d is named a first-order smoothness operator of X.

( )
( ) ( )

, , , ,x t d
x t T x t T

t n4
1

1 2( )
( ) ( )

0
0 0

f=
+ + + +

=
6 6@ @

 (9)

Thus, the sequence X(0)D=(x(0)(1)d,x(0)(2)d,…,x(0)(n-1)d) is called smoothness sequence of X(0).
Proof. Set x(0)(p)=max(x(0)(t)│t=1,2…,n) and x(0)(q)=min(x(0)(t)│t=1,2…,n), then T(X)=x(0)(p)-x(0)(q). 

Set x(0)(i)d=max(x(0)(t)d│t=1,2,…,n-1) and x(0)(j)d=max(x(0)(t)d│t=1,2,…,n-1), then T(XD)=x(0)(i)d-x(0)(j)d.
According to the Equation 9, then
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The proof process reveals that the application of smoothing operators can effectively reduce the ampli-
tude of volatile sequences. Consequently, enhancing the smoothness of the volatile sequence allows for the 
development of a more rational grey prediction model.

3.3 Proposed novel GM(1,1) model
We cannot immediately build a grey prediction model based on the volatility sequence due to the poor 

degree of smoothness of this volatility sequence. To solve this problem, this paper proposed a novel GM(1,1) 
model, which improves the GM(1,1) model by integrating two techniques, i.e. the smoothness operators of 
volatility sequence and background value construction. 

Generating a smoothness sequence. Suppose that the volatility sequence is X(0)=(x(0)(1),x(0)(2),…,x(0) (n)), 
according to Equation 9, the smoothness sequence of X(0) is X(0)D=(x(0)(1)d,x(0)(2)d,…,x(0)(n-1)d). Set  
y(0)(k)=x(0)(k)d, so the smoothness sequence converts to Y(0)=(y(0)(1),y(0)(2),…,y(0)(n)). Through the 1-AGO 
structure processing, the accumulation sequence of Y(0) is Y(1)=(y(1)(1),y(1)(2),…,y(1)(n)).

Constructing background value of the grey model. We apply the background value construction of 
three-parameter to alleviate the volatility by Equation 11. The method extends the background value from two 
to three, which improves the smoothness of the grey model. 
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where z(1)(t)=(z(1)(3),z(1)(4),…,z(1)(t))T means new background value sequence.
The grey differential equation of the novel GM(1,1) model is given as Equation 12

( ) ( ) ( ) ( )y t a y t y t y t tb c3
1 1 2( ) ( ) ( ) ( )0 1 1 1+ + + = +- -^ h  (12)

where a, b, c are the coefficients of least-squares estimation; its parameters are estimated by using the least-
squares estimate method as Equation 13.
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Deducing the novel GM(1,1) model. Suppose that ŷ (1)(t) and ŷ (0)(t) represent the accumulated forecast 
sequence and the forecast sequence of the novel GM(1,1) at time t, respectively. Then, the latter can be 
calculated by Equation 14.

( ) ( ) ( ), , , ,y t y t y t t n1 3 4( ) ( ) ( )0 1 1 f= - - =t t t  (14)
where ŷ (0)(t) is the prediction sequence; ŷ (1)(t) is the 1-AGO of prediction sequence.

To obtain the ŷ (1)(t) sequence, Equation 14 combines with Equation 12, then Equation 15 as shown below.
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( ) ( ) ( ) ( ) ( )tb c a y t y t y t y t y t3
1 1 2 1( ) ( ) ( ) ( ) ( )1 1 1 1 1+ - + - + - = - -t t t^ h  (15)

Then, the values of ŷ (1)(t) are further obtained based on the formulation in Equation 16. y(0)(1) and  
y(0)(2) are called the initial value of novel grey prediction model.
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3.4 Forecasting interval
The purpose of this section is to obtain forecast interval based on the point prediction results, which can 

be obtained by using the novel GM(1,1) model as mentioned previously. The initial step involves generat-
ing a residual sequence by computing the difference between the predicted sequence and the original one. 
Subsequently, the residual sequence is divided into two groups and the proposed model is used for the pre-
diction of the two groups of residual sequences individually. Finally, upper and lower forecast boundaries 
are established for both groups of residual sequences, forming the basis for constructing the grey residual 
prediction interval. The modelling procedure is outlined as follows.
Step 1: Generating residual prediction sequences.

Suppose that the original sequence is X(0)=(x(0)(1),x(0)(2),…,x(0)(n)), and the prediction sequence of X(0)

by using the novel GM(1,1) model is X ̂ (0)=(x̂ (0)(1),x̂ (0)(2),…,x̂ (0)(n-1)). So, the residual prediction sequence 
is calculated as Equation 17.

R X X( ) ( ) ( )0 0 0= -t  (17)
Step 2: Dividing the residual sequence into two groups.

We use the line of R(0)=0 as the dividing line to divide the residual sequence into two groups just as 
shown in Figure 2.
a) If r(0)(t)>0, then the residual sequence is named upper residual sequence, and expresses as  

RU
(0)=(rU

(0)(1),rU
(0)(2),…,rU

(0)(n-1));
b) If r(0)(t)<0, then the residual sequence is named lower residual sequence, and expresses as  

RL
(0)=(rL

(0)(1),rL
(0)(2),…,rL

(0)(n-1));

 
Figure 2 – Classification demonstration 

Step 3: Forecasting the two groups of residual sequences.
The two groups of residual sequences are used for the novel GM(1,1) modelling and prediction individ-

ually. The forecast values of the two groups of residual sequences are obtained by the same procedure as in 
the above section 3.3. The forecast values are called RU

(0) and RL
(0). Therefore, the prediction interval of the 

residual is [R ̂ U
(0)(t)     R ̂ L

(0)(t)].
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Step 4: Determining the forecast interval of the novel GM(1,1) model.
The forecast interval of the proposed model is created as Equation 18

, ( ) ( ) ( ) ( ) , ( ) ( )I t X t X t X t R t X t R t( ) ( ) ( ) ( ) ( ) ( )
L U

0 0 0 0 0 0
!= - +t t t t t t^ _ _h i i7 A# -  (18)

where X(0) is the original sequence X ̂ (0) is the prediction sequence by using the novel GM(1,1); R(0) is the 
residual sequence; R ̂ L

(0)(t) is the lower prediction residual sequence; R ̂ U
(0)(t) is the upper prediction residual 

sequence; I is the prediction interval of the novel GM(1,1) model.

4. EMPIRICAL STUDY
4.1 Study site and data collection

Real traffic flow data in this study were collected on the road network of Furong District in Changsha 
(Figure 3). There are eleven roads selected on the studied network. The road network has installed the loop 
detector on each road cross-section. These detectors collect traffic flow, every 5 min and output this data via 
the Traffic Reporter of SCATS for research. Figure 3 shows the specific location of eleven road segments. 
Complete traffic flow data sets from the loop detectors were available for 5 consecutive days (2013.09.23-
2013.9.27) just as shown in Table 1. To assess the model’s accuracy, we utilised traffic flow data from 27 Sep-
tember 2013. The analysis of traffic flow characteristics involved dividing the study period into two distinct 
segments: the morning peak (7-10 a.m.) and the afternoon peak (5-8 p.m.). 

 
Figure 3 – Study site 

Table 1 – Data overview

ID Road name Flow direction Start End AM
(Time)

PM
(Time)

1 Yuanda One Road East → West 23/9/2013 27/9/2013 7-11 5-9

2 Yuanda One Road East → West 23/9/2013 27/9/2013 7-11 5-9

3 Yuanda One Road East → West 23/9/2013 27/9/2013 7-11 5-9

4 Mawangdui North Road South → North 23/9/2013 27/9/2013 7-11 5-9

5 Wanjiali Middle Road South → North 23/9/2013 27/9/2013 7-11 5-9

6 Jiayu Road North → South 23/9/2013 27/9/2013 7-11 5-9

7 Guqu North Road North → South 23/9/2013 27/9/2013 7-11 5-9

8 Mawangdui North Road North → South 23/9/2013 27/9/2013 7-11 5-9

9 Wanjiali Middle Road North → South 23/9/2013 27/9/2013 7-11 5-9

10 Jiayu Road South → North 23/9/2013 27/9/2013 7-11 5-9

11 Guqu North Road South → North 23/9/2013 27/9/2013 7-11 5-9

Note: See http://www.openits.cn/openPaper/567.jhtml for more information
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4.2 Experimental design
To evaluate the performance of the novel GM(1,1) model, we compared it with the traditional GM(1,1) 

model. For each model, two measures are evaluated for uncertainty quantification, which includes the kick-
off percentage (KP) and the width interval (WI). The KP is computed as the ratio of the total number of 
original true values outside the prediction intervals to the total number of original true values. Meanwhile, 
the WI measures the width of the prediction interval. Ideally, the KP and WI are expected to be small. The 
relevant formulas of the two measures are shown as follows:

KP N
KN=  (19)

WI U L= -  (20)
where KN is the number of original true values lying outside the predicted interval; N is the total number of 
original true values; U is the upper prediction value; L is the lower prediction value; R is the real measure value.

4.3 Model performance comparison
A traditional GM model is chosen to compare the performance of interval prediction with the proposed 

novel GM model. Figure 4 displays the observed flow alongside the interval prediction flow generated by 
various models for the eleven segments during the morning peak hours. Additionally, Figure 5 showcases the 
observed flow and the interval prediction flow for these segments during the afternoon peak hours. These 
visual representations highlight that the interval prediction flow produced by the novel GM model closely 
aligns with the field-measured flow, in contrast to the traditional GM model. This observation suggests that 
the novel GM model excels at capturing the fluctuation patterns present in the field-measured flow. More-
over, most of the filed-measured flow falls within the range determined by the novel GM model.

Figure 4 – Flow interval prediction by using novel GM model and GM model for AM, 27 September 2013

For a more quantitative assessment of model prediction accuracy, we present the model performance 
metrics in Table 2. According to the results of performance measures, the novel GM model performs better 
with the lowest KP, WI and WI amplitude. For example, the average KP, WI, max(WI), min(WI) and WI am-
plitude are approximately 0.44, 20, 31, 13 and 18, respectively for all segments by using a novel GM model 
under morning peak hours. By comparison, the segment forecasts have a mean KP, WI, max(WI), min(WI) 
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Figure 5 – Flow interval prediction by using novel GM model and GM model for PM, 27 September 2013

Table 2 – Comparison of WI at different peak hours

Time ID
GM(1,1) Novel GM(1,1)

KP mean
WI

max
WI

min
WI

max-min
WI KP mean

WI
max
WI

min
WI

max-min
WI

AM

1 0.30 36 60 19 41 0.14 19 23 16 7
2 0.50 25 29 22 7 0.20 18 19 18 1
3 0.36 41 78 24 54 0.09 23 26 20 6
4 0.25 16 29 8 21 0.25 9 10 8 2
5 0.55 22 37 12 25 0.16 19 20 19 1
6 0.52 4 6 3 3 0.16 2 3 2 1
7 0.48 11 15 8 7 0.16 8 9 8 1
8 0.52 16 24 9 15 0.18 14 17 11 6
9 0.41 28 33 27 6 0.23 18 19 17 2
10 0.34 8 11 6 5 0.11 7 7 6 1
11 0.66 8 16 4 12 0.14 7 8 7 1

Mean 0.44 20 31 13 18 0.17 13 15 12 3

PM

1 0.43 21 35 12 23 0.09 21 25 17 8
2 0.39 22 33 15 18 0.09 20 22 19 3
3 0.57 26 66 6 60 0.09 26 31 21 10
4 0.48 11 15 9 6 0.25 8 10 7 3
5 0.57 28 54 23 31 0.16 19 25 15 10
6 0.36 5 8 2 6 0.14 2 2 2 0
7 0.41 10 15 6 9 0.14 9 9 8 1
8 0.45 14 36 4 32 0.14 17 22 14 8
9 0.55 22 36 14 22 0.16 22 26 18 8
10 0.41 7 8 7 1 0.14 4 4 3 1
11 0.41 10 12 10 2 0.11 6 7 6 1

Mean 0.46 16 29 10 19 0.14 14 17 12 5
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and WI amplitude of approximately 0.17, 13, 15, 12 and 3 for the GM model. During both the morning and 
afternoon peak hours, the novel GM model demonstrates a substantial improvement in the average predic-
tion interval coverage, with increases of 27% and 32% compared to the GM model. This outcome under-
scores the significance of considering volatility characteristics within the traffic flow sequence, achieved 
through the application of smooth pre-processing and background value construction.

Figure 6 shows the KP value of the two methods for each segment under different peak hours, the volatility 
amplitude of KP by using the GM model is stronger than that by using novel GM. The results indicate that 
traffic flow interval prediction is more accurate by using a novel GM model for each segment. In addition, 
we compare the average WI and WI amplitude of the two models as shown in Figure 7 and Figure 8, the similar 
results can be also found for the two models across the volatility amplitude of measures during morning 
and afternoon peak hours. This aligns with the notion that the smoothness operator applied to the volatile 
sequence effectively diminishes traffic flow fluctuations, resulting in greater stability and predictability 
within the flow series.

 
Figure 6 – Comparison of KP values using the two models in different peak hours  

 
Figure 7 – Comparison of mean WI values using the two models in different peak hours

 
Figure 8 – Comparison of WI amplitude using the two models in different peak hours

5. CONCLUSION
We proposed a novel GM(1,1) model which extends the GM(1,1) by integrating two techniques (smooth 

pre-processing and background value construction) to forecast the uncertainty quantification of short-term traf-
fic flow. Smooth pre-processing uses the smoothness operator, which can compress the volatility amplitude of 
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traffic flow. Background value construction applies the three-parameter construction method, which extends 
the background value from two to three, to further alleviate the volatility in traffic flow data. Moreover, the 
upper sequence and lower sequence of forecast interval are determined by the line of R^((0))=0. In order to 
evaluate the performance of the proposed novel GM model, this study used the real traffic flow data of the 
Furong District in Changsha.

The interval prediction results verified that the novel GM model outperforms the original GM model, 
as evidenced by the volatility trend of upper sequence (lower sequence) prediction. The novel GM model 
showed high prediction accuracy by compressing the volatility amplitude of traffic flow. We further compare 
the proposed model with the original GM model by calculating two performance measures: KP and WI. 
The performance outcomes demonstrate the superiority of the novel GM model, as evidenced by its lower 
KP and WI values. These results affirm that the novel GM model excels at capturing the inherent variations 
within field-measured traffic flow data, primarily due to the effective implementation of smooth pre-pro-
cessing and background value construction.

Additionally: (i) future research should aim at the development of more background value construction 
methods to improve the smoothness of the traffic data; (ii) the proposed model is a parametric model with 
a fixed structure: the predicted results can only be obtained off-line, and do not provide an on-line forecast, 
so future research should focus on new adaptation mechanisms via which the proposed model could yield 
real-time predictions; (iii) the kick-off percentage (KP) and the width interval (WI) can gauge the length of 
the prediction interval and coverage; however, the two measures are not uniform performance measures. 
Thus, future research should further investigate uniform performance measures with which to evaluate the 
prediction intervals.
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曹旭东，石琴，陈一锴，陈晨辰

基于新型GM(1,1)模型的短期交通流不确定性预测

摘要：

在智能交通系统中，预测短期交通流的不确定性对于有效的交通管理至关重要。各

种预测不确定性的方法已经提出并实施。然而，在面对稀疏数据时，传统方法往往
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难以提供准确的预测。因此，本研究侧重于在有限数据条件下开发短期交通流不确

定性预测模型，提出了一种考虑交通数据波动性的新型灰色模型，该模型通过整合

两种技术：平滑预处理和背景值构建，对灰色模型（GM）进行了扩展。所提出的新

型灰色模型的性能主要通过与传统GM模型的比较来说明。我们的结果在不确定性量

化方面表明，所提出的模型在平均偏离百分比（KP）、宽度区间（WI）和宽度幅度

方面优于GM模型。

关键词：

智能交通系统；非确定性量化；新型GM模型；平滑预处理；背景值构建


