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ABSTRACT
The application of electric vehicles (EVs) in the logistics industry has become more exten-
sive. However, the mileage limitation of electric logistics vehicles (ELVs) and the long-dis-
tance distribution of ELVs have become urgent problems. Therefore, this paper proposes a 
long-distance distribution model for ELVs based on dynamic traffic information consider-
ing fleet mileage, distribution time and total distribution cost as the optimisation objectives, 
thus reasonably planning road selection and charging, and alleviating “mileage anxiety” in 
the long-distance distribution of ELVs. The model proposed in this paper comprehensively 
considers the characteristics of the high-speed and low-speed roads, the changes in road 
traffic flow on weekdays and non-weekdays, the time-of-use electricity price of electric ve-
hicle charging stations (EVCSs) and uses the M/M/s queuing theory model to determine the 
charging waiting time. Finally, a real traffic network is taken as an example to verify the 
practicability and effectiveness of this model.

KEYWORDS
electric logistics vehicle; long-distance distribution; path planning; charging scheduling; 
M/M/s Queuing theory.

1. INTRODUCTION
With the development of the automotive industry, new energy vehicles have begun to receive the attention 

of the government and researchers [1]. In recent years, the national ministries and commissions have issued 
a series of policies to promote the penetration of new energy vehicles in the logistics field. The new energy 
vehicle industry development plan (2021–2035) mentions that as of 2021 the proportion of new energy vehi-
cles in the new or updated public transport, taxi, logistics and distribution vehicles in the national ecological 
civilisation pilot area and critical areas of air pollution prevention and control in the public sector will not be 
lower than 80%. The goal has been put forward from a macro-quantitative perspective. In the context of the 
rapid development of new energy vehicles, ELVs are regarded as sustainable and environmentally friendly 
means of transportation, because they can significantly reduce harmful local emissions and global greenhouse 
gas emissions [2]. People have been paying more attention to EV use, aiming to build green distribution prac-
tices [3]. In the future, ELVs will gradually replace traditional fuel vehicles and become the staple of logistics 
distribution systems. 

Compared with traditional gas stations, the number of EVCSs is still small, which also leads to the fact 
that they often fail to deliver commodities due to insufficient energy during transportation. This phenome-
non is more significant in the long-distance distribution process. Therefore, when the number of EVCSs is 
insufficient, it is of great significance to carry out a reasonable path and charging planning for ELV logistics 
distribution and transportation. Previous studies have focused on ELV path planning and charging scheduling. 
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Yang et al. take the charging cost as the optimisation objective, studying the distribution path of a single 
electric logistics vehicle and the charging price in different periods [4]. Liu et al. [5] proposed a class of ve-
hicle routing problems with multiple distribution centres, vehicle leasing and vehicle sharing, time window 
formulas and open-loop, establishing a corresponding mixed-integer programming model. Goeke considered 
the time window and EV pick up and delivery, developing a strategy granularity tabu search to determine 
charging power [6]. Deng et al. aimed at the lowest total logistics cost and the highest average customer satis-
faction, and built a multi-objective optimisation model of electric vehicle logistics distribution path planning 
and charge-discharge management considering customer satisfaction under the power exchange mode [7]. The 
authors in [8] studied the impact of ambient temperature on fleet composition, energy consumption and route 
decision-making in the last mile distribution operation. They used an adaptive large neighbourhood search 
algorithm to solve large-scale examples. In [9], the authors studied a multi-site capacity constrained electric 
vehicle routing problem composed of two-dimensional weighted terms of customer demand and proposed a 
heuristic algorithm combining variable neighbourhood search algorithm and space-saving heuristic algorithm 
to solve the subproblem of the vehicle routing problem and packing problem. In the context of sharing econ-
omy, the urban logistics distribution routing problem of electric vehicles considering carbon tax and time of 
use electricity price is reflected in [10]. Li et al. proposed an optimisation model for the electric vehicle routing 
problem based on sharing economy. Research has been done to study the routing problems of logistics vehicles 
and ELVs from the aspects of time-of-use electricity price, customer demand etc. but without considering the 
dynamic traffic information and long-distance distribution problems [4–10].

Considering the time-dependent random traffic conditions, Bi et al. designed a dynamic electric vehicle 
routing problem model and proposed a hybrid rollout algorithm [11]. Yang et al. constructed an optimisation 
model for electric vehicle route selection and charging navigation under the time-of-use electricity price mech-
anism, aiming to minimise the user’s total travel cost. They proposed to obtain real-time traffic conditions and 
charging station service information with the help of swarm intelligence sensing technology [12]. In [13], Li et 
al. established a dynamic road network model considering road section impedance and node impedance. They 
proposed a prediction method for electric vehicle charging load space-time distribution based on dynamic 
traffic information. The authors in [14] suggested a route planning and charging navigation strategy for electric 
vehicles based on real-time traffic information. According to the characteristics of urban roads, a “time flow” 
road resistance model was established considering road impedance and intersection node impedance. The 
studies [11–14] consider dynamic traffic information and long-distance path planning in electric vehicle path 
planning. Still there are few articles on long-distance path planning and charging scheduling of ELVs based 
on dynamic traffic information. During distribution on weekdays and non-weekdays, road traffic flow will 
change. At the same time, long-distance distribution needs to consider the characteristics and selection of high 
and low speed, which increases the difficulty of electric logistics vehicle path planning and charging schedule; 
therefore, it is of great significance to consider long-distance transportation and dynamic traffic information. 
Based on previous studies, this paper makes the following contributions:
1) Aiming to minimise the total distance, delivery time and total cost of logistics distribution, a path planning 

and charging scheduling model for long-distance distribution of ELVs is established. 
2) The model considers the changes in road traffic flow on working and non-working days, as well as the 

effects of high-speed, low-speed and time-of-use electricity prices on driving paths and charging costs. At 
the same time, the m/m/s queuing theory model is used to solve the charging waiting problem.

3) The feasibility and practicability of the model are verified by a case analysis. A sensitivity analysis of 
several parameters is carried out to show the influence of different parameters on the path and charging 
selection of ELVs.

2. PROBLEM DESCRIPTION AND ASSUMPTIONS
The research background of this paper is that the electric logistics vehicle fleet participates in long-distance 

logistics distribution. After confirming the order, the fleet team will send suitable vehicles for distribution. 
Considering the randomness of the fleet vehicles and the location of the goods to be transported, the proposed 
model can optimally allocate each vehicle and the goods to be transported based on the starting point and des-
tination orientation of each logistics vehicle and goods. Finally, each vehicle’s driving path and charging can 
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be reasonably planned according to different needs, such as the fastest delivery and the lowest consumption, to 
achieve the optimal result. Before establishing the model, the following considerations were made:
1) It is necessary to meet the loading and unloading location of the goods and deliver the goods in the shortest 

possible time. 
2) Due to the need for long-distance delivery, it is necessary to consider the charging problem of going to 

the charging station during the delivery and the charging problem of high-speed driving to minimise the 
driving cost.

3) Driving path is to be selected according to user preferences while minimising power consumption.
4) Considering the inherent characteristics of high-speed and low-speed roads, vehicles on high-speed roads 

travel at high speeds and consume less time and electricity, so tolls need to be charged. There is no need to 
charge tolls on low-speed roads. Large traffic flow on low-speed roads leads to slow traffic and consumes 
more time and power.

5) The proposed optimisation model formulas include local/global formulas, such as longitudinal vehicle 
dynamics, EVCS congestion modelling, electric vehicle battery state of charge (SoC), road conditions etc. 
[15].

Considering the complexity of the model and the reality of the problem, this paper makes the following 
assumptions:
1) It is assumed that all vehicles in the fleet are private cars, that is, the starting and ending points of each 

vehicle are different, and the loading and unloading locations of each cargo piece are known. 
2) The charging power of ELVs is fixed. Considering the need to deliver the goods as soon as possible, the 

fast-charging method is adopted here. In addition, it is assumed that each charging point’s charging price 
in the same period is the same.

3) It is assumed that all high-speed sections are charged at a unified price. In addition, the influence of exter-
nal factors (such as road slope, temperature etc.) on vehicle output power is not considered.

3. MATHEMATICAL MODEL AND LINEARISATION
According to the above considerations, the electric logistics vehicle fleet mainly considers the driving 

distance, delivery time and total cost (including high-speed road and charging costs) in the distribution process. 
The following takes these three items as the main body to establish the objective function of this model.

1
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The objective function of the model is shown in Formula 1, which consists of three items: the total trans-
portation distance, the total time of distributing goods (excluding loading and unloading time), and the total 
cost, in which the total cost includes charging cost and high-speed charging. ω1/ω2/ω3 are the weights of the 
three terms, respectively; Dl is the distance of the road l; xl,v is a 0-1 variable parameter, the value is 1 when 
the vehicle v passes through the road l, and the value is 0 on the contrary; yu,v  is a 0-1 variable index. When 
the vehicle v carries goods u, it is 1, otherwise it is 0. td,v and tp,v represent the time of delivery and loading, 
respectively. ,n qξ  represents the charging unit price ($/kWh) of the charging pile node n in the period q; p is 
the charging power; ,

c
n vt  represents the charging time of the vehicle v at the node n; zf,v is the 0-1 variable pa-

rameter, which is 1 when the vehicle v passes through the high-speed section f, otherwise, it is 0; ε is the unit 
price charged for highway sections.

The model considers the path planning and charging scheduling different from the long-distance distribu-
tion of ELVs on weekdays and non-weekdays. Weekdays and non-weekdays will affect the road traffic flow, 
and its changes are given by Formula 2.

( ), ,1 ,  ,  ,  l w l w w l nwv v v l L w W nw NWγ γ= + − ∈ ∈ ∈  (2)

In Formula 2, vl represents the traffic flow of the road l; γw,l represents a 0-1 variable parameter. In particular 
the value of γw,l will be 1 for working days, and 0 on for non-working days; parameters vw and vnw represent 
traffic flow on working days (w) and non-working days (nw), respectively. L denotes the set of road. W and NW 
are the working day and non-working day sets, respectively.
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Formula 3 constrains the driving of vehicles in the traffic network, where xij is a 0-1 variable; when the ve-
hicle passes i and j, it is 1, and otherwise it is 0. O/E indicates the starting point and end point of the vehicle. 
When i is the starting point, the vehicle must leave the starting point; when i is the destination, the vehicle must 
drive to the destination, and if i is neither the starting point nor the endpoint, the vehicle will inevitably leave 
this node if it drives to it.
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Formulas 4–6 are expressed by variables yu,v, where the values of yu,v are either 0 or 1, to ensure that the goods 
at each place can be distributed. Figure 1 illustrates the evolution of the driving process of the electric logistics 
vehicle for the convenience of the following explanation; it defines that the vehicle drives in the way of up-
stream node → road → downstream node. As shown in Formula 4, in order to force the electric logistics vehicle 
v to successfully assemble and deliver goods u (yu,v = 1), the vehicle v must select the downstream road set 
( ,D L

aψ ) of the loading node and the upstream road set ( ,U L
unψ ) of the delivery cargo node. In particular, M is a big 

positive number, U denotes the cargo set, V denotes the vehicle set. Parameters a
uψ  and un

uψ  denote the loading 
and unloading nodes of goods u, respectively. Formula 5 means that each cargo piece is delivered by a vehicle. 
Formula 6 ensures that when the logistics vehicle is arranged to distribute the goods u, the loading completion 
time must be before the delivery time of the goods.

 

 

 
 

 

 
  

 
Figure 1 – Evolution of electric logistics vehicle driving process
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Formula 7 is based on the highway bureau function [16], which calculates the time consumed by vehicles 
passing through the road l; γl,v is the free flow time, which determines the road travel time; α and β are constant, 
ρl is the road capacity of the road; l, vl is the traffic flow of the road l, which can be obtained from Formula 2.
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Formula 8 represents the relationship between the output power of the electric logistics vehicle and the dif-
ferent high-speed and low-speed sections and the cargo weight. vζ  is the output power of the electric logistics 
vehicle; w represents the weight of the vehicle itself; ϖ represents the weight of the goods on the vehicle; ∂
is a constant parameter, which controls the speed of power change after the vehicles are loaded with goods; μf 
and μl are the power densities at high-speed and low-speed roads, respectively (kWh/t); and F is a collection 
of high-speed sections. Formulas 9 and 10 represent the changes of time and state of charge (SoC) during vehi-
cle driving. When the vehicle passes through path l, it is assumed that this vehicle drives from the upstream 

node of its path to the downstream node. The binary variable value xl,v is 1, when the vehicle passes through 

the road l, the time when the vehicle reaches the downstream node of the path (
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is not affected by this formula. Emax is the maximum state of charge of the battery. Formulas 11 and 12 restrict 
the time for the vehicle v to load and unload goods at the node n; , ,

a
n v uς / , ,

un
n v uς  and are 0-1 variable parameters, 

respectively indicating that if the node is the loading/unloading node and the vehicle loads/unloads goods u at 
node n, the value is 1, otherwise, it is 0, a

ut  and un
ut  are the loading/unloading time of goods u. The length of 

loading/unloading time is affected by such factors as cargo quality, shape, handling method etc., so the time 
needs to be determined according to the actual situation. According to our investigation of a factory, the cargo 
handling time is set as 0.5 h here.

The queuing rule of the charging station can be described as a single queue system, and the service organi-
sation is designed as a parallel service system of multiple chargers [17]. According to previous research on the 
arrival time and charging service time of electric vehicles, because the probability distribution of the arrival 
time interval of electric vehicles in charging stations and charging service time will change with regions, it is 
assumed that the arrival time interval and charging service time of electric vehicles obey the negative expo-
nential distribution, and there are s chargers in the charging station. Therefore, the M/M/s queuing model can 
be used to solve the queuing time of the charging station [18, 19]. 
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Formulas 13–16 indicate the calculation process of charging waiting time, and the Formulas 13–16 must be car-
ried out under the conditions of Formula 17. Formula 13 is used to calculate the service intensity of the queuing 
system (ρ), λ represents the arrival rate of vehicles arriving at the charging point in unit time, and μ represents 
the average utilisation rate of a single charging point. Formula 14 calculates the probability that all charging piles 
are idle (p0); s is the number of charging piles. In Formula 15, the average queue length ( ,

w
n sL ) of the charging 

station is indicated. Formula 16 calculates the average queuing waiting time ( ,
w
n vt ) of vehicles v at the node n.  

ζn,v stands as a 0-1 variable; when the vehicle v is charging at the node n of the charging station, the value is 

1, otherwise it is 0, ,
w
n sL  is the average queuing length of the node n charging station; Formula 18 indicates the 

charging behaviour of the logistics vehicle. If the vehicle does not pass through the charging pile node ( ,D L

CΨ ), 
the value of xl,v is 0, and the charging time ( ,

C
n vt ) is specified as 0; Formula 19 indicates the nonnegativity of the 

vehicle’s charging time at the charging station. For nodes that are not EVCSs, the charging time is limited to 0. 
Formula 20 is the formula on the charging waiting time. For the charging station node, if the vehicle is charging 
in the charging station, the charging waiting time is greater than or equal to zero; if the vehicle is not charging 
here, the charging waiting time is 0.

The time-of-use electricity price of EVCSs can be regarded as a time series. Q = {0,1,...,q,...,23} is defined 
as a set of time, { }0 1 23, , , , ,qξ ξ ξ ξ ξ=    as a collection of charging electricity price in different time. There-
fore, the charging electricity price in a certain period of time at the node n can be calculated as follows:

,
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Formula 21 constrains the charging price of a certain period at the node n. When the node is a charging station 
node, the price of electricity is the price of the period. If the node is not a charging station node, the price of 
electricity at the node will not be considered, and the price of electricity is set to 0.

0, ,  v maxSoC SoC v V= ∀ ∈  (22)
, ,  ,  min n v maxSoC SoC SoC n N v V≤ ≤ ∀ ∈ ∈  (23)

Formulas 22 and 23 define the start of the vehicle and the state of charge of the node. Formula 22 indicates that 
the vehicle v starts with the maximum capacity of the battery, SoC0,v, which is the electric quantity at the time 
of departure; Formula 23 limits the power of the car v at the node n to the minimum and maximum SoC range.

Because the Formulas 1 and 8 contain a nonlinear term of continuous variables and binary variables, which 
may lead to the local optimal solution, so the expected result cannot be achieved. Therefore, a linearisation 
method (Big M method) is proposed in this paper to solve the problem [20].

It is assumed that parameter a is a binary variable, x is a continuous variable, and their product is y as For-
mula 23, which can be accurately replaced by Formulas 24 and 25 [21].
y ax=  (24)

Ma y Ma− ≤ ≤  (25)
( ) ( )1 1x M a y x M a− − ≤ ≤ + −  (26)

The Big M approach has been applied in this paper to achieve the linearisation process. In the Big M meth-
od, the product of binary variables and continuous variables can be replaced by Formulas 24 and 25. Therefore, 
there is no need to discuss whether the nonlinear parameters in the formula meet the linearisation conditions 
when using the Big M method. This method is directly used in literature [22–24]. In this way, the model is 
transformed into a mixed integer linear programming (MILP) problem and the global optimality of the prob-
lem can be guaranteed by a commercial solver.
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4. CASE ANALYSIS
4.1 Road network selection and parameter setting

In this paper, we use a road traffic network located in Zhejiang province, China, to demonstrate and analyse 
the proposed model. Figure 2a is the map of the studied area. Figure 2b is the topological network that simplifies 
and abstracts it into 19 nodes and 31 roads. See the attached Appendix for detailed network parameters. 

The fleet sent four identical ELVs to transport four pieces of goods, and the starting and ending points of 
the vehicles and the goods to be transported were at different nodes. In Table 1, the start and end nodes of each 
vehicle have been identified. On the other hand, Table 2 shows the loading and unloading nodes of the goods 
and the weight of each piece of good. The battery capacity and charging power of the logistics vehicle are 
uniformly set at 78 kWh and 80 kW. The vehicle weight is set as 5 tons. The minimum (SoCmin) and maximum 
(SoCmax) states of charge during vehicle operation are 0.1 and 1, respectively. The unit price of high-speed 
charging is 0.075 $/km.

Figure 2 – Road network

Table 1 – Starting and ending nodes of electric logistics vehicles

Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4

Start node N4 N1 N8 N16

End node N13 N18 N17 N1

Table 2 – Loading and unloading nodes and weight of goods

Good 1 Good 2 Good 3 Good 4

Assembly node N5 N16 N2 N8

Unloading node N8 N4 N18 N17

Cargo weight 4t 5t 3t 5t

4.2 Analysis of results in different scenarios
In this section, we consider the changes of vehicle travel results on working and non-working days and the im-

pact of severe congestion on some roads on non-working days. The road traffic flow on working and non-working 
days is shown in the Appendix, and the time of use tariff of the charging station [25] is shown in Table 3.

In order to visually compare the impact of vehicle travel on route and charging on working or non-work-
ing days, the following is a separate comparison of vehicle 2’s distribution results for goods 3 on work-
ing and non-working days. In order to balance the three variable parameters of the objective function, the 
weights of driving distance, delivery time and total cost in both scenarios are set to 1:50:1. The departure 
time is set at 6 a.m. on Monday and Sunday, respectively. The route planning of vehicle 2 under the two sce-
narios is shown in Figure 3. It can be seen from the results in Figure 3 that the model changes the route from 
1→2→5→10→11→15→18 to 1→ 2→3→6→11→15→18 on non-working days. This is due to a serious 
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increase in traffic flow on non-working days for some roads, such as scenic spots and commercial streets, with 
congestion occurring in routes 2→5 (road L4) and 5→10 (road L13), which results in slow traffic. The sim-
ulation results indicate that the algorithm proposed in this paper tries to avoid those roads in the optimisation 
process to achieve the optimal goal. If the variation of road traffic flow is not considered on non-working days, 
the route 1 → 2 → 5 → 10 → 11 → 15 → 18 is also adopted on non-working days. After the optimisation 
process, the energy surplus of the vehicle at node 11 is only 13.06%, which will not be sufficient to support the 
vehicle to reach the charging node 15, thus failing to complete the delivery task.
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Figure 3 – Vehicle 2 route map under two scenarios

In order to visually reflect the impact of the delivery of ELVs on the results of the objective function on 
weekdays and non-weekdays, Figure 4 shows the results of vehicle 2 under the distribution on weekdays and 
non-weekdays. According to Figure 4, due to the congestion of some roads on non-weekdays, the total driving 
distance, delivery time and total cost of vehicle 2 have increased, with the total cost increasing by a large mar-
gin. This is because the model selected high-speed roads to avoid congested roads on non-weekdays, resulting 
in more tolls for vehicles during their journey.
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Figure 4 – Results of vehicle 2 delivery on weekdays and non-weekdays

1

2

3

13 19

18

1794

5 10
14

16

12
8

7

11
6

15

Table 3 – Time-of-use electricity price of EVCSs

Period properties Period division Charging tariff
[$/kW∙h]

Peak period 10:00‒15:00
18:00‒21:00 0.25

Ordinary period
7:00‒10:00
15:00‒18:00
21:00‒23:00

0.19

Valley period 23:00‒7:00 0.14
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4.3 Influence of weight change and its practical application
The choice of path in the model will vary with the change of weight. This section first analyses the results 

under the weight change, and then solves the practical problems according to the conclusions of the analysis.
In order to intuitively analyse the impact of weight changes, a single factor analysis is carried out here. The 

time weights are set as 1, 20 and 100, respectively, the distance and cost weights are set to 1, and the travel time 
is 6 a.m. on Monday. The delivery time under the three weights is shown in Figure 5.
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Figure 5 – Distribution time under different weights

The increase in time weight indicates that our demand for delivery as soon as possible is increased. When 
the weight is increased to a certain extent, the total delivery time of the team will gradually decrease. Accord-
ing to the results in Figure 5, when the time weight increases from 1 to 20, the delivery time of vehicle 4 decreas-
es by 0.16 h. When the weight is increased to 100, the delivery time of vehicle 1 and vehicle 3 decreases by 
0.15 h and 0.5 h, respectively. Moreover, the change in distribution time is due to the change of vehicle route 
selection. The vehicle routes based on these three weight sets are shown in Table 4.

Table 4 – Vehicle paths under different weights

1:1:1 1:20:1 1:100:1

Vehicle 
number

Path
(Node, Node)

Vehicle 
number

Path
(Node, Node)

Vehicle 
number

Path
(Node, Node)

1 4,5,6,7,8,13 1 4,5,6,7,8,13 1 4,5,2,3,8,13

2 1,2,5,10,11,15,18 2 1,2,5,10,11,15,18 2 1,2,5,10,11,15,18

3 8,7,6,11,14,17 3 8,7,6,11,14,17 3 8,7,6,11,15,17

4 16,15,11,10,5,4,1 4 16,15,11,10,9,4,1 4 16,15,11,10,9,4,1

According to the results in Table 4, for instance, the route planning of vehicle 3 is arranged as 8 → 7 → 6 
→ 11 → 14 → 17, when the weights of driving distance, delivery time and total cost are 1:1:1 and 1:20:1. On 
the other hand, the route planning of vehicle 3 is arranged as 8 → 7 → 6 → 11 → 15 → 17 when the weights 
are arranged as 1:100:1. Therefore, it can be seen that the simulation results of the optimisation process will 
vary with the change of weight. When the time weight is increased to a certain extent, the model can choose a 
more suitable path to reduce the delivery time. Similarly, if users prefer to consume less, they can reduce the 
charging and high-speed cost during the delivery process by increasing the weight of the objective function.

For the different requirements of long-distance distribution of ELVs, most of these requirements are the 
preference of minimum distribution time and cost. Considering the inherent characteristics of high-speed and 
low-speed roads, the demand for the minimum distribution time or total cost is actually the choice for high-
speed or low-speed traffic. These demands are not uncommon in practice. For instance, it is necessary to de-
liver objects in the shortest time in the express delivery industry. On the other hand, owners of long-distance 
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transport vehicles tend to choose low-speed roads to reduce expenses and increase profits due to the continuous 
increase of freight prices in recent years. These are also the practical problems to be solved by our optimisation 
algorithm.

The weights of the three variable parameters ω1 / 2ω / 3ω  are set to 1:100:1 and 1:1:10, respectively, to 
balance the order of magnitude. The optimisation target is to minimise the total delivery time and total cost, 
respectively. The optimal results of high-speed and low-speed roads arrangement and related EV charging 
behaviour are obtained by the optimisation mechanism of the algorithm with suitable the set of weights. Then, 
the departure time is uniformly set at 6 a.m. on Monday. The optimisation results of the route and charging 
scheme with the shortest delivery time are shown in Table 5, and the optimisation results of the path planning 
and charging scheme with the lowest cost are shown in Table 6. Based on the simulation results in Tables 5 and 
6, the model reasonably allocates all vehicles and goods to be transported according to the starting and ending 
points of vehicles and the loading and unloading points of goods.

Table 5 – Shortest delivery time scheme

Vehicle 
number

Path
(Node, Node)

Driving 
distance [km]

Delivery 
time [h]

Charging 
time [h]

Charging waiting 
time [h]

Charging 
cost ($)

High-speed road 
spending ($)

1 4,5,2,3,8,13
(Goods 1) 68.3 1.5 0 0 0 3.62

2 1,2,5,10,11,15,18
(Goods 3) 83.8 1.98 0.12 0.09 1.78 4.78

3 8,7,6,11,15,17
(Goods 4) 73.2 1.98 0.08;0.14 0.15;0.09 0.88;

2.08 4.19

4 16,15,11,10,9,4,1
(Goods 2) 84.5 2.41 0.27;0.05 0.09;0.06 3.09;

0.7 4.26

Total 309.8 7.87 25.38

Table 6 – Cost minimisation scheme

Vehicle 
number

Path
(Node, Node)

Driving 
distance [km]

Delivery 
time [h]

Charging 
time [h]

Charging 
waiting time [h]

Charging 
cost ($)

High-speed road 
spending ($)

1
4,5,6,7,8,13
(Goods 1)

60.3 1.65 0;0 0;0 0 1.35

2
1,2,5,10,11,15,18

(Goods 3)
83.8 1.98 0.12 0.09 1.78 4.78

3
8,7,6,11,14,17

(Goods 4)
74.9 2.48 0.30 0.15 3.45 0.84

4
16,15,11,10,5,4,1

(Goods 2)
84.5 2.57 0.39 0.09 5.82 2.78

Total 303.5 8.68 20.8

Shorter delivery time is necessary for the express delivery industry. The Table 5 scheme tends to choose a 
high-speed road section, which not only speeds up the road passage time of vehicles, for example, vehicle 1 
changes the route from 4 → 5 → 2 → 3 → 8 → 13 to 4 → 5 → 2 → 3 → 8 → 13, but directly reduces the 
delivery time by 0.15 hours. In addition, vehicles 3 and 4 not only shorten the road passage time but also the 
charging time due to the reduction of vehicle power consumption, as the charging time was reduced by 0.08 
h and 0.07 h, respectively. Therefore, the total delivery time of the first scheme is 9.3% shorter than that of 
the second, saving 0.81 h for the express delivery fleet. On the contrary, from the perspective of the owner 
of a long-distance transport vehicle, the second option is more economical. By selecting as many low-speed 
sections as possible to reduce consumption, the charging cost is slightly increased while the high-speed toll is 
greatly reduced, bringing down the total cost by 18% and saving 4.38 $ for the fleet.

Based on the above practical problems in the real transportation process, this model can give the corre-
sponding results according to the actual needs, and different schemes will bring significant benefits to users, 
which also shows the high applicability and practicality of the model.
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5. CONCLUSION
The logistics industry freight trends and the diversity in logistics transportation determine human driving 

behaviour. Long-distance transportation puts forward requirements for power consumption and charging con-
trol. In this paper, an optimisation model is proposed which extends the traditional cargo delivery problem to 
the innovative energy-saving optimal routing and charging problem. The aim is to meet the needs of path plan-
ning and charging scheduling of long-distance distribution of electric logistics vehicles, so as to improve the 
performance of electric logistics vehicles in logistics distribution. At the same time, considering the dynamic 
changes of traffic flow with different travel scenarios and key factors such as charging prices in different peri-
ods, this paper studies the impact of travel in different time scenarios and changes the weight of the objective 
function alone on vehicle routing and charging schedule. In the case analysis, based on the numerical study 
of the actual traffic network, the results obtained by changing a certain weight of the objective function show 
that the model results will change as expected with the weight changing. Secondly, when the traffic changes 
due to the change of travel scenarios, the model can still provide users with the optimal path to ensure users’ 
travel. Finally, based on practical problems, we studied the distribution of express industry and electric logis-
tics vehicle owners under different objectives. The results show that the services provided by the model can 
reasonably reduce the distribution time or travel cost according to the pre-trip decisions to meet user needs. For 
the current logistics market, more owners of long-distance transport vehicles will put profits first and increase 
them through lower distribution cost. Therefore, a low-cost scheme may better meet the needs of and benefit 
most users. 

In the future, the research work addressing ELV fleet logistics transportation problems will further integrate 
machine learning technology, so as to truly reflect the reality and improve the running speed of the model.
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汪洋, 李斌, 赵正晖, 汤宽武

基于长途运输与动态交通信息的电动物流车路径规划与充电调度

电动汽车（EV）在物流行业的应用越来越广泛，然而，电动物流车（ELV）
的里程限制和长途配送问题一直是一个亟待解决的问题。为此，本文以车队
行驶里程、配送时间以及配送总成本为优化目标，提出了一个基于动态交通
信息的ELV长途配送路径规划与充电调度模型，对道路选择与充电进行合理
规划，缓解ELV长途配送中的“里程焦虑”。本文提出的模型综合考虑了高
速与低速的特性、工作日和非工作日的道路交通流变化以及电动汽车充电站
（EVC）分时电价等因素，同时使用M/M/s排队论模型确定充电等待时间。最
后以实际交通网络为例，验证了本模型的实用性和有效性。

电动物流车，长途配送，路径规划，充电调度，M/M/s排队论
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APPENDIX
Schedule 1 – Transportation network parameters 

Road
Traffic Capacity 

(Vehicle)
Road Length

[km]
Road

Traffic Capacity 
(Vehicle)

Road Length
[km]

L1 1667 10 L17 1578 10

L2 1701 20 L18 1634 15

L3 1612 10 L19 1599 15

L4 1020 10 L20 1612 40

L5 1588 11.2 L21 987 14.5

L6 1810 10.3 L22 956 27.9

L7 1051 10 L23 1013 18.5

L8 1003 15 L24 1586 17

L9 998 6.7 L25 1589 27.7

L10 996 10.6 L26 1546 26.8

L11 1569 18 L27 933 27.5

L12 1626 10 L28 878 26.8

L13 1060 10 L29 1454 40

L14 1569 11.2 L30 1621 22.5

L15 1008 7.4 L31 1573 27.5

L16 1604 10

Schedule 2 – Road traffic flow on working days and non-working days

Road Traffic Flow on 
Weekdays (Vehicle)

Traffic Flow on Non-
Weekdays (Vehicle) Road Traffic Flow on 

Weekdays (Vehicle)
Traffic Flow on Non-
Weekdays (Vehicle)

L1 456 563 L17 423 553

L2 441 557 L18 427 667

L3 488 602 L19 399 486

L4 1003 1832 L20 509 905

L5 402 933 L21 862 1474

L6 505 635 L22 844 1132

L7 1009 1212 L23 903 1965

L8 966 1163 L24 488 639

L9 811 1586 L25 441 598

L10 983 1045 L26 405 653

L11 351 477 L27 806 1000

L12 433 556 L28 723 1042

L13 960 1880 L29 303 535

L14 408 551 L30 460 577

L15 801 1022 L31 429 556

L16 412 622


