
  

Promet – Traffic&Transportation. 2024;36(5):946-957. https://doi.org/10.7307/ptt.v36i5.584 

Estimating Vehicle Turn-In Rate of Expressway Rest Areas via ETC 

Gantry Data – An ADPC-GMM Approach 

Yubin ZHENG1, Cheng CHENG2, Yong ZHANG3, Lingyi WANG4, Qixuan LI5, Hailin ZHANG6 

Original Scientific Paper 

Submitted: 25 Dec 2023 

Accepted: 11 Apr 2024 

1 beijingzyb@qq.com, Tongji University, Key Laboratory of Road and Traffic Engineering of the 

Ministry of Education 
2 Corresponding author, michael_cheng1989@126.com, Tongji University, Key Laboratory of Road 

and Traffic Engineering of the Ministry of Education 
3 21155818@qq.com, Hebei Province Expressway Jingxiong Management Centre 
4 1028886841@qq.com, Hebei Province Expressway Jingxiong Management Centre 
5 517868920@qq.com, Hebei Province Expressway Jingxiong Management Centre 
6 591274158@qq.com, Jiaoke Transport Consultants LTD 

 
This work is licenced 

under a Creative  
Commons Attribution 4.0 
International Licence. 

Publisher: 

Faculty of Transport 

and Traffic Sciences, 
University of Zagreb 

ABSTRACT 

Vehicle turn-in rate is a critical and widely adopted input for expressway rest area design and 

operation. With the implementation of expressway ETC gantries, the ERA turn-in rate can 

be further estimated by measuring the travel speed distribution via ETC gantry data. This 

paper proposed an adaptive density peak clustering Gaussian mixture model (ADPC-GMM) 

for ERA turn-in rate estimation. The ADPC algorithm is applied to generate the GMM’s 

inputs accommodating to the traffic characteristic of ERA expressway segments and GMM 

would further provide the turn-in rate estimation results. To validate the model precision, the 

turn-in rate data of four selected ERAs in Sichuan, China, as well as the ETC gantry data of 

their corresponding expressway sections are obtained. According to the estimation results, 

the MAE and RMSE are 0.0228 and 0.0267 for the passenger car scenario and 0.0264 and 

0.0356 for the commercial truck scenario, respectively. These results are also at the lowest 

level compared with the results acquired from ordinary GMM, K-Means and DBSCAN 

algorithms. The proposed method has good applicability for vehicle turn-in rate estimation 

and can be deployed at different ERAs, especially those ERAs without traffic monitoring. 

KEYWORDS 

expressway rest area;  turn-in rate;  ETC gantry;  adaptive density peak clustering; Gaussian 

mixture model. 

1. INTRODUCTION 

An expressway rest area (ERA) is a specially constructed place deployed along the expressway to provide 

rest and recreational spaces, as well as travel-related services for travellers [1]. It performs a critical role in 

easing travel fatigue, increasing expressway travel quality, and at the same time creating service-related 

incomes for its operation and maintenance [2]. To meet travellers’ parking and service requirements and in 

avoidance of overinvestment, the information on ERA travel volumes, or the percentage of expressway travel 

volume entering ERA, commonly known as turn-in rate, is basic and critical in both the ERA design and 

operation process [3]. 

Generally, ERA’s vehicle volume can be obtained via manual or automatic vehicle counting techniques. 

When adopting the turn-in rate for ERA design and analysis, the traffic volume of the expressway section is 

further needed and can be easily collected via roadside surveillance facilities. Al Kaisy et al. investigated the 

entering traffic volumes, characteristics and trends at rest areas in the state of Montana, and found that a 

majority of the ERA turn-in rates were distributed between 8.4 to 12.3% [2, 4]. Kay et al. studied the factors 

that impact the ERA travel preference via regression models by investigating the passenger car and commercial 
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truck turn-in rate of 47 ERA in Michigan, USA [5]. Griffin and Yan conducted a six-month study on ERAs in 

Louisiana and found that the mainline vehicle turn-in rate within the state ranges from 2% to 20% [6]. 

Similarly, Shen et al. collected the ERA’s travel characteristics at Henan, China and proposed prediction 

models for measuring ERA’s turn-in rate [7, 8]. Sun et al. proposed an ERA travel demand prediction model 

via XGBoost and an improved particle swarm optimisation model with over 3 months of observation data [9]. 

Zhao et al. proposed an ERA short-term traffic flow prediction model via a seasonal-trend decomposition 

procedure based on LOESS and with an optimal model selection process [10]. The proposed model provides 

further demand information for ERA operation. Although the vehicle counting method has been widely 

adopted worldwide, it is facilitated with additional surveillance facilities or manpower and leads to the increase 

of ERA operation costs. 

Recently, with the implementation of roadside surveillance techniques, especially the expressway ETC 

gantry, enormous travel data, including vehicle plate numbers, vehicle types, temporal-spatial location, etc. 

can be captured with high precision [11, 12]. Extensive studies have been proposed on measuring travel 

patterns via ETC gantry data and some of the research attempted to adopt it into ERA turn-in rates estimation. 

Liao et al. implemented the XGBoost method for turn-in rate prediction considering temporal traffic volume 

and traffic composition features. The RMSE and MAE achieved 0.033 and 0.026 [13]. Cai et al. proposed an 

ERA access vehicle recognition method by considering the vehicle travel speed of three consecutive road 

sections, and spatiotemporal and traffic condition features [14]. Although the precisions of these two turn-in 

rate estimation methods are high, the traffic data of the upstream and downstream sections need to be further 

collected. Moreover, the current models assume that the number of upstream and downstream sections is 

unique and would not be accommodated to the conditions with the upstream merging or downstream diversion 

sections. Therefore, the proposed models are only applicable to ERAs with favourable data collection 

conditions. 

Since the turn-in vehicles would stay at ERA for some time, their travel speed would have an obvious 

decrease compared to the through vehicles, leading to a multi-peak travel speed distribution pattern at the 

expressway section where ERA was built. The distribution information can be further implemented for ERA 

turn-in rate estimation. Currently, clustering methods including k-means [15], DBSCAN [16] and Gaussian 

mixture model (GMM) [17] have been widely adopted for measuring travel characteristics. However, the pre-

set parameters of these methods are hard to determine due to the varying features of section length, speed limit 

and number of vehicle clusters at ERA’s road section. These differences cause difficulty for ERA turn-in rate 

estimation applications on a large scale. To fill in this gap, this paper proposes a modified GMM model for 

estimating ERA turn-in rates by adopting an adaptive density peak clustering algorithm (ADPC). The ADPC 

would be able to adjust the preset parameters for GMM adaptively, thus increasing its generalisation capability 

for ERA turn-in rate estimation. 

The remainder of this paper is organised as follows. Section 2 presents the framework for ERA turn-

in rate estimation. Section 3 introduces the details of the proposed methodology, especially the process of 

the ADPC-GMM algorithm. A case study with four different ERAs is adopted to verify model precision 

and is proposed in Section 4. Finally, the conclusion, limitations and future research directions are further 

discussed in Section 5. 

2. ERA TURN-IN RATE ESTIMATION FRAMEWORK 

The ERA turn-in rate estimation framework via ETC gantry data is presented in Figure 1 with three major 

steps: data collection, data processing and ERA turn-in rate estimation. In the data collection step, the data 

from the upstream and downstream ETC gantry of the ERA’s expressway section would be collected with 

vehicle information and ETC gantry mileage information. With the ETC gantry data, the vehicle travel time 

and travel speed at the ERA’s road section are estimated according to the unique vehicle plate number. After 

outlier elimination, the travel speed data would be implemented in the ERA turn-in estimation process. In the 

final step, the ADPC algorithm would be first adopted to achieve the optimal number of clusters and the initial 

input for the GMM. The final clustering results would be generated from the GMM model. According to the 

mean travel speed threshold for selecting ERA turn-in vehicles, the ERA turn-in vehicle cluster would be 

finally identified and the turn-in rate can be calculated. 



Promet – Traffic&Transportation. 2024;36(5): 946-957.  Traffic Engineering  

948 

 
Figure 1 – The framework for ERA turn-in rate estimation via ETC gantry data 

3. METHODOLOGY 

3.1 Data collection  

ETC gantries are the roadside facilities deployed to support section-based expressway tolling. It integrates 

a variety of sensing techniques including radio frequency identification, license plate recognition and vehicle 

type identification. Therefore, both the information on vehicles with ETC on-board units and vehicles using 

manual passing cards can be captured. To measure the ERA’s vehicle turn-in rate, the ETC gantry data 

containing vehicle plate number, vehicle type, gantry mileage, road ID, transaction time, etc. at both the 

upstream and downstream ETC gantry closest to ERA should be collected. We have to mention that some of 

the ETC gantries may be deployed before the upstream merging area or after the downstream diversion area 

of the expressway section with ERA. For these special but common scenarios, the closest ETC gantries at each 

expressway prior to the merging area or constructed later than the diversion area are needed for analysis. A 

proper sample of the ETC gantry data is presented in Table 1. 
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Table 1 – A data sample of the ETC gantry 

Attribute Data sample 

Vehicle plate number 川 A***R9 

Vehicle plate colour Blue 

Vehicle type Passenger car 

Gantry mileage K42+063 

Road ID G5 

Transaction time 2022/8/7  0:11:55 

Special information None 

3.2 Data processing 

Vehicle travel speed calculation 

To calculate the section travel speed of passing vehicles, the data from the upstream ETC gantry would be 

first extracted according to the transaction time and would be matched to the specific data with the same vehicle 

plate number, colour and with the later but closest transaction time generated from the downstream ETC 

gantry. The time difference between the matched two pieces of data would be the travel time of the specific 

vehicle plate number: 

𝑡𝑖 = 𝑡𝑖,𝑗 − 𝑡𝑖,𝑗−1 (1) 

where ti is the travel time of the ith vehicle at the expressway section with ERA. ti,j is the transaction time 

of ith vehicle at the jth ETC gantry. 

With vehicle section travel time and the mileage information of the upstream and downstream ETC gantry, 

the travel speed can be calculated via Equation 2, where Mj is the mileage of the jth ETC gantry. 

𝑣𝑖 =
|𝑀𝑗 −𝑀𝑗−1|

𝑡𝑖,𝑗 − 𝑡𝑖,𝑗−1
 (2) 

Outliers identification 

Due to the existence of equipment failure, wireless signal interference, misrecognition and other issues, 

duplication, anomality and data missing may occur during the travel transaction process. The calculated vehicle 

travel speed would be further inspected for further estimation. The data inspection rules are designed as 

follows: 

1) To avoid data duplication, for each vehicle passing the expressway section with ERA, the difference in 

transaction time at ERA’s upstream ETC gantry should be greater than 15 minutes. Otherwise, the travel 

speed data with the latter transaction time should be removed from the dataset. 

2) To avoid data anomality, the travel speed outliers would be identified via the Z-score method [18]. The data 

with travel speeds ranging from 𝑣 − 3𝜎𝑣 to 𝑣 + 3𝜎𝑣 would be reserved, where  𝑣 is the average travel speed 

of the selected expressway section and 𝜎𝑣  is the travel speed standard deviation. 

3.3 ERA turn-in rate estimation 

Gaussian mixture model 

The GMM is able to separate the data that come from several groups by calibrating each group’s distribution 

parameter and data proportion via the Gaussian distribution model. Due to its model stability, it has been 

widely adopted in studies related to travel time or travel speed pattern analysis [19, 20]. In this study, the travel 

speed distribution of an expressway section with ERA can be calibrated via the following function: 

𝑃(𝑥) =∑𝛼𝑘𝑁(𝑥|𝜇𝑘 , 𝜎𝑘)

𝑘

 (3) 

0 ≤ 𝛼𝑘 ≤ 1 (4) 
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∑𝛼𝑘
𝑘

= 1 (5) 

𝑁(𝑥|𝜇𝑘 , 𝜎𝑘) =
1

√2𝜋𝜎𝑘
2

𝑒𝑥𝑝 (−
(𝑥 − 𝜇𝑘)

2

2𝜎𝑘
2 ) 

(6) 

where 𝑃(𝑥) is the probability of vehicle with travel speed equaling to x. 𝛼𝑘 is the proportion of kth group 

vehicle. 𝑁(𝑥|𝜇𝑘 , 𝜎𝑘) is the travel speed Gaussian distribution function of the kth group vehicle with mean 

travel speed and its standard deviation equaling to 𝜇𝑘 and 𝜎𝑘, respectively. 

The optimal calibration results of 𝛼𝑘, 𝜇𝑘, and 𝜎𝑘 would be achieved once the log-likelihood function of 

Equation 3 reaches to the maximum, as shown in Equation 7 and the results can be acquired via the expectation-

maximisation algorithm with pre-set number of clusters K and the initial value of 𝛼𝑘, 𝜇𝑘, and 𝜎𝑘 according to 

Dempster et al. [21] 

𝐿𝐿(𝜇𝑘 , 𝜎𝑘 , 𝛼𝑘) =∑𝑙𝑜𝑔 (∑𝛼𝑘𝑃𝑘(𝑥|𝜇𝑘 , 𝜎𝑘)

𝑘

)

𝑥

 (7) 

Adaptive density peak clustering algorithm 

Although the GMM can be directly implemented for vehicle clustering, the model precision and efficiency 

are sensitive to the initial inputs of the parameters. The number of pre-determined parameters is also related to 

the input of the number of groups, which indicated that the input data structure would not be stable when 

implemented in ERA’s expressway section with different travel speed distribution features [22].To reduce the 

number of preset parameters and improve GMM’s model universality for ERA turn-in rate estimation, the 

adaptive density peak clustering algorithm is adopted to determine the optimal number of vehicle groups and 

estimate the initial value of 𝛼𝑘, 𝜇𝑘, and 𝜎𝑘. 

The initial density peak clustering (DPC) method was proposed by Rodriguez and Laio [23]. The method 

assumes that the clustering centre of each group is surrounded by data and the region closer to the clustering 

centre is with higher sample density. At the same time, the centre of each group is located relatively far from 

other group centres. To capture the features, Rodriguez and Laio defined two key indicators, namely local 

density 𝜌𝑖 and minimum distance to another point with higher density 𝛿𝑖, and for a specific sample xi, 𝜌𝑖 and 

𝛿𝑖 can be estimated via Equation 8–11, where dc is the preset cutoff distance. The clustering centre would be 

selected according to the product of 𝜌𝑖 and 𝛿𝑖in descending order. Once a clustering centre is selected, the 

samples within the range of dc from the clustering centre will be extracted. The clustering centre selection 

process would continue for the rest of the samples once all the samples are stamped with a cluster. The initial 

𝛼𝑘, 𝜇𝑘, and 𝜎𝑘 for GMM can be calculated according to the grouping results from the density peak clustering 

algorithm. 

𝜌𝑖 =∑𝑓(𝑑𝑖𝑗 − 𝑑𝑐)

𝑖≠𝑗

 (8) 

𝑑𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖ (9) 

𝑓(𝑥) = {
1, 𝑥 < 0
0, 𝑥 ≥ 0

 (10) 

𝛿𝑖 = {
𝑚𝑎𝑥(𝑑𝑖𝑗), ∀𝜌𝑖 > 𝜌𝑗

𝑚𝑖𝑛(𝑑𝑖𝑗) , ∀𝜌𝑗 > 𝜌𝑖
 (11) 

Compared with the ordinary GMM, the DPC algorithm uses cutoff distance dc for vehicle clustering instead 

of a number of vehicle groups and each group’s travel speed distribution parameters, which improves 

clustering simplicity [24]. We further adopted the information entropy to determine the optimal dc. The optimal 

dc would achieve the minimum entropy of the clustering result [25]. Since the centre of a cluster would with 

both greater 𝜌𝑖 and 𝛿𝑖, we define the information of sample i being a cluster centre as the product of 𝜌𝑖 and 
i . 

The optimal dc would achieve minimum information entropy as shown in Equation 12. By iterating dc 

automatically and selecting the result with minimum entropy, the DPC method would be adaptive to various 

data features. 
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𝑑𝑐 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛 (−∑𝜌𝑖𝛿𝑖 𝑙𝑛(𝜌𝑖𝛿𝑖)

𝑖

) (12) 

By implementing the APDC method, the travel speed data would be automatically classified into different 

groups and the vehicle proportion, mean travel speed and travel speed variance of each group (𝛼𝑘, 𝜇𝑘 and 𝜎𝑘) 

would be set as the initial value of GMM inputs for further clustering. 

Turn-in vehicle cluster identification 

Although the proposed ADPC-GMM is capable of figuring out vehicle clusters via travel speed 

distribution of expressway section with ERA, the threshold for determining the specific vehicle cluster as 

an ERA turn-in vehicle is still needed. In this paper, the average travel speed of passenger car and 

commercial truck clusters for accessing ERA are set to be less than 80% and 70% of the speed limit, 

respectively, and the proportion summation of clusters of specific vehicle types following the determined 

rule is regarded as the ERA turn-in rate. 

Meanwhile, as for expressways, freight vehicle volume is relatively low, and thus it may be difficult 

for the ADPC-GMM model to split the freight travel speed data into multiple clusters, due to the sample 

number limitation. For this scenario, the travel speed data are sorted and for the two consecutive samples 

with maximum speed difference, the average speed of the two samples is taken as the threshold, and the 

samples with travel speed lower than the threshold are regarded as ERA turn-in vehicles.  

For the ERA’s expressway section with multiple upstream or downstream ETC gantries, the ERA turn -

in rate would be the weighted proportion of selected clusters estimated from travel speed data of different 

ETC gantry pairs: 

 

𝑅 =
∑ 𝑄𝑝𝑝𝑡,𝑝𝑝

∑ 𝑄𝑝𝑝
 (13) 

where R is the ERA turn-in rate, Qp is the vehicle volume estimated from the pth ETC gantry pair and the 

pt,p is the proportion of the vehicle cluster identified as ERA turn-in vehicle group of the pth ETC gantry pair. 

3.4 Model validation 

To validate the effectiveness of the proposed RF model, mean absolute error (MAE) and root mean square 

error (RMSE) are adopted. The calculation procedures are presented in Equation 14 and Equation 15, where n is 

the number of ERA turn-in rate samples, 𝑅𝑖 and 𝑅𝑖
′  are the ERA turn-in rate via video surveillance and 

estimated turn-in rate via ETC gantry data, respectively. 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑅𝑖 − 𝑅𝑖

′)2𝑛
𝑖=1

𝑛
 

(14) 

𝑀𝐴𝐸 =
1

𝑛
⋅∑|𝑅𝑖 − 𝑅𝑖

′|

𝑛

𝑖=1

 (15) 

4. CASE STUDY AND RESULT ANALYSIS 

4.1 Case information 

To test the accuracy of the proposed ADPC-GMM ERA turn-in rate estimation method, four different rest 

areas, namely, G5 upstream Xichang ERA, G93 upstream Pujiang ERA, S1 upstream Anzhou ERA and G75 

upstream Nanbu ERA at Sichuan Province, China, are selected for model validation. The video surveillance 

data of the four ERAs access ramp on 7 August 2022, as well as the upstream and downstream ETC gantries 

data at the expressway section with ERAs, were collected from the Sichuan Highway Management Centre. 

The location of ERAs and their upstream and downstream ETC gantries, as well as the expressway section 

speed limits, are shown in Figure 2. 
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(a) 

 
(b) 

 
(c)  

(d) 

Figure 2 – The location information of selected ERAs and the upstream and ETC gantries: a) G5 upstream Xichang ERA; 

b) G93 upstream Pujiang ERA; c) S1 upstream Anzhou ERA; d) G75 upstream Nanbu ERA 

The number of ERAs’ turn-in passenger cars and trucks each hour from 8:00 to 16:00 are manually counted 

from surveillance video and the turn-in rate would be calculated using the hourly road section passing volume 

calculated from ETC gantries data. The hourly travel volumes of each ERA’s section are presented in Table 2. 

At the same time, the ADPC-GMM model is implemented to estimate turn-in rates using hourly vehicle travel 

speed acquired from ETC gantry data. The cutoff distances dc are set to be ranged from 20 to 50 and the 

iteration interval is determined as 5 for model usage. The threshold for the expectation-maximisation algorithm 

for GMM result generation is set as 10-5. 

Table 2 – Traffic volume of the selected ERAs 

Time 

Hourly travel volume (vehicle per hour) 

G5 upstream  

Xichang ERA 

G93 upstream  

Pujiang ERA 

S1 upstream  

Anzhou ERA 

G75 upstream  

Nanbu ERA 

Passenger  

car 
Truck  

Passenger 

car 
Truck 

Passenger 

car  
Truck 

Passenger 

car 
Truck 

8:00-9:00 213 125 588 59 238 126 375 46 

9:00-10:00 292 126 1012 55 394 96 442 56 

10:00-11:00 354 101 1145 79 468 143 497 70 

11:00-12:00 500 94 1151 84 423 140 399 76 

12:00-13:00 524 88 851 70 317 153 292 60 

13:00-14:00 640 65 670 66 389 138 385 51 

14:00-15:00 798 102 706 65 438 110 536 66 

15:00-16:00 785 98 669 58 466 136 507 49 

16:00-17:00 794 96 602 66 482 105 428 60 
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4.2 Turn-in rate result and analysis  

To validate the clustering capability of the ADPC-GMM model, the vehicle clustering results of both passenger 

cars and commercial trucks of the selected ERAs at 10:00 on 7 August 2022, are presented in Figure 3 and Figure 4. 

It can be clearly shown that the optimal number of vehicle clusters, as well as the turn-in vehicle cluster, can be 

automatically identified. The separated clusters’ distributions are also able to describe the whole distribution of the 

travel speed sample of the expressway section with ERA, especially for the passenger cars estimation results. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3 – The vehicle cluster results of passenger cars at selected ERAs: a) the passenger car clusters at G5 upstream Xichang 

ERA; b) the passenger car clusters at G5 upstream Pujiang ERA; c) the passenger car clusters at S1 upstream Anzhou ERA; 

d) the passenger car clusters at G75 upstream Nanbu ERA 

The turn-in trucks can be extracted from the ADPC-GMM algorithm via travel time acquired from the ETC 

gantry data of the ERA expressway section according to Figure 4. However, since the truck volumes at each 

ERA expressway section are relatively small, the misclassified truck would have a higher influence on turn-in 

rate estimation accuracy. The model error may be higher than the passenger car estimation results. 

 
(a)  

 
(b) 

 
(c) 

 
(d) 

Figure 4 – The vehicle cluster results of trucks at selected ERAs: a) the truck clusters at G5 upstream Xichang ERA; 

b) the truck clusters at G5 upstream Pujiang ERA; c) the truck clusters at S1 upstream Anzhou ERA; 

d) the truck clusters at G75 upstream Nanbu ERA 
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The estimated passenger car and commercial truck turn-in rates of selected ERAs are presented in Figure 5. 

The MAE of the passenger car and commercial truck turn-in rates are 0.0228 and 0.0264, respectively, which 

indicates the accuracy of the proposed ADPC-GMM model. It can also be seen that the scatters of the actual 

turn-in rates and the estimated turn-in rate of all the selected ERAs are distributed near the contour line in 

Figure 5. However, the ADPC-GMM model tends to underestimate the turn-in rates since most of the estimated 

results are less than the actual values, which is especially obvious in the case of passenger car estimation. This 

may be due to the fact that the proposed method only uses the vehicle travel speed of the ERA’s expressway 

segment and lacks information on speed variation patterns of consecutive sections. Therefore it failed to deal 

with the vehicles with high travel speeds at the upstream and downstream sections, and with relatively short 

parking duration at ERA on the analysed section, which caused the underestimation. In terms of the dispersion 

of estimation results, the variability of passenger car turn-in rates is much lower, with an RMSE of 0.0267, 

while the estimations of commercial truck turn-in rates are more discrete, with an RMSE of 0.0356. 

 

(a)  

 

(b) 

Figure 5 – The turn-in rate estimation results via ADPC-GMM model: a) estimated passenger car turn-in rate via 

ADPC-GMM model; b) estimated commercial truck turn-in rate via ADPC-GMM model 

To further validate the accuracy of the proposed model, three different cluster algorithms, namely 

GMM, k-means and DBSCAN, are also employed for ERA turn-in rate estimation. The number of clusters 

is defined as two for these algorithms. The input average travel speeds for the two separated clusters in 

GMM are 50 km/h and 80 km/h with sample percentage and standard deviation equaling 0.5 and 15 km/h, 

respectively. In the DBSCAN algorithm, the epsilon is set as 5 km. The model comparison results of 

passenger car and commercial truck turn-in rates, as well as the calculated MAE and RMSE, are presented 

in Figure 6 and Table 3, respectively. 

 

(a) 

 

(b)  

Figure 6 – Turn-in rate model comparison: a) passenger car turn-in rate estimation comparison;  

b) commercial truck turn-in rate estimation comparison 

With the implementation of the ADPC algorithm and the proposed ERA turn-in rate criteria for small 

sample scenarios, the turn-in rate estimation results have achieved high improvement compared with the 
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ordinary GMM. The model results have the lowest MAE and RMSE in both passenger car and commercial 

truck conditions and over 50% accuracy increase compared with GMM. The proposed method also figures 

out the problem of GMM estimation with small data samples. Along with the ADPC-GMM model, the k-

means method also acquires relatively accurate estimation in a majority of cases, however, this method 

has its shortage in achieving reasonable estimation under specific travel speed datasets. As  for the 

DBSCAN algorithm, the distribution of the estimation errors is highly dispersed and is not reasonable for 

turn-in rate estimation. 

Table 3 – Model comparison result analysis 

 
Passenger cars Commercial trucks 

MAE RMSE MAE RMSE 

ADPC-GMM 0.0228 0.0267 0.0264 0.0356 

GMM 0.0337 0.0400 0.0744 0.1005 

K-means 0.0419 0.1033 0.0379 0.0672 

DBSCAN 0.0400 0.0643 0.1016 0.1193 

5. CONCLUSION AND FUTURE RESEARCH  

ERAs are the necessary places deployed along expressways for easing travellers’ travel fatigue and 

increasing expressway travel quality. To design and operate ERAs to satisfy travel demand and avoid 

overinvestment, the ERA turn-in rate is the basic and critical input for ERA design and operation. Currently, 

the ERA’s turn-in rates can be calculated by obtaining turn-in demand and expressway travel volume with 

manual or automatic vehicle counting techniques. Recently, with the implementation of expressway ETC 

gantries, enormous travel data can be captured with high precision and can be further implemented for ERA 

turn-in rate estimation, especially for those ERA uncovered with video surveillance. 

For those vehicles that drive into ERAs, their travel speed at the expressway section with ERA would be 

lower than the through vehicles. Therefore the ERA turn-in rate estimation problem can be regarded as a data 

clustering problem. Although the ordinary clustering algorithm, such as GMM or k-means, can be directly 

implemented for turn-in rate estimation, the pre-set parameters of these methods cannot be decided adaptive 

to the various features of vehicle travel time distribution at ERA’s road sections. In this paper, an ADPC-GMM 

method is proposed for turn-in rate estimation adaptively via the ETC gantry data. The ADPC algorithm is 

implemented to obtain the initial inputs for GMM, which improves GMM’s generalisation capability for 

various vehicle travel speed distribution patterns of ERA’s expressway segments. To validate the model’s 

accuracy, four different ERA’s turn-in rates are obtained and the turn-in rates are estimated by ADPC-GMM 

and other three ordinary clustering methods with the usage of ETC gantry data. Among the tested four methods, 

the proposed method achieved the minimum MAE and RMSE in both passenger car and commercial truck 

scenarios which indicated its model precision. 

Similar to other studies, this research has its limitations. Due to the difficulty in obtaining both video 

surveillance data and ETC gantry data with a longer time span, the number of samples for model validation is 

relatively small. The proposed method would need further validation in the future. The proposed model only 

considers the travel speed distribution of the ERA’s expressway segment and fails to capture the speed-varying 

pattern among consecutive segments. The model accuracy would be further improved once the vehicle travel 

speed at both prior and latter sections are obtained. Moreover, other innovative algorithms providing turn-in 

rate estimations with accuracy and efficiency would offer great help in ERA design and operations and would 

be the direction for further research. 
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郑育彬，成诚（通讯作者），张勇，王凌一，李奇轩，张海林 

基于 ETC 门架数据的服务区驶入率估计：一种 ADPC-GMM 方法 

摘要 

车辆驶入率是高速公路服务区设计和运营中广泛应用的关键输入。随着高速公路

ETC 门架的应用，服务区驶入率可以进一步通过 ETC 门架数据进行估计。本文提出

了一种自适应密度峰值聚类高斯混合模型（ADPC-GMM）用于估算高速公路服务区

驶入率，其中，ADPC算法用于估计高速公路服务区所在路段的特征参数，特征参数

作为 GMM模型的输入参数进行驶入率估计。为验证模型精确性，论文获取了中国四

川四条高速公路服务区的驶入率数据及 ETC 门架数据。验证结果显示，乘用车驶入

率估计结果的MAE和RMSE分别为 0.0228和 0.0267，货运车辆驶入率估计结果MAE

和 RMSE 分别为 0.0264 和 0.0356。与传统 GMM、K-Means 和 DBSCAN 算法相比，

模型估计误差最小，表明所提出的方法在估算服务区驶入率方面具有良好的适用性。

论文提出的方法具备普适性，对于未布设有服务区驶入车辆监控的服务区将有更大

帮助。 
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