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@ ABSTRACT
T This paper focuses on the online energy-saving operation control problem for passenger and

This work is licensed freight trains running in a single-track railway line. Firstly, we design a centralised
under a Creative optimisation method to generate energy-saving reference profiles for both passenger and
Commons Attribution 4.0 freight trains, in order to improve the punctuality of passenger trains and to reduce the total
International License. running time of freight trains in a central way. Secondly, we propose the distributed model
Publisher: predictive control (DMPC) based online trajectory optimisation problems for both types of
Faculty of Transport trains, subject to their respective operational constraints including safety, punctuality, static
and Traffic Sciences, speed limits and temporary speed restrictions. Then we formulate an online train operation

University of Zagreb control algorithm based on the centralised optimisation method for the initialisation of train

trajectories and the DMPC method for the online trajectory planning. Finally, the proposed
algorithm is applied to case studies of passenger and freight trains in a single track railway,
and the numerical simulation results show that the proposed algorithm can realise online
control for energy-saving train operation in the presence of input disturbances and temporary
speed restrictions.

KEYWORDS
optimal train control; energy-saving operation; distributed model predictive control;
passenger and freight mixed lines.

1. INTRODUCTION

Rail transportation is becoming increasingly important in public transportation systems due to its colossal
transportation capacity, passenger comfort, punctuality and energy efficiency. The Automatic Train Operation
(ATO) system, which represents a key component of train control systems, enables automatic control and
regulation of train operation. This not only alleviates the labour burden on drivers but also decreases
operational energy consumption, ultimately ensuring operation safety and reliability [1]. In recent decades,
significant efforts have been made to come up with advanced ATO control algorithms for achieving accurate,
fast and stable tracking control in response to the enlarging railway networks and increasing train speeds.

The ATO system computes a speed profile for the upcoming journey prior to the train’s departure from the
station. This profile is the reference signal for the ATO system and sets the target position and speed at a given
time. It is crucial for ensuring punctuality and energy efficiency during automatic train operation. The
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generation of the recommended speed profile is usually modelled as an optimisation problem, and the
optimisation problem can be solved by a variety of methods, which can be roughly classified into two groups:
direct and indirect methods. Indirect methods, including Pontryagin’s Maximum Principle [2], have been
widely used for train optimal control problems. Using Pontryagin’s Maximum Principle, Ichikawa [3] derived
optimal regimes for energy-efficient train driving on level tracks. Subsequent studies applied this principle to
generate optimal train driving strategies with considering varying slopes, speed limits and force constraints
[4-5].

One of the main challenges of these indirect methods mentioned above is the complexity involved in
deriving switching conditions for the optimal regimes. In contrast, the direct method works by transforming
the original optimal train control problem into constrained mathematical programming problems. In recent
years, the pseudospectral method, a type of direct method, has gained popularity in solving train optimal
control problems. This is largely due to its faster convergence speed and better computational accuracy [6—
10]. Wang and Goverde [6] proposed a novel approach for optimising multi-train trajectories on single-track
lines, where the multi-train trajectory optimisation is formulated as a multiple-phase optimal control problem
and solved by a pseudospectral method. Wang and Goverde [7] studied the train trajectory optimisation
problem with consideration of general operational constraints as well as signalling constraints, in which the
train trajectory optimisation problem is also formulated as a multiple-phase optimal control model and solved
by a pseudospectral method. Su [8] focused on the development of an automatic train driving strategy by
utilising the pseudospectral method, aiming to minimise traction energy consumption for single train
operations. Ye and Liu [9] considered a combined train control and scheduling problem involving multiple
trains, and they successfully solved this problem by using the Matlab software package GPOPS Version 5.1,
which is based on the Radau pseudospectral method. Li et al. [10] introduced a model for optimising the
vertical alignment of lines with the objective of minimising both energy consumption and running time
deviation, in which an exact solution approach, known as the Gaussian Pseudospectral Method, is utilised.

However, most of these literatures mentioned above are limited to offline computation of the train’s
reference trajectory, relying on fixed operational parameters such as train resistance coefficients and static
speed limits. If the ATO system of a certain train still follows the offline-determined reference profile in the
presence of input disturbances or Temporary Speed Restriction (TSR), it may cause unnecessary energy
consumption or even lead to disorder of the whole line. Therefore, it is crucial to investigate online control
strategies for energy-efficient train operation, which has attracted increasing attention. Zhao et al. [11]
proposed a hybrid approach for determining priority weights of emergency alternatives, using the Weighted
Ordered Weighted Averaging operator to aggregate preference matrices based on the emergency response task
model. Yan et al. [12] introduced a moving horizon optimisation scheme to dynamically determine the
reference speed profile for trains under changeable situations. This method employs the immune differential
evolution algorithm in each moving horizon to achieve optimal results. Then Yan et al. [13] extended this
approach to handle cooperative trajectory planning for multiple trains using the ant colony optimisation
algorithm. However, it is important to acknowledge that intelligent or heuristic algorithms cannot always
confirm the optimal and converging solutions [14-15], leading to the implementation difficulty in real-time
scenarios. For comprehensive reviews on train online control, we refer to [16-20].

Moreover, to support regional economic growth and enhance the competitiveness of railways in freight
transportation, some railways are actively pursuing a passenger-freight mixed operation mode, in which both
passenger and freight trains coexist and operate in a common line. Obviously, passenger and freight trains have
significant differences in operation demands and constraints, bringing challenges to traffic regulation and
management. However, the existing work on optimal train control problem for passenger-freight mixed lines
is still limited. Liu and Dessouky [21] studied the joint problem of scheduling passenger and freight trains for
complex railway networks and presented a novel heuristic optimisation algorithm. According to the author’s
most recent knowledge, the online control for energy-efficient train operation in passenger-freight mixed lines
with considering operational disturbances or TSR is still open.

Inspired by the aforementioned discussions, this paper proposes an online control algorithm based on
distributed model predictive control (DMPC) for energy-saving train operation in passenger-freight mixed
lines with taking into account input disturbances or TSR. Firstly, we propose a centralised optimisation method
to generate reference trajectories for multiple passenger and freight trains in a single-track railway line, which
is executed before all the trains depart from their initial stations. Next, we construct the DMPC based online
trajectory optimisation problems for both types of trains, subject to their respective operational constraints
including safety, punctuality, static speed limits and temporary speed restrictions. Then we formulate an online
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train control algorithm by applying the centralised optimisation method at initialisation and solving the DMPC
based optimisation problems at each time step during operation. Finally, we present numerical simulation
examples to validate the efficiency of our proposed algorithm, in which the optimisation problems are solved
by using GPOPS-I1I [22-23] based on the pseudospectral method.

The remaining part of this paper is outlined as described below. Section Il introduces the energy-saving
operation control problem for passenger and freight trains running in a single-track railway line. An online
train operation control algorithm is proposed in Section 11, including a centralised optimisation method for
the initialisation of train trajectories and a receding horizon optimisation method based on the DMPC. Section
IV illustrates the efficiency of our proposed algorithm through numerical case studies. Section V concludes
the paper.

2. PROBLEM FORMULATION

2.1 Single-track railway with passenger and freight trains

We study the energy-efficient train control problem for both types of passenger and freight trains running
in a single-track railway. As shown in Figure 1, consider a single-track railway line that features intermediate
stations with multiple tracks, allowing trains to meet and overtake each other. The total number of stations is
M. Let z,,,m = 1,2, ..., M denote the position of station m. Trains operate from the starting point z; to the
endpoint z,,. Passenger trains stop at every station while freight trains are not required to stop at intermediate
stations. Let Q; = @, U Qf, Where Q; represents the collection of trains, @, represents the collection of
passenger trains and Qf represents the collection of freight trains.

Direction of train operation ~ —

1 2 e m m+1 e M
[N/ NN [N
Z, ng Zy,

Figure 1 — lllustration of a single-track railway with M stations, in which z,, denotes the position of the m™" station
withm=1,2,..,.M

2.2 Basic train dynamic model

For the operation of train i € Q;, the dynamic model with position s as the independent variable can be
written as follows:

(dvi(s) _uin(s) + upp(s) — R (v) — RI™(s)

! ds m;v(s) @
dti (S) _ 1
l ds v;(s)

where v;(s) isthe velocity of train i at position s, t;(s) isthe time of train i at position s, m; is the mass
of train i, u;;(s) and u;,(s) are the traction and braking forces of train i respectively. The maximum
traction and braking forces of freight trains are greater than those of passenger trains, and they have different
traction characteristic curves. Rf”“'”(vl-) is the fundamental resistance resulting from both mechanical and
aerodynamic friction, typically represented by the Davis equation:

O]

Ritram'(vi) = a; + bivi + Civiz

where a;, b;, c; are positive coefficients that depend on the particular train. Furthermore, R!™(s) is the linear
resistance arising from the track slope:
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®)

Rfi"e(s) =m;gsina(s) =~ myg tan a(s)
where a(s) represents the angle of inclination of the track at position s and g denotes the acceleration due
to gravity. The approximation in Equation 3 holds when a(s) is small.

Due to complex environmental factors, the train will inevitably be subject to external disturbance during

operation. In this paper, we take input disturbances into account, and then the train dynamic model (1) can be
reformulated as:

(dvi(s) ui(s) + up(s) + rand; — R (v;) — RF™(s)

! ds m;v;(s) 4)
dti (S) _ 1
l ds v;(s)

where rand; denotes a random number to represent the input disturbance of train i.

2.3 Train operation control objective

For passenger train i € Q,, the timetable indicates scheduled arrival and departure times at every station.
Each train departs from the starting point z; with speed 0 at a given time Ti‘fl, then runs along the track and
arrives at the endpoint z,, with speed 0 at a given time T,. Thus, we have:

ti(z) = Tit,ilrvi(zﬂ =0, (5)
ti(zy) = Ty vilzy) = 0

Moreover, to facilitate passenger boarding and alighting, the passenger train must adhere to the timetable
and stop at each intermediate station:

(6)
vi(zy) =0m=23,...M—1
i “ @
ti,m(zm) = Ti,m,m =23,..M—1
td(zm) = Tym=23,..,M —1 @

where t},,, (zy,) is actual arrival time of train i at station m, and tfm(zm) is actual departure time of train i
at station m. Moreover, T, and T{%, denote scheduled arrival and departure times of train ¢ at station m.

During train operation, it is essential to consider the constraints on traction and braking forces, velocity and
inter-train spacing:

0 < uy (s) < ulf*(vy) ©
—up™ (W) Sup(s) <0 (10)
0 < v;(5) < Vpax(s) (11)
ti(s) = ti—1(8) = Ty (12)

where u/1**(v;) and u3**(v;) are the maximum traction and braking forces respectively, V4. (s) is the
train speed limit at position s and T,,;,, denotes the minimum safe spacing for train operation.

The control objective for passenger trains is to enhance the punctuality and minimise traction energy
consumption, hence we define the following cost function for passenger train i:

M Zm
7= foi Lt =180+ [ w205} 4
m=2 Zm-1

where w;, > 0 is a weight coefficient utilised to strike a balance between the punctuality and energy
efficiency for passenger trains.
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For freight train i € Qf, it follows the same constrains as a passenger train at the initial and terminal
stations, while passing through the intermediate stations without requirement of stops. The freight train is
bound by the same operation constraints as the passenger train. Therefore, the freight train adheres to constrains
(5) and constrains (9)-(12).

The control objective for freight trains is to minimise total running time and traction energy consumption,
hence we define the following cost function for freight train i:

]if = fZZM [Wif % + uil(s)] ds (14)

where w;r > 0 is a weight coefficient utilised to strike a balance between the time-saving objective and
energy efficiency for freight trains.

Since the presence of input disturbances or TSR would bring propagating delays, simply tracking the
offline-determined reference profile may be infeasible or cause unnecessary energy consumption. Therefore,
this paper aims at solving the online control problem for passenger and freight trains running in a single-track
railway line, taking into account constraints (5)—(12) for passenger trains and constraint (5), (9)—(12) for freight
trains, with the goal of being energy-efficient, punctual and time-optimal (13)—(14).

3. DMPC BASED ONLINE TRAIN OPERATION CONTROL

We firstly consider the centralised optimisation problem to determine the optimal state trajectories and
arrival times for both passenger and freight trains, before they depart from the initial station. Then we construct
the DMPC based trajectory optimisation problems for both passenger and freight trains. Finally, we formulate
an online train operation control algorithm by applying the centralised optimisation method at initialisation
and solving the DMPC-based optimisation problems at each time step during operation.

3.1 Centralised optimisation of train trajectories

Centralised optimisation of train trajectories is to improve the punctuality of passenger trains, reduce the
total running time of freight trains and save the total operation energy consumption. The centralised
optimisation problem for all trains is written as follows:

min Z JP+ Z J! (15)
i€Qp i€Qr

subject to the dynamic constraints as Equation 1 for train i € Q;, the operation constraints for train i € Q;:

0 < u(s) ull™(vy), i € Q;
U () Sup(s) <0 (16)
0 < v;(s) < Vnax(s)
ti(s) = ti—1(8) = Trpin

the state constraints at all stations for train i € Q,:

tgm(zm) = Tl-fim,m =12,.,.M—1 ,i € Qp (17)
tf}m(zm) € [Tlc,lm - ta'Tii“m + ta];m = 2,3, ey M
vi(zm) =0m=12,...M
the state constraints at the initial and terminal stations for train i € Qf:
(18)

t&(z) € [Ty — ta, Ty + ta)

{ th(z) =T% ,i€Q;
vi(zy) =0m=1,M

where t, is the allowable deviation from the scheduled arrival time T;5,,m = 2,3, ..., M.
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By addressing the centralised optimisation problem, we can effectively determine the reference state
trajectories and control trajectories for all trains. We note that solving the centralised optimisation problem is
time-consuming, making it hard to execute in real-time. Hence the centralised optimisation will be applied
offline before all trains depart from the initial station. On the other hand, simply tracking the offline-determined
reference trajectories may be infeasible or cause unnecessary energy consumption in the presence of input
disturbances or TSR. Therefore, the next subsection centres on the online optimisation of the train control
strategy and arrival times with considering the presence of input disturbances and the temporary speed
restriction.

3.2 Distributed model predictive control for train trajectory optimisation

We presume that each train is independently organised and has the ability to compute and interact with
other trains. We employ the predecessor-following topology, as illustrated in Figure 2, to simulate the
communication among trains on a single-track railway that accommodates both passenger and freight trains.
In greater detail, train i can only acquire information from train i — 1, and train 1 does not receive
information from any other trains. Trains with blue windows denote passenger trains, while those with red
windows denote freight trains. In this subsection, we aim to design the control law u;; (s) and u;,(s) for each
train i utilising the DMPC approach.

Direction of information transmission - >
Direction of train operation ——»

Train i+1 T Train i T Train i-1

!‘ \: " .~\ -
(EED  AEED AN
‘J._—Ii— ‘ » - ! I - . !

Figure 2 — Predecessor-following communication topology among the trains

The model predictive control approach iteratively applies optimal control within a shifting time horizon
[24]. At every time step, the most recent system information is utilised to compute the optimal control input
by minimising a predefined cost function over a set prediction horizon.

The problem of energy-efficient control can be modelled as an optimisation problem that considers train
velocity and time as the state variables, and traction and braking forces as the control inputs. Let x;(s) =
[v;(s),t;(s)]T and w;(s) = [u;1(s), u;»(s)]”. Rewrite Equation 1 into the following compact form:

%i(s) = fi(xi(s), i () (19)

For passenger train i € Q,,, we address the optimal train control problem within the interval [s;, zy, ], where
s; denotes the present position of train i, and z,, denotes the position of the next station along the operation
direction from its current position s; (i.e. z,,_, <s; <zy,). The cost function pertaining to the energy-
efficient train control problem at current time step k, spanning the prediction horizon from s; to z,,, can be
stated as follows:

Jip = f _niuu(s)ds,i €0, (20)

The initial condition of the problem is [v;(s;), t;(s;)], which denotes the velocity and time of train i at
current position s;. At the end of the prediction horizon, the terminal states have to satisfy the following:

21
Vi (Zni) =0, ti (Zni) € [Ti‘,lni - ta'Ti[,lni + ta] ( )

In order to avoid conflicts, the safe constraint should be satisfied:
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t(s) = t? (8) = Trnin (22)

where tf_l(s) is the predicted time sequence calculated by train i — 1 at the previous time step k — 1, and

Tmin denotes the minimum safe spacing for train operation.
Temporary speed restrictions are a common occurrence during the train operation:

{ 0 < vi(s) S VEo(s) =VE(s), s €[syz] (23)
0< Ui(S) < Vrgax(s) = min{vsil(s)' Vtgr(s)}l s € [Sr: ST‘+1]

where v;gl (s) isthe static speed limitand V2 (s) isthe temporary speed limit for passenger trains. Therefore,
the maximum speed for passenger train VP .(s) is a piecewise-constant function relative to the position s.
Let s, and s,,., be the starting and ending positions of the area affected by the TSR. We further assume that
the ATO system receives the TSR information before the train enters this area, which is within the prediction
period.

The energy-efficient control problem for passenger trains at the current time step k, within the prediction
horizon from s; to Zp,, Can be formulated as follows:

minji,

%(s) = fi(xi(s),ui(s)), s € [sp,2y,)
vi(zn,) = 0,ti(2y,) € [T, = ta Tf, + ta]
0 < uy(s) <uff(v)
s.t. —ull* () < u;pR(s) <0 (24)
0 < v;(s) S Vhon(s) = Vo (), s € [s1,2n]
0 < v,(5) < Vpax(s) = min{V5 (), V5, ()}, s € [sy,5r44]

t;i(s) — tl.p_l(S) = Thin

For freight train i € Qf, we address the optimal train control problem within the interval [s;, zy]. The cost

function pertaining to the energy-efficient train control problem at current time step k, spanning the prediction
horizon from s; to z,,, can be stated as follows:

Jop = j iy (s)ds, € Q; (25)

At the end of the prediction horizon, the terminal states have to satisfy the following:

26
vi(zy) = 0,¢;(zy) € [Ty — ta, TSy + ta] (26)

The energy-efficient control problem for freight trains at the current time step k, within the prediction
horizon from s; to z,,, can be formulated as follows:

min]i,f

x%i(s) = fi(xl-(s),ui(s)), s € [sy,zy]
vi(zy) = 0,t;(zy) € [Ty — ta, TSy + ta]
0 < uy(s) <uff (v)
s.t. —ul® () Sup(s) <0 (27)
0 < vy(s) S V() = VI (s), s €lsy2u]
0 < v;(8) < Ve () = min{VL (), VL ()}, s € [sr,5p4a]

ti(s) — tip_l(s) = Thin

where V,,fax is the maximum speed for freight train, VS’;I(S) is the static speed limit and Vt;(s) is the
temporary speed limit for freight train.
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3.3 Online train operation control algorithm

Denote {t;}#2% as the set of sampling and control updating time instants. We also let k stand for ¢;. In
problems (24) and (27), the real-time state [v;(s;), t;(s;)] is measured at the current position s; (t;(s;) =
tr). The optimal control sequences [uj; (s), uj,(s)] within prediction horizon can be obtained by solving
problem (24) or (27), with only the initial control vector [uj; (s;), ui,(s;)] implemented in the system. At the
subsequent step k + 1, the updated state is used to re-solve the optimal control problem (24) or (27), and also
only the initial control vector is used for the system. By repeatedly solving a set of optimal control problems
in a moving horizon approach, this DMPC-based method addresses the online train control problem based on
the most up-to-date system information.

The main procedure of the DMPC algorithm for online train operation control in mixed passenger and

freight lines is summarised in Algorithm 1.
Algorithm 1

Input: the position z,, of station m, the real-time state [v;(s;), t;(s;)] of train i measured at the
current time t; (t;(s;) = ti), the scheduled arrival time T/, of train i at station m, the scheduled
departure time Ti‘fm of train i at station m, and the temporary speed limit thr(s) and Vt;(s).

Output: the optimal control [uj;(s), u;j>(s)],s € [Si’zni] for the passenger train or [uj;(s),
u;,(s)l,s € [s;,zy] for the freight train, and the predicted state trajectories [v}(s), tF(s)],s € [si, 2y,
for the passenger train or [v!(s), tF(s)],s € [s;, zy] for the freight train.

1) Initialisation: Before departure, load data from the ATO database, such as speed limits and train
parameters. Then, solve the centralised optimisation problem Equations 15-18 to calculate the reference
position and speed trajectories for the trip, and set the current control step k = 0.

2) Train i measures the real-time state [v;(s;), t;(s;)] and solves energy-efficient control problem (24)
or (27) based on the measured state. Take the optimal control [u;(s), uj,(s)],s € [Si’ZTli] for the
passenger train or [uj; (s), uj,(s)],s € [s;, zy] for the freight train, as the operation strategy within
prediction horizon.

3) Update the predicted state trajectories [vP(s), t{(s)],s € [s;,z,,] for the passenger train or
[vP(s), tF(s)],s € [s;,zy] for the freight train stored previously.

4) Train i transmits its updated predicted state trajectories to the following train i + 1.

5) Implement only the first component [u};(s;), ui,(s;)] of the optimal control sequences obtained
from step 2) to train i.

6) Let k =k + 1 and return to step 2).

4. SIMULATION RESULTS

In this section, we present numerical examples that clearly validate the efficiency of our advanced
algorithm. The optimisation problems mentioned in Section 111 can be solved by using pseudospectral methods,
which transform the train control problem into a nonlinear programming (NLP) problem at the Legendre-
Gauss-Radau (LGR) orthogonal collocation points. The transformed mathematical programming problem can
then be solved by using the existing optimisation solvers such as GPOPS-II. And we solve the centralised
optimisation problem by using GPOPS-I1I by transforming it into a multi-phase optimal control problem. All
experiments in this section are conducted in MATLAB by using the optimisation solver GPOPS-II on a
computer with 1.90GHz AMD CPU and 16G RAM.

4.1 Simulation scenario setting

Assuming there are four stations on the route, with a distance of 30 kilometres between each station. There
are three passenger trains and a freight train running in this track, the first three being passenger trains and the
last being freight train. For passenger trains, the original scheduled running time between an interval is 700
seconds and dwell time in a station is 120 seconds. For freight train, the original scheduled running time
between the initial and terminal stations is 3170 seconds. The allowable floating value t, of original scheduled
arrival time T, is set to 30 seconds. The static speed limit Vsﬁ’l (s) for passenger trains is set to 55 m/s, while
freight trains have a static speed limit of 45 m/s. Safe margin T,,;, is set to 240 seconds. Weight coefficient
w;, and wy are set to 10° and 10”.
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We select the CRH3 train and HXD1 electric locomotive for simulation in the experiment, and the freight
vehicle used for simulation is the Cso freight vehicle. The parameter information for the CRH3 train and freight
train is presented in Tables 1 and 2, respectively.

Table 1 — Basic parameters of CRH3 train

Property Values
a (N/kg) 0.0141612
b (N s/m kg) 5.0400%x10
¢ (N s?/m? kg) 1.9912x10°®
Train mass (t) 536
Maximum operating speed (m/s) 55

Table 2 — Basic parameters of freight train

Property Values

a (N/kg) 100.76

b (N s/m kg) 0.5222

¢ (N s2/m? kg) 0.0138

Train mass (t) 10676
Maximum operating speed (m/s) 45

The CRH3 train’s maximum traction and braking forces, each expressed in kN, are stated as follows:

119km
300 — 0.285v;, v; < 28)
max —
uit™Wd =1 31500 119km
B Vi =
Ul' h
106.7km
30002850, v < ——
max —
uz™ W) =1 28800 106.7km (29)
. v —
Ul' h

The HXD1 electric locomotive’s maximum traction and braking forces, each expressed in kN, are stated as
follows:

5km

760, 0<v; <——

h
S5km 65km (30)
ufi*™(v;) =1{779 — 3.8y, — < <

h
34560 65km
;>
Vi h
461v; S5km
T
ull%*(v;) = {461, ——<v;<— (31)

, v; >
Vi ¢ h
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4.2 Simulation results and analysis

We present two numerical examples to demonstrate the efficiency and energy efficiency of the proposed
DMPC-based online train control algorithm for passenger and freight trains. The first example solves the online
train control problem in the presence of input disturbances. In the second example, we take TSR into account
to verify the efficiency of the proposed algorithm. In both examples, we will compare the train operation result
under the online control of Algorithm 1 with that under offline control. Offline control represents executing the
centralised optimised control input sequence into the system.

Example 1 (Scenarios with input disturbances): We generate random numbers from -9000 to 9000 to
simulate the real-time input disturbances in Equation 4 by using the rand function in MATLAB. The results of
these experiments are depicted in Figures 3-4 and presented in Table 3.

10 T T T T T T T T T

Position (m)
W

oL Train 1 i
Train 2
Train 3
1r Train 4 B
0 1 1 1 1 1 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time (s)

Figure 3 — The position trajectories of all trains under Algorithm 1 in Example 1

50 - : T u 60
) ﬁ ﬁ ﬁ
@ = 40
E30 E
= s
8 20 51
> & 20
10
0 0 l
0 20 40 60 80 100 0 20 40 60 80 100
Position (km) Position (km)
(a) Speed trajectory of Train 1 (m/s) (b) Speed trajectory of Train 2 (m/s)
60 . - , , 50 , ,
40
2 40 @
£ £30
= s
3t 8 20
& 20 &
10
0 , . 0
0 20 40 60 80 100 0 20 40 60 80 100
Position (km) Position (km)
(c) Speed trajectory of Train 3 (m/s) (d) Speed trajectory of Train 4 (m/s)

Figure 4 — Speed trajectories of all trains in Example 1 under Algorithm 1 (blue curves) and offline control (red curves)
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Table 3 — The arrival states and energy consumption in Example 1

Train i i(z2), tf7) (vi(z3), tf3) (wi(zy), ty) Energy

i=1 | (10.1m/s, 7035s) | (10.5m/s, 1522.65) | (10.2 m/s, 2342.9s)

i=2 (9.9 m/s, 1184.2 s) (9.8 m/s, 2004.6 s) (9.9 m/s, 2824.2 s)
Offline control 2.15127x101°kJ
i=3 (10.2 m/s, 1663.3s) | (10.6 m/s, 2482.55s) | (9.6 m/s, 3304.9s)

i=4 - - (3.5 m/s, 4564.1 s)

i=1 (0.0 m/s, 704.4 s) (0.0 m/s, 1525.2 s) (0.0 m/s, 2343.6 5)

i=2 | (0.0m/s, 1185.6s) | (0.0mls, 2006.4s) | (0.0 mis, 2827.25)
Algorithm 1 1.98522x10%0kJ
i=3 | (0.0m/s 1666.85) | (0.0m/s, 2490.0s) | (0.0m/s, 3308.4)

i=4 - - (0.0 m/s, 4576.8 s)

Figure 3 shows the position trajectories of all trains under Algorithm 1. In Figure 4, the red curves represent
speed trajectories of all trains under the offline control, while the blue curves represent speed trajectories of
all trains under Algorithm 1. Figure 4 shows that input disturbances cause fluctuations in speed profiles of all
trains under Algorithm 1. And the fluctuations of the freight train are larger than that of the passenger trains. This
may be because passenger trains have fixed stopping time at each station. Conversely, the DMPC optimisation
of freight train is done for the terminal position every time, with a larger optimisation range than passenger
trains. Moreover, a single centralised optimisation takes 288 seconds and is not applicable to online train
control. However, the average solution time under Algorithm 1 for each step is 0.39 seconds, which is less than
the sampling time period of 1.2 seconds, allowing for online train control to be achievable.

As shown in Table 3, the offline control makes the train arrive at the station at an unsafe speed when there
is input disturbance. For example, the speed of passenger trains at the second, third and fourth stations is close
to 10 m/s. However, the online control algorithm based on the DMPC can successfully make the trains stop at
each station. Furthermore, the traction energy consumption of the four trains calculated by offline control and
Algorithm 1 are 2. 15127x10%° kJ, and 1.98522x10% kJ, respectively. It reveals that trains controlled by Algorithm
1 consume less traction energy under the input disturbances.

To evaluate the performance of Algorithm 1 with a larger number of trains, we conduct an experiment that
involved five passenger trains and two freight trains, the results of which are depicted in Figures 5-6. Figure 5
shows the position trajectories of five passenger trains and two freight trains under Algorithm 1. In Figure 6, the
red curves represent speed trajectories of all trains under the offline control, while the blue curves represent
speed trajectories of all trains under Algorithm 1. Solving the single centralised optimisation problem for the
offline control takes 36.85 minutes, which is more than seven times of the solution time for the case with four
trains. However, the average solution time under Algorithm 1 at each step is 0.38 seconds, which is similar as
that for the case with four trains. It indicates that the solution time of centralised optimisation severely increases
with the number of trains, while the solution time of Algorithm 1 based on the DMPC would not increase with
the number of trains. As shown in Figure 6, the offline control makes the train arrive at the station at an unsafe
speed when there is input disturbance. However, the online control algorithm based on the DMPC can
successfully make the trains stop at each station. Furthermore, the traction energy consumption of the seven
trains calculated by offline control and Algorithm 1 are 3.91403x10%* kJ and 3.61587x10%° kJ, respectively,
revealing that Algorithm 1 proposed in this paper can also decrease the total traction energy consumption.
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Figure 5 — The position trajectories of seven trains under Algorithm 1 in Example 1
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Figure 6 — Speed trajectories of seven trains in Example 1 under Algorithm 1 (blue curves) and offline control (red curves)

Example 2 (Scenarios with TSR): A TSR of 40 m/s for passenger trains and 35 m/s for freight train occurs
at the interval [45, 50] km, and the four trains will receive this TSR information at 961.2 seconds. The
simulation results obtained are depicted in Figures 7-8 and shown in Table 4.
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Figure 7 — The position trajectories of all trains under Algorithm 1 in Example 2
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Figure 8 — Speed trajectories of all trains in Example 2 under Algorithm 1 (blue curves) and offline control (red curves)

Table 4 — The arrival states and energy consumption in Example 2

Train i wi(z2), t15) (wi(z3), ti3) (wi(zy), ty) Energy

i=1 (0.0 m/s, 700.0 s) (0.0 m/s, 1520.0s) | (0.0 m/s, 2340.0 s)
i=2 (0.0 m/s, 1180.0 s) (0.0 m/s, 2000.0s) | (0.0 m/s, 2820.0s)

Offline control 2.15127x101%kJ
i=3 (0.0 m/s, 1660.0 s) (0.0 m/s, 2480.0s) | (0.0 m/s, 3300.0 s)
i=4 - - (0.0 m/s, 4580.0 s)
i=1 (0.0 m/s, 706.8 s) (0.0 m/s, 1548.0s) | (0.0 m/s, 2350.8 s)
i=2 (0.0 m/s, 1190.4 s) (0.0 m/s, 2029.2s) | (0.0 m/s, 2826.5 s)

Algorithm 1 2.21945%10%kJ
i=3 (0.0 m/s, 1671.6 s) (0.0 m/s, 2506.8 s) | (0.0 m/s, 3309.6 s)
i=4 - - (0.0 m/s, 4609.2 s)

As shown in Figure 7, the position trajectories of all trains bend slightly in the second section due to TSR.
In Figure 8, the red curves represent speed trajectories of all trains under the offline control, while the blue
curves represent speed trajectories of all trains under Algorithm 1. As illustrated in Figure 8, offline control fails
to meet the temporary speed restrictions. However, all trains satisfy the temporary speed restrictions within
the interval [45, 50] km under Algorithm 1. And because the trains are informed of the temporary speed
restrictions in advance, the trains strategically accelerate prior to reaching the section to arrive at the next
station timely. And it can be seen from Table 4 that trains consume more traction energy due to TSR during
operation.

5. CONCLUSION

In this paper, we propose an online control algorithm for energy-saving train operation in mixed passenger
and freight lines. Firstly, we design a centralised optimisation method to generate energy-saving reference
profiles for both passenger and freight trains, considering their respective operational objectives and
constraints. The method aims to improve the punctuality of passenger trains and to reduce the total running
time of freight trains. Secondly, we propose the DMPC based online trajectory optimisation method for both
types of trains, subject to operational constraints such as safety, punctuality, static speed limits and temporary
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speed restrictions. Then we formulate an online train operation control algorithm based on the centralised
optimisation method for the initialisation of train trajectories and the DMPC method for the online trajectory
planning. Finally, we conduct two numerical experiments, the first one of which involves four trains subject
to input disturbances in operation, and the second one examines the impact of TSR on the train operation. The
simulation results clearly demonstrate the effectiveness and energy efficiency of our proposed algorithm.
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