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ABSTRACT 

Vehicle trajectory prediction plays a critical role before the decision planning of autonomous 

vehicles in complex and dynamic traffic environments. It helps autonomous vehicles better 

understand the traffic environments and ensure safe and efficient tasks. In this study, a 

hierarchical trajectory prediction method is proposed. The graph attention network (GAT) model 

was selected to estimate the interactions of surrounding vehicles. Considering the behaviour of 

surrounding agents, the future trajectory of the target vehicle is predicted based on the long short-

term memory network (LSTM). The model has been validated in real traffic environments. By 

comparing the accuracy and real-time performance of target vehicle trajectory prediction, the 

proposed model is superior to the traditional single trajectory prediction model. The results of 

this study will provide new modelling ideas and a theoretical basis for the vehicle trajectory 

prediction in urban traffic environments. 

KEYWORDS 

autonomous vehicle; trajectory prediction; hierarchical; long short-term memory network; graph 
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1. INTRODUCTION 

Autonomous vehicles will occupy an extremely important position in the future intelligent transportation 

system. Original Entrusted Manufactures, autonomous driving unicorns and leading Internet companies have 

carried out much applied research on autonomous driving technology. The prerequisite for the safe and 

efficient driving of intelligent vehicles is good behavioural decision-making abilities. On the other hand, the 

prerequisite for correct behavioural decision-making is the ability to accurately predict the trajectories of 

surrounding vehicles [1, 2]. 

Vehicle trajectory prediction methods are classified into three main categories: physics-based methods [3, 

4], classic machine learning-based methods [5, 6] and data-driven methods [7, 8]. Most of the physics-based 

trajectory prediction methods utilise kinematic models (uniform velocity model, uniform acceleration model 

and constant pendulum angular velocity and acceleration, etc.) in combination with Kalman filtering to 

describe the future motion of the target. Barth et al. [9, 10] used the Kalman filter and Monte Carlo methods 

to predict vehicle trajectories based on vehicle kinematic models, but they cannot be used for trajectory 

prediction tasks in the long-time domain. Houenou et al. [11] combined the Constant Yaw Angular Velocity 

and Acceleration (CYRA) model and vehicle behaviour recognition to study the trajectory prediction problem, 

which compensates for the long-time trajectory prediction problem. Rafael et al. [12] designed a highway lane 

changing trajectory prediction algorithm based on multi-model interaction considering road shape parameters, 

which significantly improved the trajectory prediction effect of the vehicle. Some scholars have modelled 

specific driving behaviours (following, lane-changing, etc.) by building curve-fitting trajectory prediction 

models. Enke et al. [13] proposed a model for lane-changing trajectories in an ideal state represented by a sine 

mailto:chenxue781@bit.edu.cn,


Promet – Traffic&Transportation. 2024;36(5):867-884.  Intelligent Transport Systems (ITS)  

868 

function but did not consider the influencing factors of the surrounding vehicles and drivers, which resulted in 

excessive deviation between the predicted trajectories and the actual trajectories. Chovan et al. [14] added a 

trapezoidal function to the sine function to represent lane-changing trajectories. Kim et al. [15] proposed a 

trajectory prediction model based on a two-stage trajectory prediction architecture that ensured map-adaptive 

diversity and accommodated geometric constraints. The autonomous driving team of Daimler Benz [16, 17] 

used the Kalman filter and Monte Carlo method in combination of vehicle physical model to predict the vehicle 

trajectories, but this method could not work well during long-term trajectory prediction. Traditional machine 

learning methods commonly used for trajectory prediction tasks include Gaussian Process (GP), Hidden 

Markov Models (HMM) etc. HMM is a probabilistic-based framework that can be used to account for the 

uncertainty of the target’s motion pattern [18, 19], but the target is assumed to be an independent individual, 

and the interactions between agents cannot be taken into account. The GP model [20] is a nonparametric, 

kernel-function-based probabilistic model that introduces a set of hidden variables obeying a Gaussian 

distribution to explain the probabilistic prediction problem. The method is capable of generating trajectories 

with noise points that express the statistical characteristics of the target trajectory distribution. In the literature 

[21, 22], a Gaussian process model was utilised to predict the probability distribution of a vehicle’s future 

trajectory, and validated on the corresponding dataset. However, constructing a Gaussian process model is 

complex and the model is non-sparse, requiring input of complete sample or feature information. The research 

team of the Carnegie Mellon University’s School of Robotics [23] proposed a hierarchical trajectory prediction 

method that combined the Gaussian Mixture Model (GMM) and two-layer Hidden Markov Model (HMM); 

however, this method is less accurate in trajectory prediction of complex scenes due to the insufficient 

extraction of target motion features and the limited type and size of training data. 

With the rise of deep learning, various types of deep learning networks for temporal prediction have been 

proposed, and data-driven methods have gradually become a research hotspot in the field of trajectory 

prediction. Long Short-Term Memory (LSTM) networks are more suitable for trajectory prediction tasks 

because of their powerful information mining and deep characterisation capabilities. Park et al. [24–26] used 

the LSTM network as the network basis for trajectory prediction and used the encoder-decoder (Encoder–

Decoder) as the sequence generation framework to predict the probability of its future trajectory by inputting 

the historical trajectory sequence of the target vehicle. Deo et al. [27] comprehensively considered the dynamic 

interaction problem of the agents using a convolution pooling layer and the future trajectories of vehicles using 

an improved social LSTM, which improved the accuracy of trajectory prediction. Karatzolou et al. [28] 

constructed an attention-based sequence-to-sequence (Seq2Seq) trajectory prediction model and verified the 

effectiveness of the model based on real datasets. However, the above methods can only predict a single 

trajectory, which makes it difficult to characterise the uncertainty of the agent’s motion. Therefore, generative 

trajectory prediction methods such as Generative Adversarial Networks [29] and Variational Auto-Encoder 

(VAE) [30] have been successively proposed. Currently, most investigations of trajectory prediction are 

focused on a single scenario. This modelling approach can only be applied to a certain type of specific driving 

scene with poor robustness and cannot effectively deal with the dynamic changing actual driving scene. Graph 

structures have also been used by some scholars for vehicle trajectory prediction tasks. Khandelwal [31] 

proposed a multimodal behavioural prediction method. Vehicle trajectories and road network information were 

taken as the model input in the form of a directed graph, and future trajectories were the output based on the 

contextual features of attention in the graph. Liang et al. [32] proposed a Lane Graph Convolutional Network 

(LaneGCN) that can effectively capture the complex topology and long-distance dependencies of lanes. This 

network uses a one-dimensional Convolutional Neural Network (CNN) and GCN to extract the features of the 

intelligentsia and the map nodes, respectively, and uses spatial attention to capture the interactions between 

the intelligences and the map, achieving good trajectory prediction results on public datasets. Gao et al. [33] 

used a vector representation of the scenario with the agent’s trajectory and road network structure, and designed 

a hierarchical network model VectorNet, which avoided lossy rendering and convolutional coding with highly 

dense computation, and effectively improved the expressiveness and inference speed of the network compared 

with the CNN-based processing of high-precision maps. Zhao et al. [34] proposed a multimodal trajectory 

prediction method based on predictive endpoints using VectorNet as the backbone network for scene encoding. 

The method samples the map and uses multiple MLP layers for target prediction, motion estimation as well as 

trajectory screening and scoring, and finally obtains multiple possible trajectories for the smart body. 

This paper comprehensively considers the influence of the target vehicle trajectories by the lane structure 

and the dynamic interaction of the surrounding vehicles and divides the vehicle trajectory prediction problem 

into intention prediction and trajectory generation. A vehicle trajectory prediction model integrating spatio-



Promet – Traffic&Transportation. 2024;36(5):867-884.  Intelligent Transport Systems (ITS)  

869 

temporal features of the scene is proposed based on various deep learning networks such as long-term memory 

and graph attention, which improves the accuracy of long-term trajectory prediction. In addition, the multiple 

trajectories generated by the model can not only match the uncertainty of vehicle behaviour intention in various 

driving scenarios, but also conform to the constraints of map topology and vehicle driving rules with better 

trajectory acceptability. Based on the real vehicle platform, the detection effect of the vehicle trajectory 

prediction model is verified, including simulation and real vehicle verification in multiple scenarios. The 

research contents of this paper are as follows: Section 2 describes methodology, including the introduction of 

long and short-term memory networks, and graph attention networks. Section 3 describes data extraction and 

processing. In Section 4, the vehicle trajectory prediction model is given. Section 5 describes the experiment 

and analyses the results. The conclusion of this study is presented in Section 6. 

2. MATERIALS AND METHODS 

This paper focuses on the interaction effects of the prediction target vehicle and the surrounding vehicles 

to accomplish the long-term trajectory prediction of the target vehicle. Graph Attention Network (GAT) is 

characterised by automatic learning and optimisation of connectivity relationships between agents, and can 

effectively express strong and weak interactions between traffic participants. Long and short-term memory 

networks (LSTM) can filter useful information and learn long-time and long-distance dependencies to 

accomplish the prediction of target’s long-time position, speed, heading angle, and so on. 

2.1 Graph attention network 

A graph is a data structure formed by a series of interconnected nodes, each node has its own characteristics 

Fi, and the adjacency matrix A and the degree matrix D are commonly used to describe the structural 

characteristics of the graph. For a graph with N nodes, the adjacency matrix A is a symmetric matrix of size 

N. If two nodes i, j are directly connected, then Aij = Aji = 1, otherwise it is 0. The degree matrix D has the 

same size as A. Dii represents the number of agents directly connected to agent i, and the rest positions are 0. 

The GAT network uses the attention mechanism and the adjacency matrix to describe the importance of 

neighbouring agents for the target agent, it adaptively assigns the weights of neighbouring nodes through the 

attention mechanism without any type of computationally intensive matrix operations (e.g. inversion) or 

dependence on the graph structure. This approach can effectively address the inherent drawbacks of spectral 

graph-based neural networks and make the model suitable for induction and inference problems. 

The key to the graph attention network is the graph attention layer, for a graph of N agents, with h = {h1, 

h2, h3,…, hN} denoting the input features, hi ∈ ℝ𝐹. The output after the graph attention layer is h
‘
 = {h’1, h‘2, h’

3,…, h‘N}, h
i

' ∈ ℝ𝐹′
, where F and F'denote the feature dimensions of the input and output layers, respectively. 

To calculate the degree of association between two agents as follows [35]: 

eij = 𝑎(Whi, Whj) (1) 

where 𝑎 denotes linear transformation, , , it is used to generate more expressive features 

and then calculates the normalised attention fraction as follows: 

αij=
exp(LeakyReLU(eij))

∑ exp(LeakyReLU(eik))k∈N
  (2) 

To make the model more stable, the multi-head attention network [36] is used to weigh the features of each 

agent. The multiple Header was applied to calculate multiple sets of attention scores separately and to connect 

their respective results to obtain the final output features as follows: 

hi
’
=σ (

1

H
∑ ∑ αij

hWhhj

j∈N

H

h=1

) (3) 

where σ is the activation function and H is the number of heads of the multi-head attention network. 

2.2 Long and short-term memory network 

Predicting the future trajectory of a target based on its historical trajectory is a typical time-series task. 

Traditional RNN (Recurrent Neural Network) is prone to gradient vanishing problem when dealing with 
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temporal tasks, and cannot solve the problem of long-term dependence of trajectory sequence. In contrast, the 

LSTM (Long Short-Term Memory) network can effectively alleviate the gradient disappearance the long-term 

memory in the temporal task with a unique gating logic. 

The LSTM adds a storage cell C to store long-term information in the historical time series based on the 

RNN and designs three gating units: input gate, output gate and forgetting gate to selectively process cell state 

information to achieve long-term memory. The gates are a way to let information pass through selectively and 

are generally implemented by activation functions. Input gates control which new data flows into the storage 

cell, forgetting gates control information and memory in the storage cell, and output gates control which part 

of the data is used to calculate the output. The implementation details of the LSTM are as follows [2]: 

𝑓t=σ(Wf∙[ℎt-1, xt]+bf)  (4) 

where 𝑓t is called the forgetting gate, the 𝑓t is essentially a vector and usually uses sigmoid as the activation 

function. The output of the sigmoid is a value between the interval [0, 1]. It is defined by: 

it=σ(Wi∙[ht-1, xt]+bi) (5) 

C̃t=tanh(WC∙[ht-1, xt]+bC) (6) 

where  denotes the updated value of the cell state, which is determined by the input xt and the hidden state 

of the previous moment ht-1 obtained via a neural network layer . The activation function usually used is 

tanh. it which is called the input gate, and  like xt and ht-1 are computed by the activation function as follows: 

Ct=f
t

∗ Ct-1+it ∗ C̃t (7) 

where Ct represents the cell state as follows: 
ot=σ(Wo∙[ht-1, xt]+bo) 

(8) 

ht=ot* tanh(Ct) 
(9) 

Finally, using the output gate ot and the above-derived Ct to obtain the state of the hidden layer at the 

current moment ht. Ct and ht are passed to the cell at the next moment and the above steps are repeated. 

3. DATASET AND PROCESSING 

3.1 Dataset 

NGSIM, HighD [37], etc. are captured by high altitude cameras or drones with a fixed bird’s eye view, 

which do not match the real driving scenarios of self-driving vehicles. These data are collected in several fixed 

scenarios, which limits the scenario diversification of the data. Apollo Scape makes up for the above 

shortcomings to a certain extent by the data collected by the on-board sensors, but does not include map data, 

none of the above datasets can meet the requirements of the trajectory prediction model in this paper. 

The Argoverse dataset [38], jointly released by Argo AI, the Carnegie Mellon University and others, 

consists of two parts: 3D tracking and motion prediction. The data was collected mainly in Miami and 

Pittsburgh, USA, and consisted of sensor data recorded from different seasons, weather and time periods, 

providing rich real-world driving scenarios. In addition, Argoverse is the first dataset to provide high-precision 

maps, which contains high-precision map data with geometric and semantic information within 290 km. 

3.2 Trajectory data processing 

In this paper, each dataset is processed into 5-second vehicle scene fragments, containing the trajectories 

of the predicted object P and the surrounding agents {Pi}. The vehicle trajectories are observed for a duration 

Tobs = 2 seconds and predicted for a duration Tpred = 3 seconds. In this paper, the trajectory sequences are 

processed by the Savitzky-Golay [38] smoothing filter, which is a filtering method based on least squares 

fitting. 

In terms of trajectory data extraction, the influence of surrounding traffic participants is considered to the 

highest extent possible. According to the literature [34], the interaction range is set as Ragent = 100 m, and the 

trajectories of the surrounding agents within the interaction range Ragent are screened. The trajectories of 

stationary targets and trajectories with length less than 0.3 Tobs are deleted, and the incomplete trajectories are 
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interpolated and supplemented so that the trajectories of the predicted object P and the surrounding agents {Pi} 

with length Tobs are finally obtained. The trajectory data processing flow is shown in Figure 1. 

 

Figure 1 – Trajectory data processing flow 

3.3 Map data processing 

In this paper, the map data within a certain range of Rlane around the predicted object is extracted as input 

to the model. In the Argoverse dataset, lane attributes such as lane centreline and lane boundary line are stored. 

Each training data covers the lane boundary line and lane centreline within Rlane = 100 m around the predicted 

vehicle. To facilitate model training, each lane is represented by a polygon surrounded by 20 points. The lane 

centreline is used to generate candidate target points for vehicle intent prediction. 

After processing the Argoverse dataset, a total of 245,414 vehicle trajectory data are obtained and divided 

into training set, validation set and test set according to a ratio of 8:1:1. The vehicle trajectory dataset contains 

83,721 urban roadway scenes and 161,693 urban intersection scenes. 

4. MODEL 

Autonomous vehicles need to accurately predict the trajectory of surrounding vehicles to help the decision 

planning system generate an efficient, collision-free local path in real time and ensure a safe and stable 

operation of the self-driving system. For example, when changing lanes, autonomous vehicles need to predict 

the future trajectories of the target lane and other vehicles in this lane to ensure the safety of vehicles and 

drivers. When autonomous vehicles driving on ramps and side roads want to merge into main road, they need 

to predict the trajectory of the merging traffic to determine the best time. The left turn at unprotected urban 

intersections requires attention to the movement of oncoming traffic and ensures the safety of the left turn by 

accurately predicting its future trajectory. 

4.1 Multi-modal trajectory prediction model 

Due to the inherent uncertainty in the behaviour of traffic participants, to ensure safe and efficient driving 

on the road, autonomous vehicles need to consider multi-modal trajectory prediction of surrounding vehicles. 

The multi-modality of the trajectory prediction task can be defined as generating multiple acceptable future 

trajectories that conform to the travel logic and traffic rules based on the uncertainty of the target’s behavioural 

intention. Considering the intersection scenario shown in Figure 2a, the target vehicle can possess multiple 

movement behaviours with different destinations, speeds and curvatures. The autonomous vehicle needs to 
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fully consider this uncertainty of the target movement, make reasonable predictions of its future behaviours 

and give probability distributions of the future trajectories. 

Intent prediction based on lane topology. 

With rich lane topology information provided by high-precision maps, the vehicle trajectory prediction 

problem first extracts a set of candidates predicted trajectory points by searching for future lane sequences of 

the predicted target. Before searching the lane sequence, it is necessary to construct a directed topology map 

of lanes based on the high precision map information. Each lane in the high precision map records the IDs of 

its front and rear left and right lanes. Based on this topological connection information, the road structure of 

Figure 2a is used as an example to create a topological structure map as shown in Figure 2b, where the dashed 

bidirectional arrows indicate that the two lanes are the left and right neighbours. The solid arrows indicate that 

the two lanes are thefront and rear successors. 

 

                
 (a)        (b) 

Figure 2 – (a) Multi-modality for vehicle trajectory prediction (b) Lane topology relationship diagram 

The specific search process for the lane sequence is as follows: 

– STEP 1: According to the current position p
0
=(x0, y

0
) and direction  of the predicted object P, the nearest 

lane L1
1 of P can be obtained and added to the set S of lane sequences. 

– STEP 2: Horizontal (width-first) search. Starting from the lane L1
1, where the object is currently located, the 

lane connection relationship provided by the high precision map is used to search for the left neighboring 

lanes L1
1 and right neighbouring lanes ) while adding L1

i  to the lane set S. 

– STEP 3: Vertical (depth-first) search. The depth-first search starts from L1
i  in the set S and searches the 

successor node L1
i  of each Lj

i and starts the recursion. The final search reaches the set S ( , 

) containing Ns Lane sequences, and the recursive exit condition is that the cumulative length 

of Seq
i
 exceeds the set search range Rlane = 100 m [34]. In Figure 2b, the lane sequence obtained after depth-

first search with lane 0 as the initial node is  and  

– STEP 4: Iterate through all Seq
i
 in S, sample the lane centreline equally by ∆s to get T0={τn}

n=1

N0 ={(xn, 

y
n
)}

n=1

N0 , filter T0  by the set maximum. The set of candidate target points Tcandis={τn}
n=1

N  satisfying 

dmax≥dist (τn, p
0
) ≥ dmin, where dist(τn, p

0
) denotes the Euclidean distance between τn and p

0
, dmax and 

dmin are determined by the current velocity vcur of P, dmax=(1+ε)vcurTpred, dmin=(1-ε)vcurTpred, ε denotes 

the distance scaling factor, which is used to control the screening range. 

Tcandis represents the possible future location of the predicted object P, characterising the uncertainty of the 

vehicle’s motion intention. 

Framework of vehicle trajectory prediction model 

The framework of the vehicle trajectory prediction model constructed in this paper is shown in Figure 3. The 

interaction influence of other agents around the prediction object is also considered. In addition, considering 

that the vehicle motion is constrained by the road structure, the spatial interaction module adds map 

information. The whole model should consist of a spatial interaction module, trajectory encoding module, 

feature fusion module and trajectory output module. The spatial interaction module uses vectors to represent 
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the spatial interaction of the predicted object with the surrounding agents and the map structure and extracts 

the spatial interaction features of the predicted object based on the hierarchical network structure. The 

trajectory encoding module uses the LSTM network to process the historical trajectories (position, velocity, 

heading angle) of the predicted agents and obtain the temporal features of the historical trajectories. The feature 

fusion module uses Multi-Head Attention to intersect and fuse spatial interaction features and trajectory timing 

features. The trajectory output module takes the fused contextual features and the candidate target point set 

Tcandis as input to obtain the multiple possible trajectories and the corresponding probability values. The 

implementation process of the spatial interaction module and the trajectory output module is described below.  

 

Figure 3 – Vehicle trajectory prediction model 

1) Spatial interaction module 

The framework of Spatial interaction module constructed in this paper is shown in Figure 4. Vehicle motion 

is generally strictly constrained by lane lines. The spatial interaction module uses vectors to represent the 

trajectories of surrounding agents in addition to lane vectorisation as input. The spatial interaction features 

Fst(i) of the predicted agents are obtained based on the graph attention network (GAT) to model the higher-

order interaction between the trajectories and lanes of the agents. 

 

 
Figure 4 – Structure of spatial interaction module 

The set of vehicle trajectories can be represented as {p
0
, p

1
,…, p

m
}.  p

0
 represents the sequence of 

trajectories of the predicted object. p
1
,…, p

m
 represents the sequence of trajectories of neighbouring vehicles. 

Each sequence of trajectories is p
i
={vt}t=1

Tobs-1, i = 0, 1,..., m. Tobs Indicates the length of the historical trajectory, 

vt is an 8-dimensional vector: 
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vt=[xs, ys
, xe, y

e
, length, width, ts, id] (10) 

where xs, ys
, xe and y

e
 represent the beginning and end of the spatial location of the vehicle trajectory, length 

and width represent the length and width of the predicted vehicle, ts represents a normalised timestamp, id 

represents the dependency between the vector vt and the sequence of trajectories p
i
, same track sequence with 

same id. 

Spatial interaction module is a hierarchical structure consisting of a two-layer MLP and GAT. The two-

layer MLP maps the feature vectors to a high-dimensional space, with the dimensionality increasing from 8 to 

64, and then employs Max Pooling in the temporal dimension to obtain the following: 

 

the higher-order feature vectors zi corresponding to the trajectory sequence p
i
: 

where WMLP represents the weight matrix of the MLP layer, φ
agg

(∙)  represents the maximum pooling 

operation. 

GAT uses the attention mechanism and adjacency matrix to describe the importance of the neighbouring 

agents to the target vehicle [39]. It improves the expressive power of graph neural networks compared to graph 

convolutional neural networks (GCN) [40] by adaptively assigning weights to the neighbouring agents through 

the attention mechanism. Brody et al. [41] propose an improved GAT_v2 network, which overcomes the 

deficiency of the traditional GAT that can only provide static attention by changing the computation order of 

the linear layer Linear and the activation function LeakyReLU. In this paper, we use the above improved 

GAT_v2 to realise the higher-order interactions of the trajectory sequence features {zi}i=0

m
: 

where zi
’ represents the trajectory sequence features after the GAT aggregation, with the same dimension of 

64. W represents the weight matrix of the initialised linear transformation, and a is implemented by the MLP 

layer to compute the similarity between two features. σ and LeakyReLU are activation functions and H is the 

number of heads of the network as follows: 

Fs(i) = {z0
’ , z1

’ ,…, zm
’ } (14) 

For the trajectory sequence features {z0, z1, … , zm} of the neighboring vehicles, it can be expressed as {z0
’ , 

z1
’ ,…, zm

’ } after the higher-order interactions of the GAT, i.e. it is the spatial interaction feature Fs(i). 

 

(1) Track encoding module 

Track encoding module is implemented based on LSTM network, which is mainly used to extract the 

trajectory time-series features of the predicted agents. The multidimensional feature vector X(i)={(xi
t, y

i
t, 

vi
t, φ

i
t)∈R2|t=1, …, Tobs} composed of position, velocity and heading angle is used as input. The temporal 

encoding property of the LSTM is utilised to extract the temporal features Ft(i) in the historical trajectory 

of the predicted object. X(i) is mapped into a high-dimensional feature vector Emb(i)={ei
t}, t=1, …, Tobs, 

via a two-layer MLP, and then this vector is inputted into an LSTM network, which outputs the trajectory 

temporal feature Ft(i): 

Emb(i)=MLP(X(i);WMLP)) (15) 

Ft(i)=LSTM(Emb(i), h; WLSTM)  (16) 

where WMLP  and  WLSTM  represent the weight matrices of the MLP layer and the LSTM network, 

respectively, and h represents the state of the hidden layer of the LSTM network, with a dimension of 64. 

 

zi=φ
agg

(MLP(p
i
 ; WMLP)) , i=0, 1, …, m 

(

(11) 

zi
’=σ (

1

H
∑ ∑ αij

hWhzj

m

j=0

H

h=1

) 
(12) 

αij=

exp (a (LeakyReLU(Wzi,Wzj)))

∑ exp (a(LeakyReLU(Wzi,Wzk)))m
k=0

 
(13) 
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2) Feature fusion module 

To fuse the spatial interaction feature Fs(i) with the temporal feature Ft(i), previous work often uses 

various pooling functions or direct splicing to merge the features, which often lacks an effective feature 

fusion mechanism and may ignore some important interaction information, resulting in a negative impact 

on the final prediction results. The attention mechanism is a modelling tool that allows the model to focus 

on key information and fully learn and absorb it. In this paper, the feature fusion module adopts the 

mainstream multi-attention mechanism to intersect and fuse the features Fs(i) and Ft(i). The trajectory 

time-series feature Ft(i) is used as the query vector to calculate the interaction strength between the object 

and other agents. By allocating different degrees of attention, the network pays more attention to the 

individuals that have a greater influence on the predicted object, and obtains the scene context feature Fst(i). 

Fst(i)=MultiAtten (Ft(i), Fs(i); WMultiAtten) (17) 

MultiAtten (Q, K, V) = Concat (head1, head2,…, headH)WO (18) 

headi=Attention(QWi
Q

, KWi
K, VWi

V) (19) 

 

where head1, head2,…, headH represent multiple head structures, H is the number of heads of the network, 

Wi
Q

, Wi
K, Wi

V, WO are weights matrices, and Concat (∙) represents the splicing operation. 

The attention weight calculation function uses the scaled-dot product approach [41]: 

Attention(Q, K, V) = softmax(
𝑄𝐾𝑇

√𝑑𝑘
)V 

(

(20) 

The multi-headed attention mechanism divides the network into multiple subspaces, which can effectively 

prevent the network from overfitting. Specifically, the spatial features Fs(i) are used as K and V. The 

trajectory temporal features Ft(i) are used as the query vector Q to adaptively evaluate the degree of 

association between the predicted object and the surrounding agents. 

 

3) Track output module 

The trajectory output module consists of a trajectory classification branch and a trajectory regression branch. 

By decoding the fused scene context features Fst(i) and the set of candidate target points Tcandis={τn}
n=1

N
. it 

outputs multiple possible trajectories and the corresponding probability values of the predicted agents. 

The trajectory classification branch consists of a two-layer MLP stacked with softmax layer, and inputs 

Fst(i) and Tcandis, and the softmax layer outputs the probability distribution I(i)={i1, i2,…, iN} with “N × 1” 

parameters. I(i) is the output of the module for multiple trajectories, which characterises the uncertainty of 

the vehicle’s motion intention. 

I(i)=softmax(MLP( [Fst(i), Tcandis]; WMLP)) (21) 

where [∙] represents the splicing operation and WMLP represents the network weight of the MLP layer. 

The trajectory regression branch utilises a two-layer MLP as a decoder to generate multiple predicted 

trajectories, with the same inputs Fst(i)  and Tcandis , and the N trajectories are generated as 

E(i)={ [𝐸1
n, E2

n,…, ETpred

n ]}
n=1

N
. For each predicted trajectory point 𝐸t

n output the binary mixture Gaussian 

distribution with five parameters μ
tx
n , μ

ty
n , σtx

n , σty
n , ρ

t
n.  

E(i)=MLP( [F
st

(i), Tcandis]; WMLP) (22) 

where [∙] represents the splicing operation and WMLP represents the network weight of the MLP layer. 

In order to ensure the multimodality of trajectory prediction and limit the predicted trajectories to a suitable 

subset, the non-maximum suppression (NMS) mechanism [42] is used to filter the multiple predicted 

trajectories E(i)  according to the probability of the trajectories in descending order, and the module 

ultimately outputs K trajectories 𝐸’(i). 

𝐸’(i)={𝐸k}
k=1

K
=NMS_select(E(i); ThNMS) (23) 

where, ThNMS is the threshold for NMS screening of the predicted trajectories. 
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The NMS screening process is as follows: 

– Step1: Sort the trajectories in E(i) from highest to lowest probability. 

– Step2: Select the trajectory E(i) with the highest probability from the set 𝐸n, add it to the set 𝐸’(i), and delete 

it from E(i). 

– Step3: Iterate the remaining trajectories in the set E(i), calculate the final displacement error FDE with 𝑍n, 

if FDE is less than ThNMS, remove it from E(i). 

– Step4: Repeat the above Step1 to Step3 until E(i) is empty or the number of trajectories in 𝐸’(i) reaches K. 

4.2 Loss function 

To ensure the multimodality of vehicle trajectory prediction, the loss functions Lcls and Lreg need to be 

designed for the classification branch and the regression branch respectively, and the joint loss function of the 

whole model is constructed by weighting Lcls and Lreg. 

𝐿(𝜃)= αLcls+βLreg  (24) 

where α and β denote the weight coefficients of Lcls and Lreg. 

The trajectory classification loss Lcls  is implemented based on the Cross Entroy Loss function, which 

ensures that the model is trained without modal collapse due to the candidate target point Tcandis as a priori 

information. To find the nearest candidate target point τ̂ from Tcandis={τn}
n=1

N
={(xn, yn)}

n=1

N
 as the label for 

correct classification, the classification loss Lcls is defined as follows: 

𝐿cls = cross_entroy({𝜏𝑛}𝑛=1
𝑁 , τ̂)  (25) 

The trajectory regression loss Lreg of the constructed trajectory prediction model is obtained by taking the 

negative logarithm of the probability density function of the binary mixed Gaussian distribution. 

P(xt
n, y

t
n | μ

t
n,σt

n,ρ
t
n)=

1

2πσtx
n σty

n √1 − (ρ
t
n)

2

exp [
−Zt

n

2 (1 − (ρ
t
n)

2
)

] 
(26) 

Zt
n=

(x̃t − μ
tx
n )

2

(σtx
n )2

+
(ỹ

t
− μ

ty
n )

2

(σty
n )

2
−

2ρ
t
n(x̃t − μ

tx
n ) (ỹ

t
− μ

ty
n )

σtx
n σty

n  

(27) 

Lreg= −
1

NTpred

∑ ∑ log(P(xt
n, y

t
n | μ

t
n, σt

n, ρ
t
n))

Tpred

t=1
N
n=1    (28) 

where μ
t
n, σt

n, ρ
t
n are the binary mixture Gaussian distribution parameters of the n trajectory output from the 

trajectory regression branch at time t. N is the number of predicted trajectories and Tpred  represents the 

trajectory prediction time. 

The training environment, the hardware configuration of the vehicle trajectory prediction model, based on 

the improved vehicle trajectory dataset for model training, and the input data need to be normalised. The initial 

learning rate of the optimizer is set to 0.0005, the step size of learning rate decay is set to 10, the number of 

training rounds is 500 and the batch training size is set to 64. Each MLP layer in the model is followed by the 

L1 regularisation layer and the activation function ReLU layer, and the final output trajectory number K is 3. 

5. EXPERIMENTS 

5.1 Model performance validation results 

To verify the effectiveness of each module of the vehicle trajectory prediction model, ablation experiments 

were designed as well. Table 1 shows the results of trajectory prediction with only spatial interaction module, 

only trajectory coding module and complete structure, the prediction duration is 3 s and the model finally 

outputs 3 trajectories (K = 3). The experimental results show that the model with complete structure has the 

minimum minADE and minFDE, the prediction accuracy is higher than the single module, and the validity of 

each module of the model is verified. The speeds in the table refer to the time required for each forward 

propagation of the model on the TESLA V100 with 32 Gigabytes. 
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Table 1 – Results of ablation experiments 

Spatial 

interaction 

module 

Track encoding 

module 

Feature fusion 

module 
Track output module minADE/m minFDE/m time/ms 

 √  √ 1.65 2.97 6.5 

√   √ 1.19 2.21 10.7 

√ √ √ √ 1.10 1.97 11.4 

5.2 Evaluation metrics for trajectory prediction 

The common evaluation metrics for trajectory prediction tasks are Average Displacement Error (ADE), 

Final Displacement Error (FDE) and Recall. The predicted trajectory is denoted as s= [s1, s2, .., sTpred
] and the 

true trajectory is denoted as sgt= [s1

gt
, s2

gt
,…, sTpred

gt
]. 

ADE and minADE 

ADE denotes the average of the Euclidean distance between the predicted and true trajectories throughout 

the prediction time domain as follows: 

ADE=
1

Tpred

∑‖st − st
gt

‖

Tpred

t=1

 
(29) 

where ‖st − st
gt

‖ denotes the Euclidean distance between st and st
gt

. 

For multiple prediction trajectories, minADE is defined as follows: 

minADE=min(ADE1, ADE2,…, ADEK) (30) 

FDE and minFDE 

FDE denotes the Euclidean distance between the predicted endpoint sTpred
 and the true endpoint sTpred

gt
 as 

follows: 

FDE= ‖sTpred
− sTpred

gt
‖ (31) 

For multiple prediction trajectories, minFDE is defined as follows: 

minFDE=min(FDE1, FDE2,…, FDEK) (32) 

Recall 

The meanings of TP, FP, TN and FN are shown in Table 2. Recall, also known as the check-percentage, 

indicates how many of the positive samples can be correctly detected, and it is calculated by using the following 

formula: 

Recall=
TP

TP+FN
 (33) 

Table 2 – TP, FP, TN and FN meanings 

 Correct prediction False prediction 

Genuine label TP FN 

False label FP TN 

Unlike image detection, trajectory prediction is a regression task, and the use of the Recall metric requires 

setting a suitable threshold to specify the allowable trajectory prediction error. For N trajectory prediction 

results, the case where the FDE or minFDE of the predicted trajectory is less than the threshold is defined as 

the correct prediction. Recall is defined as follows: 
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Rcall=
∑ L(minFDEn, threshold)N

n=1

N
 

(34) 

where L(∙) is an indicator function that takes 1 when minFDEn < threshold, and 0 otherwise. Recall describes 

the reliability of the trajectory prediction model. 

5.3 Model comparison experiment 

Unscented Kalman Filter [43] (UKF) estimates the state based on time forward propagation. It assumes a 

strict vehicle kinematics modelling making it a significant advantage in short-time prediction (typically within 

1 second). 

VectorNet [33], a vehicle trajectory prediction model based on high-precision maps proposed by Waymo, 

predicts the future trajectory of the vehicle by considering the spatial interaction features of each scene element. 

VectorNet is a more mainstream vehicle trajectory prediction model. 

STF [44], a Spatial-Temporal Fusion (STF) model including Multi-layer perceptions (MLP) and Graph 

Attention (GAT), predicts the future trajectory of the vehicle by the spatial and temporal information historical 

trajectories simultaneously on the 3D graph. The proposed STF outperforms several baseline methods, 

especially on the long-time-horizon trajectory prediction. 

The vehicle trajectory prediction model in this paper is validated against the above two mainstream models. 

For urban roadway and intersection scenarios, the prediction effects of the three models are evaluated based 

on the processed Argoverse dataset. The minADE, minFDE and Recall comparisons are shown in Tables 3 and 

4. For the single trajectory prediction model, minADE is equivalent to ADE and minFDE is equivalent to FDE. 

recall@2m indicates that the recall threshold is 2 m. 

Table 3 – Vehicle trajectory prediction results for the straight lines 

Model 
Tpred = 2 s Tpred = 3 s 

minADE/m minFDE/m Recall@2m minADE/m minFDE/m Recall@3m 

UKF 1.59 2.46 0.35 2.16 3.49 0.39 

VectorNet 0.93 1.53 0.71 1.17 2.03 0.68 

Proposed model 0.57 0.92 0.93 0.92 1.67 0.82 

Table 4 – Vehicle trajectory prediction results for intersection scenarios 

Model 
Tpred = 2 s Tpred = 3 s 

minADE/m minFDE/m Recall@2m minADE/m minFDE/m Recall@3m 

UKF 1.75 3.11 0.19 2.64 5.28 0.15 

VectorNet 1.12 1.97 0.48 1.95 3.90 0.35 

Proposed model 0.91 1.56 0.67 1.27 2.13 0.62 

The results in Tables 3 and 4 show that the prediction errors of the UKF model in both scenarios are 

significantly larger than the other models, and the minFDE at Tpred = 3 s are 3.49 m and 5.28 m. It is difficult 

to be used for long-time trajectory prediction. The trajectory prediction errors of the VectorNet model have 

been significantl in y reduced comparison to the UKF, which suggests that data-driven methods are more 

suitable for long-time trajectory prediction tasks than traditional physics-based methods. The prediction 

accuracy and recall of the proposed model are better than that of other models. The minFDE of the road section 

scenario is reduced by 17.7% compared with VectorNet for Tpred = 3 s. The minFDE of the intersection scene 

is reduced by 28.3% compared with STF. The results indicate that the proposed method of combining maps to 

predict the target’s future trajectory is more accurate and reliable. 

5.4 Error distribution of the proposed model 

The error distributions of minADE and minFDE of the proposed model in the straight lines and intersection 

scenarios at Tpred =3 s are shown in Figure 5. It can be found that there are some differences in the error 

distributions under the two scenarios. The prediction error in the straight lines mainly comes from the 

longitudinal motion. The mean value of the error is smaller overall. In contrast, the vehicle motion in the 

intersection scenarios is more difficult to predict, the vehicle crossing the intersection is often accompanied by 



Promet – Traffic&Transportation. 2024;36(5):867-884.  Intelligent Transport Systems (ITS)  

879 

speed changes, and the transverse and longitudinal positions also change greatly when turning. The distribution 

interval of the model minADE and minFDE increases significantly, and the mean value of the error is larger 

than that of the straight lines. 

 

 
(a) Straight Lines 

 
(b) Intersection Scene 

Figure 5 – Distributions of minADE and minFDE 

5.5 Trajectory prediction case studies 

The trajectory prediction effect of the model is visualised and analysed for typical urban traffic scenes. To 

verify the effectiveness of the proposed model, VectorNet is selected as a comparison, and the effects of the 

two models are analysed in urban straight lines and intersection scenes respectively. Each scene shows the 

predicted trajectories, position changes in X and Y directions visualised by proposed model and VectorNet, 

respectively. Multiple predicted trajectories of the proposed model are represented by solid lines of different 

colours, and each predicted trajectory has a corresponding probability value, while blue dashed lines and blue 

solid lines indicate the historical trajectories and the future real trajectories of the agent, respectively. When 

analysing the positional changes in the X and Y directions, the trajectory with the highest probability of the 

proposed model is selected for comparison with VectorNet. 

Scenario 1 (Figure 6) are driving scenarios under straight lines, and the trajectory prediction especially needs 

to accurately identify the target’s lane-changing behaviour. In Scenario 1, car 001 is the predicted vehicle, car 

003 in front of this lane at 35 metres is traveling in the same direction with it, car 002 in the right rear has a 

certain safety distance from this car. There is some chance that the predicted traffic will change lanes to the 

right. The predicted trajectories of the two models are shown in Figure 6. VectorNet misdiagnoses the target’s 

motion intention, and the Y-direction position error is significantly larger than that of the proposed model. In 

contrast, the proposed model accurately predicts the target vehicle’s intention, and outputs a trajectory with 

the highest probability of changing lanes to the right (green solid line), and this trajectory line is the closest to 

the real trajectory, which indicates that the proposed model not only accurately recognises the intention of the 

vehicle, but also predicts a more accurate trajectory. 
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(a) VectorNet     (b) Proposed model  

 
(c) X-direction prediction error (d) Y-direction prediction error 

Figure 6 – Scenario 1 trajectory prediction results 

Scenario 2 (Figure 7) has higher traffic density and fewer lane changing opportunities. The proposed model 

outputs two straight trajectories and one trajectory of changing lanes to the right. The longitudinal difference 

of the straight trajectories reflects the two speed intentions of the target, in which a straight trajectory with 

probability 0.90 is closer to the real trajectory. This indicates that the proposed model can also achieve better 

prediction of the target’s speed, and the corresponding probability of the trajectory of changing lanes to the 

right is only 0.07, which is less referential for the practical application. Figure 7(c),(d) shows that both models 

have better results in this simple following scenario, and the trajectory prediction errors are all smaller. 

 
(a) VectorNet      (b) Proposed model 

 
(c) X-direction prediction error  (d) Y-direction prediction error 

Figure 7 – Scenario 2 trajectory prediction results 
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The predicted vehicle in Scenario 3 is about to enter the intersection, and from the map structure, the vehicle 

can either go straight or turn right. VectorNet is unable to capture the multimodality of the scenario, and the 

predicted trajectories cross multiple lanes and tend to be the average of the two behavioural intents of going 

straight and turning left, which is obviously against the rules of vehicular travel. The proposed model combined 

with the map structure can effectively capture multiple possible intentions of the predicted vehicle, outputting 

one straight ahead trajectory and two right turn trajectories. The probability of one of the right-turn trajectories 

is 0.52, which indicates that the target is more likely to make a right turn, and the target’s real behaviour is to 

make a right turn. The results validate the accuracy of the proposed model for the prediction of intentions. 

Figure 8c,d shows that the errors of VectorNet in the X and Y directions when predicting 3 seconds are 2.62 m 

and 2.05 m, and the proposed model are 1.60 m and 1.58 m, respectively. 

 

(a) VectorNet   (b) Proposed model 

 

(c) X-direction prediction error  (d) Y-direction prediction error 

Figure 8 – Scenario 3 trajectory prediction results 

6. CONCLUSION 

A vehicle trajectory prediction model integrating spatio-temporal features in complex urban scenes and a 

hierarchical trajectory prediction model were constructed based on lane topology. The proposed model 

describes the uncertainty in the intention of vehicle motion by searching for a sequence of lanes and extracting 

the lane centroids to provide a priori information for generating trajectories. Then, a multi-modal trajectory 

prediction model predicts future vehicle trajectory by considering the behavioural intentions, the lane structure 

and the dynamic interaction of surrounding agents. The joint loss function is designed considering both 

classification loss and regression loss. The proposed model was trained and validated based on the Argoverse 

dataset. It reduces the minFDE by 17.7% and 45.4% compared to VectorNet in straight lines and intersecting 

scenarios. The results indicate that the model has both higher accuracy and better robustness. 

Future research should consider the potential effects of self-vehicle decision planning more carefully. The 

data flow between trajectory prediction and decision planning is unidirectional. Both of them should form a 

closed loop. Decision planning can help the self-vehicle to achieve more accurate trajectory prediction of the 

other vehicle, and trajectory prediction combined with gaming is a direction worth considering. Furthermore, 

practical applications have higher requirements for the efficiency and real-time performance of model 
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inference, which can be optimised in the following aspects: choosing an efficient and lightweight network 

structure based on guaranteeing accuracy; utilising model pruning and the TensorRT inference acceleration 

framework; deploying the model to embedded devices to improve the speed of the network forward inference; 

further evaluating and filtering the predicted objects, and utilising asynchronous operations to achieve parallel 

prediction tasks. 
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郑雪龙，陈雪梅，贾尧涵 

基于 GAT 与 LSTM 网络的城市环境下车辆轨迹预测 

摘要 

在复杂多变的交通环境中，车辆轨迹预测对自动驾驶车辆的决策规划起着至关重要

的作用。它有助于自动驾驶车辆更好地理解交通环境，确保安全高效地完成任务。

本研究提出了一种分层轨迹预测方法。选择图注意力网络（GAT）模型来估计周围

车辆的相互作用。考虑到周围代理的行为，基于长短期记忆网络（LSTM）预测目标

车辆的未来轨迹。该模型已在真实交通环境中得到验证。通过比较目标车辆轨迹预

测的准确性和实时性，所提出的模型优于传统的单一轨迹预测模型。该研究成果将

为城市交通环境下的车辆轨迹预测提供新的建模思路和理论依据。 
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