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ABSTRACT 

Airport clusters are of great significance to the sustainable development of the civil aviation 

transportation industry. The study utilises common frontier and super-efficiency DEA 

methods to assess the efficiency of China’s six major airport groups. It then employs the 

Malmquist index method to analyse changes in airport productivity. The results highlight 

regional disparities in airport efficiency. The East China Airport Group and the Southwest 

Airport Group consistently demonstrate excellent efficiency values, while the North China 

Airport Group and the Northeast Airport Group have significant room for improvement. 

Most airports within the groups operate at low and ineffective levels, with efficiency initially 

increasing and then decreasing. Moreover, the technology gap ratio (TGR) for each airport 

group somewhat shows a downward trend. The Malmquist index indicates that the overall 

factor productivity of each airport has generally remained stable, with efficiency growth 

primarily dependent on scale efficiency. On average, technical efficiency has increased by 

1.5%. However, in terms of technological changes, most airports have experienced 

technological regression, indicating insufficient focus on technological improvement. 

Therefore, it is crucial to prioritise technological innovation and enhance management 

efficiency to achieve efficiency improvements in airport clusters. It is necessary to formulate 

strategies accurately based on the specific conditions of different regions, promote 

coordinated development, foster regional exchanges and cooperation, address regional 

disparities, ensure sustainable development of China’s airport clusters, and establish a world-

class airport cluster. 

KEYWORDS 

airport cluster; meta-frontier; super efficiency DEA; technology gap ratio; Malmquist total 

factor productivity. 

1. INTRODUCTION 

The air transportation industry in China has experienced remarkable growth in tandem with the rapid 

development of the nation’s economy and the evolution of its social environment. Over the decade spanning 

from 2012 to 2021, there has been a notable surge in investment within the industry. Specifically, investment 

in civil aviation infrastructure and technological advancements has escalated from 71.22 billion yuan to 

122,247 billion yuan, marking an impressive increase of 71.65%. Examining the expansion of scheduled flight 

routes during this period reveals a substantial rise from 2,457 to 4,864, nearly doubling the growth. Notably, 

the number of cities in mainland China with regular flights has risen from 178 to 244. The count of transport 

airlines has concurrently increased, with 65 such airlines recorded in 2021, reflecting a net growth of 19 

compared to the figures from 2012. Furthermore, the number of listed airlines has expanded from 5 in 2012 to 

8 in 2021, indicating an accelerated capitalisation process within the industry. 
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Civil transportation airports, serving as crucial national public transportation infrastructure, constitute the 

cornerstone for the advancement of the civil aviation industry and hold a pivotal position within the broader 

transportation system. Since the approval of the National Civil Airport Layout Plan (excluding general aviation 

airports) by the State Council of China in 2008, there has been a substantial increase in the number of 

transportation airports. Consequently, the nationwide density of airports has progressively risen. Notably, the 

international hub status of airports in Beijing, Shanghai and Guangzhou has experienced significant 

enhancement. Simultaneously, the regional hub functions of airports in Chengdu, Shenzhen, Kunming, Xi'an, 

Chongqing, Hangzhou, Xiamen, Changsha, Wuhan and Urumqi, among others, have undergone notable 

augmentation. Several major airports, including Shanghai Hongqiao, Xi'an, Zhengzhou and Wuhan, have 

evolved into vital comprehensive transportation hubs, assuming an increasingly prominent role in the 

comprehensive transportation system. 

According to the “National Civil Transport Airport Layout Plan”, China’s airports are divided into six 

major airport groups: North China, Northeast China, East China, Central South China, Southwest China and 

Northwest China. By 2025, on the basis of existing (including under construction) airports, the national civil 

transport airports, about 320 airports, are planned to be built. However, the substantial surge in investment 

within the airport industry has led to a degree of oversupply in certain airport facilities. While some airports 

demonstrate robust operational performance, others exhibit deficiencies in service quality and facility 

functionality. Consequently, amidst the challenging backdrop of pressure on the civil aviation industry and a 

decline in business volume, it holds significant practical importance to systematically analyse the efficiency 

variations among airports across different regions. This analysis, based on airport positioning and development 

stages, will facilitate the precise understanding of the developmental strategies necessary for distinct airports, 

thereby contributing to the sustainable evolution of the airport industry. 

Within the realm of civil aviation in China, airports registering an annual passenger throughput below 2 

million passengers are classified as regional airports. Accordingly, our study focuses on airports exceeding an 

annual passenger throughput of 2 million passengers, which serve as the primary airports within China’s six 

major airport groups. The operational quality of these airports holds paramount significance for the sustainable 

progression of China’s air transportation industry. 

This article aims to address several key inquiries. What is the current development status of China’s airport 

clusters? To what extent does a technological gap exist between various airport groups? How has operating 

efficiency evolved during the study period? To unravel these questions, our study targets the operational 

efficiency of 45 airports situated in these six airport clusters. We propose employing a research methodology 

grounded in common frontier super-efficiency data envelopment analysis and utilising the Malmquist index to 

examine shifts in the efficiency of each airport cluster in China. 

Our research contributions can be encapsulated as follows. Methodologically, we employ the meta-frontier 

super-efficiency data envelopment analysis (DEA) model. This model is instrumental in evaluating traditional 

DEA for decision-making units, especially in instances where multiple decision-making units exhibit 

effectiveness in DEA. We compare and rank decision-making units to facilitate a more precise evaluation of 

airport performance. Additionally, the meta-frontier method involves organising decision-making units into a 

group frontier, comprehensively addressing regional differences, and then studying the difference between the 

region and the whole. Finally, the Malmquist index is employed to analyse changes in total factor productivity 

and efficiency decomposition within each airport group in China. In terms of research data, we used data from 

2013 – 2022 to draw useful insights into the rapidly developing air transport industry, and to provide some 

suggestions for the sustainable development of China’s airport clusters. 

The remainder of this article is organised as follows. Section 2 summarises the literature review on airport 

efficiency research. The third part introduces the theoretical methodology, and the fourth part introduces the 

situation and empirical results and discussions of 45 airports in China’s six major airport groups. Finally, the 

fifth section gives the main conclusions and several suggestions. 

2. LITERATURE REVIEW 

Airports constitute a crucial element of civil aviation transportation, and their operational efficiency 

significantly influences the overall service level of air transportation. Research on airport operational 

efficiency has garnered considerable attention from scholars globally. Currently, many scholars employ data 

envelopment analysis (DEA) to investigate airport efficiency, examining national, regional or airport-specific 

indicators. The research on airport efficiency has progressed significantly, with varied focuses and directions. 
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Scholars analyse operational efficiency by considering variable selection for input and output variables, 

performance measurement methods, data time span and differences among airports in various regions. 

Efficiency evaluation methods generally fall into two categories: parametric and non-parametric methods. 

Mainstream methods include stochastic frontier analysis (SFA), data envelopment analysis (DEA), Malmquist 

index, among others. In cases with multiple inputs and outputs, DEA is commonly used by researchers. The 

non-parametric data envelopment method is a commonly used method to measure the relative effectiveness of 

efficiency. This method does not require parameter estimation of the production function. It is widely used in 

efficiency evaluation and has a very important impact on efficiency evaluation. 

When the conventional DEA model assesses decision-making units, it faces limitations in distinguishing 

situations where multiple units demonstrate effectiveness in DEA. To tackle this issue, researchers have refined 

the CCR model to enable the evaluation of effective decision-making units. This enhanced model is referred 

to as the super-efficiency DEA model. Consequently, our approach will be grounded in the super-efficiency 

DEA model, aiming to precisely measure the efficiency of major airports within China’s airport clusters. 

Gillen et al. [1] pioneered the application of the DEA (data envelopment analysis) model to assess the 

efficiency of 21 airports in the United States, marking the inception of various improved derivative models in 

subsequent research. Lam et al. [2] evaluated the efficiency of 11 major airports in the Asia-Pacific region, 

and Lozano [3] et al. explored the efficiency of 39 airports in Spain using the SBM-DEA model (data 

envelopment analysis based on slack variables). Rapee et al. [4] combined DEA and AHP (analytical hierarchy 

process) to assess the efficiency of major airports in Thailand. Örkcü et al. [5] used the Malmquist productivity 

index to evaluate the performance of 21 airports in Turkey, and Storto [6] employed the NSBM-DEA method 

(data envelopment analysis based on network slack variables) to study the efficiency of Italian airports. Huynh 

et al. [7] adopted a two-stage method to examine the efficiency of Southeast Asian airports. 

While most of previous studies focus on analysing and evaluating airport performance at the national and 

regional levels, with limited attention to airport clusters, Chae and Kim [8] delved into the impact of hub 

airport cluster development policies on airport efficiency. Wang et al. [9] employed the system dynamics 

method to establish an airport cluster efficiency evaluation model, investigating the efficiency performance of 

each airport in the Beijing-Tianjin-Hebei airport cluster. Zhang et al. [10] measured the static collaboration 

degree and dynamic collaborative development degree of the Chengdu-Chongqing airport cluster from a group 

collaborative development perspective. 

Despite these related studies on airport clusters, few have specifically focused on efficiency, with existing 

research primarily concentrating on collaboration and efficiency evaluation within specific airport clusters. 

Consequently, there is a notable absence of comprehensive analyses of China’s airport clusters. This article 

seeks to address this gap by conducting a thorough analysis and comparison of China’s six major airport 

clusters, aiming to provide insightful suggestions for their development. 

3. METHODOLOGY AND VARIABLES 
Our goal is to assess airport efficiency, and this chapter provides a brief overview of the models and 

methods to be used. 

3.1 Methodology 

Meta-frontier super-efficiency DEA model 

When utilising the conventional DEA model to evaluate decision-making units (DMUs), numerous 

situations arise where the evaluation results yield equivalent DEA values of 1, making it impossible to further 

assess and compare effective decision-making units. To address this limitation, Andersen and Petersen [13] 

introduced the super-efficiency DEA model, which aligns with the traditional model’s variable definitions. 

The primary distinction lies in the efficiency analysis process, where the production frontier undergoes 

alterations. Specifically, the i-th DMU is excluded, and a new production frontier is established through a 

linear combination of the input and output from the remaining DMUs. Subsequently, the efficiency of each 

DMU is compared in a sequential manner. This modification overcomes the challenges encountered by the 

traditional DEA model in evaluating differences among effective units. 

The super-efficiency DEA model can be used to evaluate the performance of an enterprise or organisation. 

It can measure the efficiency level of an enterprise or organisation in utilising resources and identify potential 

room for improvement in resource utilisation. The super-efficiency DEA model is developed from the 

traditional DEA model and is an advanced form of traditional DEA. Its advantage is that it can eliminate the 
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impact of some external factors on performance and provide a more accurate efficiency assessment. Super-

efficiency DEA models can be divided into CCR models with CRS and BCC models with VRS. In this study, 

both the CRS and super-efficiency DEA models were employed to gauge the efficiency of each airport unit. 

DEA is only applicable to the relative efficiency assessment of multiple DMUs. Moreover, due to the large 

differences in geographical location, supporting facilities, economic development level and other factors of 

airports in different regions, there are differences in the production technology frontier of airports in various 

regions. In order to distinguish the regional production efficiency among various airports in China due to the 

differences, the common frontier method was introduced in the study. 

The principle of the common frontier is to group all DMUs based on the heterogeneity of production 

technologies of different decision-making units. Each group forms its own production frontier, and all groups 

jointly form a production frontier, that is, a common frontier. The common frontier model can measure the 

efficiency under different frontiers and is more comprehensively comparable. 

An inherent advantage of this model lies in its ability to calculate comparable technical efficiency for 

entities operating under diverse technologies. Given the substantial disparities in geographical location, 

supporting policies and economic development levels among airports in different regions, their production 

technology frontiers vary significantly. Therefore, this article employs the common frontier method to assess 

the efficiency of decision-making units in distinct environments. The common frontier model is integrated 

with the super-efficiency DEA model to collectively study the efficiency of each airport, providing a robust 

and comprehensive analysis. 

Suppose there is an airport 𝐷𝑀𝑈𝑗(𝑗 = 1,2, … , 𝑛)，each 𝐷𝑀𝑈𝑗  have 𝑚  item input amount (𝑖 = 1,2, … , 𝑚) and 

𝑠 item output (𝑟 = 1,2, . . . , 𝑚). The corresponding vectors can be expressed as: 𝑋𝑗 = (𝑥1𝑗 , 𝑥2𝑗 , . . . , 𝑥𝑚𝑗)𝑇 > 0，𝑋𝑗 =

(𝑥1𝑗 , 𝑥2𝑗 , . . . , 𝑥𝑚𝑗)𝑇 > 0，𝑌𝑗 = (𝑦1𝑗 , 𝑦2𝑗 , . . . , 𝑦𝑠𝑗)𝑇 > 0，𝑗 = 1,2, . . . , 𝑛，𝑆−enter the slack variable; 𝑆+ is the output slack 

variable. All decision-making units (𝐷𝑀𝑈𝑆) are divided into k (𝐾 > 1) groups, then there are; 

the common technology set of the kth group of DMUs is: 

𝑇𝑘 = {(𝑥, 𝑦): 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑥 → 𝑦} 𝑘 = 1,2, ⋯ , 𝑘 (1) 

the input-output relationship of the kth group is: 

𝑃𝑘(𝑥) = {𝑦: (𝑥, 𝑦) ∈ 𝑇𝑘} (2) 

the common technology set of all units is: 

𝑇 = {(𝑥, 𝑦): 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑥 → 𝑦} (3) 

the corresponding production possibility set is: 

𝑃(𝑥) = {𝑦: (𝑥, 𝑦) ∈ 𝑇} (4) 

then there are: 

𝑇 = {𝑇1⋃𝑇2⋃ ⋅⋅⋅ 𝑇𝑘} (5) 

Pk(x) determine the frontier surface to be the group frontier, all Pk(x) the frontier formed together is called 

the common frontier P(x). 

Therefore, the directional distance function of the decision-making unit DMU0 from the common frontier 

is: 

𝑚𝑖𝑛[𝜃 − 𝜀(�̂�T𝑆− + 𝑒T𝑆+)]

s.𝐭. ∑  

𝑛

𝑗=1

𝑥𝑗𝜆𝑗 + 𝑆− = 𝜃𝑥0

∑  

𝑛

𝑗=1

𝑦𝑗𝜆𝑗 − 𝑆+ = 𝑦0

𝜆𝑗 ≥ 0

𝑆− ≥ 0, 𝑆+ ≥ 0
𝑗 = 1,2, ⋯ , 𝑛

 
(6) 



Promet – Traffic&Transportation. 2024;36(5):885-901.  Traffic Engineering  

889 

In the formula,  𝜆 is the weight vector; 𝜃 is the efficiency value, 𝜀  is a non-Archimedean infinitesimal 

quantity. 
When the decision-making unit DMU0 belongs to the k-th group, the directional distance function between 

DMU0 and the group frontier of the k group is: 

𝑚𝑖𝑛[𝜑 − 𝜀(�̂�T𝑆− + 𝑒T𝑆+)]

s.t. ∑  

𝑛

𝑗=1

𝑥𝑘  𝑗𝜆𝑗 + 𝑆− = 𝜑𝑥0

∑  

𝑛

𝑗=1

𝑦𝑘  𝑗𝜆𝑗 − 𝑆+ = 𝑦0

𝜆𝑗 ≥ 0

𝑆− ≥ 0, 𝑆+ ≥ 0

𝑗 = 1,2,⋅⋅⋅, 𝑛𝑘

 
(7) 

In the formula, xk
j，yk

j are the input and output variables of region j in the k-th group respectively; 𝜑 is the 
efficiency value. 

When 𝜃 =1or 𝜑 =1, it shows that the decision-making unit is located on the frontier, and there is a 𝜃 ≤ 𝜑 

relationship between the common frontier and the group frontier. 

The technology gap ratio (TGR) is defined as the ratio between the common frontier value (i.e. the 

efficiency value derived from the common frontier) and the group frontier value (i.e. the efficiency value 

derived from the group frontier). Mathematically, this ratio can be expressed as: 

TGR =
𝜃

𝜑
     TGR ∈ (0,1) 

(8) 

The closer the TGR is to 1, the smaller the technical efficiency gap between the common frontier and the 

group frontier. 

Malmquist productivity index 

While the DEA model is effective for analysing the relative efficiency of decision-making units (DMUs), 

the Malmquist productivity index offers an insightful measurement of efficiency changes between periods t 

and t+1. The Malmquist productivity index is divided into two key components: technical efficiency change 

(MEFFCH) and technological progress (MTECH). The Malmquist productivity index from period t to t+1 can 

be expressed as: 

𝑀𝑡
𝑡+1 = [

𝐷o
𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1)

𝐷o
𝑡(𝑥𝑡, 𝑦𝑡 , 𝑏𝑡)

𝐷o
𝑡+1(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1)

𝐷o
𝑡+1(𝑥𝑡 , 𝑦𝑡 , 𝑏𝑡)

]

1/2

MEFFCH𝑡
𝑡+1 =

𝐷o
𝑡+1(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1)

𝐷o
𝑡(𝑥𝑡 , 𝑦𝑡 , 𝑏𝑡)

MTECH𝑡
𝑡+1 = [

𝐷𝑜
𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1)

𝐷o
𝑡+1(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1)

𝐷o
𝑡(𝑥𝑡, 𝑦𝑡 , 𝑏𝑡)

𝐷o
𝑡+1(𝑥𝑡, 𝑦𝑡 , 𝑏𝑡)

]

1/2

 
(9) 

If M > 1, it signifies an augmentation in DMU productivity from period t to period t+1; conversely, a 

value less than 1 denotes a decrement in productivity. Similarly, MEFFCH > 1 denotes an escalation in 

technical efficiency, while a value below 1 indicates a decline in technical efficiency. Moreover, MTECH > 1 

signifies technological progress, whereas a value less than 1 implies technological decline. To undertake a 

thorough efficiency analysis, this study investigates the dynamic shifts in airport efficiency through the 

application of the Malmquist productivity index. 

3.2 Variables 

This section will introduce the efficiency evaluation index system, which includes both input and output 

variables and interprets and analyses the variables. 

Input variables 

In this paper, the terminal area, the number of aircraft slots and the runway length are selected as input 

indicators to reflect the resource conditions of airport infrastructure. The area of the terminal building includes 
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the area of the domestic terminal building and the international terminal building. The terminal building is a 

place for passengers to go through check-in, security check, boarding and other formalities, and to provide 

waiting, rest, catering and other services, and also provides diversified service facilities such as VIP lounges, 

children’s recreation areas, barrier-free facilities and other facilities, which need to meet the personalised needs 

of different types of passengers and the area, facilities and functions of the terminal building directly determine 

the number of passengers and handling passenger flow that the airport can accommodate, and are a key 

indicator of airport landside capacity. Its area, facilities and functions directly determine the number of 

passengers that the airport can accommodate and the passenger flow it can handle, which is a key indicator of 

the airport’s landside capacity. Runway length is the length aircraft need to taxi on the runway during take-off 

and landing in order to obtain sufficient lift or deceleration. For larger aircraft, due to their weight, inertia, 

engine thrust, airport elevation and wind speed, a longer runway length is required to meet the take-off and 

landing requirements. If the runway length is insufficient, the aircraft cannot take off or land safely, and the 

aircraft requires more power for take-off and landing, resulting in increased fuel consumption and decreased 

economy, it also restricts the use of airports and affects the navigational capacity of airports. For example, 

according to the ICAO classification by aircraft geometry, the A380 belongs to Class E aircraft, i.e. heavy 

aircraft, which requires a taxiing distance of about 3,000 m to take off at maximum load capacity; therefore, a 

sufficiently long runway length can help to support the take-off and landing of larger aircraft, which affects 

the operational capacity and flexibility of airports. In addition, the more runways there are, the more aircraft 

land and take-off there are per unit of time at airports. Therefore, runway length is an indicator of the airside 

capacity of an airport; and the number of slots consists of near-side slots and far-side slots. Near-side slots are 

usually close to the terminal building, while far-side slots are located in the fringe area of the airport, and more 

slots mean that more planes can be parked, thus accommodating more flights. This is especially important for 

busy airports, as it can effectively alleviate airport saturation and delays. Sufficient slots can enable aircraft to 

find a parking position faster upon arrival, reducing taxiing time and improving the overall operational 

efficiency of the airport; and sufficient slots can shorten the downtime of the aircraft, allowing the aircraft to 

be ready for the next round of flights more quickly and improving flight turnover rates. Therefore, the number 

of slots is a key factor in the airside capacity of an airport, and an increase in the number of slots can increase 

the handling capacity of an airport (airport handling capacity = number of slots x average daily take-offs and 

landings per slot, where average daily take-offs and landings refers to the average number of take-offs and 

landings per day per slot). These indicators take into account the airport’s landside and airside capacity and 

are an important basis for assessing the overall size and operational capacity of the airport. 

Output variables 

The study selected passenger throughput, cargo and mail throughput, and number of take-offs and landings 

as output indicators, which comprehensively reflect the operating status of the airport. Passenger throughput 

means measuring the number of passengers handled by the airport and is a key indicator to evaluate the 

airport’s passenger flow and service efficiency. It reflects the airport’s ability to handle passengers within a 

certain period of time and is crucial to understanding the airport’s operational scale and passenger service 

levels. Cargo mail throughput measures the handling volume of cargo and mail at the airport. It is an indicator 

to evaluate the busyness of the airport’s cargo business. It can reflect the activity of the airport in freight and 

logistics and is important for understanding the comprehensive operating capabilities of the airport. The 

number of take-offs and landings refers to the sum of the number of take-offs and landings of aircraft and is 

an important indicator for evaluating airport flow and traffic busyness. The number of take-offs and landings 

is directly related to the flight activities at the airport, which is crucial for understanding the busyness of the 

airport and air traffic conditions. The above output indicators can more comprehensively evaluate the airport’s 

performance in passenger services, cargo and air traffic, and provide an important reference for airport 

management and planning. 

3.3 Data sources 

In our study, a sample comprising 45 Chinese airport companies was utilised. The data for this analysis 

were sourced from the “National Airport Production Statistical Bulletin” by the Civil Aviation Administration 

of China, as well as official website data from various airports, among other reliable sources. Table 1 presents 

the descriptive statistics for each indicator within the sample. 
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Table 1 – Descriptive statistics of input-output indicators of China’s airport sample (N=45) from 2013 to 2022 

Variable Sample size Min. Max. Mean Std. dev. 

terminal area 450 2.5 145.6 28.01 31.33 

number of airport stands 450 18 340 82.86 73.78 

runway length 450 2400 15000 4869.44 2595.56 

passenger volume  450 917325 100983290 18197697.27 17020024.70 

cargo volume 450 4856.26 3982616.4 325063 619407.33 

aircraft movement 450 20296 614022 146397.48 115601.52 

4. RESULT 
This chapter applies the model and indicator system established in the previous article to measure the 

efficiency of China’s airport cluster and analyse its efficiency performance. 

Meta-frontier airport efficiency analysis 

This paper employs the global reference super-efficiency DEA model to evaluate decision-making units 

across distinct periods under the global optimal production frontier. This methodology effectively mitigates 

issues associated with infeasible solutions and inter-temporal incomparability in efficiency measurement. 

Additionally, the meta-frontier method is applied to categorise China’s major airports into six groups: North 

China Airport Group, Northeast Airport Group, East China Airport Group, Central and South Airport Group, 

Southwest Airport Group and Northwest Airport Group. Over the period from 2013 to 2022, the study 

computes efficiency scores for 45 airport units under both the group frontier and common frontier. The 

determination of annual super-efficiency values is carried out, followed by an annual static efficiency analysis. 

The detailed outcomes of this analysis are presented in Table 2. 

Table 2 – Main airports of each airport group 

Area Airport 
IATA 

Code 
Area Airport 

IATA 

code 

North China Airport 

Group 

Beijing/Capital PEK 

Northwest Airport Group 

Xi'an/Xianyang XIY 

Tianjin/Binhai TSN Urumqi/Diwopu URC 

Taiyuan/Wusu TYN Lanzhou/Zhongchuan LHW 

Hohhot/Baita HET Yinchuan/Hedong INC 

Shijiazhuang/Zhengding SJW Xining/Caojiabao XNN 

Northeast Airport 

Group 

Harbin/Taiping HRB 

Southwest Airport Group 

Chengdu/Shuangliu CTU 

Kunming/Changshui KMG 

Shenyang/Taoxian SHE 
Chongqing/Jiangbei CKG 

Guiyang/Longdongbao KWE 

Dalian/Zhoushuizi DLC 
Lijiang/Sanyi LJG 

Xishuangbanna/Gasa JHG 

Changchun/Longjia CGQ 

Lhasa/Gonggar LXA 

Mianyang/Southern 

Suburbs 
MIG 

East China Airport 

Group 

Pudong, Shanghai PVG 

Central and South Airport 

Group 

Guangzhou/Baiyun CAN 

Shanghai Hongqiao SHA Shenzhen/Baoan SZX 

Hangzhou/Xiaoshan HGH Zhengzhou/Xinzheng CGO 

Nanjing/Lukou NKG Wuhan/Tianhe WUH 

Xiamen/Gaoqi XMN Changsha/Huanghua CSX 

Jinan/Yaoqiang TNA Haikou/Meilan HAK 

Fuzhou/Changle FOC Sanya/Phoenix SYX 

Ningbo/Lishe NGB Nanning/Wuxu NNG 

Wenzhou/Longwan WNZ Nanchang/Changbei KHN 

Quanzhou/Jinjiang JJN Zhuhai/Jinwan ZUH 

Wuxi/Shuofang WUX Guilin/Liangjiang KWL 

  Jieyang/Chaoshan SWA 
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According to the results in Table 3, it can be seen from the time series analysis that the efficiency values of 

China’s airport clusters generally showed an upward trend from 2013 to 2019, which shows that the aviation 

industry at all airports in China is constantly progressing and developing, while the efficiency value shows a 

downward trend from 2019 to 2022; in 2019, the efficiency values of each airport group reached the highest, 

with efficiency values exceeding 0.6. Judging from the efficiency performance of each airport group over the 

years, the East China Airport Group and the Southwest Airport Group have excellent efficiency values all year 

round and make full use of existing infrastructure. The Central South Airport Group and the Northwest Airport 

Group are second, and the efficiency of the Central South Airport Group is gradually slowing down; there is 

still a lot of room for improvement in the efficiency performance of the North China Airport Group and the 

Northeast Airport Group. Especially in the North China Airport Group, homogeneous competition is serious, 

and there is a lack of coordination in airport planning, construction, etc., which in turn affects airport efficiency. 

Analysing in terms of mean value, it can be seen that the efficiency value of the 6 major airport clusters in the 

past 10 years presents as Southwest (0.645) > East China (0.641) > Central and South China (0.593) > 

Northwest (0.561) > Northeast (0.520) > North China (0.470). 

Combined with the global reference common frontier super-efficiency DEA model, Table 4 lists the common 

frontier airport efficiency from 2013 to 2022, and Table 5 lists the group frontier airport efficiency from 2013 

to 2022. 

In terms of common frontiers, it can be seen from Table 4 that the efficiency of each airport performs poorly, 

with a large gap. From the perspective of common frontiers, SZX and PVG are leading the way, and other 

airports with relatively high efficiency include MIG. In addition, the INC efficiency value is 0.328 and the 

SWA efficiency value is 0.263, the worst performance, reflecting that the low efficiency of the airport is not 

consistent with the regional development of the airport. Even some airports in economically developed coastal 

areas perform poorly. PVG and SHA are both Shanghai airports, and there is a clear gap in the average 

efficiency of the two (PVG: 0.968; SHA0.684). Pudong Airport is Shanghai’s main airport, while Hongqiao 

Airport plays a supporting role, and there are differences in management and operations. The efficiency values 

of the sample airports from 2013 to 2019 showed an overall upward trend (0.570→0.763), while the efficiency 

values from 2019 to 2022 showed a fluctuating downward trend (0.763→0.390). This decline in efficiency 

values during the latter period is attributed to the impact of the pandemic on residents’ travel, subsequently 

reducing airport efficiency. 

From the perspective of the group frontier, as shown in Table 5, there are differences in the efficiency of 

different airports, and there is a certain degree of improvement compared to the common frontier efficiency 

value. In the group, SZX and PVG still performed best, with average efficiencies of 1.055 and 0.971, 

respectively, while SWA still had the lowest average efficiency, only 0.314. The main reasons for the 

outstanding performance of SZX and PVG airports are advanced hardware facilities, scientific operation 

management, excellent human resources and strong policy support. While SWA airport was established late, 

the route network is imperfect, and the management level needs to be improved. In addition, the mean 

efficiency of PVG (0.968→0.971) remains unchanged, while the mean efficiency of SHA (0.684→0.719) has 

improved to a certain extent, indicating that Hongqiao Airport’s efficiency performance is relatively high in 

the East China airport cluster. 

Table 3 – Average airport efficiency of the six major airport groups from 2013 to 2022 

 
North China 

Airport Group 

Northeast Airport 

Group 

East China 

Airport Group 

Central and South 

Airport Group 

Southwest Airport 

Group 

Northwest Airport 

Group 

2013 0.455 0.450 0.561 0.577 0.569 0.565 

2014 0.460 0.474 0.614 0.595 0.599 0.553 

2015 0.464 0.510 0.619 0.603 0.633 0.492 

2016 0.484 0.571 0.660 0.608 0.687 0.567 

2017 0.559 0.669 0.731 0.666 0.696 0.641 

2018 0.613 0.683 0.763 0.682 0.737 0.689 

2019 0.617 0.662 0.797 0.707 0.793 0.744 

2020 0.390 0.417 0.617 0.529 0.638 0.503 

2021 0.410 0.449 0.619 0.570 0.650 0.559 

2022 0.247 0.313 0.433 0.391 0.445 0.296 

Mean 0.470 0.520 0.641 0.593 0.645 0.561 
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Table 4 – Common frontier efficiency values of each airport from 2013 to 2022 

Airport 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Ave 

PEK 0.912 0.927 0.943 0.969 0.975 1.036 0.990 0.522 0.568 0.352 0.819 

PVG 0.921 1.054 1.012 0.923 1.015 1.019 0.993 0.964 0.997 0.780 0.968 

CAN 0.952 1.068 0.821 0.881 0.961 0.851 0.874 0.705 0.752 0.637 0.850 

CTU 0.684 0.746 0.800 0.873 0.924 0.966 1.055 0.846 0.812 0.502 0.821 

SZX 1.675 0.748 0.798 0.853 0.902 0.951 1.051 0.917 0.969 0.837 0.970 

KMG 0.520 0.556 0.630 0.693 0.742 0.772 0.777 0.566 0.567 0.392 0.622 

XIY 0.592 0.656 0.728 0.807 0.901 0.950 1.005 0.695 0.687 0.323 0.734 

SHA 0.679 0.722 0.743 0.769 0.773 0.805 0.843 0.583 0.618 0.302 0.684 

CKG 0.496 0.559 0.607 0.663 0.537 0.509 0.544 0.448 0.460 0.306 0.513 

HGH 0.628 0.708 0.774 0.843 0.920 0.973 1.060 0.940 1.125 0.908 0.888 

NKG 0.731 0.490 0.413 0.471 0.534 0.575 0.613 0.443 0.385 0.319 0.498 

CGO 0.731 0.882 0.947 0.429 0.479 0.516 0.538 0.486 0.480 0.353 0.584 

XMN 0.956 1.035 0.880 0.905 0.941 0.992 1.032 0.687 0.635 0.487 0.855 

WUH 0.344 0.371 0.395 0.426 0.458 0.475 0.620 0.322 0.497 0.324 0.423 

CSX 0.704 0.784 0.798 0.887 0.593 0.589 0.624 0.469 0.490 0.324 0.626 

HAK 0.533 0.610 0.708 0.810 0.941 0.998 1.005 0.720 0.768 0.528 0.762 

URC 0.656 0.692 0.765 0.824 0.866 0.920 0.946 0.479 0.696 0.430 0.727 

TSN 0.479 0.541 0.498 0.436 0.522 0.558 0.534 0.347 0.381 0.186 0.448 

KWE 0.451 0.543 0.567 0.636 0.751 0.819 0.880 0.684 0.693 0.414 0.644 

HRB 0.586 0.688 0.777 0.885 1.078 0.969 0.937 0.638 0.611 0.445 0.762 

SHE 0.564 0.542 0.548 0.639 0.721 0.784 0.836 0.581 0.613 0.436 0.626 

SYX 0.707 0.810 0.872 0.924 1.077 1.031 1.001 0.793 0.855 0.518 0.859 

DLC 0.692 0.695 0.720 0.778 0.879 0.928 0.959 0.457 0.530 0.360 0.700 

TNA 0.452 0.478 0.509 0.607 0.720 0.818 0.859 0.646 0.712 0.469 0.627 

NNG 0.369 0.420 0.458 0.501 0.588 0.626 0.673 0.478 0.496 0.356 0.496 

LHW 0.790 0.899 0.410 0.554 0.644 0.692 0.759 0.571 0.622 0.323 0.626 

FOC 0.432 0.452 0.514 0.536 0.563 0.640 0.566 0.375 0.383 0.258 0.472 

TYN 0.466 0.462 0.510 0.554 0.690 0.749 0.765 0.516 0.574 0.333 0.562 

CGQ 0.406 0.443 0.504 0.554 0.669 0.734 0.580 0.410 0.491 0.326 0.512 

KHN 0.362 0.379 0.391 0.400 0.549 0.673 0.676 0.522 0.539 0.264 0.476 

HET 0.470 0.493 0.564 0.620 0.763 0.869 0.934 0.608 0.664 0.357 0.634 

NGB 0.492 0.576 0.604 0.705 0.824 0.943 1.072 0.818 0.504 0.346 0.688 

WNZ 0.710 0.731 0.776 0.855 0.943 0.628 0.605 0.452 0.483 0.305 0.649 

ZUH 0.244 0.289 0.302 0.376 0.497 0.585 0.624 0.425 0.450 0.250 0.404 

SJW 0.401 0.334 0.268 0.324 0.403 0.464 0.481 0.349 0.270 0.251 0.355 

INC 0.221 0.243 0.274 0.319 0.398 0.434 0.502 0.343 0.352 0.197 0.328 

KWL 0.505 0.598 0.544 0.571 0.661 0.535 0.410 0.220 0.231 0.099 0.437 

JJN 0.221 0.236 0.297 0.309 0.421 0.574 0.644 0.457 0.481 0.310 0.395 

WUX 0.244 0.276 0.287 0.336 0.392 0.425 0.477 0.422 0.481 0.275 0.361 

SWA 0.172 0.185 0.206 0.236 0.286 0.356 0.384 0.288 0.318 0.201 0.263 

XNN 0.378 0.274 0.283 0.332 0.397 0.449 0.507 0.428 0.438 0.207 0.369 

LJG 0.430 0.511 0.575 0.682 0.708 0.747 0.712 0.523 0.454 0.308 0.565 

JHG 0.370 0.401 0.475 0.491 0.450 0.497 0.617 0.474 0.495 0.281 0.455 

LXA 0.363 0.408 0.467 0.527 0.572 0.651 0.694 0.651 0.763 0.449 0.554 

MIG 0.937 1.069 0.947 0.929 0.885 0.934 1.063 0.910 0.953 0.905 0.953 

Ave 0.570 0.591 0.598 0.637 0.700 0.734 0.763 0.560 0.585 0.390  
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Table 5 – Frontier efficiency values of each airport group from 2013 to 2022 

Airport 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Ave 

PEK 0.925 0.948 0.961 0.987 0.979 1.037 0.990 0.584 0.676 0.477 0.856 

PVG 0.922 1.054 1.018 0.935 1.015 1.028 1.002 0.964 0.997 0.780 0.971 

CAN 0.957 1.077 0.832 0.897 0.975 0.964 0.993 0.784 0.908 0.836 0.922 

CTU 0.746 0.811 0.828 0.910 0.957 0.990 1.055 0.921 0.937 0.789 0.894 

SZX 2.127 0.773 0.824 0.867 0.919 0.961 1.070 0.953 1.097 0.961 1.055 

KMG 0.528 0.564 0.638 0.701 0.751 0.780 0.784 0.574 0.576 0.426 0.632 

XIY 0.654 0.711 0.773 0.842 0.923 0.956 1.148 0.956 1.036 0.521 0.852 

SHA 0.707 0.751 0.773 0.800 0.819 0.853 0.893 0.610 0.650 0.339 0.719 

CKG 0.557 0.628 0.682 0.746 0.577 0.534 0.570 0.471 0.503 0.419 0.569 

HGH 0.655 0.733 0.798 0.863 0.932 0.979 1.060 0.940 1.125 0.908 0.899 

NKG 0.774 0.559 0.485 0.540 0.601 0.627 0.664 0.536 0.468 0.386 0.564 

CGO 0.828 0.956 1.051 0.519 0.570 0.613 0.636 0.544 0.534 0.459 0.671 

XMN 0.964 1.056 0.931 0.949 0.967 1.009 1.032 0.737 0.697 0.558 0.890 

WUH 0.464 0.492 0.515 0.551 0.582 0.597 0.656 0.360 0.545 0.359 0.512 

CSX 0.822 0.908 0.914 1.025 0.634 0.640 0.673 0.531 0.554 0.388 0.709 

HAK 0.578 0.651 0.751 0.840 0.952 1.002 1.005 0.777 0.832 0.629 0.802 

URC 0.757 0.803 0.837 0.888 0.918 0.965 0.975 0.597 0.759 0.490 0.799 

TSN 0.738 0.840 0.854 0.849 0.983 1.063 1.009 0.674 0.721 0.407 0.814 

KWE 0.463 0.558 0.582 0.652 0.772 0.851 0.922 0.706 0.719 0.425 0.665 

HRB 0.740 0.854 0.930 1.030 1.156 1.015 1.016 0.722 0.724 0.552 0.874 

SHE 0.800 0.719 0.738 0.809 0.876 0.947 1.135 0.894 0.903 0.689 0.851 

SYX 0.747 0.840 0.897 0.944 1.099 1.038 1.001 0.834 0.895 0.590 0.888 

DLC 0.803 0.812 0.832 0.904 1.018 1.072 1.072 0.709 0.793 0.729 0.874 

TNA 0.621 0.643 0.663 0.770 0.889 0.976 1.073 0.856 0.954 0.701 0.815 

NNG 0.466 0.525 0.568 0.617 0.714 0.753 0.765 0.577 0.605 0.436 0.603 

LHW 0.901 1.166 0.609 0.784 0.870 0.922 1.111 0.851 0.910 0.576 0.870 

FOC 0.490 0.511 0.565 0.574 0.587 0.676 0.614 0.450 0.452 0.317 0.524 

TYN 0.682 0.652 0.707 0.736 0.908 0.983 1.031 0.707 0.793 0.500 0.770 

CGQ 0.627 0.678 0.717 0.798 0.827 0.847 0.687 0.506 0.598 0.415 0.670 

KHN 0.425 0.434 0.447 0.442 0.602 0.731 0.729 0.579 0.604 0.327 0.532 

HET 0.635 0.693 0.724 0.772 0.864 0.939 1.108 0.823 0.869 0.550 0.798 

NGB 0.558 0.662 0.671 0.845 0.960 0.963 1.072 0.968 0.542 0.392 0.763 

WNZ 0.790 0.794 0.829 0.912 1.000 0.699 0.648 0.505 0.552 0.363 0.709 

ZUH 0.339 0.386 0.383 0.466 0.566 0.648 0.675 0.504 0.524 0.299 0.479 

SJW 0.702 0.528 0.402 0.487 0.571 0.637 0.645 0.501 0.380 0.378 0.523 

INC 0.299 0.328 0.359 0.411 0.511 0.565 0.633 0.460 0.480 0.279 0.432 

KWL 0.575 0.690 0.613 0.651 0.729 0.600 0.475 0.270 0.285 0.139 0.503 

JJN 0.303 0.326 0.385 0.404 0.519 0.679 0.734 0.582 0.597 0.412 0.494 

WUX 0.395 0.439 0.432 0.493 0.564 0.617 0.701 0.675 0.758 0.444 0.552 

SWA 0.232 0.250 0.279 0.305 0.351 0.398 0.408 0.319 0.360 0.236 0.314 

XNN 0.503 0.432 0.443 0.523 0.621 0.704 0.789 0.718 0.729 0.366 0.583 

LJG 0.561 0.671 0.762 0.909 0.946 1.050 0.962 0.704 0.624 0.426 0.762 

JHG 0.514 0.556 0.674 0.712 0.671 0.737 0.887 0.671 0.727 0.421 0.657 

LXA 0.480 0.538 0.613 0.699 0.775 0.907 0.953 0.929 1.128 0.642 0.766 

MIG 0.937 1.071 0.947 0.930 0.885 0.938 1.076 0.914 0.953 0.905 0.956 

Ave 0.673 0.690 0.694 0.740 0.798 0.833 0.870 0.677 0.713 0.503  
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On an overall scale, the efficiency of most airport groups in China remains comparatively inefficient, 

displaying a trend of initial improvement followed by subsequent decline. Looking ahead, air passenger 

throughput and cargo and mail throughput for each airport group is expected to experience continued rapid 

growth. The development of the six major airport groups is anticipated to offer robust support for the 

advancement of China’s civil aviation industry, thereby playing a crucial role in ensuring the country’s 

economic and social development. 

Technology gap in airport efficiency 
Technological disparities exist among various regions, and the common frontier model serves as a valuable 

tool for assessing these differences. This model facilitates the analysis of technological gaps by measuring the 
distance of each group from the common frontier, expressed as the technology gap ratio (TGR). The TGR reflects 
the extent of deviation from optimal production technology and is employed to gauge the frontier production 
technology across diverse groups. A higher TGR value, nearing 1, signifies an elevated technical proficiency of 
the decision-making unit, while a lower value indicates the opposite. Table 6 presents the TGR results for each 
airport group. 

Table 6 – TGR of each airport group from 2013 to 2022 

 
North China 

Airport Group 

Northeast 

Airport Group 

East China 

Airport Group 

Central and South 

Airport Group 

Southwest Airport 

Group 

Northwest 

Airport Group 

2013 0.726 0.752 0.872 0.843 0.876 0.828 

2014 0.735 0.768 0.869 0.869 0.876 0.786 

2015 0.746 0.786 0.879 0.876 0.879 0.786 

2016 0.743 0.801 0.881 0.879 0.876 0.801 

2017 0.775 0.857 0.897 0.903 0.877 0.816 

2018 0.788 0.879 0.911 0.905 0.873 0.821 

2019 0.772 0.849 0.916 0.926 0.881 0.793 

2020 0.715 0.748 0.859 0.892 0.871 0.708 

2021 0.713 0.753 0.866 0.879 0.852 0.719 

2022 0.635 0.680 0.834 0.823 0.794 0.666 

Ave 0.735 0.787 0.878 0.880 0.865 0.772 

 

Table 6 reveals discernible variations in technological disparities between cutting-edge production 

technology and the potential optimal production technology within each group. The Central South Airport 

Group exhibits the highest average technology gap ratio (TGR) among the six major airport groups, standing 

at 0.880. This signifies a relatively advanced production technology, with the airport production technology 

level trailing by 12% from the potential optimal technology. Following suit, the East China and Southwest 

Airport Groups demonstrate commendable technological strength, while the Northeast and Northwest airport 

clusters exhibit moderate levels. Conversely, the North China airport cluster reports an average TGR of 0.735, 

indicating that the production technology level in this region lags by 26.5% from the optimal technology. 

To comprehend the dynamic changes in technology gap ratios (TGR), Figure 1 provides a comparative 

analysis of TGR trends among the six major airport groups spanning the years 2013 to 2022. 

 
Figure 1 – Average TGR of the six major airport groups analysed by the common frontier 
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As depicted in Figure 1, the technology gap ratios (TGR) for Southwest, East China and Central South China 
consistently exhibit higher values, followed by the TGR of Northeast, Northwest and North China. Notably, the 
North China Airport Group records the lowest TGR, indicative of a substantial gap between the two frontiers. 
This discrepancy highlights non-uniform development among airports in the region. Specifically, passenger 
throughput is concentrated at PEK, with other regional airports experiencing comparatively lower throughput. 
Consequently, certain airport resources remain underutilised, constraining collaborative development and 
contributing to an overall lower technical level within the airport group. 

The Southwest region maintains a relatively stable TGR, hovering around 0.87 for the majority of the study 
period, with a slight decrease observed towards the study’s conclusion. Conversely, East China and Central South 
China initially show an upward trajectory, followed by a decline post-2019. Meanwhile, Northeast, Northwest 
and North China exhibit discernible upward trends, followed by a subsequent decline, with the Northeast Airport 
Group experiencing the most pronounced fluctuations. Generally, TGR across all airport groups displays a 
decreasing trend over time. To address operational inefficiencies, airports in various regions must strive to align 
with benchmark airports within their group and industry standards. Airports with low operating efficiency in 
various regions must not only strive to align with benchmark airports within the group but also align with industry 
benchmark airports, and focus on comparative analysis of efficiency improvement practices among airports in 
the same region. 

Decomposition analysis of airport efficiency changes 

To investigate the dynamics of airport efficiency changes, the Malmquist method was employed to gauge 

alterations in the Malmquist productivity index for the six major airport groups. Table 7 presents the Malmquist 

index along with its decomposition for 45 airports across multiple years. The table illustrates variations in 

airport efficiency concerning different inputs and outputs during each period. An index value exceeding 1 

signifies an augmentation in total factor productivity, a value below 1 indicates a decline in total factor 

productivity, and an index value equal to 1 denotes no change in total factor productivity. 

Table 7 – Malmquist index and its decomposition of 45 airports in China over the years 

 effch techch pech sech tfpch 

2013-2014 1.099 0.959 0.992 1.108 1.055 

2014-2015 1.029 1.006 0.998 1.031 1.036 

2015-2016 1.033 1.046 0.996 1.037 1.081 

2016-2017 1.034 1.072 1.002 1.032 1.108 

2017-2018 1.020 1.033 1.000 1.021 1.054 

2018-2019 1.014 1.011 1.012 1.002 1.025 

2019-2020 0.916 0.786 0.968 0.946 0.720 

2020-2021 1.039 0.993 1.019 1.020 1.032 

2021-2022 0.962 0.641 0.979 0.983 0.617 

Ave 1.015 0.939 0.996 1.019 0.953 

 

Table 7 and Figure 2 reveal that over the period from 2013 to 2022, the total factor productivity of each airport 

generally remained stable. However, notable declines were observed in 2019 – 2020 and 2021 – 2022, with indices of 

0.72 and 0.617, respectively. These decreases suggest a reduction in the total factor productivity of decision-making 

units, indicating a decline in operational efficiency for China’s airports. This decline is attributed to a reduction in 

technological change (techch), as total factor productivity is closely linked to technological advancements. 

 
Figure 2 – Malmquist index and its decomposition of the airport over the years 



Promet – Traffic&Transportation. 2024;36(5):885-901.  Traffic Engineering  

897 

The average Malmquist index for airports over the study period is 0.953, reflecting an overall drop of 4.7% 

in airport total factor productivity. A plausible explanation for this trend is the travel restrictions imposed 

during the epidemic in the aforementioned years, leading to decreased passenger and cargo throughput and 

consequently impacting the average efficiency of airport units over time. 

Over the past decade, the average values for technical efficiency, pure technical efficiency and scale 

efficiency were 1.015, 0.996 and 1.019, respectively. This suggests that the growth in airport efficiency 

primarily hinges on scale efficiency. 

Table 8 – Malmquist index and its decomposition of China’s six major airport clusters 

 effch techch pech sech tfpch 

North China Airport Group 0.994 0.935 0.976 1.017 0.928 

Airport Group East China 1.028 0.929 1.004 1.024 0.954 

Northeast Airport Group 1.022 0.940 0.996 1.026 0.960 

Central and South Airport Group 1.008 0.942 0.997 1.011 0.950 

Southwest Airport Group 1.036 0.941 1.011 1.025 0.974 

Northwest Airport Group 1.007 0.936 0.989 1.019 0.943 

Ave 1.016 0.937 0.996 1.020 0.952 

 

Examining the pure technical efficiency of the airport groups as presented in Table 8, it is noteworthy that 

the pure technical efficiency values for Northeast and Southwest exceed 1, whereas those for North China, 

East China, Central South and Northwest China are all below 1. This indicates that, over the past decade, there 

has been no substantial improvement in the pure technical efficiency of the airport groups as a whole. 

Considering scale efficiency, all regions demonstrate values surpassing 1, with an average of 1.020 over the 

past 10 years. Technical efficiency experienced a 1.6% increase, reaching 1.016, signalling a modest growth in 

the output accomplished per unit input. This suggests that the expansion of business volume for each airport 

primarily relies on scale efficiency, while the average technical change remains relatively stable at 0.937. 

Taking a regional perspective, both the pure technical efficiency and scale efficiency of the Northeast and 

Southwest airport clusters exhibit an upward trend, showcasing excellent technical efficiency performance in 

these regions. 

Table 9 provides a comprehensive overview of the Malmquist index and its decomposition for 45 airports in 

China spanning the period from 2013 to 2022. A technical efficiency value greater than 1 signifies 

an improvement in operational efficiency, achieved by catching up with efficient decision-making units 

(DMUs). Conversely, a value less than 1 indicates a decline in efficiency. The technical change reflects the 

extent to which an airport enhances, reduces or maintains its efficiency through technological progress. 

Over the past decade, the average technical efficiency for all airports is 1.015, indicating a 1.5% increase 

in average technical efficiency. Notably, over 60% of airports demonstrate technical efficiency values 

exceeding 1. Concerning technical changes, except for the HGH airport (1.035), all other airports register 

values below 1. This implies that the majority of airports have experienced technological regression, with the 

average technical change decreasing by 6.1% from 2013 to 2022, settling at 0.939. 

The results indicate that over the past 10 years, airports have exerted efforts to enhance technical 

efficiency, yet insufficient attention has been directed towards technological improvements. Noteworthy 

exceptions include six airports – HGH, TNA, JJN, WUX, SWA and LXA – that have demonstrated an 

upward trend in total factor productivity, while the remaining airports have exhibited a downward trajectory 

during the same period. 
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Table 9 – Malmquist index and its decomposition of 45 airports in China 

Airport effch techch pech sech tfpch 

PEK 0.913 0.950 0.928 0.983 0.868 

PVG 1.000 0.954 1.000 1.000 0.954 

CAN 0.983 0.958 1.000 0.983 0.941 

CTU 0.991 0.962 1.007 0.985 0.954 

SZX 1.000 0.928 1.000 1.000 0.928 

KMG 1.022 0.944 1.039 0.984 0.965 

XIY 0.992 0.939 0.995 0.997 0.931 

SHA 0.980 0.925 0.981 0.998 0.906 

CKG 1.021 0.925 1.025 0.996 0.944 

HGH 1.000 1.035 1.000 1.000 1.035 

NKG 0.968 0.932 0.952 1.017 0.902 

CGO 0.942 0.947 0.949 0.993 0.892 

XMN 0.997 0.926 1.000 0.997 0.922 

WUH 1.036 0.958 1.026 1.010 0.993 

CSX 0.972 0.940 0.968 1.004 0.914 

HAK 1.060 0.942 1.023 1.036 0.999 

URC 1.023 0.932 1.007 1.016 0.953 

TSN 0.951 0.957 0.932 1.020 0.910 

KWE 1.057 0.935 1.016 1.040 0.988 

HRB 1.042 0.925 1.012 1.030 0.964 

SHE 1.039 0.937 1.004 1.034 0.973 

SYX 1.000 0.949 1.000 1.000 0.949 

DLC 0.975 0.948 0.988 0.988 0.924 

TNA 1.069 0.954 1.022 1.046 1.020 

NNG 1.048 0.938 1.010 1.038 0.984 

LHW 0.967 0.939 0.971 0.997 0.908 

FOC 1.012 0.925 1.002 1.010 0.936 

TYN 1.040 0.925 1.004 1.036 0.962 

CGQ 1.056 0.906 1.013 1.042 0.956 

KHN 1.019 0.951 1.002 1.017 0.969 

HET 1.050 0.921 1.014 1.035 0.967 

NGB 1.016 0.930 0.997 1.019 0.945 

WNZ 0.957 0.938 0.984 0.973 0.898 

ZUH 1.067 0.931 1.008 1.058 0.993 

SJW 1.015 0.921 1.004 1.011 0.934 

INC 1.045 0.944 1.004 1.041 0.987 

KWL 0.891 0.924 0.972 0.917 0.823 

JJN 1.136 0.910 1.005 1.131 1.034 

WUX 1.103 0.915 1.009 1.093 1.010 

SWA 1.076 0.943 1.004 1.071 1.014 

XNN 1.010 0.927 0.969 1.042 0.937 

LJG 1.047 0.919 1.000 1.047 0.962 

JHG 1.056 0.918 1.000 1.056 0.969 

LXA 1.095 0.933 1.000 1.095 1.023 

MIG 1.000 0.989 1.000 1.000 0.989 

Ave 1.015 0.939 0.996 1.019 0.953 
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5. CONCLUSIONS 

This article assesses the efficiency and productivity changes among major airports in China’s six primary 

airport clusters over the period from 2013 to 2022. The research primarily centres on static and dynamic 

efficiency evaluations, employing the meta-DEA method, super-efficiency DEA, and Malmquist index method 

to scrutinise regional disparities in airport efficiency and productivity. Initially, the article delves into the 

current status of China’s airport efficiency development, with a specific focus on airport clusters. Subsequently, 

the analysis incorporates the common frontier method, considering regional efficiency differences and 

investigating the operational efficiency and disparities among airports in China based on both the common 

frontier and group frontier. The article explores strategies aimed at enhancing the efficiency of each airport, 

emphasising the imperative for all airports to catch up with benchmark counterparts. It advocates for proactive 

measures, including the assimilation of advanced technology and management practices from industry 

benchmark airports, to elevate airport management standards and operational efficiency, ultimately fostering 

high-quality airport development. 

Enhancing efficiency holds paramount significance for energy conservation, emission reduction, cost-

effectiveness, efficiency optimisation and sustainable development. Research findings indicate that the 

operational efficiency of China’s airport clusters currently falls short. Substantial differences in technology 

gap ratios among airports in various regions highlight ample room for improvement. Notably, the average 

efficiency of airports within the common frontier is lower than that under the group frontier, showcasing 

regional disparities. 

Specifically, the Southwest, East and Central-South airport clusters exhibit relatively high-efficiency 

performance, while the Northeast, Northwest and North China airport clusters follow suit. The Malmquist 

index reveals a slight decline in airport productivity in recent years, with distinct regional characteristics. 

Productivity improvement primarily stems from advancements in scale efficiency, indicating a prevalent focus 

on expanding infrastructure. Meanwhile, the enhancement of service quality results from scientific 

management and technological progress. As such, each airport must diligently strive to elevate its technical 

proficiency to contribute to overall efficiency improvement. 

Based on the above research results, we put forward some important implications and suggestions. First of 

all, to achieve sustainable development of airports, when formulating development strategies for each airport 

cluster, the Chinese government should accurately formulate strategies suitable for different airport clusters 

based on the actual conditions of different regions, to achieve one policy for each region and achieve balanced 

development in different regions, especially for airports in the Midwest that have benefited relatively little in 

the past few years. 

Secondly, considering the relatively favourable efficiency levels of airports in the Eastern, Central and 

Southern regions, there exists an opportunity for further enhancement through increased focus on technological 

progress and investments in technological development. For airports in the Northern and Western regions, 

which exhibit slightly lower efficiency, targeted improvements in technological progress and technical 

efficiency are recommended. These improvements could be achieved by optimising operating processes, 

facilitating regional exchanges and cooperation, and enhancing management capabilities to prevent 

unnecessary waste of resource investments. These strategic measures aim to reduce regional differences and 

foster a more balanced and efficient airport landscape across the country. 

The study underscores the need for a strategic focus on efficiency improvement in the Western and Northern 

regions while advocating for the steady enhancement of production efficiency in airports situated in the Eastern 

and Central-Southern coastal regions. Looking ahead, the anticipated growth in throughput for the six major 

airport clusters calls for concerted efforts from each airport within these clusters to reinforce coordinated 

development. This entails building on complementary strengths, actively pursuing international aviation 

business, and striving to establish internationally competitive aviation enterprises and airports. 

The overarching goal is to construct a modern integrated transportation system for China, featuring a world-

class airport cluster management system. This comprehensive approach is envisioned to provide robust support 

for advancing high-quality economic and social development, thereby contributing significantly to the 

construction of a robust civil aviation country and fostering economic and social progress. The collective 

efforts of the airport clusters are poised to make substantial contributions to the overarching objectives of 

achieving a powerful civil aviation sector and promoting comprehensive economic and social development. 
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The shortcoming of this study is that the selection of airport efficiency evaluation indicators needs to be 

further improved, to more comprehensively reflect the operational level of all aspects of the airport group. In 

addition, this article selects 45 airports within China’s six major airport groups for case study. However, 

Qingdao Liuting International Airport (TAO) and Beijing Nanyuan Airport (NAY) have suspended flights, so 

the study was not conducted. Beijing Daxing International Airport (PKX), Chengdu Tianfu International 

Airport (TFU) and Qingdao Jiaodong International Airport (TAO) did not participate in the efficiency 

measurement study due to their late opening time and insufficient data required for the study. The above-listed 

airports will affect the development of the airport group to some extent. Future studies will include the above-

listed airports. 
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柳青，钱琪伟 

中国六大机场群主要机场效率研究：基于共同前沿超效率 DEA 与 Malmquist 方

法 

摘要 

机场群对于民航运输业的可持续发展具有重要意义。采用共同前沿与超效率 DEA 方

法测算中国六大机场群的效率，然后利用 Malmquist 指数方法探讨机场生产率的变化

情况。结果表明，机场效率具有区域差异的特点，华东机场群与西南机场群常年处

于效率值优异，华北机场群与东北机场群效率表现仍有较大的进步空间；大多数机
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场群内机场效率仍然处于偏低、无效状态，效率呈现先上升后下降的趋势；各机场

群的 TGR均呈现一定程度的下降趋势。Malmquist指数显示，各机场全要素生产率基

本保持稳定，而机场的效率增长主要依靠规模效率，平均技术效率增长了 1.5%，而

技术变化方面，绝大多数机场技术出现退步现象，对于技术的提升关注不足。因此，

注重技术创新和提高管理效率，实现机场群效率进步，根据不同地区的实际情况精

准制定策略，加强协同发展，开展区域交流与合作，平衡区域差异，实现中国机场

群的可持续发展，打造世界级机场群。 
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