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ABSTRACT 

The flow pattern on a given transportation network at a given moment results from many 

users’ travel decisions which are made for some purposes, for example, participating in 

necessary activities such as work, eating and shopping. Consequently, the explicit modelling 

of the interaction between users’ activity and travel choice behaviour serves as a basic 

building block for long-term transportation planning and management. In this paper, an 

activity-based network user equilibrium model is proposed to study the dynamic activity-

travel scheduling problem with multiple classes of users under time constraints. A simple 

supernetwork representation approach is introduced to generate the activity-journey-network 

(AJN) which expands the basic transportation network in both time and space dimensions. 

With the supernetwork representation, the dynamic activity-travel scheduling problem is 

transformed into a static network flow assignment problem. A heuristic algorithm is 

developed to find the path with the maximum utility in the AJN from the start node to the 

end node for each user. A numerical study is conducted to illustrate the application of the 

proposed model and solution algorithm for several transportation networks including large-

scale real-world networks. It is shown that both the individual’s travel choice and group travel 

behaviour in a transportation network can be well studied by the proposed model. 

KEYWORDS 

activity-travel scheduling; activity journey network; supernetwork; travel behaviour; 

multiple user classes; time constraints. 

1. INTRODUCTION 

Travel behaviour analysis has been a hot topic in transportation research as it is regarded as the cornerstone 

for studying urban transportation network problems, which include travel demand forecasting, road pricing 

policy formulation and mitigating traffic congestion [1-4]. Among the majority of these traditional travel 

behaviour studies, the trip-based approach is mostly used [5-9]. In the trip-based approach, the network travel 

time is usually assumed to be dependent on the time-varying traffic velocity throughout a trip (i.e. an origin-

destination pair) as well as the trip length and is evaluated by the integral of trip duration over each travel 

distance increment of user’s trip. As a result, the origin, destination, departure time and transport mode of each 

trip are assumed to be identical to homogeneous users in the trip-based models. Therefore, the activity-based 

approach has arisen in recent decades to investigate users’ daily multi-modal multi-activity trip chains, and 

there appeared a substantial body of literature using the activity-based approach to study users’ travel choices 

[10-14]. In the activity-based approach, users’ activity choices including activity sequence, activity type, 

activity location and time arrangement of each activity/trip are integrated into their travel choices (e.g. 

departure time, route and travel time) so that individuals’ daily activity-travel patterns can be studied and 

explained in a more behaviourally realistic manner. Unlike the trip-based approach, the activity-based 
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approach facilitates to conduct of a comprehensive study on the interactions among users’ activity/travel 

choices, transportation network and activity location plan. 

The introduction of the activity-based approach into transport models has motivated an emerging shift from 

focusing on single trips to comprehensively understanding transportation network users’ daily activity-travel 

patterns. Within the framework of activity-based modelling, an individual user’s activity schedule is explicitly 

investigated, in consideration of why an individual user’s trip involves a specific activity, and when, where, 

with whom, by which transport mode, for how long and how frequently this activity is conducted [15]. 

Therefore, activity-travel scheduling has become a core component of many activity-based transport models. 

More specifically, the scheduling of a given set of selected activities consists of two steps: identifying feasible 

activity-travel agendas, and selecting the best activity-travel patterns under specific criteria. The concept of 

the time-space prism is usually used to assess the feasibility of planned activity-travel schedules [16], whereas 

optimisation models are employed in many studies to find the activity-travel schedule with a maximum utility 

or a minimum travel time [17-21]. 

Due to the complexity of linkages among various activities and travel, these mathematical analytical 

activity-based transport models rely heavily on the supernetwork representation where the basic transportation 

network is augmented with virtual (dummy) links to represent several travel choice dimensions such as time 

and space [22-31]. Such augmented networks are referred to as supernetworks. Among these studies, two 

supernetwork representation approaches have been widely used in recent years. One is the multi-state 

supernetwork approach, which was developed by Liao et al. [22] to examine user activity and travel behaviour. 

This approach was applied to different transport model settings with the consideration of user parking 

behaviour [23], space-time constraints [24] and land use scenarios [25]. Liu et al. [26, 27] adopted the enhanced 

supernetwork method to deal with dynamic activity-travel assignment problems. Another is the activity-time-

space supernetwork approach, which is proposed by Ouyang et al. [28] to investigate the activity and travel 

scheduling problem within congested networks. Their approach was further developed to model related 

scheduling problems in multi-modal transit networks [29], and to address joint activity scheduling problems 

[30, 31]. However, a common drawback of these two approaches is that the resulting supernetwork may 

become very large, complex and even intractable when multiple spatial and temporal nodes and links are 

integrated into a single representation to capture the dynamics in activity-travel scheduling. Consequently, 

research efforts are required to be devoted to further developing more efficient supernetwork representation 

approaches in reducing network size and/or computational complexity. 

Space and time constraints arose in the activity-travel scheduling problem under many conditions by which 

individual users’ activity and travel decisions may be strongly affected [16, 24]. This is because activities such 

as sleeping at home, eating and going to work are usually conducted in regular rhythms and intervals. Public 

transportation service schedules also define potential limits on the execution of activities if such transport 

mode is optional. Finally, authority constraints on activity locations such as opening hours and service capacity 

constrain the time and place when and where individual users can choose to conduct a particular activity. In 

addition, transportation network users may be classified into different types where users in the same class have 

a similar valuation of travel time and thus homogeneous activity-travel behaviour [32-38]. The activity-travel 

behaviour of one class of users can be very different from that of another class of users. For example, compared 

with workers, non-workers such as retired individuals, homemakers and unemployed individuals often 

participate in more household-related activities including shopping, drop off/pick up, recreation, eating out, 

visiting and even staying at home for various household purposes. Furthermore, due to the flexibility in daily 

activity-travel scheduling, non-workers always choose to conduct out-of-home activities in off-peak periods 

and good weather, rather than suffering peak period congestion or bad weather. Such differences between 

workers’ and non-workers’ activity-travel behaviour may have a significant impact on the transportation 

system and transportation-related policies and planning. However, as pointed out by [39], non-workers’ 

activity-travel behaviour has not been well understood and studied so mathematical analytical studies that 

incorporate the impact of travel behaviour differences among multiple classes of users on activity-travel 

scheduling are still needed to contribute to this research area. 

Motivated by these observations, a dynamic activity-travel scheduling problem is addressed in this paper 

where the impact of activities, the total time constraint and the distinct performance of multiple user classes 

are comprehensively considered. A supernetwork representation approach is introduced to generate the 

activity-journey network which expands the basic transportation network in both time and space dimensions. 

With the supernetwork representation, an activity-based network user equilibrium model is formulated and 

transformed into a static network flow assignment problem. A solution algorithm is then developed to find the 
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path with the maximum utility in the AJN from the start node to the end node for each user. A numerical study 

is conducted to illustrate the application of the proposed model and solution algorithm for real-world 

transportation networks. Compared with existing literature, the main contribution of this paper lies in: (1) 

jointly considering the activity-travel scheduling problem with time constraints and multiple user classes; and 

(2) developing a supernetwork representation approach with lower network complexity and demonstrating its 

potential applicability to large-scale transportation networks. 

The remainder of this paper is organised as follows. In the Methodology section, a supernetwork, namely, 

the activity-journey network is presented in Section 2.1. An illustration of AJN is provided in Section 2.2 to 

show the details of the representation of activity and travel choices by activity links and journey links in the 

AJN. The link utility, link time and link capacity of the AJN are discussed in Section 2.3. The choice results 

of multi-class users’ activities and travels are depicted by link utilities and link times. In Section 2.4, an 

activity-based network user equilibrium model is formulated to deal with the resulting network flow 

assignment problem under time constraints. A solution algorithm is proposed in Section 2.5. Based on the 

application of the proposed model and solution algorithm in several transportation networks, numerical results 

are analysed and discussed in a combined Results and discussion section, Section 3. Finally, we conclude the 

paper in Section 4. 

2. METHODOLOGY 

This section details the formulations of the dynamic activity-travel scheduling problem and the solution 

algorithm. An activity-journey network representation of the basic transportation network is first introduced, 

where the basic transportation network is expanded by augmented nodes and links to represent various travel 

choice dimensions such as when to take a trip, by which route, to what destination and for what activity. The 

link utility, link time and link capacity of the AJN are discussed. Then the dynamic activity-travel scheduling 

problem can be modelled as a user equilibrium model with variable travel demand, trip distribution and traffic 

assignment components using the proposed supernetwork representation. Based on the explicit modelling of 

link interactions in terms of time and space, a solution algorithm is developed to find the user equilibrium flow 

pattern over the supernetwork. 

2.1 The generation of an activity-journey network 

Denote the basic transportation network as �̅� = (�̅�, �̅�), where �̅� is the set of nodes and �̅� is the set of 

travelling links in �̅�. Assume that some nodes in �̅� are activity location nodes where users could conduct 

activities. Here, activity location nodes are functional zones (represented by the geometrical centre of gravity) 

in urban areas where certain activities are performed, such as residential districts, central business districts, 

restaurant districts and shopping plazas, etc. A single activity is denoted as 𝑗, whereas a single activity location 

node is denoted as 𝑑 . Let 𝐷  and 𝐽  denote the set of all activity location nodes and all activities in �̅� , 

respectively. Let 𝐽𝑑 be the set of activities which could be engaged in by users at node 𝑑. Then we have 𝑗 ∈ 𝐽, 

𝑑 ∈ 𝐷, 𝐽𝑑 ⊆ 𝐽, and 𝐷 ⊆ �̅�. 

Here, an activity-journey network approach is introduced to generate an expanded supernetwork based on 

�̅�. The main idea of the AJN expansion is to illustrate the activity choices and journey choices of travelling 

from one activity location to the subsequent activity location, along the time and space dimension within the 

basic transportation network.  

Let 𝐺 = (𝐵, 𝐴) denote the generated AJN, where 𝐵 is the set of nodes in AJN and 𝐴 is the set of links in 

AJN. The total schedule time 𝑇 is assumed to be identically divided into �̅� intervals where the length of a time 

interval is 𝑇𝐿. Users could make their activity choices or travel choices at the start time of each time interval 

𝑘 , where 𝑘 = 1,2, . . . , �̅� . Note that �̅� + 1 is the end time of the last time interval �̅� . The procedures of 

generating the AJN are listed below. 

 

Step 1. Enumerate all feasible activity and activity location combinations (𝑗, 𝑑) in the basic transportation 

network for all 𝑗 ∈ 𝐽𝑑  and 𝑑 ∈ 𝐷 . For a single activity location node 𝑑 , there exists at least one such 

combinations since 𝐽𝑑 is a non-empty set. 

Step 2. For each combination (𝑗, 𝑑) in the basic transportation network �̅�, construct �̅� + 1 nodes in the 

AJN, and each node is denoted as 𝑏𝑘
𝑗,𝑑

, where 𝑑 ∈ 𝐷,  𝑗 ∈ 𝐽𝑑, 𝑘 = 1,2, . . . , �̅� + 1. 



Promet – Traffic&Transportation. 2025;37(4):911-930.  Data Analysis and Modeling  

914 

Step 3. For each node 𝑏𝑘
𝑗,𝑑

, construct a link for each time interval 𝑘 (where 𝑘 = 1,2, . . . , �̅�) from node 

𝑏𝑘
𝑗,𝑑

to node 𝑏𝑘+1
𝑗,𝑑

 in the AJN, which is denoted as link (𝑏𝑘
𝑗,𝑑

, 𝑏𝑘+1
𝑗,𝑑

).  

Step 4. For each node 𝑏𝑘
𝑗,𝑑

, construct a link from node 𝑏𝑘
𝑗,𝑑

 to node 𝑏𝑘′
𝑗′,𝑑′

 in the AJN, which is denoted as 

link (𝑏𝑘
𝑗,𝑑

, 𝑏𝑘′
𝑗′,𝑑′

), where 𝑑, 𝑑′ ∈ 𝐷, 𝑗 ∈ 𝐽𝑑, 𝑗′ ∈ 𝐽𝑑′, 𝑘, 𝑘′ ∈ {1,2, . . . , �̅� + 1}, 𝑘′ = 𝑘 + 𝛤𝑑,𝑑′(𝑘), and 𝛤𝑑,𝑑′(𝑘) =

⌈𝛤′𝑑,𝑑′(𝑘) 𝑇𝐿⁄ ⌉. 
Here, 𝑘 is the departure time from activity location 𝑑 after conducting activity 𝑗, 𝑘′ is the start time of 

participating in activity 𝑗' at activity location 𝑑′, 𝛤′𝑑,𝑑′(𝑘) is the minimum travel time (i.e. the user equilibrium 

time) from 𝑑 to 𝑑′ when the departure time is 𝑘, and 𝛤𝑑,𝑑′(𝑘) is the rounded-up integer multiple of 𝑇𝐿  for 

𝛤′𝑑,𝑑′(𝑘). 

Step 5. Introduce a dummy start node 𝑆 and a dummy end node 𝐸 to the AJN. 

Step 6. Construct a start link (𝑆, 𝑏1
𝑗,𝑑

) from node 𝑆 to node 𝑏1
𝑗,𝑑

 (where 1 is the start time of the time horizon) 

and an end link (𝑏�̅�+1
𝑗,𝑑

, 𝐸) from node 𝑏�̅�+1
𝑗,𝑑

 (where �̅� + 1 is the end time of the time horizon) to node 𝐸 for 

each combination (𝑗, 𝑑) where 𝑗 ∈ 𝐽𝑑 and 𝑑 ∈ 𝐷. 

 

The relationship between the nodes and links in the basic transportation network �̅� and AJN are as follows. 

For an activity location node 𝑑(𝑑 ∈ 𝐷) in the basic transportation network which can perform 𝑁𝑑 (𝑁𝑑 = |𝐽𝑑|) 
activities, it generates 𝑁𝑑 initial nodes corresponding to the number of activities, and then each node is further 

augmented into �̅� + 1 nodes along the time dimension. Since the node in AJN is characterised by activity 

location, activity type and start time, there are activity links and journey links in AJN. Activity links are 

generated in Step 3 which represent the time duration of an activity within the same activity location, whereas 

journey links are generated in Step 4 which represent the movements between different activity locations. In 

addition, two dummy nodes 𝑆 and 𝐸 are employed in AJN in Step 5, then start links and end links are generated. 

Compared to the basic transportation network �̅�, only the journey links (of the four types of links) in AJN are 

similar (but not the same) to the links in �̅�. 

In general, the set of nodes in AJN, 𝐵 contains all the nodes 𝑏𝑘
𝑗,𝑑

generated in Step 2, and two dummy nodes 

𝑆 and 𝐸. Assume that the number of combinations (𝑗, 𝑑) for all 𝑗 and 𝑑 in the basic transportation network �̅� 

is 𝑋1. Then it is easy to see that the number of nodes in AJN is 𝑋1 × (�̅� + 1) + 2. For a given combination 

(𝑗, 𝑑), there are �̅� activity links among �̅� + 1 nodes, one start link from start node 𝑆 to node 𝑏1
𝑗,𝑑

, and one end 

link from node 𝑏�̅�+1
𝑗,𝑑

 to end node 𝐸. Therefore, the number of activity links, start links and end links in AJN 

are 𝑋1 × �̅�, 𝑋1 and 𝑋1, respectively. The estimation of the number of journey links is as follows. To make sure 

the journey from location 𝑑 to location 𝑑′ is feasible, 𝛤𝑑,𝑑′(𝑘) must satisfy that 𝑘′ = 𝑘 + 𝛤𝑑,𝑑′(𝑘) ≤ �̅� + 1, i.e. 

users should arrive at activity location 𝑑′ within the schedule time horizon. For a given combination (𝑗, 𝑑), the 

number of potential journey links to activity location 𝑑′, Nd,d' is the number of the feasible set of departure 

time 𝑘 from activity location 𝑑, where 0 ≤ Nd,d' = ⌊�̅� + 1 − 𝛤𝑑,𝑑′(𝑘)⌋ ≤ �̅� + 1. Thus, the number of journey 

links in AJN can be expressed as ∑ Nd,d'd≠d', d,d'∈D
, which is the sum of the number of the feasible set of 

departure time for all possible journeys. Then the total number of links in AJN is the sum of the number of 

these four types of links, that is, 𝑋1 × (�̅� + 2) + ∑ Nd,d'd≠d', d,d'∈D
. Recall that 𝛤𝑑,𝑑′(𝑘) represents the travel 

time from location 𝑑 at departure time 𝑘 to location 𝑑′ in the form of an integer multiple of time intervals. 

When 𝛤𝑑,𝑑′(𝑘) is sufficiently large, there is no journey link between activity locations 𝑑 and 𝑑′, and thus Nd,d' 

takes the minimum value. On the other hand, the maximum value of Nd,d' is obtained when 𝛤𝑑,𝑑′(𝑘) is 0, i.e., 

users may switch from activity 𝑗  to activity 𝑗′  within the same location node. Consider that for each 

combination (𝑗, 𝑑) there are 𝑋1 − 1 possible journeys to other activity and location combinations, the number 

of journey links is bounded by 0 and 𝑋1 × (𝑋1 − 1) × (�̅� + 1). Therefore, the lower and upper bound on the 

number of links in AJN are 𝑋1 × (�̅� + 2) and (𝑋1)2 × (�̅� + 1) + 𝑋1, respectively. 

2.2 An illustration of the activity-journey network 

Figure 1 shows a simple transportation network consisting of 5 nodes and 16 directional links. Nodes are 

numbered from 1 to 5, and links are indexed from 1 to 16. Four activity location nodes represent four zones, 

namely, the home or residential area (labelled as “H”) for doing home-based activities, the restaurant area 

(labelled as “R”) for eating activities, the shopping area (labelled as “S”) for shopping activity and workplace 
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(labelled as “W”) for working activity and/or eating activity. The marginal utility of eating at a restaurant is 

much higher than that of eating at the workplace for network users. 
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1
“H”

1 2
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3 7

15 16
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Figure 1 – An example of an urban transportation road network 
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Figure 2 – The illustrated AJN of the urban transportation road network 
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The activity-journey network, which is an expansion of the basic transportation network in Figure 1, is 

illustrated in Figure 2. There are five combinations of activity and activity location node (i.e. 𝑋1 = 5): (h, H), 

(w, W), (e, W), (s, S) and (e, R), where the staying-at-home activity, working activity, eating activity and 

shopping activity are denoted as “h”, “w”, “e” and “s”, respectively. For example, combination (e, R) 

represents conducting “eating” activity at location node “Restaurant”. Each combination is augmented into 

�̅� + 1 nodes along the time dimension. Activity links are generated by the time duration of conducting an 

activity within the same activity location (i.e. the vertical links between nodes in AJN). For example, it will 

take several time intervals for users to stay at home or work in the workplace. Journey links are generated by 

the possible movements between different activity locations, which depend on the related travel time. In 

general, it will take several time intervals for users to travel (and switch) from one activity location (and one 

type of activity) to another. However, if users are performing different activities within the same location (i.e. 

the horizontal links between nodes in AJN), the travel time is assumed to be 0. Since there are 20 (i.e. X1×(X1 −
1) = 5×4) possible journeys between different activity and activity location combinations, and the detailed 

journey links are further determined by the travel time between different activity locations, Figure 2 just displays 

some of the possible journey links. More specifically, the travel time from the home node to the workplace 

node with departure time 𝑘 = 1, 𝛤𝐻,𝑊(𝑘 = 1) is set to be 3-time intervals in the illustration. Finally, start links 

and end links are generated to show how users enter and exit the AJN. 

2.3 Link utility, link time and link capacity 

For simplicity of description, use 𝐴𝐽, 𝐴𝑇, 𝐴𝑂and 𝐴𝐷to represent the set of activity links, journey links, start 

links and end links in the AJN, respectively. It is assumed that users can be classified into different types 

according to their evaluation of time (i.e. link utility). Specifically, let 𝑣𝑎
𝑚 denote the link utility of link 𝑎 for 

users in class 𝑚. In contrast, the link time of link 𝑎 in the AJN, 𝑡𝑎 is assumed to be identical for all users. The 

determination of 𝑣𝑎
𝑚 and 𝑡𝑎 in the AJN are summarised as follows. 

Case I. If 𝑎 ∈ 𝐴𝑂 , or 𝑎 ∈ 𝐴𝐷 , then link 𝑎 represents the virtual process of entering or exiting the AJN 

through the dummy node 𝑆 or 𝐸. Thus, for any user in any class 𝑚, the link utility and link time of link 𝑎 are 

both 0, i.e., 𝑣𝑎
𝑚 = 0, and 𝑡𝑎 = 0. 

Case II. If 𝑎 ∈ 𝐴𝐽, then link 𝑎 is an activity link, and users obtain activity utility from engaging in an 

activity 𝑗  at location 𝑑  for the one-time interval with start time 𝑘 , which can be expressed as 𝑣𝑎
𝑚 =

∫ 𝑢𝑗,𝑑
𝑚 (𝜔)𝑑𝜔

𝑘+1

𝑘
, where 𝑢𝑗,𝑑

𝑚 (𝜔) is the marginal utility of conducting activity 𝑗 at location 𝑑 at time 𝜔 for users 

in class 𝑚, and depends on the node flow and the accommodating capacity of location 𝑑 in �̅�. Here, the node 

flow of location 𝑑 is defined as the total number of users engaging in activity 𝑗 at location 𝑑 at time interval 𝑘. 

In this case, the link time of link 𝑎 is 1 time interval for all types of users, i.e. 𝑡𝑎 = 1. 

Case III. If 𝑎 ∈ 𝐴𝑇, then link 𝑎 is a journey link, and users suffer travel disutility from spending travel time 

𝛤𝑑,𝑑′(𝑘) to move from location 𝑑 with departure time 𝑘 to location 𝑑′, which is 𝑣𝑎
𝑚 = −𝜎𝑚𝛤𝑑,𝑑′(𝑘), where 𝜎𝑚 

is the marginal utility per time interval for users in class 𝑚. In this case, the link time of link 𝑎 is 𝛤𝑑,𝑑′(𝑘) time 

intervals for all types of users, i.e., 𝑡𝑎 = 𝛤𝑑,𝑑′(𝑘). 

Let 𝐶𝑎 represent the capacity of link 𝑎 (in terms of the number of users) in the AJN. The determination of 

𝐶𝑎 is given as follows. 

Case I. If 𝑎 ∈ 𝐴𝑂, or 𝑎 ∈ 𝐴𝐷, then 𝐶𝑎  = ∞, i.e., there are no capacity constraints on the start and end links.  

Case II. If 𝑎 ∈ 𝐴𝐽, then the capacity of an activity link is 𝐶𝑎  = 𝑄𝑗,𝑑(𝑘), where 𝑄𝑗,𝑑(𝑘) is the capacity of 

activity location 𝑑 for users conducting activity 𝑗 at time interval 𝑘.  

Case III. If 𝑎 ∈ 𝐴𝑇, then the capacity of a journey link is 𝐶𝑎 = 𝑚𝑖𝑛
ℎ∈𝑃𝑑,𝑑′(𝑘)

𝑄ℎ, where ℎ is a single link of the 

basic transportation network �̅�, 𝑄ℎ is the capacity of link ℎ, and 𝑃𝑑,𝑑′(𝑘) is the set of links experienced by the 

journey of travelling from origin 𝑑 to destination 𝑑′ with departure time 𝑘 in �̅�. This implies that the capacity 

of a journey link in AJN (which may be a route in �̅�) is restricted to the capacity of the bottleneck link on the 

route of the journey in �̅�. 

2.4 Model formulation 

Without loss of generality, it is usually assumed that users in each class are pursuing the maximum utility 

when determining the decisions of travel choices and activity choices. Consequently, in the basic transportation 

network �̅�, users in each class must optimise their activities and travel plans under time constraints on the 
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scheduled time horizon (for example, within a whole day) to achieve maximum utility. By introducing the 

expanded activity-journey network, this optimisation problem is transformed into a problem of identifying the 

path with the maximum utility in the AJN from node 𝑆 to node 𝐸 for each user. Furthermore, user equilibrium 

is globally achieved when individual user cannot improve their utility by unilaterally altering their activity 

choice or travel choice to any other feasible options under the total time constraint. 

The list of variables and parameters used in model formulation is summarised as follows; 

𝑥𝑎 link flow (i.e. the number of users) on link 𝑎 in the AJN, decision variable 

𝒙 vector of 𝑥𝑎 

𝑥𝑎
𝑚 the flow of users in class 𝑚 selecting link 𝑎 

𝑟 a single route from node 𝑆 to node 𝐸 

𝑞𝑚 total number of users in class 𝑚 

𝑞𝑟
𝑚 the flow of users in class 𝑚 selecting route 𝑟 

𝛿𝑎,𝑟 a binary variable, 1 if link 𝑎 is experienced by route 𝑟, and 0 otherwise. 

The multi-class user equilibrium model is formulated as follows. 

max
𝒙

𝑍(𝒙) = ∑ ∑ ∫ 𝑣𝑎
𝑚(𝑥)𝑑𝑥

𝑥𝑎

0𝑎𝑚

 (1) 

subject to 

𝑞𝑚 = ∑ 𝑞𝑟
𝑚

𝑟
      ∀𝑚 (2a) 

𝑥𝑎 = ∑ 𝑥𝑎
𝑚

𝑚
     ∀𝑎 (2b) 

𝑥𝑎
𝑚 = ∑ 𝛿𝑎,𝑟𝑞𝑟

𝑚

𝑟
       ∀𝑎, 𝑚 (2c) 

∑ 𝛿𝑎,𝑟𝑡𝑎
𝑎

≤ �̅�𝑇𝐿      ∀𝑟 (2d) 

𝑞𝑟
𝑚 ≥ 0    ∀𝑟, 𝑚 (2e) 

𝛿𝑎,𝑟 ∈ {0,1}    ∀𝑎, 𝑟 (2f) 

Equation 1 is the objective function with the maximisation of the sum of link utility for all links and all users 

in the AJN, where 𝑣𝑎
𝑚 is defined in Section 2.3 for different type of links and depends on the size of link flow. 

In Equation 2a, the total number of users in each class is decomposed to the sum of the number of users in that 

class selecting all the routes. Similarly, in Equation 2b the link flow on a link is decomposed to the sum of the 

number of users in all classes selecting that link. More specifically, in Equation 2c the number of users in any 

class selecting a link is calculated by the sum of number of users in that class selecting all the routes that 

contain the link. Equation 2d implies that the sum of all link times on any route should be no larger than the 

length of the schedule time horizon. Constraints 2e and 2f are standard non-negativity and binary restrictions on 

the variables, respectively.  

Although link capacity 𝐶𝑎 is discussed in Section 2.3, capacity constraints such as 𝑥𝑎 ≤ 𝐶𝑎, ∀𝑎 will not be 

introduced directly to the above-mentioned model. The main reason is that the well-known BPR (bureau-

public-road) function is employed in this study to characterise the mathematical relationship between link flow, 

link time and link capacity, which allows us to deal with the cases that link flow exceeds link capacity (realistic 

cases that can be seen in road transportation network with traffic jams). Furthermore, when such extreme cases 

are observed in the AJN it is also assumed that there is a rapid decline in link utility. More specifically, when 

link flow 𝑥𝑎 is beyond link capacity 𝐶𝑎, there will be a significant reduction in marginal utility 𝑢𝑗,𝑑
𝑚 (𝜔) for all 

the activity links (i.e., 𝑎 ∈ 𝐴𝐽), or a considerable increase in the link time 𝛤𝑑,𝑑′(𝑘) for all the journey links (i.e. 

𝑎 ∈ 𝐴𝑇). 

2.5 Solution algorithm 

In this section, we develop a solution algorithm for solving the utility maximisation problem presented in 

Section 2.4. Since the link utility function 𝑣𝑎
𝑚(𝑥) is not convex in link flow 𝑥, the convexity of 𝑍(𝒙) in Equation 
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1 with respect to 𝑥𝑎 (∀𝑎) cannot be guaranteed. However, note that 𝑍(𝒙) is continuous and bounded in 𝑥𝑎 (∀𝑎), 

there exists at least one extreme point that maximises 𝑍(𝒙). Based on the line-search method, the optimal 

solution can be obtained by iteration.  

In general, the solution algorithm relies on the supernetwork representation and the all-or-nothing 

assignment method. Under the activity-based modelling approach, the dynamic activity-journey scheduling 

problem on the basic transportation network is transformed into a static traffic assignment problem on the 

expanded activity-journey network (i.e. a supernetwork), where the user equilibrium (UE) flow pattern is the 

result of each rational user from all classes taking the path with the maximum utility in the AJN from start 

node to end node. Accordingly, the network loading mechanism used in the algorithm designed to solve the 

UE problem assigns each origin-destination (i.e. from start node to end node) flow to the maximum-utility path 

connecting this O-D pair for specific link travel times. This traffic assignment procedure is known as the “all-

or-nothing” assignment. Since the link travel time is state-dependent which is determined by the link flow for 

any link a, the proposed solution method involves a repetitive all-or-nothing assignment in which the link 

flows (as well as link travel times) resulting from the previous assignment are used in the current iteration. 

More specifically, the initial activity-journey-network is generated under the case where link flows in the basic 

transportation network are set to be 0 (and then the journey time between any two location nodes equals the 

free-flow travel time). The initial solution is obtained by the all-or-nothing assignment approach, i.e. assign all 

the users to a feasible route, and calculate the initial link flows in the AJN, as well as the node flows and link 

flows in the basic transportation network. In each iteration, new journey times are calculated since the link 

flows in the basic transportation network are updated. Then a new AJN with new journey links is generated 

since journey times are updated. The link flows in the new AJN are obtained by the line-search method, where 

the search direction is determined by the all-or-nothing assignment approach. Such processes are repeated until 

the stopping criteria are satisfied. 

The detailed procedure of the solution algorithm is outlined as follows. 

 

Step 1. Initialisation. 

(1.1) Set the iteration index as 𝑛 = 1. For ease of exposition, we put superscript (𝑛) on some notations to 

represent the values in iteration when necessary. 

(1.2) Generate the AJN based on the basic transportation network �̅�. The journey time 𝛤𝑑,𝑑′(𝑘) in AJN is 

obtained by solving the conventional time-dependent or dynamic trip-based traffic user equilibrium problem 

in �̅�, where the link flow of link ℎ in �̅� at time interval 𝑘, 𝑓ℎ(𝑘) is set to be 0.  

Note that 𝑓ℎ(𝑘) is the link flow of link ℎ (which is a physical road link) in the transportation network �̅� at 

time interval 𝑘, whereas 𝑥𝑎 is the link flow on link 𝑎 (which may be a route in �̅� consisting of several physical 

road links) in the AJN. 

(1.3) Find a feasible route 𝑟 from node 𝑆 to node 𝐸 in AJN, serving as an initial solution to the utility 

maximisation problem, i.e. all the users select the same route 𝑟.  

(1.4) Assign all flows of a user class 𝑚 to route 𝑟 (i.e., let 𝑞𝑟
𝑚 = 𝑞𝑚), then the initial link flow 𝑥𝑎

𝑚,(1)
of 

user class 𝑚 in the AJN is calculated by 𝑥𝑎
𝑚,(1)

= 𝛿𝑎,𝑟𝑞𝑟
𝑚 = 𝛿𝑎,𝑟𝑞𝑚, where the value of 𝛿𝑎,𝑟 is obtained from 

investigating whether link 𝑎 is on route 𝑟. 

(1.5) The link flow 𝑥𝑎
(1)

 is calculated by the summation of link flows 𝑥𝑎
𝑚,(1)

of all user classes, where 𝑥𝑎
(1)

=

∑ 𝑥𝑎
𝑚,(1)

𝑚 , ∀𝑎. 

(1.6) Using link flow 𝑥𝑎
(1)

of the AJN, calculate the flow of activity location node 𝑑 at time interval 𝑘 for 

users in class 𝑚 (denoted as 𝑞𝑗,𝑑
𝑚,(1)(𝑘)), and the flow of link ℎ at time interval 𝑘 for users in class 𝑚 (denoted 

as 𝑓ℎ

𝑚,(1)(𝑘)) in �̅�. 

Step 2. Generation of new AJN and calculation of node flows and link flows in �̅� for iteration 𝒏 (𝒏 ≥ 𝟐). 

(2.1) Calculate the journey times 𝛤𝑑,𝑑′

(𝑛)(𝑘), and the marginal activity utility of users in class 𝑚, 𝑢𝑗,𝑑
𝑚,(𝑛)(𝑘) 

according to node flows 𝑞𝑗,𝑑
𝑚,(𝑛−1)(𝑘) and link flows 𝑓ℎ

𝑚,(𝑛−1)(𝑘).  

(2.2) Generate a new AJN with new journey links since journey times 𝛤𝑑,𝑑′

(𝑛)(𝑘) are updated. 

(2.3) Update link utility 𝑣𝑎
𝑚, link time 𝑡𝑎, and link capacity 𝐶𝑎 of link 𝑎 (∀𝑎) in the new AJN, based on 

𝛤𝑑,𝑑′

(𝑛)(𝑘) and 𝑢𝑗,𝑑
𝑚,(𝑛)(𝑘). 

(2.4) Find the route 𝑟(𝑛) with the maximum utility from node 𝑆 to node 𝐸 in the new AJN.  
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(2.5) Assign all flows of a user class 𝑚 to route 𝑟(𝑛), where the new link flow �̅�𝑎
𝑚,(𝑛)

 in AJN is �̅�𝑎
𝑚,(𝑛)

=

𝛿𝑎,𝑟(𝑛)𝑞𝑚, where the value of 𝛿𝑎,𝑟(𝑛) is obtained from investigating whether link 𝑎 is on route 𝑟(𝑛). 

(2.6) According to the line-search method, the new search direction for solving the utility maximisation 

problem is determined by (�̅�𝑎
𝑚,(𝑛)

− 𝑥𝑎
𝑚(𝑛−1)

), and the link flow 𝑥𝑎
𝑚,(𝑛)

of user class 𝑚 in the new AJN is given 

by 𝑥𝑎
𝑚(𝑛)

=  𝑥𝑎
𝑚(𝑛−1)

+ 𝜆 (�̅�𝑎
𝑚,(𝑛)

− 𝑥𝑎
𝑚(𝑛−1)

), where 𝜆 is the search step size. 

(2.7) Using link flow 𝑥𝑎
(𝑛)

of the new AJN where 𝑥𝑎
(𝑛)

= ∑ 𝑥𝑎
𝑚,(𝑛)

𝑚 , ∀𝑎 to update activity location node 

flows 𝑞𝑗,𝑑
𝑚,(𝑛)

(𝑘) and link flows 𝑓ℎ

𝑚,(𝑛)
(𝑘) in �̅�.  

Step 3. Loop of convergence tests. 

If the stopping criteria are satisfied simultaneously, then terminate the iteration and output the solution. 

Otherwise, set the iteration index as 𝑛 = 𝑛 + 1, and go to Step 2.  

Here, we introduce the following stopping criteria, where the gaps of link flow 𝑥𝑎
𝑚 in the AJN, the activity 

location node flow 𝑞𝑗,𝑑
𝑚 (𝑘) and the link flow 𝑓ℎ

𝑚(𝑘) in �̅� between two consecutive iterations should be lower 

than the pre-determined errors 𝜀1, 𝜀2, and 𝜀3, respectively. 

√∑ ∑(𝑥𝑎
𝑚,(𝑛+1)

− 𝑥𝑎
𝑚,(𝑛)

)2

𝑎𝑚

∑ ∑ 𝑥𝑎
𝑚,(𝑛)

𝑎𝑚

⁄ ≤ 𝜀1 (3) 

√∑ ∑ ∑ (𝑓ℎ
𝑚,(𝑛+1)

(𝑘) − 𝑓ℎ
𝑚,(𝑛)

(𝑘) )
2

𝑘ℎ𝑚

∑ ∑ ∑ 𝑓ℎ
𝑚,(𝑛)

(𝑘)

𝑘ℎ𝑚

⁄ ≤ 𝜀2 (4) 

√∑ ∑ ∑ ∑(𝑞𝑗,𝑑
𝑚,(𝑛+1)(𝑘) − 𝑞𝑗,𝑑

𝑚,(𝑛)(𝑘))2

𝑘𝑗∈𝐽𝑑𝑑∈𝐷𝑚

∑ ∑ ∑ ∑ 𝑞𝑗,𝑑
𝑚,(𝑛)(𝑘)

𝑘𝑗∈𝐽𝑑𝑑∈𝐷𝑚

⁄ ≤ 𝜀3 (5) 

The flowchart of the solution algorithm is given in Figure 3.  

Step 1

Initialisation

Step 1.1-1.2: set n = 1, generate the initial AJN with the 

free-flow link times in the basic transportation network

Step 1.3-1.6: obtain an initial solution by the all-or-nothing 

assignment, calculate link flows in AJN as well as node 

flows and link flows in the basic transportation network

Step 2

Loop of AJN generation 

and solution updation

Step 2.1-2.3: set n = n + 1, update journey times between 

any two activity location nodes, and generate a new AJN 

with new journey links

Step 2.4-2.6: determine the search direction by the all-or-

nothing assignment, and obtain a new solution in iteration 

by the line-search method 

Step 2.7: calculate link flows in AJN as well as node flows 

and link flows in the basic transportation network

The stopping criteria are satisfied?
Step 3

Convergence check

Stop the iteration, and output the solution

NO

YES

 
Figure 3 – The flowchart of the solution algorithm 
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3. RESULTS AND DISCUSSION 

3.1 A small network 

The transportation network studied in the first numerical example is illustrated in Figure 1, which has 16 

directional links and 5 nodes. The time-dependent travel time 𝑡ℎ(𝑘)on road link ℎ at time interval 𝑘 in the 

basic transportation network, could be given by the following bureau-public-road (BPR)-type link travel time 

function of Equation 6, where the required parameters are specified in Table 1 

𝑡ℎ(𝑘) = 𝑡ℎ
0 (1.0 + 0.15 (

𝑓ℎ(𝑘)

𝑄ℎ
)

4
), ℎ ∈ 𝐵 (6) 

where 𝑡ℎ
0 is the free-flow link time of road link ℎ. 

Table 1 – Link free-flow travel time and capacity for the transportation road network 

Link 1/2 3/4 5/6 7/8 9/10 11/12 13/14 15/16 

Free-flow travel time 𝒕𝒉
𝟎  (min) 20 20 20 20 20 10 20 20 

Link capacity 𝑸𝒉 (vehicles/hour) 1800 1800 1800 1800 1800 1800 1800 1800 

 

The population in the basic transportation network is composed of two user classes: workers where 𝑞1 =
3000 and non-workers where 𝑞2 = 1500. Workers will engage in all activities including work activity, 

whereas non-workers just perform non-work activities. The total schedule time horizon is a whole weekday, 

i.e. [0: 00, 24: 00], which is equally divided into 144 discrete time intervals, that is, 𝑇 = 24 hours, �̅� = 144, 

and 𝑇𝐿 = 10 minutes. The marginal time utility for users in each class are σ1 = 30 CNY/hour for workers and 

σ2 = 18 CNY/hour for non-workers, where CNY is the abbreviation for Chinese yuan.  

 
Figure 4 – Simplified marginal utility profiles of various activities 

The marginal utility functions of activity engagement of workers, 𝑢𝑗,𝑑
1 (𝑘) are identical to those depicted in 

Figure 4. The marginal utility profiles of these activities are derived from the discussions on marginal utility 

functions of activity participation in the study of Ettema and Timmermans (2003) [40], which have been 

extensively adopted in various studies, as referenced in the literature [27-31]. The marginal utility of activities 

for non-workers is assumed to be 0.6 times those given in Figure 4, with the exception that the marginal utility 

of shopping activity is 1.5 CNY/minute from 9:00 to 22:00, and 0 during the remaining time of the whole day. 

The parameters for the convergence check of the solution algorithm are set as 𝜀1 =0.001, 𝜀2 =0.001, and 

𝜀3=0.001, respectively. 

The proposed solution algorithm was coded in MATLAB R2024b and run on a Windows PC with a 12th 

Gen Intel(R) Core (TM) i5-12500 CPU (3 GHz) and 8 GB RAM. The running time is 2635.73 seconds in total 

and 2.08 seconds on average for each iteration for each user group in this numerical example. The results of 

solving the multi-class travel behaviour problem in the exampled transportation network are as follows: 280 

different activity and travel patterns (ATPs) are endogenously generated for 3,000 workers, and 120 different 

ATPs are endogenously generated for 1,500 non-workers. The typical ATPs taken by the highest number of 

workers (on the left half) and non-workers (on the right half) are presented in Figure 5. These two typical ATPs 

show that the users’ travel behaviours are quite different between workers and non-workers. In each weekday, 

most workers leave home early, go to work and eat work meals, then go off work and return home at the end 

of the day. The daily activity chain for these workers is H→W→E→W→E→H, and the associated travel chain 
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(in terms of physical links and nodes in �̅�) is node 1(H) → node 5 → node 4(W) → node 5 → node 1(H). 

However, most non-workers leave home late, go shopping and eat at a restaurant, and then return home after 

lunch. The daily activity chain for these non-workers is H→S→E→H, and the travel chain is node 1(H) → 

node 3(S) → node 2(R) → node 1(H). 

W

An example of ATPs of workers An example of ATPs of non-workers

Space

Time

 

0:00

RSH

Travel link

1(H)→5 →4(W)

0:00

7:10
7:40

2:00

4:00

6:00

8:00

10:00

12:00

14:00

16:00

20:00

18:00

22:00

24:00

13:00
13:30
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19:20

At home

At home

Have lunch
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18:50
Have supper

Travel link

4(W)→5→1(H)

24:00 24:00

14:40
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12:50

12:30

11:10

10:50
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At home  

Shopping

Eating 

Work
 

Figure 5 –The typical ATP most users selected in each class 
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Figure 6 – Population distribution at activity locations of workers   

 

Figure 7 – Population distribution at activity locations of non-workers   

Figure 6 and Figure 7 depict the resulting population distributions at various activity location nodes for 

workers and nonworkers, respectively. Note that at any time interval during a day, a user is either at the location 

node or on a travel link from one location node to another. Thus, it can be seen that the population of workers 

(or non-workers) at activity location nodes is not always 3000 (or 1500), meanwhile, the rest of the workers 

(or non-workers) are on the travel links. The group travel behaviours of workers are as follows. In the morning, 

some workers leave home early, eat breakfast and then go to the workplace, while others eat breakfast at home, 

leave home late and go to work directly. In the middle of the day, they have lunch at the workplace. At the end 

of the day, some workers eat work meals at the workplace, some have dinner at the restaurant, while others 

return home and have supper at home. Shopping activity is usually scheduled in the evening after work activity 

and/or eating activity. In contrast, non-workers perform the shopping activity in the morning or afternoon, 

depending on their departure time from home. Since work activity is not a compulsory activity for them, they 

eat meals either at home or at a restaurant and return home much earlier than the workers. 
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(b) 

Figure 8 – Flow of workers along the time on links in the basic transportation network 

Figure 8 and Figure 9 present the resulting time-dependent link flows in the basic transportation network 

through the entire day for workers and non-workers, respectively. Compared with the population distribution 

at location nodes in Figure 7, it should be noted that only link flows in certain time intervals of a day are non-

zeros. 

It is shown in Figure 8 that there exists a morning commute peak period for workers from 6:40 to 9:00 with 

the high traffic volumes on link 1, link 3, link 9, link 11, link 13 and link 16, and an afternoon commute peak 

period for workers from 17:50 to 20:00 with high traffic volumes on link 2, link 5, link 10, link 12, link 14 and 

link 15. An additional peak period from 20:30 to 22:20 is also observed on link 4, mainly because during that 

time period a group of workers are going back home after shopping. Conversely, it can be seen from Figure 9 

that non-workers depart from home after 10:30, much later than workers in the morning, in order to miss the 

morning rush hours caused by workers' travels from home to workplace. Similarly, they also return home 

before 16:00 to avoid the afternoon commute peak period caused by workers' travels from workplace to home. 

 
Figure 9 – Flow of non-workers along the time on links in the basic transportation network 

3.2 Sioux Falls network and Anaheim network 

The proposed model and solution algorithm are also applied to solve the activity-travel scheduling problems 

in the Sioux Falls network (medium-sized) and the Anaheim network (large-scale). With the same computer 

specifications and the same version of MATLAB software, the Sioux Falls network is solved in 1579.05 

seconds, while the Anaheim network is solved in 2616.89 seconds. Rather than the simple transportation 

network in Figure 1, these large-scale real-world transportation networks are usually too complex to be 

graphically displayed, and the results are so complicated that it is difficult to explicitly illustrate and discuss 

users’ travel behaviours for each ATP, node or link. 

The Sioux Falls network includes 24 nodes and 76 links, which are numbered and shown in Figure 10. In 

this numerical example four types of activity location nodes are considered: home node (i.e. node 1 and 17), 

restaurant node (i.e. node 16) for eating, shopping node (i.e. node 10) and workplace (i.e. node 18). The 

capacity of each link between any two nodes is assumed to be 3600 users per hour. The free-flow link time is 

given for each numbered link in Figure 10. Two groups of workers with different home location nodes are 

considered: group 1 with a population of 3000 workers who live far away from downtown (i.e. node 1), and 
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group 2 with a population of 3000 workers who live in the central business district (i.e. node 17). The time 

horizon of a whole weekday is equally divided into 144 time intervals, i.e. 10 minutes for one interval. The 

marginal time utility for users in each group is 𝜎 = 18 CNY/hour. Furthermore, the marginal utility functions 

of activity engagement for users are the same as shown in Figure 3 except that the marginal utility of eating 

activity is 1.5 times higher than that in Figure 3. The parameters for the convergence check of the solution 

algorithm are given as 𝜀1=0.05, 𝜀2=0.05, and 𝜀3=0.05. 

The results of solving the dynamic activity-travel scheduling problem defined in the Sioux Falls network 

are as follows: 92 different ATPs are generated for users in group 1, and 84 different ATPs are generated for 

users in group 2. Among these ATPs, the one which is adopted by the largest proportion (24%) of workers for 

each group includes the following activity chain: Home → Eating → Work → Eating → Work → Eating → 

Shopping → Home. The main difference in travel behaviour between the two groups of workers is that workers 

in group 1 leave home earlier but return home much later than workers in group 2.  

Figure 11 depicts the resulting population distributions at various activity location nodes for workers in 

groups 1 and 2, respectively. It is clear in Figure 11a that there exists a gap in the population shift between the 

home node and workplace, which represents a relatively long-distance travel time between the two location 

nodes. Another gap between the shopping node and home node can be also observed in Figure 11a for workers 

in group 1 due to the similar time lag in the movement between the two nodes. Thus, such gaps are not so 

sharp in Figure 11b for workers in group 2. Moreover, since workers in groups 1 and 2 share the same workplace, 

eating node and shopping node, there are almost no difference in the population shift between these location 

nodes. 

 
Figure 10 – Sioux Falls network 
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(a) users in group 1 

 
(b) users in group 2 

Figure 11 – Population distribution at activity locations for workers in group 1 and group 2 

The morning commute peak period for workers in group 1 is from 6:50 to 8:40 on the path of link 1, link 

4, link 16, link 20, link 18 and link 22, while the night commute peak period is from 21:00 to 22:30 on the path 

of link 26, link 24, link 19, link 14, link 3, link 23, link 11, link 8 and link 5. The morning rush hour for workers 

in group 2 is from 7:20 to 8:00 on link 52, and the night rush hour is from 21:00 to 21:50 on link 30. Workers 

in group 2 suffer short commute peak periods and less disutility from the journeys in the transportation network, 

which illustrates the benefit of a jobs-housing balance. In addition, the joint travels of performing eating and/or 

shopping activities are observed on link 55, link 50 and link 48 for all the network users. 

The Anaheim network consists of 416 nodes and 914 links. Detailed information on its road links and nodes 

can be found in [41]. Similar to the Sioux Falls network, four types of activity location nodes are considered: 

home node (i.e. node 200 and 272), restaurant node (i.e. node 269) for eating, shopping node (i.e. node 267) 

and workplace (i.e. node 266). Two groups of workers with distinct home locations are considered with the 

same population of 3000. The study time span is from 16:00 to 22:00 which is equally separated into 360 

discrete time intervals, i.e. 1 minute for one interval. The marginal time utility for users in each group is σ =
30 CNY/hour. In addition, marginal utility functions of activity engagement for users are also given in Figure 

3. The parameters for the convergence check of the solution algorithm are given as 𝜀1=0.05, 𝜀2=0.05, and 

𝜀3=0.05. Numerical results of solving the dynamic activity-travel scheduling problem defined in the Anaheim 

network show that users work in the workplace until 18:30, then go to the restaurant node for dinner time from 

18:35 to 19:35, go shopping after dinner, then return home after 21:20. 

3.3 Discussion 

In general, the application of the proposed model and solution algorithm to several transportation networks 

shows that network users’ travel behaviour is well characterised and studied. The daily activity and travel 

patterns including activity choices and travel choices are derived for network users with the corresponding 

adoption rate, in which activity location, activity start time and duration, journey origination, departure time 

and route links are explicitly specified. The population shift between different location nodes across a day is 

illustrated to show the group travel behaviour of users, i.e. the main time period of performing certain activities, 

the sequence of activities, and the diversification of users’ travel plans. The congested links as well as peak 
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periods are also identified, which facilitates to better understanding of network traffic evolution and makes 

transport and urban land use policies more properly. 

Moreover, the AJN approach proposed in this paper can be adapted to deal with multi-modal transportation 

networks by dividing the basic transportation network into a number of subnetworks with respect to the transit 

mode and expanding them to the activity journey network. The queuing behaviour in transportation networks 

can be investigated by the AJN approach by incorporating queuing links into the expanded activity-journey 

network. Similarly, parking behaviour can also be studied by allowing necessary cycle routes of flows in the 

activity-journey-network, i.e. users must return to the original parking node to pick up their car and then 

continue their journey in the transportation network. 

Finally, a comparative analysis of the complexity of supernetwork representation is conducted among the 

AJN approach and two widely used approaches: the multi-state supernetwork approach [22] and the activity-

time supernetwork (ATS) approach [28]. The former is proposed to deal with parking behaviour and multi-

modal choice problems, whereas the latter is developed to investigate queuing behaviour in transportation 

networks. As mentioned above, the AJN approach can incorporate these considerations, but as shown below, 

requires a simpler supernetwork representation. 

 

Table 2 – Sizes of the expanded multi-state supernetwork, ATS and AJN 

 Multi-state supernetwork ATS AJN 

Number of 

nodes 
2XJM(XR + 1)XN 

XN(K̅ + 1) + 2 + XL(K̅ + 1 − 0.5XW)(XW + 1)

− (XW + 1) ∑ th
0

h

 X1(K̅+1)+2 

Number of 

links 
2XJM(XR + 1)XL 

XN(K̅ + 2) + XL[2(K̅ + 1) − XW](XW + 1)

− 2(XW + 1) ∑ th
0

h

 X1(K̅+2)+∑ Nd,d'd≠d', d,d'∈D  

 

The mathematical expressions of the number of nodes and links of the supernetwork representation for the 

multi-state supernetwork approach and the activity-time supernetwork (ATS) approach are summarised in Table 

2. The following notations are employed, where XN is the number of nodes in the basic transportation network 

�̅�, XL is the number of links in �̅�, XJ is the number of types of activities in �̅�, and M is the number of user 

classes. Note that XJ ≤ X1, since one activity can be conducted in different location nodes. For the multi-state 

supernetwork approach XR  is used to denote the number of parking locations in �̅� , whereas for the ATS 

approach XW is used to denote the maximum tolerable queuing time in �̅�, which is expressed as an integer 

multiplier of 𝑇𝐿. 

Recall that the calculation of the number of nodes and links of AJN is mainly described in Section 2.1. Here 

we briefly introduce the derivation of the number of nodes and links of the supernetwork representation for 

the other two approaches.  

For the multi-state supernetwork approach, the supernetwork is composed of one public transport network 

and multiple private vehicle networks for individual users, which are interconnected by the transition links 

between parking locations and public transport stops/stations. When the number of types of activities in �̅� is 

XJ , the supernetwork has 2XJ  possible activity states, and for each activity state there are at least XR + 1 

possible vehicle states. In total, the multi-state supernetwork representation needs 2XJ(XR + 1) copies of �̅� for 

a given class of users, and thus the number of nodes and links in the resulting supernetwork are 2XJ(XR + 1)XN 

and 2XJ(XR + 1)XL , respectively. Moreover, when there are multiple classes of users with different home 

locations in �̅� and/or different preferences of activity agendas, the multi-state supernetwork approach needs to 

generate a separate supernetwork for each class of users. 

For the ATS approach, each node in �̅�  is augmented into �̅� + 1 nodes along the time dimension, and 

activity links are generated between these augmented nodes of that node indicating the cases where an activity 

is conducted at that node and lasting for one time interval. Thus, the number of nodes and links in the ATS 

which are generated from the nodes in �̅� are XN(K̅ + 1) and XNK̅, respectively. On the other hand, each link in 

�̅� is expanded to multiple travel links and queuing links, where travel links represent the possible movement 

of users between different nodes with a feasible departure time, and queuing links illustrate the one-time-

interval queuing behaviour of users when link flow exceeds link capacity. Specifically, for a link ℎ in �̅� the 
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number of the feasible set of departure time is K̅ + 1 − th
0, where th

0 is the free-flow travel time of link ℎ. Thus, 

the number of travel links and queuing links generated from a link h in �̅� are K̅ + 1 − th
0 and (K̅ + 1 − th

0 −

XW)XW +
XW(XW−1)

2
, respectively. Exit links are generated to show the processes that users exit travel links or 

queuing links, and thus the number of exit links is the sum of the number of travel links and queuing links. An 

equivalent number of nodes are needed to indicate these expanded links. As a result, from a link h in �̅� the 

number of expanded nodes and links in ATS are (K̅ + 1 − th
0 − XW)(XW + 1)+

XW(XW+1)

2
 and 2(K̅ + 1 − th

0 −

XW)(XW + 1)+XW(XW + 1), respectively. When the number of links in �̅� is XL, the number of nodes and links 

in the ATS which are generated from the links in �̅�  are XL(K̅ + 1 − 0.5XW)(XW + 1) − (XW + 1) ∑ th
0

ℎ  and 

XL[2(K̅ + 1) − XW](XW + 1) − 2(XW + 1) ∑ th
0

h , respectively. Finally, the ATS also contains one dummy start 

node, one dummy end node, XN start links and XN end links. 

It can be seen from Table 2 that the AJN approach develops a simpler supernetwork representation in terms 

of network size for dealing with the dynamic activity-travel scheduling problem in a transportation network 

when compared with the multi-state supernetwork approach and the ATS approach. The total number of nodes 

and links of the multi-state supernetwork increase exponentially with the number of activities XJ, whereas 

those of the activity-time supernetwork and the activity-journey-network both increase in a polynomial manner. 

Note that computational efforts expended on solving the dynamic activity-travel scheduling problem are 

mainly required by identifying the maximum-utility path (or the equivalent minimum-travel-time path) in each 

iteration, which depends heavily on the number of nodes and links of the supernetwork representation. Thus, 

the development of a simpler supernetwork representation can facilitate us to better analyse and solve the 

related dynamic activity-travel scheduling problem. 

By applying the results of Table 2, Table 3 lists the number of nodes and links for the expansion of the small 

network (in numerical example 1), the Sioux Falls network and the Anaheim network through the multi-state 

supernetwork approach, ATS approach and AJN approach, respectively. The values of parameters used in the 

calculation are set as follows: (1) for the small transportation network in numerical example 1 (see Figure 1), 
XN = 5, XL = 16, XJ = 4, X1= 5, M = 2, K ̅= 144, XR = 4 and XW = 6; (2) for the Sioux Falls network, XN = 24, 

XL = 76, XJ = 4, X1= 5, M = 2, K ̅= 144, XR =  5 and XW = 6; and (3) for the Anaheim network, XN = 416, 

XL = 914, XJ = 4, X1= 5, M = 2, K ̅= 360, XR = 5 and XW = 60. The determination of the value of XR is based 

on [22] where activity locations should be all considered as potential parking locations, while the value of XW 

is given according to the length of a time interval and the maximum tolerable queuing time, which is set to be 

1 hour here for illustration purposes. 

Table 3 – Comparison of network size in the expanded multi-state supernetwork, ATS and AJN 

Type of networks  
Multi-state 

supernetwork 
ATS AJN 

Small network 

Number of nodes 800 16,421 727 

Number of links 2,560 32,118 3,590 

Sioux Falls network 

Number of nodes 4,608 78,326 727 

Number of links 14,592 153,192 3,572 

Anaheim network 

Number of nodes 79,872 18,537,347 1,807 

Number of links 175,488 36,924,930 8,875 

 

It can be seen from Table 2-3 that with the increase of a number of activities XJ (as well as the number of 

activity location nodes X1), the gap of expanded network size between AJN and other approaches will grow 

dramatically. We will show how large this gap can be through a simple example. For the Anaheim network, 

imagine the scenario that all the 38 zones in this network can serve as activity locations and each zone can 

conduct one single type of activity, thus the value of XJ is 38. Calculating the number of nodes and links of 

the supernetwork representation for the multi-state supernetwork approach, the ATS approach and the AJN 

approach with setting XJ = X1 = 38 and remaining the value of the rest parameters, as shown in Table 4, it is 
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clear to see the difference in the magnitude of network size of the supernetwork representation among these 

three approaches is significant. 

Table 4 – Sizes of the expanded multi-state supernetwork, ATS and AJN of Anaheim network 

  
Multi-state 

supernetwork 
ATS AJN 

Anaheim network  

(one activity feasible at 

one zone, and a total of 

38 zones) 

Number of nodes 4.46×1015 1.85×107 1.37×104 

Number of links 9.80×1015 3.69×107 5.21×105 

4. CONCLUSION 

In this paper, we study the multi-class user activity-travel scheduling problem under time constraints. A 

simple supernetwork representation approach is introduced to expand the basic transportation network in both 

time and space dimensions. The network size of the supernetwork representation in terms of number of nodes 

and links is analysed and compared with other approaches, which exhibits a significant reduction in the 

magnitude of the network size of the supernetwork representation, especially for the cases with a larger number 

of activities/activity locations. With the supernetwork representation, the dynamic activity-travel scheduling 

problem is transformed into a static network flow assignment problem. An activity-based multi-class user 

equilibrium model is formulated on the expanded AJN. A heuristic algorithm is developed to find the path 

with the maximum utility in the AJN from the start node to the end node for each user. A numerical study is 

conducted to illustrate the application of the proposed model and solution algorithm for dealing with real-

world transportation networks. The computational results show that network users’ travel behaviours including 

activity choices and travel choices are well studied, which facilitates us to better understand network users’ 

travel behaviour, and make transport and urban land use policies more properly. 

Future research to be carried out may include: (a) refining the proposed AJN approach to incorporate the 

consideration of physical queuing problems both on transport links and at activity location nodes, (b) studying 

the activity and travel choice behaviour in a multimodal transportation network, and (c) developing advanced 

methods with new techniques to discuss the interdependence among users’ activity and travel choices. 
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欧阳恋群，黄帝，肖玲玲 

出行时间约束下交通网络多类型用户出行行为的活动-行程-网络建模方法 

摘要 

交通网络中用户的出行决策决定了实时的交通流量形态，而这些出行决策又是基于

用户的一些活动意图而制定的，例如外出工作、就餐、购物等。因此，用于准确描

述用户活动选择和出行行为之间相互作用关系的模型构建方法是交通管理规划的重

要基石。在本论文中提出了一个用来研究出行时间约束下多用户活动-出行计划的基

于活动的交通网络用户均衡模型，并介绍了一种简便的超网络建模方法。通过将原

始交通网络在时间维度和空间维度进行拓展，可以得到一个超网络。在该超网络中，

动态的活动-出行规划决策问题能够被转换为静态的网络配流问题，进而可以设计出

启发式求解算法，为每位网络用户找出出行效用最大化的最优路径。在数值实验中，

本论文所提出的模型和算法被应用于若干个交通网络（包括大型真实的城市交通路

网），结果表明，无论是交通网络中单个用户的出行选择还是群体出行行为均能够

得到很好地分析和研究。 
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