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ABSTRACT 

With the potential for fast, contactless and environmentally friendly delivery, unmanned 

aerial vehicles (UAVs) have gained increasing attention and application due to their cost-

effectiveness and convenient and rapid delivery operations. In future cities, a multi-level 

airport that supports vertical take-off and landing (VTOL) of UAVs and forming a delivery 

network is necessary to improve delivery efficiency and provide a competitive advantage. 

This paper proposes a multi-level airport location-routing problem for UAVs that considers 

UAV flight energy consumption and operational costs. The goal is to minimise the number 

of locations and minimise delivery path planning while meeting delivery demands within the 

service range. Based on the traditional distribution centre site-path problem, the UAV 

distribution network is constructed to solve the problem of airport location and flight path 

planning, and the two-layer genetic algorithm is used to solve it. Based on this, the validity 

of the model and algorithm is verified using the urban area of Tianjin as an example. The 

experimental results show that the constructed model can be used for UAV airport layout 

planning, which is applicable to large-scale, multi-aircraft-type and multi-level airport layout 

planning. Data analysis results indicate that when the location layout of the vertical hub 

airport is on the edge of the VTOL points, both the flight distance and the total cost of the 

delivery network relatively increase. Increasing the payload capacity will reduce the number 

of UAV operations, but the total cost shows a decreasing-then-increasing trend. This study 

can provide a theoretical basis for the selection of airport sites and UAV types in future UAV 

urban delivery networks. 
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1. INTRODUCTION 

With the widespread adoption of the internet and the booming development of the e-commerce industry, as 

well as the emergence of new delivery methods, the number of delivered packages has been increasing steadily 

[1] and UAV-based transportation systems have been introduced. 

Recently, UAVs have received considerable attention as an emerging tool for air transportation, offering 

solutions to ground congestion and carbon emissions [2]. With the advancement of their endurance, automatic 

navigation systems and payload capabilities, as well as the improvement of related regulations, UAVs are 

being studied and applied in fields such as emergency rescue [3], medical services [4] and logistics delivery 

[5, 6]. Companies such as Amazon Prime Air [7], Jing Dong, Antwork Technology and SF Express have 

already launched pilot operations. With the development of these services, many scholars have conducted 

research on UAV-related topics. 

Although UAVs offer potential advantages, they do have certain technical limitations. On one hand, UAVs 

have limited battery capacity, which restricts their flight range. On the other hand, UAVs have small sizes and 
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limited payload capacity [8]. The aforementioned disadvantages clearly hinder the possibility of UAVs 

independently serving customers. In response to the limitations of UAVs, the concept of vertiports and UAV 

combination delivery models have been proposed. The vertiports are located around the customer base and 

provide a landing platform and storage facilities for UAVs and goods, thus avoiding the problem of insufficient 

flight distance for UAVs. At the same time, in order to solve the problems that may arise in the use of drones 

mentioned above, most current research focuses on the combination of UAVs with trucks [9-11]. However, 

due to the limited battery capacity of UAVs, trucks provide charging and shifting batteries, resulting in a lower 

amount of goods carried each time. Given the ground traffic congestion in urban areas, truck transportation is 

still significantly affected. Consequently, in recent years, some scholars have investigated UAV charging 

stations [12, 13], which can ensure longer UAV delivery distances and provide temporary storage space for 

goods. 

This paper addresses the problem of UAV vertiport facilities location and flight route planning of UAVs 

for optimising the cost of the overall delivery network. The above-stated problems are similar to the 

distribution centre location problem and truck path planning problem in the traditional ground logistics system. 

A phased approach is adopted to deal with these two problems [14, 15]. The first stage is to solve the location 

problem, using clustering, spatial geographic analysis or evaluation methods to compare the advantages and 

disadvantages of indicators, and then select the central point. In the second stage, the path planning problem 

is solved. When dealing with the UAV delivery path [16, 17], the impact of UAV flight height, no-fly zone 

and flight duration on the flight path will be considered. However, this phased method is a local optimal 

solution, which does not reach the optimal of the whole distribution system. This study will establish a set of 

UAV delivery networks and consider the location and flight path of UAV distribution centres from the 

perspective of multi-level, multi-model and low energy consumption. However, since these decisions are 

interdependent, this staged decision-making method may not optimise the overall delivery cost. 

In future UAV city logistics, multi-level delivery networks are becoming more prevalent, and this study 

has the following main contributions. (1) Develop a mathematical programming model for optimising the key 

decisions mentioned above, taking into account various operational costs incurred during UAV deliveries, such 

as the cost of purchasing or leasing UAVs due to capacity limitations, energy costs arising from multiple flight 

stages, and maintenance and battery replacement costs during UAV operation. (2) Construct a UAV logistics 

distribution network consisting of three levels of airport facilities, where the operation process is divided into 

two stages of transportation: vertihubs to vertiport, and vertiports to vertistops. (3) Propose a bi-level 

optimisation heuristic algorithm to obtain a high-quality solution and achieve the optimal overall network 

distribution cost. 

The subsequent sections are organised as follows: Section 2 presents a detailed review of related literature, 

Section 3 describes the problem studied in this article and Section 4 introduces a bi-level mathematical 

programming model and proposes a bi-level genetic algorithm for solving it. Section 5 uses the main urban 

area of Tianjin City as the research scenario and discusses the calculation results and numerical analysis. 

Finally, Section 6 presents conclusions and directions for future research. 

2. LITERATURE REVIEW 

With the growth of the UAV delivery industry, one crucial factor in planning UAV operations is the limited 

flying range of battery-powered or fuel-powered UAVs. Currently, various strategies have been proposed to 

compensate for the shortcomings of UAVs. One method is to combine UAVs with trucks, leveraging the 

advantages of trucks to offset the disadvantages of UAVs. For instance, a delivery mode can be established 

where the truck serves as the launch platform and the UAV serves as the transport vehicle for the last-mile 

delivery [10, 18, 19]. Another method is to use UAVs exclusively for transportation, but reliance on battery 

charging and charging stations or docking points is necessary [20, 21, 22]. 

The deployment of such charging facilities is similar to that of electric vehicle (EV) charging facilities, 

which have been extensively studied [23, 24]. EV charging facilities often require a large facility space to 

accommodate the larger size of the vehicles. Additionally, the deployment of EV charging facilities relies on 

the road transport network. Furthermore, the driving distance after an EV is fully charged will be several times 

that of a UAV, and changes in EV charging facilities’ location could potentially affect the UAV’s flight path. 

Therefore, the deployment of UAV charging stations differs from that of EV charging facilities, and a new 

model needs to be established to optimise the location of UAV charging stations. Considering that UAVs will 

be involved in urban delivery systems in the future, this paper introduces the concept of UAV airports. These 
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airports can not only meet the charging needs of UAVs but also provide warehousing and distribution functions 

for logistics activities. Therefore, finding the facility location of UAV airports and planning the delivery routes 

of UAVs is the focus of this study. 

The location problem of UAV airport and the routing problem of UAV delivery is similar to the location 

and route problem of traditional distribution centres and truck cooperation. Balakrishnan et al. [25] first studied 

the LRP problem, which typically involves a single objective function, one demand per customer, no 

intermediate stops, known potential facility locations and a static planning situation. Due to the 

interdependence between facility location and routing decisions, the LRP problem has been a focus of research 

for several decades. Therefore, various variants of the standard LRP problem have emerged, such as multi- or 

N-echelon vehicle routing problems and LRPs (NE-VRPs/LRPs), multi-objective variants and pickup and 

delivery LRP problems. According to Michael’s survey, the multi-echelon LRP problem remains the most 

important LRP variant problem in recent years [26], and its research can be traced back to Gonzalez Feliu, 

Perboli and others [27-29]. The study of this problem has gradually been applied to postal parcel delivery, e-

commerce, multimodal transportation and international consumer goods distribution networks [30], which 

highlights the importance of multi-echelon LRP in urban logistics planning and explains the necessity of 

introducing multi-echelon airport facilities in this paper. Perboli et al. [29] proposed a mixed-integer 

programming (MIP) formulation based on arc variables for two-echelon LRPs, which includes a level-0 facility 

and a level-1 facility of capacity limit. The facility has no fixed cost but has a variable facility cost that depends 

on the load of facility transfers. Crainic et al. [31] studied a heuristic algorithm for a two-phased LRP with a 

level-0 facility and limited vehicles. Since the LRP problem is widely used in the logistics field, Chen et al. 

[32] constructed a cold chain logistics location model that considers carbon emission costs from a low-carbon 

environmental perspective and solved it using an improved genetic algorithm in the fresh cold chain. In 

emergency logistics, Wu et al. [33] established an optimal disaster prevention and reduction model considering 

factors such as human input, producer contribution, capital and effective government expenditure. For urban 

logistics, a multi-centre location-routing problem under capacity, maximum cost and time window constraints 

was considered, and the problem was transformed into an assignment problem using the branch and bound 

method [34]. Çağrı Koç et al. [35] constructed a location-routing model that accounts for vehicle fixed costs, 

warehouse costs and delivery path costs, and proposed a hybrid evolutionary search algorithm that combines 

several heuristic methods to solve the problem. In urban logistics distribution, researchers mainly consider the 

fixed costs of vehicles or warehouses and the operating costs generated in the delivery path. Therefore, building 

on previous research, this article considers the operating costs of UAVs in the delivery process, such as 

depreciation, battery loss and energy consumption, to establish a UAV urban logistics location-routing model. 

The location-routing problem (LRP) originated from the vehicle routing problem (VRP) and facility 

location problem (FLP), both of which are NP-hard problems. Therefore, the LRP problem is also an NP-hard 

problem. Currently, there are four main methods used to solve the LRP model: exact methods, classical 

heuristics, metaheuristics and simulation. Metaheuristic algorithms have become popular in recent years as 

they can diversify and centralise the search space by combining different strategies. Currently, metaheuristic 

methods used to solve the LRP problem include simulated annealing (SA) [36], genetic algorithm (GA) [37], 

non-dominated sorting genetic algorithm II (NSGA-II) [38], particle swarm optimisation (PSO) [39], tabu 

search (TS) [40] and large neighbourhood search (LNS) [41]. By comparing the advantages and disadvantages 

of these algorithms, this paper selects genetic algorithms as the method to solve the model. 

In the context of UAV urban logistics, considering the complex urban environment in which UAVs fly and 

the safety of people and goods, it is necessary to consider UAV energy consumption. Currently, research on 

UAV energy consumption can be classified into the following categories. (1) UAV energy consumption 

depends on the flight distance, and as long as the delivery distance does not exceed the distance limit, the UAV 

can complete the delivery. (2) UAV energy consumption depends on the duration of the flight. (3) UAV energy 

consumption is represented by a linear model consisting of multiple parameters, but the factor that has the 

greatest impact on energy consumption is package weight [42]. (4) UAV energy consumption is represented 

by a non-linear model consisting of multiple adjustable parameters, such as air density, total propeller area, 

blade count and body resistance [43-45, 11]. To better simulate the flight status of UAVs, this paper uses a 

non-linear model to calculate flight energy consumption. 

The review of the research on unmanned aerial vehicle (UAV) freight delivery paths indicates that the 

majority of literature focuses on mathematical models, algorithm design and path-solving methods in this field. 

Mathematical models generally consider objectives such as cost minimisation, path shortening and minimising 

the number of UAV fleets, while taking into account factors such as time windows, delivery priorities, UAV 
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speed, weight, payload and battery weight. However, in the construction of UAV energy consumption models, 

there is limited consideration for the complex environmental factors of UAV urban delivery, such as no-fly 

zones, restricted areas, tall buildings, natural obstacles and artificial obstacles. Nevertheless, there are also 

studies that investigate the avoidance of obstacles in urban environments. Some literature combines wind fields 

with urban obstacles [46] and considers the influence of wind on UAV energy in optimising delivery paths, 

while also considering factors such as avoiding city structures and obstacles [47]. These studies utilise the 

Dijkstra algorithm to find paths on weighted graphs with specified weights, resulting in optimal energy paths 

and shortest detour paths. Regarding the issue of UAV path planning for urban logistics in specific areas, 

Zhang Honghai [48, 49] and Xu Weiwei [50] have adopted grid-based environmental modelling. These models 

comprehensively consider factors such as UAV performance, task nature and urban environment, aiming to 

minimise flight distance, altitude variation and hazard level as objective functions, thus constructing multi-

constrained path planning models for logistics UAVs. 

In summary, our paper is different from previous studies, and our research object has changed from trucks 

and distribution centres to drones and vertical take-off and landing airports (VTOL). Additionally, we 

transform the last mile of logistics activities into secondary cargo transportation, using specialised docking 

stations as important facilities in UAV transit operations. We propose a hierarchical delivery system for 

logistics distribution based on the actual operation of delivering goods in layers, different from the single-layer 

delivery in previous research, and suggest a three-tier layout plan for UAV take-off and landing points in the 

city. To optimise the overall distribution network considering factors such as UAV performance, multi-types 

of UAV, and multi-level facilities from an economic perspective, we construct a three-tier take-off and landing 

point layout planning model for urban logistics UAVs. We design a suitable heuristic algorithm to solve the 

proposed model, and finally optimise the facility location and route decision as a whole and present a 

comprehensive distribution network solution. 

3. PROBLEM DESCRIPTION 

As an emerging air transport tool, UAVs have gradually attracted extensive attention from various demand 

service providers. However, due to the impact of weather dependence, endurance, load limitation and 

infrastructure needs in the logistics distribution of drones, in order to expand the flight range of drones and 

reduce the impact of long-distance flights, a safe take-off and landing platform in urban scenes should be 

provided. This study proposes a delivery method of “UAV and vertical take-off and landing (VTOL) airports” 

joint distribution. In the two stages of the location-routing problem (LRP), our research background is set in a 

complex urban scenario. We refer to the idea of hierarchical design of UAV airports according to the scale in 

the NASA research report [51], in this scenario, after the customer terminal (VTOL point) sends out the 

demand for goods, the cloud service platform receives the instruction and sends it to the city’s central 

warehouse (VTOL hub airport), which then dispatches the goods and sends them to the customer terminal 

through intermediate stations (VTOL airport). In this delivery process, the UAV airport can serve as both a 

distribution centre for cargo schedules and a docking or charging station for UAVs. 

The UAV location-routing problem (UAV LRP) for delivery is a complex logistics distribution system that 

requires consideration of location decisions and route planning. In location decisions, we propose a three-tier 

UAV VTOL airport location layout, consisting of a primary (the first-tier) VTOL hub airport (vertihub), a 

secondary (the second-tier) VTOL airport (vertiport) and a tertiary (the third-tier) VTOL point (vertistop). The 

vertihub is responsible for interregional cargo turnover and transportation by using regional UAVs on the 

route. It has large-capacity storage space, hardware facilities such as automated three-dimensional warehouses, 

automated sorting equipment, large-scale UAV automatic charging service areas, UAV intelligent automatic 

guidance and landing equipment, weather detection equipment, and software functions such as warehouse 

management, control, sorting and UAV operation service platforms. The vertiport is responsible for city-level 

cargo turnover and transportation, with medium-sized storage space that can accommodate both regional and 

terminal UAVs for parking and transportation on the route. It has hardware facilities such as automated or 

semi-automated warehouses, automated sorting equipment, medium-sized UAV automatic charging service 

areas, UAV automatic landing equipment and weather detection equipment, and software functions similar to 

those of the vertihub. The vertistop is responsible for cargo turnover and transportation within the city and is 

also a facility for customers to pick up and deliver goods. It has a small-capacity storage space and uses 

terminal UAVs for logistics transportation on the route. It has hardware facilities such as automated sorting 
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equipment, customer interaction equipment, cameras, landing guidance equipment and software that mainly 

includes intelligent systems for customer interaction. 

The joint delivery logistics network of UAVs and vertiports, as shown in Figure 1, consists of a hybrid route 

composed of three-tier VTOL airport facilities and two types of UAVs cooperating together to solve the UAV 

delivery routing problem. Given the six alternative vertiports in a certain area of the logistics network, after 

calculating the total cost of the logistics distribution network, five candidate sites (B1~B5) are determined. 

Regional UAVs 1~5 depart from the vertihubs, delivering goods to each vertiport, then complete unloading, 

finally returning to the starting point for charging and exchanging batteries along the flight route (vertihub → 

vertiports (B1~B5) → vertihub). Each vertiport covers a certain range of vertistops. For example, vertistops 

(C1~C3) are all within the delivery coverage of the vertiport B1, and the end UAV 1 departs from vertiport 

B1, which completes the second-level path of cargo delivery along the flight route (B1 → C1 → C2 → C3 → 

B1). 

Regional UAV

TerminalUAV

Vertistop

Unselected Vertiport 

Vertiport

Vertihub

The flight path of regional UAV

The flight path of terminal UAV

C2

C4

Regional UAV4
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B1

B2
B3

B4

B5

C1

C3

C5

C6

C7

C8

C9

C10

C11

C12

C13 C15

Regional UAV2

Regional UAV1

C14
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Figure 1 – Joint distribution logistics network of UAVs and VTOL airports  

In this research, UAV LRP is an incomplete directed graphG V E=（ , ） consisting of several sets of nodes

( ) , 1iV i j= and arcs , )i jE（ . The nodes ( )iV  consist of three types of VTOL airports, and each arc
( , )i jE  

represents a route between a pair of nodes
( ) ( ),i jE E . A type of UAV is required for delivery service between 

each pair of arcs. The goal is to obtain feasible facility locations to allocate UAV flight routes and minimise 

the total delivery network cost, including the cost of establishing facilities and the transportation cost of serving 

end customers. 

The energy consumption of UAVs during flight is determined by the power required at different stages of 

flight, which consists of climbing, cruising, hovering and descending. According to the flight profile of UAVs 

shown in Figure 2, which is performing a mission in an urban area, each UAV used will have one or more flight 

trajectories. Each trajectory can consist of climbing, cruising and descending stages. 

During the climbing stage, UAVs will climb to a certain altitude from the VTOL platform provided by the 

airport and adjust the forward direction of the UAV at the highest point. During the cruising stage, UAVs 

adjust the angle of attack and gradually accelerate to a constant speed, then begin to cruise. When they are 

about to reach the task point, they start to reduce their speed. We use
accg ,

intg  and
decg to represent the 

percentage of cruising stage occupied by the acceleration, uniform speed and deceleration phases of the UAV, 

respectively. The parameters acc

up , int

up and dec

up represent the power of UAVs during acceleration, uniform 

speed and deceleration, respectively. 

Finally, during the descending stage, when UAVs reach the airspace above the airport, they first hover. At 

this time, UAVs will search for the platform position provided by the airport. Then UAVs gradually descend 

until they approach the airport platform. If UAVs miss the platform position along the way, they will also 

hover until they find the platform position before continuing to descend. Since the climbing power ( a

up ), 

descending power ( d

up ) and motor speed (
u ) of different types of UAVs are different, each type of UAV has 
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a maximum payload (
u ) and an average flight speed (

uv ). In this study, we will divide UAVs into two types: 

regional UAVs and terminal UAVs, each with different parameters. 

Horizontal flight

Time of operation/minLoad for flight

Climb

Height/m

Hover

Decline

Hover

Loading and unloading, charging 

and exchanging battery

Destination vertiport

Climb

Horizontal flight

Descent 

calibration

Descent 

calibration

 
Figure 2 – Flight profile of UAV performing a mission 

4. CONSTRUCTION OF A DUAL-LAYER PROGRAMMING MODEL FOR UAV-LRP 

4.1 Assumptions 

This study makes the following assumptions: 

1) UAV delivery process is aligned with regulatory requirements, flying in the established route, without 

considering the route conflict or obstacle avoidance issues; 

2) The locations of the vertihubs and vertistops are known; 

3) The demand and time window requirements of the vertistops are known; 

4) The vertihub can cover all candidate locations for vertiports; 

5) Each UAV is equipped with a fully charged battery that can provide full power throughout the departure 

and transfer processes; 

6) The battery of the UAV is fully filled during each mission, and the UAV does not need to replace the 

battery, regardless of the battery change time; 

7) In the UAV flight task, the severity of the meteorological environment is within the controllable range, 

and the current task can be completed according to the planned route. 

4.2 Symbol definitions 

The model parameters and symbol definitions and explanations are presented in Table 1 and Tables 2–4 below. 

Table 1 – Variable definitions 

 Variable Definition 

Set variables 

{ | 1,2,3 }I i i n= =  Set of candidate vertiports 

{ | 1,2,3 }J j j n= =  Set of vertistops 

{ | 1,2,3 }U u u n= =  Set of UAVs 

 1, 2|K k k= =  Set of UAVs type 

Decision variables 

(Binary variable) 

ix  whether an alternative vertiport is enabled, 1ix = , otherwise 0ix =  

ijy  whether vertiport i delivery to Vertispot j, 1ijy = , otherwise 0ijy =  

k

us  whether the u-th UAV of type k of UAV is used, 1
k

us = , otherwise 0
k

us =  
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Table 2 – Model parameter variable definition 

Table 3 – Cost parameter variable definition 

Table 4 – UAV performance parameter variable definition 

Parameter  Definition Parameter  Definition 

in  Number of transfers at vertiport i  it  Storage time of a package at vertiport i  

o  Location of the vertihub oid  
Flight distance from the vertihub to a 

candidate vertiport 

ijd  Flight distance from a candidate vertiport to 

vertistop 
u

jt  Time when a UAV arrives at vertistop 

accept

jT  Earliest start time vertistop can be served 
accept

jET  Latest end time vertistop can be served 

jsT  Ideal start time for vertiport service jsET  Ideal end time for vertiport service 

sZ  
Penalty coefficient for violating time 

windows 
u

sjt  Service time of UAV at vertistop 

N  Number of candidate vertiports jn  Logistics demand of a vertistop 

il  Capacity of Vertiport loadw  
Weight of packages carried by UAV during 

departure 

u

o  
Battery capacity of UAV when departing 

from the vertihub uq  Battery capacity of UAV 

Parameter  Definition Parameter  Definition 

1C  Operating cost of vertiport 2C  Storage cost of a vertiport 

ig  Construction cost of vertiport p  Storage unit price of a package at vertiport 

k

uf  Fixed usage cost of the u-th UAV of type k  a

uC  UAV maintenance cost 

b

uC  Depreciation cost of a UAV c

uC  Cost of maintaining/replacing a UAV battery 

Parameter  Definition Parameter  Definition 

uh  Flight altitude of UAV a

uv  Ascending speed of UAV 

a

up  Motor power required for UAV ascent d

uv  Descent speed of UAV 

d

up  Motor power required for UAV descent hover

up  Hovering power of UAV 

u  Motor speed of UAV uv  Average flight speed of UAV 

u  Maximum payload of UAV acc

up  Power during acceleration stage of UAV 

dec

up  Power during deceleration stage of UAV int

up  Power during cruising stage of UAV 

accg  
Percentage of acceleration time during 

cruising stage of UAV decg  
Percentage of deceleration time during 

cruising stage of UAV 

intg  
Percentage of cruising time during cruising 

stage of UAV ijuC  Cost of UAV battery consumption per unit 
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4.3 Model construction 

Based on the above assumptions and variable definitions, a mathematical model is proposed for the 

problem, which is divided into two parts: an upper-level model and a lower-level model. 

top bottomMinC C C= +  (1) 

1 1

i i

top i i i i i

i i

MinC g x pn t x
= =

= +   (2) 

3 4 5

1,2

( )( )

                 ( ) ( )

                ( )

U I J U
k k a b c

bottom u u u u u oj ij i

k u i j u

K U I K U I J
a auk uk

oiuk uk i ijuk uk ja a
k u i k u i juk uk

K U I
dd

oiuk uk i ijukd
k u i uk

MinC C C C f s C C C d d x

h h
C p x C p x

v v

h
C p x C

v

=

= + + = + + + + +

+ +

+

 

 



int

int

( )

2
                ( )( ) ( )

                (

K U I J
duk

uk jd
k u i j uk

K U I
hover acc decoi uk

oiuk uk uk uk uk uk uk acc uk uk uk dec oj oi

k u i uk uk

K U I J
hover

ijuk uk u

k u i j

h
p x

v

d p
C p h v p g g v p g d y

v v

C p

  



+

  
+ + + + +   

  

+






int

int

2
)( ) ( )

ij acc decuk

k uk uk uk uk acc uk uk uk dec ij ij

uk uk

d p
h v p g g v p g d y

v v
 

  
+ + +   
  

 
(3) 

1
I

i

i

x N   (4) 

I

i i total

i

g x C  (5) 

I J I

j ij i i

i j i

n y l x   (6) 

1
I I

i oi i io

i i

x y x y=    (7) 

1
I J I J

ij ji

i j i j

y y=    (8) 

k

u load us w   (9) 

, u accept

j jM t T  (10) 

( ),u accept u

s js j i j jsZ T t T t T−    (11) 

0, u

js j jsT t ET   (12) 

( ),u u accept

s j js js j jZ t ET ET t ET−    (13) 

, u accept

j jM t ET  (14) 

u u u

i oi si ioT t t t= + +  (15) 

' ' '

u u u u u u

ij ij sj jj sj j it t t t t t= + + + +  (16) 

u u

o i uq = =  (17) 

The objective function expression of the problem is presented in Equation 1, which consists of the upper and 

lower-level objective functions. The upper-level objective function, Equation 2, includes the operational and 

storage costs of the VTOL airports. The operational costs include airport leasing fees, utility expenses, facility 

and equipment purchase costs, while the storage costs mainly comprise equipment maintenance and 
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depreciation costs, packaging and processing costs and labour costs. Equation 3 includes three types of costs, 

including eight costs. Among them, C3 is the fixed input cost of drones, that is, the cost of purchasing or 

leasing a new drone, the cost of pilots or background supervision resources. C4 is the UAV operating cost, that 

is, the loss and depreciation cost generated by the UAV in the long-term flight, including the UAV maintenance 

cost, depreciation cost and battery maintenance/replacement cost. C5 is the UAV flight energy cost, which 

mainly includes the UAV’s energy cost when climbing from the vertical hub airport and VTOL airport, the 

energy cost generated when descending from the VTOL airport and VTOL point, and the energy cost during 

the horizontal flight stage between the vertical hub airport and VTOL airport and the vertical take-off and 

landing point. This includes the cost of energy consumption during the four stages of hovering, acceleration, 

uniform speed and deceleration during flight. The UAVs also have two stages of flight, from the vertihub to 

the vertiport and from the vertiport to the vertistop. Equation 4 indicates that there should be at least one vertiport 

location and no more than the maximum pre-selected number of vertiport locations. Equation 5 indicates that 

the cost of selecting vertiport locations should not exceed the total investment cost. Equation 6 indicates that the 

capacity of any alternative vertiport should be sufficient to meet the demand for services. Equations 7 – 8 indicate 

that UAVs should return to their initial points after completing their delivery services. Equation 9 indicates that 

the weight of the packages loaded on UAVs should not exceed their maximum payload capacity. Equations 10 – 

14 represent the time window penalty constraint. Equations 15 – 16 indicate that the drones should continuously 

provide services to the vertistops during the delivery of goods and the drones should provide point-to-point 

service for the vertiports. Equation 17 indicates that the UAV should be fully charged before departing from the 

vertihub or the vertiport. 

4.4 Bi-level genetic algorithm 

There are many optimisation methods to solve the site-path planning problem, including integer 

programming, dynamic programming, branch and bound method and nonlinear programming. Modern 

heuristic algorithms that are now widely used are also built by imitating one or more phenomena and processes 

in nature, including simulated annealing algorithm, particle swarm optimisation algorithm, genetic algorithm 

[37] and so on. Through the study of the application of the heuristic algorithm to the location – path of UAVS 

VTOL airport, the problems of location selection, task assignment and flight path planning can be solved 

quickly. In the face of large-scale problems, integer programming methods need highly complex algorithms 

and techniques, and it takes a long time to calculate the results, which requires high computer performance. 

The dynamic programming method divides the problem to be solved into several sub-problems, and the 

solution of the original problem is obtained after solving the sub-problems, but the generation of sub-problems 

is often not independent of each other and is subject to certain limitations. At the same time, the dynamic 

programming method is only aimed at solving the optimal problem, and the theoretical design is complicated. 

The simulated annealing algorithm is affected by the cooling rate of temperature. If the cooling rate is not 

suitable, the search time between the current point and the next point is longer, although a better solution can 

be obtained, it will take a lot of time. In addition, if the cooling rate is too fast, the optimal solution may be 

skipped to search for the suboptimal solution. 

There are some outstanding problems in the application of traditional optimisation methods, mainly due to 

the difficulty of initialisation and the great constraint effect of moving mode on the algorithm jumping out of 

the local area. The bionic intelligent algorithm can solve the limitation problem effectively, and the advantage 

effect is obvious. 

The emergence of genetic algorithm (GA) is inspired by biological evolution, which provides a better 

solution to the global optimisation problem. The genetic algorithm is based on biological genetic and 

evolutionary mechanisms, combined with an adaptive probabilistic optimisation algorithm, to find the optimal 

solution in the global search range. Each chromosome in the upper-layer genetic algorithm of this model selects 

and iteratively inherits the optimal individual by means of biological inheritance such as selection, crossover 

and variation, so as to plan the optimal location scheme. In the lower genetic algorithm, each chromosome 

represents a route scheme, and the optimal distribution route is preserved through the selection mechanism of 

the survival of the fittest in nature. Its physical significance is consistent with the modelling method studied in 

this paper. Therefore, the two-layer genetic algorithm is selected to solve the site-path problem of VTOL 

airport. 

The UAV urban delivery LRP based on dual-layer programming is an NP-hard problem. Traditional exact-

solving algorithms are slow and cannot converge quickly. Therefore, this paper proposes a dual-layer genetic 

algorithm to solve this problem. Genetic algorithm (GA) is a population-based metaheuristic algorithm that 
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utilises the genetic mechanism of individuals. These individuals follow genetic rules to breed new offspring, 

and GA selects genetic operators (selection, crossover and mutation) to find better solutions from a set of 

solutions for each iteration. 

The bi-level UAV LRP is divided into two layers: the upper layer model focuses on the operating and 

storage costs of vertiports, which mainly solves the location problem of vertiports. The lower layer model aims 

to minimise the total flight route cost, which needs to solve the assignment problem of vertistops and the UAV 

flight route problem. The solving approach is described as follows: 

1) Use the upper layer model to determine the location and number of vertiports. 

2) Based on the location results of the upper layer model, solve the route planning problem in the lower layer 

model. 

3) Return the route planning results of the lower layer model to the upper layer to calculate the storage cost. 

4) Iterate the overall objective of the upper layer and terminate the loop calculation if the termination 

condition is met. 

According to the above-solving approach, the overall algorithmic framework of the UAV urban delivery 

LRP based on the bi-level programming model in Figure 3 can be constructed. 

Start

Parameter initialization

Upper population initialization, Gen=0

Has the overall maximum number of 

iterations been reached?

The upper layer selects cross mutation operation

Output the upper-layer result scheme

Initialization of the lower population, gen=0

Has the maximum number of iterations in 

the lower layer been reached?

The lower layer selects for cross variation

Lower fitness value calculation

Update the lower optimal solution, gen=gen+1

Output the optimal solution of the lower path

Update the global optimal solution, Gen=Gen+1

Output final result

Y

N

End

Y

N

 
Figure 3 – Bi-level genetic algorithm solution approach 
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5. EXPERIMENTAL RESULTS AND ANALYSIS 

This section describes the following: first, a brief explanation of the data required for the case is provided; 

second, the optimal model results based on an example study are analysed; and finally, a sensitivity analysis 

is conducted to investigate the impact of the scale of the case, the layout of vertihub location, and the payload 

capacity of the UAVs on the total cost. All experimental analyses were conducted on a computer (Inter(R) 

Core (TM) i7-6700HQ CPU @ 2.60GHz with RAM 16GB) using MATLAB R2019b (64-bit). 

5.1 Description of relevant data 

Taking Tianjin City as an example, this paper studies the LRP of UAV logistics distribution in urban areas. 

The related data include: take-off and landing airport node information, UAV basic information, other 

parameter settings and algorithm parameter settings. 

Airport node information for UAV VTOL  

There are three levels of VTOL airports, namely, vertihub, vertiport and vertistop. The node information 

of each level of the airport is introduced below. 

The vertihub location is referenced from the Tianjin JD Asia No.1 Logistics Centre. Due to its large-scale 

construction and advanced hardware and software facilities, such as automated three-dimensional warehouses, 

automatic sorting machines and intelligent information systems, it lays a certain foundation for its future 

development as a VTOL hub airport. Therefore, it is used as a vertihub. Its node information includes airport 

ID numbers and latitude and longitude coordinates (using the WGS84 coordinate system). The details are 

shown in Table 5. 

Table 5 – Vertical take-off and landing hub airport parameter information 

Airport ID Longitude coordinate Latitude coordinate 

0 117.370306 39.177247 

 

Alternative vertiports are randomly distributed within the experimental area. In this case, 5 alternative 

locations were randomly selected as vertiports. The node information includes airport ID, longitude and 

latitude coordinates, service time window and service time. The service time window is 20 hours and the 

service time is randomly generated between 20 and 30 minutes. Table 6 shows the details of these alternative 

airports. 

Table 6 – Alternative vertical take-off and landing airport parameter information 

Airport ID 
Longitude 

coordinate 

Latitude 

coordinate 
Service start time Service end time Service time (minutes) 

1 117.2314279 39.10728245 0 1200 25 

2 117.323999 39.10728245 0 1200 24 

3 117.2777134 39.16955663 0 1200 24 

4 117.323999 39.23187577 0 1200 26 

5 117.3702846 39.16955663 0 1200 25 

 

Vertistops are obtained through POI data crawling of residential and commercial buildings within the 

Tianjin urban area, which form the data information of the VTOL points. The node information includes airport 

ID, longitude and latitude coordinates, demand, service time window and service time. The specific 

information is summarised in Table 7. 

Basic information on UAVs 

UAVs are classified into regional UAVs and terminal UAVs. As a carrier, UAVs avoid ground traffic 

congestion and rely on the route network and air transportation advantages to transport goods from vertihubs 

to vertistops. Referring to the UAV operating status of Antwork Technology, the flight speed of UAVs is set 
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to 25 km/h. The fixed cost of UAVs is 4,000 RMB. The maintenance, depreciation and battery 

maintenance/replacement costs incurred during UAV operation are 0.1 RMB, 0.2 RMB and 0.23 RMB, 

respectively. Other specific parameters of UAVs [52] are shown in Table 8. 

Table 7 – Vertical take-off and landing point parameter information 

Airport 

ID 

Longitude 

coordinate 

Latitude 

coordinate 

Demand 

(kg) 

Service start 

time 

Service end 

time 

Service time 

(minutes) 

6 117.3442 39.1439 0.2 912 967 12 

7 117.3112 39.12554 0.1 825 870 14 

8 117.2907 39.19667 0.3 65 146 14 

9 117.3162 39.12328 0.2 727 782 12 

10 117.2822 39.15077 0.3 235 357 8 

11 117.3211 39.18096 0.2 621 702 3 

12 117.3511 39.21777 0.4 170 225 6 

13 117.2738 39.11184 0.3 255 324 5 

14 117.2974 39.08282 0.5 345 389 4 

15 117.4124 39.17257 0.3 346 567 6 

16 117.2594 39.14785 0.6 458 578 12 

17 117.2377 39.12237 0.1 256 587 4 

18 117.3114 39.08701 0.3 348 556 12 

19 117.3105 39.1394 0.4 348 678 15 

20 117.3252 39.13701 0.3 234 658 7 

21 117.2754 39.13303 0.1 256 485 6 

22 117.2598 39.13017 0.3 364 678 5 

23 117.2906 39.1075 0.3 456 687 6 

24 117.2393 39.12532 0.1 552 687 13 

25 117.2453 39.14942 0.3 359 548 8 

26 117.3279 39.11454 0.1 237 568 20 

27 117.2653 39.10604 0.6 358 685 13 

28 117.3021 39.11364 0.3 248 658 17 

29 117.27 39.12856 0.1 348 685 16 

30 117.3056 39.1065 0.6 458 658 5 

31 117.2674 39.12396 0.3 354 585 16 

32 117.2567 39.14118 0.1 458 658 6 

33 117.2969 39.13718 0.4 225 547 13 

34 117.311 39.12743 0.6 358 658 4 

35 117.2827 39.13125 0.1 258 658 18 

Other related parameter settings 

The numerical values of other related parameters involved in the UAV urban delivery location route 

planning model are shown in Table 9. 
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Table 8 – Parameters of UAVs 

Parameter Symbol Regional UAV  Terminal UAV Unit 

UAV unit consumption cost ijuC  0.43 0.43 RMB 

UAV flight altitude uh  120 120 meter 

UAV ascent speed 
a

uv  48 48 km/h 

UAV motor power required for ascent 
a

up  12 12 kW 

UAV descent speed 
d

uv  32 32 km/h 

UAV motor power required for descent 
d

up  5 5 kW 

UAV hover power u  90 90 kW 

UAV motor speed u  1 1  

Maximum UAV payload u  2 1.2 kW 

Power required for UAV acceleration 
acc

up  90 90 kW 

Power required for UAV cruising 
int

up  85 85 kW 

Power required for UAV deceleration 
dec

up  70 70 kW 

Percentage of acceleration phase during 

cruising accg  5% 5% % 

Percentage of uniform speed phase during 

cruising intg  90% 90% % 

Percentage of deceleration phase during 

cruising decg  5% 5% % 

Table 9 – Other parameter information 

Parameter Name Symbol Value Unit 

Construction Cost of Vertiport ig  2000 RMB 

Storage Unit Price in Vertiport p  0.005 RMB/kg/minute 

Algorithm parameter information 

The bi-level genetic algorithm established in Section 4 is divided into upper and lower layers, and relevant 

parameters in the genetic algorithm are set separately, as shown in Table 10. 

Table 10 – Double-layer genetic algorithm parameter settings 

Upper layer genetic 

algorithm parameters 
Value 

Lower layer genetic 

algorithm parameters 
Value 

Population size 100 Population size 100 

Crossover probability 0.9 Crossover probability 0.9 

Mutation probability 0.3 Mutation probability 0.1 

Iteration number 200 Iteration number 200 

5.2 Experimental results 

The proposed model was solved using the data described above, and the iterative convergence graph of the 

algorithm is shown in Figure 4. From the graph, it can be seen that the algorithm converged to the optimal value 

at the 66th iteration. The solution of the location-routing model using the bi-level genetic algorithm showed 
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that the total optimal cost of the UAV delivery network was 250,701.08 RMB. The facility location cost 

accounted for approximately 39.90% of the total cost, while the UAV route operation cost accounted for 

approximately 60.10%. The total number of UAVs required was 15, of which 7 were needed for the first phase 

(regional) of network distribution, accounting for approximately 46.67% of the total UAVs, and 8 were needed 

for the second phase (terminal), accounting for approximately 53.33%. The total flight distance of the UAVs 

was 189.06 km, with 70.19 km (approximately 37.13%) flown during the first phase and 118.86 km 

(approximately 62.87%) flown during the second phase. Next, we will analyse the upper and lower layers 

separately. 

 
Figure 4 – Iterative convergence graph of the bi-level genetic algorithm. 

After calculation, the upper layer location results indicate that the optimal total cost was achieved when 

selecting the alternative with ID numbers 1 and 2. The location scheme is illustrated in Figure 5, where the 

empty circles represent the vertiports that were not selected, the larger solid circles represent the selected 

vertiports, and the smaller solid circles represent the vertistops. 

 
Figure 5 – UAV vertical take-off and landing airport location results 

At this point, the sum of the vertiport operating cost and storage cost in the upper layer model objective 

function was 100,019.41 RMB, with specific values shown in Table 11. 

Regarding the route results, the sum of the fixed input cost, operation cost, and flight energy consumption 

cost in the lower-level model was 150,681.67 RMB. The route was divided into two parts: from vertihub to 

vertiport and from vertiport to vertiports. The specific path results are shown in Figure 6. 
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Table 11 – Upper-level model costs 

Cost category Value (RMB) 

Operating cost 100,000 

Storage cost 62.41 

Total upper layer cost 100,062.41 

 
Figure 6 – Delivery path results 

The lower layer path model was solved by the bi-level genetic algorithm. The vertihub with ID 0 dispatched 

7 regional UAVs to serve vertiports 1 and 2, and vertiports 1 and 2 dispatched 3 and 5 terminal UAVs to serve 

vertistops, respectively. The specific UAV delivery scheme is shown in Table 12. 

Table 12 – UAV flight path results and delivery scheme costs 

Starting airport ID 

number 
Delivery path 

Number of 

UAVs 

Flight distance 

(km) 

Delivery scheme cost 

(RMB) 

0 0→1→0,0→2→0 7 70.19 70378.60 

1 1→13→31→29→21→22→24→1 3 31.14 30094.97 

 
1→27→1 

1→17→25→16→32→1 
   

2 2→8→12→15→6→2 5 87.72 50208.11 

 2→14→19→20→2    

 2→18→30→28→2    

 2→26→33→10→11→9→2    

 2→34→35→23→7→2    

5.3 Sensitivity analysis of parameters 

By analysing various parameters of the established model, the influence of each parameter on the model’s 

objectives is studied. Since large-scale operational scenarios have not yet emerged, it is necessary to expand 

the data scale to explore the impact on the total cost. Additionally, the location of the vertihub is predetermined 

in the premise assumption, and the selected location will also affect the overall results. Finally, the impact of 

the payload capacity of the UAV on the model is considered. 
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Sensitivity analysis of distribution scale in the cases 

The scale of the vertistop in the research is set to 30, 50 and 100, respectively. Furthermore, under each 

scale, the model is calculated using three different types of location layout: uniform layout (Case1), clustered 

layout (Case2) and semi-clustered layout (Case3). The calculation results are shown in Table 13. 

Table 13 – Calculation results for different distribution scales 

Scale 
Layout 

type 

Location 

selection 

Number of 

UAVs 

Total flight 

distance 

(km) 

Location 

selection cost 

(RMB) 

Path cost 

(RMB) 

Total cost 

(RMB) 

30 Case1 1,2 15 189.06 100019.41 150681.67 250701.08 

 Case2 1,2 15 174.74 100020.50 150661.75 250682.25 

 Case3 1,2 15 204.69 100019.51 150703.42 250722.93 

50 Case1 1,3 22 345.28 100026.78 221141.97 321168.76 

 Case2 2,3 22 202.56 100029.44 220891.31 320920.75 

 Case3 2,3 22 252.51 100028.86 220960.81 320989.67 

100 Case1 1,2,3 40 524.72 150044.04 521959.53 672003.57 

 Case2 1,2,3 41 306.69 150043.85 411567.70 561611.54 

 Case3 1,2,3 42 430.97 150043.92 421778.69 571822.60 

 

From Table 11, it was found that the distribution of vertistops has an impact on the delivery network. When 

the vertistops are clustered, the number of UAVs required and the total delivery cost of the delivery network 

are lower than those of other distribution methods. The results in Figure 7 show that the number of vertistops is 

directly related to the total number of UAVs used and the total delivery cost of the delivery network. When 

the number of vertistops increased from 30 to 50 and from 50 to 100, the number of UAVs and the total 

delivery cost of the delivery network increased by 46.67% and 81.82%, 28.11% and 109.24% for Case1, 46.67% 

and 86.36%, 28.02% and 75.00% for Case2, and 46.67% and 90.91%, 28.06% and 78.14% for Case3, 

respectively.  

It can be seen that as the number of vertistops increases, the impact of the three types of layouts on the 

increase or decrease in the number of UAVs is relatively small. However, for the total delivery cost, the growth 

rate of the delivery network total cost under the clustered layout is smaller than that under the other two types 

of location layout. 

  

(a)  (b)  

Figure 7 – The impact of the number and layout of vertistops on the model: a) impact on the number of UAVs; 

b) impact on delivery network cost 

Sensitivity analysis of vertihub location 

To explore the impact of changes in the location of vertihub on the overall network cost, the location of the 

vertihub was placed at the edge of vertistops, the edge of the vertiport, the centre of the vertistops, and the 

centre of the vertiport, respectively. Before the experiment, it was ensured that the scale of this case was 30 

vertistops, and the positions of the vertistops and the vertiport remained unchanged. From the experimental 

results in Table 14, it can be seen that the change in the location of the vertihub will cause adjustments to the 
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location scheme. When the layout of the vertihub is located at the edge of the vertistops, the total cost of flight 

distance and distribution network relatively increases. This is mainly because the location of the vertihub has 

a significant impact on the service time window of the vertistops. It is worth noting that the change in the 

location of the vertihub does not cause a change in the number of UAVs, but it does affect the total flight 

distance and path cost of the UAVs. 

Table 14 – Impact of Vertihub Location on Distribution Network Cost 

Location layout 
Location 

Selection 

Number of 

UAVs 

Total Flight 

Distance (km) 

Location 

Selection Cost 

(RMB) 

Path Cost 

(RMB) 

Total Cost 

(RMB) 

Edge of vertistops 1,2 15 189.06 100019.41 150681.67 250701.08 

Edge of vertiports 1,3 15 167.02 100020.42 150506.42 250526.84 

Center of vertistops 1,2 15 149.19 100020.27 150509.23 250529.50 

Center of vertiports 1,3 15 171.46 100020.35 150520.71 250541.05 

Sensitivity analysis of UAV payload capacity 

The purpose of this experiment is to investigate the impact of UAV payload capacity on the number of 

UAVs and total cost in a delivery network. The payload capacity ranges of the regional UAV (Cap1) and 

terminal UAV (Cap2) are set between 4 to 10 kg and 1.5 to 4 kg, respectively, while keeping other parameters 

constant. The experimental results are shown in Table 15. 

Table 15 – The impact of drone payload capacity on delivery network cost 

Payload 

classification 

UAV 

payload 

Location 

selection 

Number of 

regional 

UAV 

Number of 

terminal 

UAV 

Total 

flight 

distance 

(km) 

Location 

selection 

cost (RMB) 

Path cost 

(RMB) 

Total cost 

(RMB) 

Cap1 4 1,2 4 8 189.06 100019.41 120542.10 220561.51 

 6 2,3 3 8 171.45 100019.59 110472.51 210492.09 

 8 2,3 3 8 171.45 100019.59 110478.36 210497.95 

 10 2,3 3 8 171.45 100019.59 110483.52 210503.10 

Cap2 1.5 1,2 7 6 180.28 100019.41 130680.11 230699.52 

 2 1,2 7 5 175.40 100019.41 120688.93 220708.34 

 2.5 1,3 7 4 182.97 100019.33 110710.74 210730.06 

 3 1,2 7 3 166.12 100019.41 100702.22 200721.63 

 3.5 1,2 7 3 165.49 100019.41 100712.77 200732.18 

 4 1,2 7 3 161.69 100718.13 100019.41 200737.54 

 

From Table 15, it can be seen what is the impact of two types of UAV payload capacity on the number of 

UAVs and overall delivery cost. The results indicate that, to some extent, the number of UAVs used decreases 

as the payload capacity increases. Once a certain level is reached, the number of UAVs used remains constant. 

This is because the service time at the vertistop limits the number of UAVs used. In addition, changes in 

payload capacity for terminal UAVs have a more significant impact on the overall network delivery cost 

compared to regional UAVs. The experimental results demonstrate that the total delivery cost decreases first 

and then increases as UAV payload capacity increases. Therefore, when operating conditions permit, in order 

to keep the overall network delivery cost at a low level, the payload capacity of the UAV should be adjusted. 

Therefore, if the payload capacity of feeder UAVs is set between 6 to 8 kg and the payload capacity of last-
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mile UAVs is set between 3 to 4 kg, both the number of UAVs used and the network delivery cost can be kept 

at a lower level. 

6. CONCLUSION AND FUTURE DIRECTIONS 

This study investigates the UAV delivery location routing problem (LRP) in urban areas. Firstly, design an 

operational plan for a UAV distribution network using different types of UAVs with multi-level Verti-airports. 

A bi-level programming model is proposed, considering UAV-related factors, such as UAV depreciation, 

maintenance and energy costs in different flight stages. Furthermore, a bi-level genetic algorithm is developed 

based on the dual-layer programming model. Finally, a set of new instances is generated using the urban area 

of Tianjin as the experimental area.  

We further analyse the impact of parameters in the model on the overall distribution network. It is found 

that the change in the scale of vertistop has a positive correlation with cost. In terms of location layout, a 

cluster-style layout of vertistop can result in smaller distribution costs and flight distances. When analysing 

the location of the vertihub, it is found that the layout of the vertihub on the edge of the vertistop results in an 

increase in flight distance and total distribution costs of the distribution network. When testing the parameter 

of UAV payload capacity, it is found that the UAV payload capacity has a negative correlation with the overall 

cost of the distribution network, and with the increase of payload capacity, the number of regional and terminal 

UAVs tends to be stable. When setting the payload capacity of regional UAVs at 6 to 8 kg and terminal UAVs 

at 3 to 4 kg, the number of UAVs and network distribution cost can be kept at a low level. 

The research of this paper still has some shortcomings and needs to be improved. In the study of UAV 

delivery, the flight speed of the UAV is set to be uniform, but in the actual delivery process, the UAV is 

affected by the external environment, and the flight speed and flight power change. Therefore, the UAV flight 

speed can be used as a variable to optimise the UAV routing problem in the subsequent research. When solving 

the site-path model of drone city distribution, a double-layer genetic algorithm is designed. Different 

algorithms can be applied to the solution of the double-layer model in future studies, and new algorithms can 

be added to speed up the convergence of solutions. 

Several potential directions for future research in UAV logistics can be considered. In this study, the 

demand is assumed to be deterministic, but future research should consider fuzzy demand. In addition, the cost 

of UAV charging and replacing batteries should be considered in further research. Future research could 

develop different scenarios to solve logistics distribution problems. Finally, future research can try to study 

the application of UAV flight trajectory in three-dimensional scenes. 
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江红，王佳雪，任新惠 

无人机城市物流配送网络中机场选址-路径规划——以天津市为例 

摘要： 

无人机（UAV）具有快速、零接触和绿色交付等潜力，由于其成本效益和方便快速

的交付操作而得到越来越多的关注和应用。为了提高交付效率并提供竞争优势，在

未来的城市中，需要一个支持无人机垂直起降（VTOL）的多层机场网络。本文提出

了一个考虑无人机飞行能耗和运营成本的多层无人机机场选址问题。目标是在满足

服务范围内交付需求的基础上，最大限度地减少机场数量并缩短交付路径。基于传

统配送中心站点-路径问题，构建无人机配送网络，采用双层遗传算法解决机场选址

和飞行路径规划问题。基于此，以天津市区为例，验证了模型和算法的有效性。实

验结果表明，本文构建的模型可用于无人机机场布局规划，适用于大规模、多飞行

器类型、多层次的无人机机场布局规划。数据分析结果表明，当垂直枢纽机场布局

在 VTOL 选址点的边缘时，配送网络的飞行距离和配送总成本都相对增加。增加有

效载荷容量将减少无人机投入数量，但总成本呈先下降后增加的趋势。本研究可为

未来无人机城市配送网络中的机场选址和无人机类型选择提供理论依据。 

关键词： 

无人机城市物流；无人机垂直起降机场；物流配送网络；选址-路径问题；双层遗传

算法 


