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ABSTRACT 

With ongoing urbanisation, the subway has become a vital component of modern cities, 

catering to the escalating demands of a mobile population. However, the increasing 

complexity of passenger flows within subway stations presents challenges for operations 

management. To optimise subway operations and enhance safety, researchers have focused 

on extracting and analysing pedestrian trajectories within subway stations. Traditional 

trajectory extraction methods face limitations due to manual feature design and multi-stage 

processing. Leveraging advancements in deep learning, this paper integrates M-DeepSORT 

with YOLOv5 and proposes a feature association matching approach that addresses 

trajectory drift issues through simultaneous consideration of motion and appearance 

matching. A confidence-based (CB) Kalman filtering method is proposed to address the issue 

of random noise in pedestrian detection within subway scenes. The introduction of a 

momentum-based passenger trajectory centre update method reduces jitter, resulting in 

smoother trajectory extraction. Experimental results affirm the effectiveness of the proposed 

algorithm in detecting, tracking and statistically analysing subway station corridor passenger 

flow trajectories, demonstrating robust performance in diverse subway station scenarios. 

KEYWORDS 

passenger trajectory tracking; CB Kalman filtering; trajectory update; momentum;  
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1. INTRODUCTION 

Cities are grappling with the increasing fluidity of population movement and the growing complexity of 

transportation demands, with urban public transit systems playing a pivotal role [1, 2]. Among these systems, 

the subway, recognised for its efficiency and speed, caters to the daily travel needs of a substantial number of 

passengers [3]. However, as urbanisation progresses, the organisation of passenger flows within subway 

stations becomes more intricate. In the pursuit of optimising operations, enhancing service quality and 

bolstering safety management capabilities, researchers are increasingly focusing on extracting and analysing 

pedestrian trajectories within subway stations [4]. By analysing passenger trajectories, we gain valuable 

insights into the travel behaviour patterns of passengers, encompassing aspects such as travel paths, dwell 

times and transfer habits. This process helps establish a more precise model for understanding travel behaviour. 

Beyond offering theoretical underpinnings for urban transportation planning, this analysis also enhances our 

comprehension of the spatial dynamics within subway stations, including popular areas, congestion points and 

flow channels. Consequently, it optimises the utilisation efficiency of station space. Operators can refine train 

departure intervals, enhance crowd guidance and establish judicious station facilities based on these insights, 
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thereby elevating transportation efficiency and overall service quality. Moreover, passenger trajectory analysis 

possesses the capability to forecast crowd congestion, guide and redirect passengers, and respond to 

emergencies. This functionality provides tangible support for the safety management and emergency event 

handling of subway stations. Furthermore, data-driven decisions, such as intelligent guidance services and 

safety evacuation plans based on passenger trajectories, are set to propel urban public transit systems toward 

greater efficiency and intelligence. Therefore, a comprehensive study of pedestrian trajectories within subway 

stations holds the promise of providing robust support for the modernisation and optimisation of urban public 

transit systems. 

The current landscape of research on pedestrian trajectory tracking and extraction methods can be broadly 

categorised into two groups: approaches rooted in traditional machine vision and those leveraging deep 

learning techniques. Traditional machine vision-based pedestrian detection methods rely on pedestrian features 

such as height, the colour of clothes and histogram of oriented gradient (HOG), and employ classifiers like 

support vector machine (SVM) and random forest to locate pedestrians. Hand-crafted features play a crucial 

role in pedestrian detection, with the HOG [5] being a widely utilised descriptor. The fundamental concept 

underlying HOG is the representation of local object appearance and shape in an image through the intensity 

distribution of gradients or edge directions. The image is partitioned into small, connected regions, and for the 

pixels within each region, a histogram of gradient directions is generated. The final descriptor is a 

concatenation of these histograms. Recent advancements in this field introduced a local sub-descriptor known 

as colour self similarity (CSS) [6]. CSS compares colour histograms within a HOG-detected window, 

emphasising, for instance, the high similarity between colour histograms from two arms. Extensive research 

has been dedicated to pedestrian detection [7, 8], with more than sixteen different detectors being benchmarked 

[9] against various public datasets. A significant portion of this research focused on hand-designed features, 

as detailed in [9]. These features primarily relied on window-sliding techniques, employing support vector 

machines (SVM) for classification. Additionally, alternative methods, rooted in Viola and Jones’ Adaboost 

framework [10], and several variations of the HOG method [11], were thoroughly evaluated in [9]. However, 

they heavily depend on manual feature design, requiring significant human intervention. When subway station 

environments change or passenger targets are blocked and deformed, these methods struggle to accurately 

track. 

In recent years, convolutional neural network (CNN)-based deep learning technologies have become 

prevalent in pattern recognition and target detection. Deep learning detection algorithms are generally 

categorised into two types: two-stage algorithms based on candidate regions and single-stage algorithms based 

on regression. Girshick et al. [12] introduced the regional convolutional neural network (RCNN) in 2014, 

employing a three-step process: candidate region selection, CNN feature extraction and 

classification/boundary regression. Subsequent enhancements by Ren et al. [13] resulted in faster RCNN, 

improving candidate box generation. In contrast to two-stage algorithms, single-stage algorithms based on 

regression, such as single shot multibox detector (SSD) and you only look once (YOLO), predict category 

probability and object coordinates directly through CNN, offering faster detection speed. The emergence of 

CNNs has significantly impacted computer vision research groups specialising in pedestrian detection, 

demonstrating improved and more reliable results in recent analyses [14]. The proposal of the YOLO algorithm 

[15] greatly improves the detection speed of the single-stage detector. The latest YOLOv5, implemented in the 

PyTorch framework, maintains equivalent detection accuracy to YOLOv4 while achieving a nearly 90% 

reduction in model size, thereby lowering computational costs. 

With the continuous enhancement of both accuracy and speed in target detection algorithms, the 

development of target tracking by detection (TBD) methods, relying on the outcomes of target detection, has 

progressed rapidly [13, 15, 16]. Simple online and realtime tracking (SORT) [17] stands out as a classical 

multi-target tracking algorithm. This tracker employs the Kalman filter for motion trajectory prediction, and 

the Hungarian algorithm optimises the allocation between detection results and the tracker’s prediction 

outcomes. DeepSORT [16], building upon the SORT algorithm, introduces the cascade matching strategy to 

mitigate identity transformation-related mispredictions. Therefore, in recent years, the combination of YOLO 

and DeepSORT for pedestrian trajectory recognition has attracted widespread attention [18-21]. Song et al. 

[18] designed an intelligent helmet recognition system, which combined the multi-target tracking algorithm 

DeepSORT and YOLOv5 detector. Zhao et al. [19] utilised the YOLO algorithm to implement passenger 

boarding and alighting detection and statistics based on video images from buses. In the realm of pedestrian 

tracking, the most recent advancements in MOT research have offered novel perspectives for the identification 

and tracking of pedestrians within subway stations. In addition, scholars have proposed several novel 
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approaches for multi-object detection. Wang et al. [22] proposed a new instance of joint MOT approach based 

on graph neural networks (GNNs) to learn discriminative features for detection and data association. Fukui et 

al. [23] proposed an end-to-end MOT model, TicrossNet, which is composed of a base detector and a cross-

attention module. This model does not require attached modules, such as the Kalman filter, Hungarian 

algorithm, transformer blocks or graph networks. Daniel Stadler and Jurgen Beyerer [24] introduced a novel 

occlusion handling strategy that explicitly models the relation between occluding and occluded tracks 

outperforming the feature-based approach, while not depending on a separate re-identification network. Zhang 

et al. [25] presented a simple, effective and generic association method, tracking by associating almost every 

detection box instead of only the high-score ones. To improve the performance of data association, Li et al. 

[26] developed a simple, effective, bottom-up fusion tracker for re-identity features, named SimpleTrack, and 

proposed a new tracking strategy which can mitigate the loss of detection targets. Yaoyao Si and Yi Zhang 

[27] proposed IAMOT, a simple yet effective network based on anchor-free architecture to utilise an additional 

attention module to weaken the occurrence of ID switches. Zhou et al. [28] proposed an adaptive joint learning 

approach, called UnionTrack, for MOT in this paper. It is handled with the problem of uniform learning 

between tasks in the online MOT system. In terms of pedestrian tracking, tracking-by-detection is the 

mainstream framework [29]. Xin Xiao and Xinlong Feng [30] proposed a comprehensive approach for 

pedestrian tracking, combining the improved YOLO object detection algorithm with the OC-SORT tracking 

algorithm. These research advancements have laid a foundation for our study. However, tracking pedestrians 

within a subway station presents numerous challenges, including complex environmental conditions, random 

noise and the diversity of pedestrian behaviours such as occlusions. The confined spaces and rapid movement 

dynamics within subway stations make accurate trajectory recognition and extraction difficult due to frequent 

occlusions and overlapping paths among pedestrians. Additionally, the dynamic nature of subway stations with 

fluctuating passenger volumes and varying movement patterns introduces uncertainties and complexities in 

trajectory recognition. Furthermore, the presence of random errors and jitter in pedestrian trajectories 

necessitates advanced algorithms capable of maintaining consistent and reliable tracking results. These 

multifaceted challenges collectively hinder the effectiveness of traditional tracking methods, highlighting the 

need for innovative approaches to enhance pedestrian trajectory recognition and extraction in subway 

environments. Therefore, this paper proposes an integrated and enhanced method for pedestrian trajectory 

recognition and extraction in subway stations by combining YOLOv5 and M-DeepSORT. Firstly, this paper 

integrates the YOLOv5 detector with M-DeepSORT, simultaneously enhancing passenger detection accuracy 

through the utilisation of the Distance-IoU loss. This approach effectively mitigates the risk of misjudgements 

caused by target occlusion or deformation. Secondly, addressing the issue of random noise in pedestrian 

detection within subway scenes, the paper proposes the confidence-based (CB) Kalman filtering method. This 

innovative approach enhances the robustness of pedestrian tracking in noisy subway environments. Thirdly, 

this paper introduces a novel momentum-based passenger trajectory centre update algorithm, which mitigates 

passenger trajectory jitter caused by random errors. This innovative approach leverages momentum 

information from previous observations, enabling a more stable and continuous estimation of passenger 

trajectory. Finally, to ascertain the practical applicability and robustness of our proposed model, extensive 

validation was conducted in diverse real-world scenarios, ensuring its effectiveness across various conditions 

and settings. 

2. THEORETICAL BACKGROUND 

2.1 Object detection 

Compared with two-stage target detection algorithms, the YOLO series, including YOLOv5, excels by 

eliminating the initial rough positioning step, thereby directly obtaining object category and position 

information simultaneously. This streamlined approach significantly enhances detection speed. This 

acceleration is crucial for real-time tracking in dynamic subway environments. The grid-based approach of 

YOLOv5 divides the input image into S×S cells, with each cell assigned to detect objects whose centres fall 

within its boundaries. These cells predict precise position details, confidence scores and category labels for B 

bounding boxes, facilitating efficient pedestrian capture amidst subway passenger flows. YOLOv5 

incorporates non-maximum suppression (NMS) to refine detection results. By filtering out bounding boxes 

with lower confidence scores and retaining those with the highest confidence score for subsequent loss function 

computation, it ensures high-quality target detections, a fundamental prerequisite for accurate pedestrian 
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trajectory tracking in subway systems. Furthermore, YOLOv5’s implementation within the PyTorch 

framework is advantageous due to its lightweight model, minimising computational and memory costs, which 

is highly beneficial for resource-constrained subway passenger flow tracking systems. Lastly, YOLOv5 

maintains detection accuracy comparable to YOLOv4 on benchmark datasets like COCO. This level of 

accuracy is essential for reliable and precise pedestrian tracking within the demanding subway environment. 

Therefore, based on its streamlined detection process, grid-based approach, NMS refinement, PyTorch 

integration and maintained detection accuracy, YOLOv5 is the apt choice as the foundational model for 

subway passenger flow pedestrian trajectory tracking. 

2.2 Multi-object tracking 

In recent years, with the advancements in target detection technology, tracking based on detection has 

emerged as the prevailing approach in the field of multi-object tracking (MOT). One notable example of this 

paradigm is the SORT algorithm, which combines the Kalman filter and the Hungarian algorithm. SORT 

utilises the intersection over union (IoU) between detection and tracking results as the cost matrix for the 

Hungarian algorithm, resulting in an effective and straightforward tracking methodology. However, SORT 

exhibits limitations in its inability to account for content feature matching, leading to frequent identity switches 

and interruptions in tracking when targets become occluded. 

To address this issue, the DeepSORT algorithm integrates both motion and appearance information of 

targets into the association metric and incorporates a cascade matching strategy. This innovation dramatically 

reduces the occurrence of identity switches and tracking failures. The DeepSORT tracking process begins with 

identifying targets in each image using a detector. Subsequently, the tracker is initialised based on the 

detector’s results, and the target’s trajectory is predicted using the Kalman filter. Using the Hungarian 

algorithm, tracks are matched between consecutive images and the prediction results are continuously updated. 

DeepSORT assigns a tracker to the new detection results in each frame, with the emergence of a new track 

being confirmed if the tracker’s predictions match the detection results for three consecutive frames; otherwise, 

the tracker is removed. In the context of this paper, DeepSORT is employed for tracking pedestrian trajectories 

within subway stations. 

3. METHODS 

To address the challenges posed by environmental noise, obstructions affecting pedestrians and mutual 

occlusions between pedestrians within subway stations, we have developed an innovative method for 

passenger recognition and tracking. Within the scope of extracting pedestrian trajectories within subway 

stations, the harmonious integration of advanced object detection and tracking technologies presents an 

enhanced method for the precise and continuous reconstruction of pedestrian movements. The object detection 

component efficiently identifies objects, including pedestrians, in images, yielding vital positional and class 

information. This is seamlessly complemented by the object tracking mechanism, proficiently monitoring 

objects across multiple video frames, thereby ensuring the creation of consistent trajectory sequences. The 

integration of these two components involves three key steps in the pedestrian trajectory extraction process: 

1) Object detection: The system performs object detection on each frame of surveillance videos within the 

subway station, accurately locating pedestrians within the frames. 

2) Object tracking: The tracking component utilises the extracted features from the detected pedestrians to 

track them seamlessly across consecutive video frames. It effectively associates objects in the current 

frame with their counterparts in the previous frame, maintaining trajectory continuity. 

3) Trajectory generation: Successful tracking across multiple consecutive frames results in the creation of 

continuous pedestrian trajectories, depicting their paths of movement. 

This comprehensive approach, combining robust object detection with advanced tracking techniques, not 

only ensures the effective extraction and tracking of pedestrian trajectories within subway stations but also 

provides invaluable, accurate data to support subway operation and management. This, in turn, contributes to 

optimising the passenger experience and enhancing overall service quality. The fundamental algorithmic 

framework for this approach is illustrated in Figure 1. 
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Figure 1 – Basic framework of the algorithm 

In this study, we employ a combination of state-of-the-art methodologies to achieve precise and continuous 

pedestrian trajectory extraction. Specifically, our approach leverages YOLOv5 as the object detection 

component to efficiently identify and locate pedestrians within surveillance images. YOLOv5, recognised for 

its effectiveness in simultaneous multi-object detection and providing essential object information, plays a 

pivotal role in this process. Furthermore, we enhance the tracking aspect of our framework by incorporating a 

modified DeepSORT algorithm. This improved DeepSORT algorithm excels at tracking objects across 

multiple video frames, ensuring the generation of continuous and stable pedestrian trajectories. By harnessing 

the strengths of YOLOv5 for detection and the enhanced DeepSORT for tracking, we achieve a robust and 

accurate solution for pedestrian trajectory extraction within subway stations. Next, we will provide detailed 

introductions to YOLOv5 and our improved DeepSORT algorithm, respectively. 

3.1 Improved YOLOv5 for passenger detection 

In the context of passenger trajectory recognition within subway stations, the monitoring system typically 

relies on embedded devices with limited computing power, making it unfeasible to deploy large-scale detection 

models. Furthermore, passenger trajectory recognition relies on monitoring video, where the distance between 

passengers and cameras varies, leading to differences in the sizes of the tracked targets. YOLOv5 [31] offers 

distinct advantages with its compact model size, low computational overhead and high detection accuracy for 

small targets. This capability aligns perfectly with the need for accurate and real-time recognition of passenger 

trajectories in video frames, rendering it a highly practical choice for this application. 

YOLOv5 is an advanced deep learning model designed for object detection, comprising four key 

components: the input module, backbone network, neck structure and head module, as shown in Figure 2. The 

input module preprocesses data through techniques such as mosaic data augmentation, adaptive anchor 

computation and adaptive image scaling, enhancing the model’s adaptability to diverse datasets. The backbone 

network incorporates the focus structure, cross stage partial network (CSPNet) and spatial pyramid pooling 

(SPP) structure to extract features at different levels through deep convolution. The focus component 

downsamples the feature image via slicing operations while preserving the original image information. CSP 

reduces computation, improving inference speed; and SPP achieves feature extraction from the same feature 

map at different scales, contributing to enhanced detection accuracy. The neck structure combines feature 

pyramid networks (FPN) with path aggregation network (PAN). FPN transmits semantic information from top 

to bottom, while PAN transmits positional information from bottom to top, collectively reinforcing the 

network’s feature fusion capabilities. The head module performs predictions on feature maps by calculating 

bounding box loss and employing non-maximum suppression (NMS) to generate target bounding boxes and 

predict categories. 
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Figure 2 – The network structure of YOLOv5 

In traditional YOLOv5 implementations, the IoU loss function has been conventionally adopted due to its 

effectiveness in providing a coherent framework for target detection. The regression loss function is a pivotal 

component in target detection algorithms, serving a critical role in evaluation and performance enhancement. 

The IoU loss exclusively focuses on the intersecting region between the predicted bounding box and the ground 

truth bounding box, demonstrating commendable scale invariance. The computation formula for IoU is as 

follows: 

𝐼𝑜𝑈 =
|𝐵 ∩ 𝐵𝑔𝑡|

|𝐵 ∪ 𝐵𝑔𝑡|
 

(1) 

where 𝐵𝑔𝑡 = (𝑥𝑔𝑡 , 𝑦𝑔𝑡 , 𝑤𝑔𝑡 , ℎ𝑔𝑡) is the ground-truth and 𝐵 = (𝑥, 𝑦, 𝑤, ℎ) is the predicted box. Traditionally, ℓ𝑛-norm 

(e.g. 𝑛 = 1 or 2) loss is applied to the coordinates of bounding boxes (𝐵  and 𝐵𝑔𝑡 ) to quantify the spatial 

dissimilarity between bounding boxes, as advocated by various studies [12, 15, 32, 33]. However, as proposed 

in prior research [34, 35], the utilisation of n -norm loss may not be the most suitable option for optimising 

the IoU metric. In the work by [34], the adoption of IoU loss is recommended to enhance the IoU metric, 

aiming for improved accuracy in object detection. 

ℒ𝐼𝑜𝑈 = 1 −
|𝐵 ∩ 𝐵𝑔𝑡|

|𝐵 ∪ 𝐵𝑔𝑡|
 

(2) 

In general, the IoU distance effectively represents the spatial relationship between the prediction box 

(referred to as the projected box) and the detection box within the detection space. IoU always maintains a 

value greater than 0 and remains unaffected by any scaling of either the prediction frame or the detection frame. 

Nonetheless, the IoU loss function exclusively operates when bounding boxes exhibit overlap and does not 

provide any gradient information in scenarios where they do not overlap. Therefore, the IoU distance is not an 

ideal criterion for assessing the match between the detection box and the prediction box, as illustrated in  
Figure 3. 

 

(a) 

 

(b) 

Figure 3 – No spatial alignment exists between the detection frame and the prediction frame: 

a) The detection frame is in close proximity to the prediction frame; b) The detection frame is distant from the prediction frame 
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From Figure 3, when the red detection frame does not overlap with the blue track prediction frame, both 

cases in Figure 3a and Figure 3b result in IOU values of 0. This makes it impossible to assess the difference in 

matching quality between them, which can lead to erroneous matches. 

Additionally, situations may arise where the IoU value between the trajectory prediction box and the 

detection box is identical, even though the overlap positions differ. As shown in Figure 4, the IoU distance is 

likewise insufficient to assess the matching degree between the detection frame and the prediction frame in 

such cases. 

 
Figure 4 – Two types of overlap: a) Cross overlap; b) Horizontal overlap 

Figure 4a and Figure 4b exhibit an identical IoU value, despite variations in the overlapping positions between 

the detection frame and prediction frame in these two scenarios. To address this challenge, Rezatofighi et al. 

[34] introduced position information into the distance measurement, allowing for a more effective assessment 

of the intersection between the detection frame and prediction frame more effectively. The generalised 

intersection over union (GIoU) distance introduces the minimum bounding box of the detection frame and 

prediction frame to address their spatial position relationship. The calculation process is detailed in Equation 3: 

𝐺𝐼𝑜𝑈 = 𝐼𝑜𝑈 −
|𝐶 − 𝐵 ∪ 𝐵𝑔𝑡|

|𝐶|
 

(3) 

where C is the minimum frame area used to cover the detection frame B and prediction frame 𝐵𝑔𝑡. This, in turn, 

suggests a lower degree of match between the two, and vice versa. Hence, 

ℒ𝐺𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
|𝐶 − 𝐵 ∪ 𝐵𝑔𝑡|

|𝐶|
 

(4) 

The spatial representation of GIoU is shown in Figure 5. 

 
Figure 5 – Spatial representation of GIoU 
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As demonstrated in Equation 1, when the IoU is 0, signifying no overlap between the detection frame and the 

prediction frame, the value remains constant. Moreover, with a larger value of 𝐶, indicating a greater distance 

between the detection frame and the prediction frame, the GIoU becomes smaller, resulting in a higher GIoU 

distance. Due to the introduction of the penalty term, the predicted box will move towards the target box in 

non-overlapping cases. 

Although GIoU can relieve the gradient vanishing problem for non-overlapping cases, it still has several 

limitations, especially when extracting the passenger trajectory in the subway station. In the context of tracking 

passenger trajectories in a crowded subway station, it is common to encounter situations where the prediction 

frame falls within the boundaries of the ground truth. From Figure 6, GIoU loss will totally degrade to IoU loss 

for enclosing bounding boxes. In this paper, we use a Distance-IoU (DIoU) loss [36] a penalty term on IoU 

loss to directly minimise the normalised distance between central points of two bounding boxes, leading to 

much faster convergence than GIoU loss. Generally, the DIoU-based loss can be defined as: 

ℒ𝐷𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝜌2(𝑏, 𝑏𝑔𝑡)

𝑐2
 

(5) 

where 𝑏 and gtb  denote the central points of 𝐵 and 𝐵𝑔𝑡 , 𝜌(⋅) is the Euclidean distance, and 𝑐 is the diagonal 

length of the smallest enclosing box covering the two boxes. 

 
Figure 6 – Different cases of IoU, GIoU and DIoU 

To improve the precision of pedestrian extraction in subway settings, a critical adjustment was made by 

replacing the IoU loss function in the YOLOv5 model with the DIoU loss function. This modification aims to 

offer a more comprehensive and accurate assessment of the overlap between predicted and ground truth 

bounding boxes, especially in contexts characterised by environmental noise, obstructions caused by the 

environment affecting pedestrians and mutual occlusions between pedestrians. The DIoU loss function 

integrates both overlap metrics and considers the distance between the centroids of the corresponding bounding 

boxes. This refinement is expected to enhance the model’s robustness and accuracy, enabling more effective 

pedestrian detection and tracking within these challenging subway scenarios. This enhancement is pivotal for 

optimising performance and establishing a more reliable foundation for subsequent analyses of pedestrian 

behaviours and safety monitoring initiatives. 

3.2 Improved DeepSORT for passenger trajectory tracking 

DeepSORT 

The SORT algorithm utilises a simple Kalman filter to manage frame-to-frame data correlation and employs 

the Hungarian algorithm for correlation measurement, demonstrating good performance at high frame rates. 

Nevertheless, SORT’s reliance solely on motion information makes it accurate mainly when target state 

estimation uncertainty is low. Furthermore, in the pursuit of improved tracking efficiency, SORT removes 

unmatched targets over continuous frames, leading to the issue of frequent ID switches. DeepSORT addresses 

these limitations by incorporating appearance information, using a ReID model for feature extraction, and 
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reducing ID switches by 45%. DeepSORT, as described in [37], is a deep learning-based approach employed 

in this research for tracking individuals within the surveillance footage. It leverages patterns learned from 

detected objects in images, which are then combined with temporal information to predict the associated 

trajectories of the objects of interest. Each object under consideration is tracked using unique identifiers for 

subsequent statistical analysis. DeepSORT is adept at handling various challenges, including occlusion, 

multiple viewpoints, non-stationary cameras and annotating training data. To achieve effective tracking, it 

makes use of the Kalman filter and the Hungarian algorithm. The Kalman filter is applied recursively for 

improved association and can predict future positions based on the current position. The Hungarian algorithm 

is used for association and ID attribution to determine if an object in the current frame corresponds to the one 

in the previous frame. Initially, a faster R-CNN model is trained for person identification, and for tracking, a 

linear constant velocity model [38] is employed to describe each target within an eight-dimensional space, as 

follows: 

𝜓 = [𝑢, 𝑣, 𝜆, ℎ, 𝑥 ,, 𝑦 ,, 𝜆,, ℎ,]𝑇 
(6) 

where (𝑢, 𝑣) represents the centroid of the bounding box, while 𝜆 is the aspect ratio and ℎ denotes the image 

height. The remaining variables represent the respective velocities of the parameters. Subsequently, the 

standard Kalman filter is employed, assuming constant velocity motion and a linear observation model. In this 

model, the bounding box coordinates (𝑢, 𝑣, 𝜆, ℎ) are treated as direct observations of the object state. 

For each track 𝑘 , the system calculates the total number of frames starting from the last successful 

measurement association 𝑎𝑘. If there is a positive prediction from the Kalman filter, a counter is incremented. 

When the track becomes associated with a measurement, this counter is reset to zero. Additionally, if the age 

of the identified tracks surpasses a predefined maximum value, it is assumed that the objects have left the 

scene, and the corresponding track is removed from the track set. In cases where there are no tracks available 

for some detected objects, new track hypotheses are initiated for each unidentified track of newly detected 

objects that cannot be linked to existing tracks. For the first three frames, these new tracks are classified as 

indefinite until a successful measurement mapping is established. If the tracks cannot be successfully mapped 

with measurements, they are deleted from the track set. The Hungarian algorithm is then employed to solve 

the mapping problem between the newly arrived measurements and the predicted Kalman states, considering 

both motion and appearance information, based on the Mahalanobis distance calculated between them as 

defined in Equation 7. 

𝑑(1)(𝑖, 𝑗) = (𝑑𝑗 − 𝑦𝑖)
𝑇
𝑆𝑖
−1(𝑑𝑗 − 𝑦𝑖) 

(7) 

In this context, the projection of the distribution of the 𝑖𝑡ℎ track into measurement space is represented as 

(𝑦𝑖 , 𝑆𝑖), and the 𝑗𝑡ℎ bounding box detection is represented as 𝑑𝑗. The Mahalanobis distance takes into account 

the uncertainty by estimating the number of standard deviations that the detection deviates from the mean track 

location. This decision is denoted with an indicator that evaluates to 1 if the association between the 𝑖𝑡ℎ track 

and 𝑗𝑡ℎ detection is admissible (Equation 8). 

𝑏𝑖,𝑗
(1)

= 1[𝑑(1)(𝑖, 𝑗) < 𝑡(1)] 
(8) 

Using the motion matching approach based on Mahalanobis distance yields favourable short-term 

prediction and matching results. However, for long-term trajectory predictions, Mahalanobis distance 

matching can lead to ID changes. In such cases, introducing the strategy of minimising the cosine distance 

between metric features can mitigate the issue of losing IDs, making the matching evaluation more reasonable. 

The cosine value of the angle between two vectors, denoted as 𝑋  and 𝑌 , 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛], 𝑌 =
[𝑦1, 𝑦2, … , 𝑦𝑛], is known as the cosine distance, as shown below: 

cos𝜃 =
𝑥1𝑦1 + 𝑥2𝑦2 +⋯+ 𝑥𝑛𝑦n

√𝑥1
2 + 𝑥2

2 +⋯𝑥𝑛
2√𝑦1

2 + 𝑦2
2 +⋯ y𝑛

2

 (9) 

This formula describes the cosine distance between two vectors, 𝑋 and 𝑌, and is used to measure their 

similarity. A cosine distance closer to 1 indicates that the angle between the two vectors is closer to 0 degrees, 
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signifying greater similarity. A cosine distance closer to -1 suggests that the angle between the vectors is closer 

to 180 degrees, indicating dissimilarity. A cosine distance of 0 indicates orthogonality, implying no apparent 

similarity between the vectors. Utilise the minimum cosine distance to measure the similarity between the 

appearance features of the previous frame and the current frame. The minimum cosine distance is defined as 

follows: 

𝑑(2)(𝑖, 𝑗) = min {1 − 𝑟𝑗
𝑇𝑟𝑘

(𝑖)
∣ 𝑟𝑘

(𝑖)
∈ ℜ𝑖} 

(10) 

where 𝑑(2)(𝑖, 𝑗) represents the minimum cosine value between the trajectory 𝑖  and the detection box 𝑗 , 𝑇 

represents the surface feature information of the detection target box 𝑗 , and 𝑟(𝑖)  represents the feature 

information of the trajectory 𝑖. 
Once again, a binary variable is introduced to indicate whether an association is permissible based on the 

following metric: 

𝑏𝑖,𝑗
(1)

= 1[𝑑(2)(𝑖, 𝑗) < 𝑡(2)] 
(11) 

This study employs a weighted fusion of the aforementioned two distance metrics to calculate the matching 

degree of target bounding boxes, and the formula is as follows: 

𝑐𝑖,𝑗 = 𝜆𝑑(1)(𝑖, 𝑗) + (1 − 𝜆)𝑑(2)(𝑖, 𝑗) (12) 

where 𝜆 is a parameter, and its specific value depends on the dataset scenario of the application, adjusting the 

weight of the matching degree. 

Where we call an association admissible if it is within the gating region of both metrics: 

𝑏𝑖,𝑗 = ∏𝑏𝑖,𝑗
(𝑚)

2

𝑚=1

 
(13) 

The impact of each metric on the overall association cost can be regulated by means of the hyperparameter 

𝜆. In DeepSORT, only appearance information is employed in the association cost term. Nonetheless, the 

Mahalanobis gate is still utilised to discard impractical assignments based on the potential object positions 

estimated by the Kalman filter. 

Confidence-based (CB) Kalman filtering 

In DeepSORT, the Kalman filter based on the linear motion hypothesis is used to model objects’ motion. 

It consists of a state estimation step and state update step. In the first step, the Kalman filter produces estimates 

of current state variables, along with their uncertainties. Then these estimates are updated with a weighted 

average of the estimated state and the measurement. Specifically, it uses the measurement noise covariance 𝑄∗ 
to represent the measurement (i.e. detections in the current frame) noise scale. A larger noise scale means a 

smaller weight of the measurement during the state update step, since its larger uncertainty. In the Kalman 

algorithm [17], the noise scale is a constant matrix. However, intuitively different measurements contain 

different scales of noise. Especially, in the context of pedestrian trajectory tracking in subway environments, 

noise tends to be random. In substance, the measurement noise scale should vary with detection confidence. 

To tackle this issue, we draw inspiration from [39] and [40]. Consequently, we introduce a formula for 

adaptively calculating the noise covariance �̃�𝑘: 

�̃�𝑘 = (1 − 𝑎𝑘)𝑄𝑘 
(14) 

where 𝑄𝑘 is the preset constant measurement noise covariance and 𝑎𝑘 is the detection confidence score at state 

𝑘. The whole state update of our CB Kalman filter is shown in Algorithm 1, where the CB step is in Step 2. 

Experimental results show that it significantly improves the tracking performance, though our CB Kalman is 

simple. 
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Algorithm 1 – CB Kalman filter (state update step at state 𝑘) 

Input: Measurement 𝑧𝑘; Measurement confidence 𝑎𝑘; 

Predicted state estimate �̂�𝑘|𝑘−1; 

Predicted estimate covariance 𝑃𝑘|𝑘−1; 

The observation model 𝐻𝑘; 

The measurement noise covariance 𝑄𝑘; 

1: �̃�𝑘 = 𝑧𝑘 −𝐻𝑘�̂�𝑘|𝑘−1; (measurement pre-fit residual) 

2: �̃�𝑘 = (1 − 𝑎𝑘); (CB covariance) 

3: 𝑅𝑘 = 𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘
𝑇 + �̃�𝑘; (pre-fit residual covariance) 

4: 𝑊𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇𝑅𝑘

−1;(optimal Kalman again) 

5: �̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 +𝑊𝑘 �̃�𝑘;(update state estimate) 

6: 𝑃𝑘|𝑘 = (1 −𝑊𝑘𝐻𝑘)𝑃𝑘|𝑘−1;(update estimate covariance) 

Output: Update state estimate �̂�𝑘|𝑘; Update estimate covariance 𝑃𝑘|𝑘 

 

DeepSORT employs a Kalman filter based on a linear motion hypothesis for modelling object motion. This 

Kalman filter comprises two key steps: a state estimation step and a state update step. In the initial step, the 

Kalman filter generates estimations of current state variables, along with their associated uncertainties. 

Subsequently, these estimations are refined through a weighted combination of the estimated state and the 

measurement data. 

Motion cost 

In the initial phase of the DeepSORT tracking algorithm, the primary focus lies on leveraging appearance 

features to establish object associations. This is achieved by computing the matching cost based on appearance 

feature distances, allowing for an initial grouping of objects. During this stage, the contribution of motion 

information serves as a gating mechanism, ensuring that only objects exhibiting a certain degree of motion are 

considered for association.  owever, DeepSORT’s unique strength becomes apparent in the subsequent stage, 

where it optimally resolves the assignment problem. Here, the algorithm adopts a more comprehensive 

approach by incorporating both appearance and motion information. This two-fold strategy aligns with the 

specific demands of scenarios prevalent in subway passenger flow, where the similarity in pedestrian 

appearances and frequent occlusions can significantly impact tracking accuracy. In the field of passenger 

trajectory recognition and extraction within subway stations, the selection of utilising a weighted fusion of the 

aforementioned distance metrics to evaluate the matching degree of target bounding boxes is a decision 

grounded in the need for a comprehensive approach. This choice stems from the realisation that the strengths 

of each distance metric, the Mahalanobis distance for motion matching and the minimum cosine distance for 

appearance matching, are particularly beneficial in specific contexts. The Mahalanobis distance effectively 

measures short-term prediction and matching accuracy, ensuring robust performance for immediate trajectory 

recognition. Conversely, the minimum cosine distance offers enhanced performance for long-term trajectory 

predictions, addressing the issue of potential identity shifts. By combining these distance metrics in a weighted 

fusion, our approach benefits from the strengths of both, providing a more holistic solution for passenger 

trajectory recognition and extraction in subway stations. 

 By simultaneously considering both appearance and motion data, DeepSORT offers an effective solution 

to address these challenges, ensuring robust multi-object tracking. This approach is in line with the strategies 

outlined in references [41] and [42], emphasising the significance of combining appearance and motion data 

to achieve superior multi-object tracking accuracy in real-world, complex environments. The cost matrix 𝐷 is 

a weighted sum of appearance cost 𝐶𝑎 and motion cost 𝐶𝑚 as follows: 

𝐷 = 𝜆𝐶𝑎 + (1 − 𝜆)𝐶𝑚 
(15) 

where 𝜆 is a weighting parameter. In this manner, the approach effectively addresses DeepSORT’s limitation 

in exclusively relying on appearance feature distances as the sole matching cost during the initial association 

stage. Figure 7 illustrates the simultaneous consideration of appearance cost and motion cost during the 
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matching process. In this early phase, the use of motion distances as a gate is a less comprehensive solution. 

However, this method significantly enhances the accuracy of the object-tracking process. Adopting this 

combined approach of considering both appearance and motion information, substantially improves the overall 

precision of target tracking, mitigating the issues arising from using appearance features alone in the initial 

association stage. 

 
Figure 7 – Considering the appearance cost and motion cost 

3.3 Passenger trajectory update algorithm based on momentum 

During the process of extracting passenger trajectories using DeepSORT, it is important to consider the 

impact of random errors. These errors can introduce inaccuracies in the extracted passenger trajectory centres, 

causing deviations from the actual passenger trajectory centres. As a result, these random errors lead to 

passenger trajectory jitter or wobbling. This phenomenon can significantly affect the accuracy and stability of 

passenger trajectory extraction. To mitigate these issues, it is crucial to develop strategies that account for and 

minimise the effects of these errors, ensuring that the extracted trajectories are as precise and smooth as 

possible, thereby improving the overall performance of the DeepSORT algorithm in passenger tracking 

applications. 

This paper introduces a novel momentum-based passenger trajectory centre update algorithm, it addresses 

the challenge of mitigating passenger trajectory jitter caused by random errors. In traditional passenger 

trajectory extraction methods, the coordinates obtained directly from DeepSORT are often considered as the 

actual trajectory of the passenger, as shown in the following formula: 

�̃�𝑡+1,𝑖 = �̂�𝑡+1,𝑖 
(16) 

�̃�𝑡+1,𝑖 = �̂�𝑡+1,𝑖 (17) 

where 𝑥𝑡,𝑖  and �̂�𝑡,𝑖  are the passenger trajectory 𝑖  in frame 𝑡  obtained by the DeepSORT algorithm. This 

approach often overlooks the errors introduced during the trajectory updating process. Therefore, this paper 

proposes a momentum-based passenger trajectory update algorithm, which can be represented by the following 

formula: 

�̃�𝑡+1,𝑖 = 𝛽 ⋅ �̂�𝑡+1,𝑖 + (1 − 𝛽) ⋅ �̃�𝑡,𝑖 
(18) 

�̃�𝑡+1,𝑖 = 𝛽 ⋅ �̂�𝑡+1,𝑖 + (1 − 𝛽) ⋅ �̃�𝑡,𝑖 (19) 

where 𝛽 is the momentum update parameter. This innovative approach leverages momentum information from 

previous observations, enabling a more stable and continuous estimation of passenger trajectory centres. By 

incorporating this momentum-based update mechanism, we significantly reduce the impact of random errors 

on the accuracy and smoothness of the extracted passenger trajectories. The momentum-based update 

algorithm ensures that the estimated passenger trajectory centres are less affected by minor fluctuations in the 

data. As a result, the trajectories become more consistent and less prone to abrupt deviations, even in the 

presence of noisy or imprecise input data. This improvement in passenger trajectory stability has a direct 

positive impact on the performance of the DeepSORT algorithm. It enhances the accuracy and reliability of 

passenger tracking in complex scenarios, such as subway station environments, where precise trajectory 

information is vital for various applications, including crowd management, safety protocols and service 
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optimisation. The momentum-based approach offers a promising solution for enhancing passenger trajectory 

extraction and, consequently, the overall efficiency of public transportation systems. 

The proof of the reduction in passenger trajectory jitter achieved by the momentum-based trajectory update 

algorithm is presented below. Assuming the actual centre coordinates of the passenger trajectory 𝑖 in frame 𝑡 
is (𝑥𝑡,𝑖, 𝑦𝑡,𝑖) and the passenger trajectory centre coordinates obtained using the DeepSORT algorithm are 

(𝑥𝑡,𝑖, �̂�𝑡,𝑖), with an error in center tracking denoted as 𝜀𝑡,𝑖, where 𝜀𝑡,𝑖 follows a Gaussian distribution (𝜇, 𝜎2). 
Additionally, the passenger trajectory centre obtained using a momentum update algorithm is represented as 

(�̃�𝑡,𝑖, �̃�𝑡,𝑖). Therefore, we can derive the following relationship: 

�̃�0,𝑖 = �̂�0,𝑖 
(20) 

�̃�𝑡+1,𝑖 = 𝛽 ⋅ �̂�𝑡+1,𝑖 + (1 − 𝛽) ⋅ �̃�𝑡,𝑖 (21) 

The error between the true value and the predicted value is represented as: 

𝜀𝑡,𝑖 = �̂�𝑡,𝑖 − 𝑥𝑡,𝑖  (22) 

This error accounts for the difference between the actual passenger trajectory centre coordinates (True 

Value) and the passenger trajectory centre obtained using the DeepSORT algorithm, including any errors 

(Predicted Value). Next, we can obtain the following relationship: 

�̃�𝑡+1,𝑖 = 𝛽 ⋅ (𝜀𝑡+1,𝑖 + 𝑥𝑡+1,𝑖) + (1 − 𝛽) ⋅ �̃�𝑡,𝑖 
(23) 

The variance of passenger trajectory fluctuations obtained from the momentum-based trajectory update 

algorithm is represented as: 

𝐸[(�̃�𝑡+1,𝑖 − 𝐸(�̃�𝑡+1,𝑖|�̃�𝑡,𝑖))
2|�̃�𝑡,𝑖] = 𝛽2 ⋅ 𝜎2 < 𝜎2 (24) 

Certainly, we will prove the equation step by step. The variance is a measure of how much data points 

deviate from the mean. In this case, we want to calculate the variance of passenger trajectory fluctuations based 

on the momentum-based trajectory update algorithm. Passenger trajectory variance (variance of passenger 

trajectories) can be represented as: 

𝐸[(�̃�𝑡+1,𝑖 − 𝐸(�̃�𝑡+1,𝑖|�̃�𝑡,𝑖))
2|�̃�𝑡,𝑖] 

(25) 

where �̃�𝑡+1,𝑖 = 𝛽 ⋅ 𝑥𝑡+1,𝑖 + (1 − 𝛽) ⋅ �̃�𝑡,𝑖, Then, we calculate the conditional expectation: 

𝐸(�̃�𝑡+1,𝑖|�̃�𝑡,𝑖) = 𝐸(𝛽 ∙ �̂�𝑡+1,𝑖 + (1 − 𝛽) ⋅ �̃�𝑡,𝑖|�̃�𝑡,𝑖) 
(26) 

Since (1 − 𝛽) ⋅ �̃�𝑡,𝑖 is known constant, it can be taken out of the expectation: 

𝐸(�̃�𝑡+1,𝑖|�̃�𝑡,𝑖) = 𝛽 ∙ 𝐸(�̂�𝑡+1,𝑖|�̃�𝑡,𝑖) + (1 − 𝛽) ⋅ �̃�𝑡,𝑖 
(27) 

Let 𝐸(�̂�𝑡+1,𝑖|�̃�𝑡,𝑖) = �̂�𝑡+1,𝑖
𝑒 , therefore: 

𝐸(�̃�𝑡+1,𝑖|�̃�𝑡,𝑖) = 𝛽 ∙ �̂�𝑡+1,𝑖
𝑒 + (1 − 𝛽) ⋅ �̃�𝑡,𝑖 

(28) 

Next, we computer �̃�𝑡+1,𝑖 − 𝐸(�̃�𝑡+1,𝑖|�̃�𝑡,𝑖): 

�̃�𝑡+1,𝑖 − 𝐸(�̃�𝑡+1,𝑖|�̃�𝑡,𝑖) = 𝛽 ⋅ �̂�𝑡+1,𝑖 + (1 − 𝛽) ⋅ �̃�𝑡,𝑖 − (𝛽 ∙ �̂�𝑡+1,𝑖
𝑒 + (1 − 𝛽) ⋅ �̃�𝑡,𝑖) 

(29) 

Simplifying, we get: 

�̃�𝑡+1,𝑖 − 𝐸(�̃�𝑡+1,𝑖|�̃�𝑡,𝑖) = 𝛽 ⋅ (�̂�𝑡+1,𝑖 − �̂�𝑡+1,𝑖
𝑒 ) 

(30) 

Then, we calculate the expectation of its square: 

𝐸 [(�̃�𝑡+1,𝑖 − 𝐸(�̃�𝑡+1,𝑖|�̃�𝑡,𝑖))
2
|�̃�𝑡,𝑖] = 𝛽2 ∙ 𝐸 [(�̂�𝑡+1,𝑖 − �̂�𝑡+1,𝑖

𝑒 )
2
|�̃�𝑡,𝑖] (31) 
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Next, we substitute specific values for calculation. Where 𝐸(�̂�𝑡+1,𝑖|�̃�𝑡,𝑖) = �̂�𝑡+1,𝑖
𝑒  and 𝑉𝑎𝑟(�̂�𝑡+1,𝑖|�̃�𝑡,𝑖) = 𝜎2, thus: 

𝐸 [(�̃�𝑡+1,𝑖 − 𝐸(�̃�𝑡+1,𝑖|�̃�𝑡,𝑖))
2
|�̃�𝑡,𝑖] = 𝛽2 ∙ 𝐸 [(�̂�𝑡+1,𝑖 − �̂�𝑡+1,𝑖

𝑒 )
2
|�̃�𝑡,𝑖] = 𝛽2 ⋅ 𝜎2 

(32) 

Since 𝛽 ∈ (0,1), it follows that 𝛽2 ⋅ 𝜎2 < 𝜎2. Therefore, Equation 24 is proofed. Similarly, the update process 

for �̃�𝑡,𝑖  mirrors that of �̃�𝑡,𝑖 . So, the momentum-based passenger trajectory update algorithm can reduce 

trajectory jitter. 

 

3.4 Passenger detection and tracking 

In this paper, the proposed intelligent passenger recognition and tracking system is designed to detect 

passengers and subsequently extract their trajectories. The detailed algorithmic workflow is illustrated in Figure 

8. 

⎯ Step 1: The video stream is fed into the YOLOv5 detector, resulting in the identification of passengers. 

Then, the system computes the central coordinates, aspect ratio, height and their corresponding speeds in 

image coordinates for the detection boxes of each passenger. 

⎯ Step 2: The Kalman filter uses the acquired central coordinates, aspect ratio, height and corresponding 

speeds as direct object observations, subsequently calculating the predicted target position. The current 

frame’s detection results are compared with the  B Kalman filter’s predictions. Upon a successful match, 

the CB Kalman filter updates the tracking process and proceeds to target tracking in the next frame. 

⎯ Step 3: Instances where a track lacks matching detection results can occur when detections are missed, 

and situations where detection results do not match with any existing track may arise when a new target 

enters the scene. Both scenarios result in a failed match. To address this, the DIoU is calculated to facilitate 

a secondary match between the predicted and undetected boxes. Following a successful match, the 

Kalman filter updates the new track. 

⎯ Step 4: A new track is established for detection boxes that repeatedly fail to match, labelled as 

unconfirmed tracks. When an unconfirmed track successfully matches three times, it is promoted to a 

confirmed track, and steps 2 and 3 are repeated. The state of a prediction box that repeatedly fails to match 

is assessed to determine whether the track should be retained or deleted. If the track is marked as 

unconfirmed, it will be deleted. If the track is designated as confirmed but fails to match within its lifespan, 

it will also be deleted. Otherwise, the track is maintained, and steps 1–3 are repeated. 

⎯ Step 5: When the target is successfully tracked in multiple consecutive frames, a continuous trajectory is 

formed, representing the pedestrian’s movement path. By analysing the generated trajectory data, insights 

into the pedestrian’s movement patterns, congested areas and other relevant information can be gained. 

With the aid of visualisation tools, pedestrian trajectories can be presented graphically, assisting subway 

operators in gaining a better understanding of passenger flow dynamics. 

In conclusion, the above five steps constitute the key procedures of the proposed model. The model’s 

computational complexity primarily stems from the YOLOv5 object detection component and the  

M-DeepSORT object tracking component. To further optimise the system’s performance and address 

computational considerations, we have made several enhancements to balance accuracy and efficiency. Firstly, 

the YOLOv5 algorithm is slightly modified to improve accuracy while maintaining low model complexity. 

These modifications involve fine-tuning the computational framework and adjusting associated processing 

rules, thereby enhancing detection performance while maintaining low computational overhead. Secondly, in 

the tracking component, the DeepSORT algorithm is improved by enhancing the Kalman filtering process. 

Specifically, a CB Kalman algorithm is designed to provide more accurate state predictions and updates, 

leading to more reliable tracking performance with minimal computational overhead. Finally, to ensure that 

the generated trajectories closely reflect the actual movement patterns, a momentum update strategy is 

introduced. This strategy refines the trajectories by incorporating velocity and acceleration information, 

resulting in more realistic movement paths. 

By implementing these improvements, the method achieves a high level of accuracy in detecting and 

tracking pedestrians while ensuring real-time performance, which is crucial for deployment in resource-

constrained environments such as subway stations. This balance between accuracy and computational 

efficiency is essential for the practical application of the system in enhancing subway operations. 
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Figure 8 – The algorithm flow of detection and tracking 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we will first introduce, in Section 4.1, commonly used metrics for assessing the effectiveness 

of the model, providing a basis for a comprehensive evaluation of its performance. Subsequently, in Section 

4.2, we validate the model using the multiple object tracking 2016 (MOT16) dataset to examine its robustness 

and accuracy under standardised testing conditions. Finally, in Section 4.3, we will perform practical 

application validation to assess the model’s applicability and effectiveness in real-world scenarios. 

4.1 Metrics 

The output of the MOT task provides a representation that encompasses several key aspects, including: (a) 

identification of the objects present in each frame (detection). (b) Localisation of these objects, indicating their 

positions in each frame (localisation). (c) Determination of whether objects in different frames are related, 

indicating whether they belong to the same object or different objects (association). In the context of tracking 

passenger trajectories within a subway station, the process encompasses several crucial stages. Initially, the 

system is tasked with the recognition of individual passengers within the video footage, a task that involves 

identifying the presence of passengers and determining their initial positions. Subsequently, the localisation 

step aims to precisely pinpoint the locations of these passengers in each video frame, thereby tracking their 

movements over time. To establish continuous passenger trajectories, the association step comes into play, 

where the system must determine whether passengers detected in different video frames correspond to the 

same individuals. Ultimately, through these coordinated efforts, passenger trajectories are generated, depicting 

the paths traversed by individual passengers as they navigate through the subway station. 

In the evaluation of multi-object tracking accuracy (MOTA) [43], the matching process operates at the level 

of individual detections. It establishes a one-to-one mapping between predicted detections (prDets) and 

ground-truth detections (gtDets) within each frame. When a prDet and a gtDet are successfully matched, they 

are considered true positives (TPs). Any prDets that remain unmatched are labelled as false positives (FPs), 
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representing additional predictions, while any gtDets without corresponding matches are categorised as false 

negatives (FNs), representing missing predictions. For a successful match to occur, prDets and gtDets must 

exhibit sufficient spatial similarity, necessitating the introduction of a similarity score, denoted as 𝑆 (e.g. 

IoULoc for 2D bounding boxes). Furthermore, a similarity threshold, 𝛼, is defined, ensuring that matches are 

only established when 𝑆 ≥ 𝛼. It is important to note that multiple matching scenarios may arise, and the final 

MOTA and multiple object tracking precision (MOTP) scores are computed in a manner that optimises their 

accuracy, as elaborated below. The evaluation metrics used in the experiment are as follows: 

MOTA: MOTA quantifies three distinct categories of tracking errors, which encompass detection-related 

errors including false negatives (FNs) and false positives (FPs), along with the association error denoted as 

IDS (ID switches). To calculate the ultimate MOTA score, these errors are tallied, the sum is divided by the 

total number of ground-truth detections (gtDets), and the result is then subtracted from one. 

𝑀𝑂𝑇𝐴 = 1 −
∑ (𝐹𝑁𝑡 + 𝐹𝑃𝑡 + 𝐼𝐷𝑆𝑡)𝑡

∑ 𝑔𝑡𝐷𝑒𝑡𝑡𝑡
 

(33) 

where the evaluation index false positive (FP) is the number of false detections, false negative (FN) is the 

number of missed detections, identity switch (IDS) indicates the number of identity exchanges of all tracking 

targets. t is the frame index and gtDet is the number of ground truth objects. MOTP assesses the precision of 

the detector’s spatial localisation and is defined by the following equation: 

𝑀𝑂𝑇𝑃 =
∑ 𝑑𝑡,𝑖𝑡,𝑖

∑ 𝑐𝑡𝑡
 

(34) 

where 𝑐𝑡  represents the total number of matches at frame 𝑡, and 𝑑𝑡,𝑖  represents the distance between the 

hypothetical bounding box and the real bounding box. 

IDF1 [44]: ID F1 Score. The ratio of correctly identified detections over the average number of ground-

truth and computed detections. 

ML: Mostly Lost Targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for 

at most 20% of their respective life span. 

MT: Mostly Tracked Targets. The ratio of ground-truth trajectories that are covered by a track hypothesis 

for at least 80% of their respective life span. 

FN: The total number of false negatives (missed targets). 

4.2 Comparison of different methods 

To validate the effectiveness of the proposed method, we initially conducted model validation tests using 

the MOT16 dataset. This dataset serves as a valuable benchmark for evaluating tracking algorithms. MOT16 

[45] dataset is a widely recognised benchmark in the field of multi-object tracking. As part of the MOT 

challenge, MOT16 provides a standardised dataset with real-world video sequences that encompass various 

tracking challenges. These sequences include scenarios such as pedestrian tracking in crowded environments 

and challenging lighting conditions. Ground-truth annotations are available for each sequence, offering precise 

object identities and bounding box coordinates for evaluating tracking algorithms in terms of accuracy, identity 

preservation and spatial localisation. To evaluate the model’s effectiveness, we conducted testing and 

validation using the MOT16-11 dataset, which is chosen due to its similarity to scenarios encountered in 

subway station environments.  

 
Figure 9 – Pedestrian recognition partial dataset of MOT 16-11 
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Next, we compared the performance of this dataset in the DeepSORT model and the model proposed in this 

paper. As input to DeepSORT we rely on detections provided by Yu et al. [46]. They have trained a faster 

RCNN on a collection of public and private datasets to provide excellent performance. The results are 

presented in the following Table 1. 

Table 1 – Tracking results of different methods 

Model MOTA MOTP IDF1 FN ML MT Recall 

DeepSORT 61.6% 66.185 74.6% 3841 35% 17% 61.9% 

The proposed 

model 
76.1% 273.813 79.2% 2080 14% 39% 79.4% 

 

Table 1 illustrates a comparative analysis of results obtained for the same dataset using both the DeepSORT 

and the proposed YOLOv5+M-DeepSORT methods. The quantitative analysis of the results reveals a 

significant performance disparity between the DeepSORT and the proposed YOLOv5+M-DeepSORT 

methods in the context of subway passenger trajectory tracking. The proposed model achieved a notably higher 

MOTA at 76. %, showcasing a substantial improvement over DeepSORT’s 6 .6%. This enhancement is 

particularly relevant in real-world subway scenarios, where accurate tracking is crucial for ensuring passenger 

safety and optimising transit operations. In terms of MOTP, the proposed model demonstrated superior 

performance with a value of  7 .8  , representing a substantial increase compared to DeepSORT’s 66. 85. 

This heightened precision is instrumental in accurately capturing and predicting passenger movements within 

the subway environment. Furthermore, the proposed model exhibited a superior IDF1 score of 79.2%, 

indicating an improved ability to precisely delineate object boundaries. This is particularly valuable for subway 

security applications, where precise detection contributes to efficient surveillance and threat identification. FN, 

the proposed model e hibited a decrease to  080 from DeepSORT’s  84 , indicating a significant reduction 

in missed detections. This highlights the improved sensitivity of the proposed model in correctly identifying 

and tracking objects. This elevated recall rate translates to a more comprehensive tracking of subway 

passengers, enhancing the system’s overall reliability. Nevertheless, it is crucial to highlight that the proposed 

model e hibited a relatively lower ML at  4%, in contrast to DeepSORT’s higher value of  5%. A lower ML 

indicates that a smaller proportion of the tracked ground truth trajectories have been tracked for at most 20% 

of their lifespan. This reflects the higher efficiency of the tracking algorithm and a more stable tracking of 

targets. The recall metric, which measures the model’s ability to correctly identify and track objects, also 

showcased improvement with the proposed model achieving 79.4%, compared to DeepSORT’s 6 .6%. The 

proposed model exhibits a relative improvement of 29% in terms of recall compared to the DeepSORT model. 

This elevated recall rate translates to a more comprehensive tracking of subway passengers, enhancing the 

system’s overall reliability. In summary, the quantitative results underscore the real-world significance of 

applying the YOLOv5+M-DeepSORT model to subway passenger trajectory tracking, showcasing substantial 

improvements in tracking accuracy, precision and object detection metrics. 

4.3 Experimental results and analysis of subway passenger tracking scenario 

To evaluate the effectiveness of the passenger detection and tracking model presented in this paper, we 

conducted tests using surveillance video data recorded in the context of Jinan subway scenarios. Specifically, 

we examined images under various challenging conditions, including target occlusion, densely packed and 

small targets scenes. The corresponding test results are depicted in Figure 10. Figure 10a demonstrates the model’s 

effectiveness in identifying passengers even when they are partially obscured by buildings or other objects. 

Notably, Figure 10a and Figure 10b demonstrate that, following a brief occlusion period, the tracking IDs of 

individuals with IDs 3 remain unchanged. Figure 10c showcases the model’s performance in scenarios with 

densely packed targets, revealing its ability to distinguish and independently detect each target within a 

clustered group. Even in situations where passengers are mutually obscured in a crowd or partially hidden by 

buildings, our proposed model demonstrates precise identification of each individual. Additionally, Figure 10a 

and Figure 10b demonstrate the model’s effective detection of small targets. Even if the  D    target becomes 

larger, it can still be accurately detected and identified, and the ID remains unchanged. Even in scenarios with 

different passenger densities and partial occlusion, as depicted in Figure 10a to Figure 10d, the proposed model 

maintains accurate detection without repeated switches in target IDs. Figure 11a to Figure 11i shows the passenger 
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detection results of a time-series video data, with one frame extracted per second. These figures illustrate that 

the proposed algorithm can accurately identify passengers in scenarios with a high number of passengers and 

partial occlusions. The comprehensive test results affirm the robustness and versatility of the proposed 

passenger detection and tracking algorithm across challenging subway scenarios. 

(b)(a)

(c) (d)
 

Figure 10 – The test results of subway station passenger detection: a) Detection results of passengers occluded by buildings; 

b) Passenger detection results without building occlusion; c) Detection results of mutual occlusion between passengers; 

d) Detection results after the target becomes larger 

(b)(a)

(d) (e)

(c)

(f)

(g) (h) (i)  
Figure 11 – The detection result with high number of passengers: a) Initial frame; b) Second frame; c) Third frame; 

d) Fourth frame; e) Fifth frame; f) Sixth frame; g) Seventh frame; h) Eighth frame; i) Ninth frame 
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Moreover, to further validate the effectiveness of our proposed method, we conducted passenger trajectory 

tracking and presented visualisations, as depicted in Figure 12. Figure 12a and Figure 12b present the results in 

sparsely populated passenger scenarios, showcasing the outcomes without and with the utilisation of the 

momentum-based passenger trajectory updating algorithm, respectively. Similarly, Figure 12c and Figure 12d 

illustrate the outcomes in scenarios with multiple passengers appearing simultaneously, contrasting the results 

obtained without employing the momentum-based passenger trajectory updating algorithm and with its 

application, respectively. In order to quantitatively assess the superiority of the algorithm proposed in this 

paper, we used Figure 12c and Figure 12d as examples and compared the results of employing the momentum-

based passenger trajectory updating algorithm with those obtained without its application in detecting 

passenger scenarios. The variance of passenger trajectory coordinates was computed for both cases. The 

research findings indicate that the utilisation of the momentum-based passenger trajectory updating algorithm 

significantly reduces trajectory jitter, decreasing the amplitude of jitter by 15.87%. This, in turn, more 

accurately reproduces the actual walking trajectories of passengers. The figure reveals that, whether in sparsely 

populated or densely crowded passenger scenarios, the momentum-based passenger trajectory updating 

method accurately identifies each passenger, extracts their trajectories, mitigates trajectory data fluctuations, 

reduces trajectory data errors, and enhances the accuracy of extracted trajectories. 

(c)

(a) (b)

(d)  
Figure 12 – Passenger trajectory tracking with different methods: a) Single passenger trajectory result with the momentum-based 

algorithm; b) Single passenger trajectory result without the momentum-based algorithm; c) Multiple passengers trajectory result 

with the momentum-based algorithm; d) Multiple passengers trajectory result without the momentum-based algorithm 

Experimental results demonstrate the significant advantages of the proposed method in subway station 

scenarios. It not only improves trajectory accuracy but also increases reliability, adding practical value to the 

analysis of passenger behaviours within subway stations. This strategy not only provides additional data 

support for the operational management of subway stations but also establishes a more reliable foundation for 

future decision-making processes, such as intelligent guidance services and safety evacuation plans. 

5. CONCLUSION 

This paper introduces an intelligent system designed for pedestrian trajectory recognition and extraction 

within subway stations, employing YOLOv5 as the detector integrated with M-DeepSORT for tracking. The 
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dataset used for pedestrian trajectory recognition is curated from diverse subway scenarios, encompassing 

factors such as varying pedestrian densities, occlusions and different proximity situations. These scenarios 

contribute to the system’s robustness and applicability. The e perimental results underscore the algorithm’s 

efficacy across diverse scenarios, exhibiting reliable statistical accuracy. The proposed method demonstrates 

consistent performance, effectively recognising and tracking pedestrians in subway station footage irrespective 

of factors such as distance, lighting conditions and the presence of occlusions. The method proposed in this 

paper outperforms the DeepSORT approach in passenger trajectory tracking, exhibiting a notable improvement 

of 23.5% in MOTA. This method achieves higher levels of accuracy and precision in comparison, establishing 

its superiority in tracking passenger movements within the subway station environment. In addition, the 

momentum-based passenger trajectory updating method proposed in this paper addresses the challenges 

encountered by traditional trajectory extraction methods when handling passenger behaviours, mitigating the 

impact of noise or instability that often leads to trajectory jitter.  

In conclusion, the proposed model offers a method for precise recognition and extraction of passenger 

trajectories in crowded subway station environments. It addresses key challenges in multi-object tracking and 

enhances real-world traffic surveillance and management. Moreover, passenger trajectory analysis has the 

capability to predict crowd congestion, guide and redirect passengers and respond to emergencies. By 

accurately tracking passenger trajectories, our method not only provides real-time data on pedestrian traffic 

volumes, calculates space occupancy and estimates queue lengths but also aids in optimising the layout of 

facilities and equipment within subway stations. This information is crucial for optimising traffic flow and 

improving crowd management. Detailed trajectory analysis helps optimise flow lines, reducing bottlenecks 

and improving overall movement efficiency, resulting in a smoother and more orderly flow of people. Insights 

into passenger movement trajectories in congested areas during peak hours or disruptions enable the 

development of strategies to redirect flow and alleviate congestion, thereby enhancing safety and convenience. 

Although the model is compact, it is not yet optimized for embedded deployment. Future work will focus on 

further improving DeepSORT, as well as compressing and pruning YOLOv5, to enable deployment on edge 

devices while maintaining a balance between accuracy and processing speed. 
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张伟，朱闯，屈云超，刘冠华，Der-Horng LEE 

基于视频图像的 M-DeepSORT 行人检测与跟踪算法：以济南地铁站为例 

摘要： 

随着城市化进程的推进，地铁已成为现代城市的重要组成部分，满足了日益增长的

乘客出行需求。然而，地铁站内客流的日益复杂化对运营管理提出了挑战。为优化

地铁运营并提升安全性，研究人员将目光聚焦于地铁站内行人轨迹的提取与分析。

传统的轨迹提取方法由于依赖手工特征设计和多阶段处理，存在一定的局限性。本

文结合深度学习的最新进展，将 M-DeepSORT 与 YOLOv5 进行集成，提出了一种特

征关联匹配方法，通过同时考虑运动与外观匹配来解决轨迹漂移问题。针对地铁场



Promet – Traffic&Transportation. 2025;37(2):338-360.  Intelligent Transport Systems (ITS)  

360 

景中行人检测的随机噪声问题，本文提出了一种基于置信度（CB）的卡尔曼滤波方

法。此外，本文引入了一种基于动量的乘客轨迹中心更新方法，有效减小了轨迹抖

动，可以提取到更平滑的乘客轨迹。实验结果验证了所提算法在检测、跟踪和统计

分析地铁站走廊客流轨迹中的有效性，并展示了其在不同地铁站场景中的鲁棒性能。 

关键词： 

乘客轨迹跟踪；CB 卡尔曼滤波；轨迹更新；动量；M-DeepSORT 


