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ABSTRACT 

Multi-intersection cooperative control for arterial or network scenarios is a crucial issue in 

urban traffic management. Multi-agent reinforcement learning (MARL) has been recognised 

as an efficient solution and shows outperformed results. However, most existing MARL-

based methods treat all intersections equally, overlooking their varying importance, such as 

high traffic volume, connecting multiple main roads, serving as entry or exit point for 

highways or commercial areas, etc. Besides, learning efficiency and practicality remain 

challenges. To address these issues, this paper proposes a novel importance-aware MARL-

based method named IALight for traffic optimisation control. First, a normalised traffic 

pressure is introduced to ensure our state and reward design can accurately reflect the status 

of intersection traffic flow. Second, a reward adjustment module is designed to modify the 

reward based on intersection importance. To enhance practicality and safety for real-world 

applications, we adopt a green duration optimisation strategy under a cyclic fixed phase 

sequence. Comprehensive experiments on both synthetic and real-world traffic scenarios 

demonstrate that the proposed IALight outperforms the traditional and deep reinforcement 

learning baselines by more than 20.41% and 17.88% in average vehicle travel time, 

respectively. 

KEYWORDS 

traffic signal control; intersection importance; multi-agent reinforcement learning; arterial 

cooperative control. 

1. INTRODUCTION 

Urban traffic signal control (TSC) plays a crucial role in ensuring safety and alleviating congestion for 

traffic road networks. From the perspective of control scope, TSC methods can be categorised as isolated 

control, arterial coordination and large-scale network optimisation control. Arterial traffic coordination control 

is a fundamental aspect of transportation management systems aimed at optimising the flow of traffic along 

major roadways which plays a vital role in enhancing transportation efficiency, reducing congestion and 

improving safety. In the past few decades, various methods have been studied and implemented, such as 

MAXBAND, MULTIBAND etc. However, these existing methods are mostly predetermined, which means 

they are not suitable for time-varying traffic demand of the arterial intersections, such as variation of the 

turning movement demand, existing queue and so on. 

Reinforcement learning (RL) has emerged as a promising approach for urban traffic optimisation control. 

Unlike traditional rule-based or pre-programmed systems, RL-based TSC enables learning from interaction 

experiences in a data-driven manner. Mao et al. [1] introduced a simulation platform to evaluate seven deep 
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reinforcement learning (DRL) algorithms for isolated intersection control. Their testing results are helpful and 

shed light on how to select DRL algorithms for various traffic scenarios. For multiple intersections control, 

multi-agent RL (MARL) was a powerful solution [2]. MARL-based TSC methods can be categorised into 

three main approaches: centralised, distributed and cooperative methods. The centralised approach trains a 

global agent for all intersections [3]. However, the main challenge of global agent is that the state size will 

grow exponentially as the number of intersections increases, making it inefficient for large-scale road network 

control. The distributed approach treats each intersection as an individual agent which performs an action 

based on its own local observation [4]. Despite the promising results so far in DRL-based TSC solutions, there 

are still many major challenges to address before the proposed research can yield real-world products. First, 

agent formulation including state representation and reward design is a crucial point in DRL-based TSC 

methods, and inappropriate state and reward design for complex traffic dynamics may lead to slow 

convergence and unsatisfactory performance measures [5]. Second, most of the DRL solutions for TSC adopt 

random phase sequence, which is impractical and may severely affect traffic safety. Third, MARL is the 

primary approach for addressing the cooperative control of multi-intersections in urban road networks. 

However, to our knowledge, most existing MARL-based TSC methods ignore the importance of each 

intersection and treat all intersection agents equally. 

To address these issues, this paper proposes a DRL-based TSC method named IALight, which optimises 

the phase duration under a cyclic phase sequence. The main contributions of this paper can be summarised as 

follows: 

1) We propose a novel traffic intensity calculation method which considers both stopped and moving vehicles 

to support simplified and effective traffic state representation and reward design. 

2) We propose a phase green duration optimisation strategy under a cyclic phase sequence to enhance the 

practicability. 

3) We propose a MARL-based method which considers the importance of intersections, such as heavy traffic 

volume, connecting multiple main roads, etc. A reward refine module which aggregates the original reward 

of each agent through weighted summation, with the weights being the importance of each intersection. 

4) We established a traffic simulation platform based on SUMO. Comprehensive experimental results 

demonstrate that our IALight method outperforms traditional and baseline RL-based TSC methods.  

To the best of our knowledge, our work is the first attempt to consider the importance of intersections in 

MARL-based TSC methods. Integrating intersection importance in the learning process ensures that the critical 

intersections, which are located in major traffic corridors or densely populated areas, receive more attention 

and resources during the decision-making process. Consequently, traffic control can be more targeted and 

effective. 

2. RELATED WORK 

Traditional TSC methods can be categorised into three types [6]: fixed time, vehicle actuated and adaptive 

traffic control (ATC). As the most advanced control method in these traditional approaches, ATC systems 

have been well developed and implemented around the world, such as SCATS [7] and SCOOT [8]. However, 

the existing ATC methods are driven by theoretical models under some strong assumptions. As we know, it is 

quite a challenging work to accurately model the complex, dynamic and stochastic nature of the urban traffic 

system. Therefore, the existing ATC methods may have limited applicability and yield sub-optimal results in 

real-world applications. 

The recent advancement of the RL-based TSC have gained more and more attention. RL agents learn the 

optimal control program from interactions between agents and road network environments. RL-based TSCs 

help researchers to improve TSC performance in a data-driven manner, learning from experiences between the 

agent and environment. Based on the action definition schemes, most existing RL-based TSCs can be classified 

as phase selection and phase duration optimisation. Phase selection is a discrete action scheme which chooses 

the next green phase based on traffic state representation and the current policy. DQN and its variants are 

suitable for these discrete TSC actions. For example, Li et al. [9] take queue length as input and adopt deep 

stack auto-encoders to calculate the optimal TSC actions. Genders et al. [10] employed a discrete traffic state 

code (DTSE) to divide the intersection area into grids and calculated the vehicle presence state and average 

speed within each grid to describe the real-time traffic state of the intersection. They utilised DQN to select 

the optimal phase from candidate phases. To address the issue of overestimation in DQN, Liang et al [11] 
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proposed an improvement to the DQN model by using the Duelling Network architecture in deep Q-learning. 

Compared to the traditional DQN method, this approach significantly enhances the convergence speed of the 

model. However, these methods allow choosing phases randomly, resulting in irregular and unpredictable 

signal patterns which may create driver’s confusion and lead to potential accident risks in real-world scenarios 

[12]. 

Improving learning efficiency is also crucial for enhancing practicality of DRL-based TSC methods. 

Inappropriate state representation and reward design make the existing DRL-based TSC methods suffer from 

slow convergence [5]. Recently, some researchers attempted to search support from transportation theory and 

applications. Max-Pressure (MP) has been recognised as an effective TSC method and it has been theoretically 

proven to maximise the throughput. PressLight [13] adopted pressure calculation in its RL agent formulation 

and optimised the control policies to minimise the pressure of intersections. However, PressLight does not 

consider important vehicle dynamics and the fixed green duration pattern limited its performance. Zhao et al. 

[5] improved pressure calculation and introduced a new concept of ‘traffic intensity’ to support element design 

of their RL agent. Their method was called IPDALight, which combines both intensity and variable phase 

duration to ensure convergence during model training. However, IPDALight simply includes all vehicles on 

the road segment in the calculation of traffic intensity. Additionally, IPDALight discretises the signal timing 

duration in the control, which may not be conducive to accurate and optimal signal timing. 

For multiple intersections control in the road network, MARL is a typical and powerful solution. Li et al. 

[14] proposed a multi-intersection control method based on deep deterministic policy gradient (DDPG). 

Centralised training and distributed execution (CTDE) training strategy is employed to improve the 

performance. The comparison results showed that the proposed method can significantly reduce the average 

waiting time of vehicles. Ma et al. [15] proposed a multi-agent cooperative optimisation method for arterial 

coordination. The advantages of distributed and centralised learning are integrated to balance global measures 

and algorithm efficiency. Haddad et al. [2] studied a novel cooperative MARL method for multi-intersection 

control. To improve the overall control effectiveness of the road network, they designed a mechanism which 

sharing decisions and observations among agents. Wei et al. [10] proposed a multi-intersection coordination 

algorithm named PressLight. By considering the impact of neighbouring intersections, PressLight optimises 

signal timings globally to achieve smoother traffic progression, reduce travel time and enhance overall network 

performance. CoLight [16], as a current state-of-the-art TSC method for multi-intersection scenario, introduce 

graph attention on observations to achieve cooperative control. Chen et al. [17] designed RL agents for large-

scale network control inspired by Max-Pressure (MP) traffic control method. Comprehensive experiments 

including a real-world scenario with 2510 traffic lights in Manhattan were conducted to show the performance 

and generalisation ability of their method. However, these MARL-based methods treat each agent equally, 

ignoring the importance of intersections in the road network. Some recent research studies have revealed that 

traffic congestion manifests a ‘cascading failures’ phenomenon in road networks [18], indicating that the 

intersections at the source of congestion play important roles in traffic management and control. Addressing 

this issue, Xu et al [19] proposed an optimisation control strategy for critical intersections in road networks. 

They first constructed a three-partite graph model of the road network and used a data-driven method to 

identify these critical intersections. Then, DRQN model was adopted to learn the optimal control strategy for 

critical intersections. However, the influences between critical intersections and other intersections were 

neglected in their method, failing to guarantee global optimality at the regional level.  

3. PROBLEM STATEMENT 

Arterial traffic coordination control is a typical traffic scenario which refers to management and 

optimisation of traffic flow on arterial roads or corridors. The primary objective of arterial TSC is reduce travel 

time or stop delay for most vehicles by coordinate traffic signals along the arterial. Take Figure 1 for a simple 

illustration, the arterial is a control sub region 1R  which consists of three intersection agents, denoted as 

1 2 3, ,J J J , represents the set of all signalised intersections. Each intersection has four entry-exit sides, where 

each side consist of three lanes. However, the traffic condition and location in the network of each intersection 

determine their varying importance for arterial coordination control. The intersection which holds the highest 

importance is commonly referred to as a critical intersection, as 2J  intersection in Figure 1. 
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Figure 1 – Description of control scenario 

We modelled the arterial TSC problem as a decentralised partially-observed Markov Decision Process 

(Dec-POMDP) which defined by a tuple of ,} , }, ,{ { ,{, }i i i
i i i    N N NN S O A P R , Here, N  is the number 

of agents, S  is the global state space of the entire traffic environment. 
iO  is the local observation of agent i , 

iA  is the action space of agent i , 21 ...:   NP S A A A S  denotes the state transition probability, 

:i i  ˇR S A  indicates the immediate reward of agent i , [0,1]   is the discount factor. 

 
Figure 2 – The interaction process of MARL 

The interaction between agents and traffic environments is shown in Figure 2. At each time step t , each 

agent select its action i i
ta A  according to the local observation i

to  and the decentralised policy | )(
i

i i
t ta o . 

All actions form a combined action 1{ }it t ia a 
ur

N  and can be executed. After this, the traffic state of the arterial 

transfers from ts  to 1ts   according to P . Subsequently, reward i
tr  was received by each agent from the 

environment. 

T
t i

i t

t i

J r 
 
 





 E  (1) 

where ir  denotes the scalar reward of agent t , i  is the importance weight of agent i . 

4. METHODOLOGY 

In this section, we first present the agent formulation details. Then, the important-aware MARL design is 

described and discussed. Each intersection is modelled as a DDPG agent with actor-critic framework with 

centralised training and distributed execute (CTDE) paradigm. The agent formulation including state 

representation, action definition and reward design will be presented first. Then our IALight model improved 

from multi-agent deep deterministic policy gradient (MADDPG) is introduced. 
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4.1 Agent formulation 

Observation and state representation 

The observation representation needs to quantitatively reflect the traffic flow condition around the 

intersections. Queue length, traffic volume, speed and signal phase status are commonly used indicators of 

traffic conditions. Mao et al. [1] recommended queue length as a reference indicator for observation design 

based on a series of simulation experiments. However, queue length cannot fully express the traffic demand 

for traffic signals. For example, at a signalised intersection, there may be a scenario where there are no queues, 

but a dense vehicle platoon is approaching and will reach the intersection within a few seconds. In this case, 

the queue length is zero, but the actual traffic demand is significant. Therefore, inspired by MonitorLight [22], 

we divide the improved lane traffic pressure into two parts: static and dynamic. For lane i , the improved 

pressure can be expressed as follows: 

,i i i p pP d Nq     (2) 

where iq  denotes as the queue length on lane i , which represents the static pressure. ,i p pd N  denotes the 

dynamic pressure which is calculated by the density of the predict platoon 
,i pd multiplied by the platoon length 

pN . 

Furthermore, the impact of the traffic light status and timings are also considered in the observation 

representation. At time t , the observation of each agent can be expressed as follows: 

1 1{ ,..., ,..., , , ,..., ,..., }t j M t j Ko P P P    ξ  (3) 

where 
jP  denotes the pressure of lane j , M  is all lanes at a single intersection, tξ  is an One-Hot encoding 

vector of current traffic signal phase status with 1 denoting green and otherwise 0. 
j  is the phase timing of 

phase j , K  is the number of phases. 

Action definition 

The action pattern can be classified into two main categories: phase selection with unfixed sequence and 

phase duration calculation with fixed sequence. The former is to decide whether to keep the current phase or 

switch to a phased which randomly choosing from alternative phases. However, variable phase order may 

make drivers confused and potentially suffers from traffic safety risks in specific scenarios. The latter attempts 

to adjust the phase green duration under a fixed phase sequence. Considering the practicality and reliability, 

we adopt the latter one suggested by [21, 23, 24, 25]. The definition of the intelligent agent actions is as follows: 

( ( ))t tg F o  (4) 

where ( )F ·  is a function which converts the agent action value to phase timing. The traffic control logic based 

on agent action is shown in Figure 3. 

 
Figure 3 – The traffic control logic of each agent 



Promet – Traffic&Transportation. 2025;37(1):151-169.  Intelligent Transport Systems (ITS)  

156 

The grey triangle represents DRL optimisation decision points at which the DRL model will compute 

optimal green time for next phase based on current state and reward. To ensure clearance traffic safety, the 

yellow and all red time are added to the green end of each phase. Furthermore, it is necessary to impose the 

following constraints on the actions based on the minimum green and maximum green signal duration to 

provide stable and reliable control: 

min t maxg g g   (5) 

where min max,g g  denotes the minimum green and maximum green time constraints for safety and fairness, 

respectively. 

Reward design 

The reward i
tr  received by agent i  at time step t  is a scalar feedback signal after action i

ta  is taken. It is a 

fundamental concept used to guide the learning process of the agent. The design of the reward function is 

crucial in reinforcement learning, as it determines the agent’s learning objectives and influences its behaviour. 

The main objective of our method is to improve the control performance of arterial traffic. A common metric 

used to indicate traffic efficiency is the total vehicle travel time. However, using the total travel time as 

feedback to the model may lead to delayed reward, which is unreasonable [20]. In the study by Wei et al. [13], 

it was verified that reducing the pressure at intersections is equivalent to reducing the average travel time. 

Therefore, we define the reward of agent 𝑖 as the sum of the pressure on all incoming lanes, which is expressed 

as follows: 

1

,
i

M

t

j

j tr P


   (6) 

where M  is all lanes of intersection i , j  is the lane index. The negative sign indicates that minimising the 

reward function corresponds to minimising the intersection’s pressure, which aligns with the goal of reducing 

congestion and improving traffic flow efficiency. 

4.2 The proposed IALight method 

In this section, we introduce our IALight method, which considers importance of intersection agents based 

on MADDPG. A reward adjustment module (RAD) is designed to incorporate agent importance in the MARL 

framework and model training process, as shown in Figure 4.  

 
Figure 4 – The IALight framework 
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The instantaneous rewards obtained by each intersection agent are sent to the RAD. This module adjusts 

the reward signals based on the importance of each agent and the global control objective. The importance 

evaluation method can be seen in [26, 27]. The output of RAD is a modified reward which contains importance 

and cooperative target information. The modified reward for training can be expressed as follows: 

'i
t i

i

i
tr r  (7) 

where i
tr  denotes the reward received by agent i  at time t , i  is the importance factor of agent i , 0 1i   

and 1ii
  . 

Each intersection of the arterial is modelled as an agent with actor and critic network, as shown in Figure 5. 

The critic network takes the joint observations and actions of all agents as input and estimates the value 

function, which represents the expected cumulative return. The actor network aims to maximise this value by 

adjusting its policy, while the critic network is used to provide feedback on the quality of the chosen actions. 

One of the key challenges in multiagent settings is the non-stationarity problem, where the environment 

dynamics change as agents learn and update their policies. To address this issue, the MADDPG utilises a replay 

buffer, similar to the DDPG, which stores past experiences of the agents. During training, the agent’s sample 

a minibatch of experiences from the replay buffer. The minibatch is used to update both the actor and critic 

networks. The critic network is updated by minimizing the difference between the predicted Q-value and the 

target Q-value. The actor network is updated using feedback from the critic network, with the goal of 

maximizing the Q-values provided by the critic, which corresponds to selecting actions that yield higher 

rewards. Both the actor and critic networks have target networks, which are updated gradually over time using 

a soft update mechanism. To balance exploration and exploitation, a noise process is added to the actions taken 

by the actor, encouraging the agent to explore a variety of actions in the environment. 

 
Figure 5 – The network of each agent 

4.3 Model training 

In this section, we introduce model training of our IALight. Similar with the MADDPG, we employ the 

centralised learning and decentralised execution (CTDE) approach [28] for model training, as shown in Figure 

6. 
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Figure 6 – Overview of the CTDE training 

During centralised training, the critic network utilised the joint observations and actions of all agents as 

input, enabling the agents to learn a global perspective of the environment. On the other hand, during execution, 

each agent only utilises its local observation and the learned actor network to choose actions, thereby ensuring 

decentralised deployment. 

The policies of agents can be expressed as 1 2, ,..., }{ N     with corresponding parameters as 
1 2 }, , ..{ . , N    . The policy gradient of agent i  can be written as follows: 

( )

, 1( ) ( | ..) ( ; , ) |,.i i i i i i

i i i i i N

a oa
J a o Q x a a

  
 


   
 

 E  (8) 

where io  is the observation of agent i , 1 2 ], ., .[ . , Nx o oo  indicates global state, , 1( ; ),...,i NQ a ax  is the 

centralised action-value function which input all agents’ actions and state x , and then output Q  of agent i . 

The parameter update method of critic is minimised loss function, the loss function is defined as follows: 

, 1 2 2
, , , ( ( ,( ) ,. ) ),, ..i i N

x a r x aQ x a a y 
 
 

 EL  (9) 

where y  is the TD target which can be calculated as follows: 

, 1
' ( )( '; ,..., ) |i i N

a oy r x a aQ 


   
   (10) 

where 1 },...,{ ,' ' N 
     denotes the target policy network. In reinforcement learning, the target network and 

the online network are commonly used to achieve stability and convergence of the learning process. Soft update 

is a method used to synchronise the parameters between these networks. 

Soft update is a progressive updating method that gradually updates the parameters of the target network 

by smoothly blending them with the parameters of the online network. Specifically, during each update of the 

target network, only a small portion of the parameters is updated, while the remaining parameters are kept 

unchanged or updated with a small magnitude. This progressive updating approach allows the parameters of 

the target network to gradually approach those of the online network, reducing instability and drastic 

fluctuations during the updating process. 

During each update of the target network, compute the blended value of the parameters using the following 

formula: 

(1 )        (11) 

where    represents the parameters of the target network,   represents the parameters of the online network, 

and  denotes the soft update rate. 

The whole algorithm is summarised in Table 1: 
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Table 1 – IALight algorithm based on the MADDPG 

Algorithm 1: IALight based on MADDPG 

1. Initialise critic networks 𝑄𝑖 and actor network 𝜇𝑖 with random parameters 𝜃𝑖,𝑄, 𝜃𝑖,𝜇of each agent 𝑖. 

2. Initialise target networks 𝑄′𝑖 and 𝜇′𝑖 with weights 𝜃𝑖,𝑄
′
← 𝜃𝑖,𝑄, 𝜃𝑖,𝜇

′
← 𝜃𝑖,𝜇. 

3. Initialise reply buffer 𝒟. 

4. for episode=1 to M do 

5.     Initialise a random process 𝒩 for action exploration. 

6.     Receive initial state 𝑥 and 𝑜𝑖 for each agent. 

7.     for 𝑡 = 1 to episode_length do 

8.         for each agent 𝑖, select action 𝑎𝑖 = 𝜇𝜃𝑖(𝑜
𝑖) +𝒩𝑡 w.r.t the current policy and exploration. 

9.             execute actions 𝑎1, … , 𝑎𝑁 and observe reward 𝑟𝑖 and new state 𝑥′. 

10.             calculate 𝑟′: 𝑟′ = ∑ 𝛼𝑖𝑟
𝑖

𝑖 . 

11.             store (𝑥, 𝑎, 𝑥′, 𝑟′) into replay buffer 𝒟. 

12.             𝑥 ← 𝑥′. 

13.             for agent 𝑖 = 1 to 𝑁 do 

14.                 sample a random batch of transitions (𝑥𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑥𝑗
′) from 𝒟. 

15.                 calculate TD target: 𝑦𝑗 = 𝑟𝑗 + 𝛾𝑄′𝑖,𝜇′(𝑥𝑗
′; 𝑎1

′
, … , 𝑎𝑁

′
)|
𝑎𝑘

′
=𝜇𝑘

′
(𝑜𝑗

𝑘)
. 

16.                 update critic by minimise the loss: ℒ(𝜃𝑖,𝑄) =
1

𝑆
∑ (𝑦𝑗 −𝑄𝑖,𝜇(𝑥𝑗; 𝑎𝑗

1, … , 𝑎𝑗
𝑁))

2

𝑗 . 

17.                 update actor using the sampled policy gradient: 

∇𝜃𝑖,𝜇𝐽 ≈
1

𝑆
∑∇𝜃𝑖,𝜇𝜇

𝑖(𝑜𝑗
𝑖)∇𝑎𝑖𝑄

𝑖,𝜇(𝑥𝑗; 𝑎𝑗
1, … , 𝑎𝑗

𝑁)|𝑎𝑖=𝜇𝑖(𝑜𝑗
𝑖)

𝑗

 

18.             end for 

19.         update target network parameters for each agent 𝑖: 

𝜃𝑖,𝑄
′
← 𝜏𝜃𝑖,𝑄 + (1 − 𝜏)𝜃𝑖,𝑄

′
 

𝜃𝑖,𝜇′ ← 𝜏𝜃𝑖,𝜇 + (1 − 𝜏)𝜃𝑖,𝜇′ 

20.     end for 

21. end for 

5. EXPERIMENTS RESULTS AND DISCUSSION 

The simulation experiments are conducted on the Simulation of Urban Mobility (SUMO) [29] simulator 

with version 1.15.0. Our model is built with Python3 and PyTorch 2.0.1. Data interaction between the 

simulation and the RL model is achieved through the Traffic Control Interface (TraCI), an open interface 

provided by SUMO for traffic control. This allows for the retrieval traffic states from SUMO. Also, the traffic 

control action can be performed in the SUMO road network. The data interaction process between SUMO and 

DRL models is illustrated in Figure 7. 

 
Figure 7 – Data interaction process 



Promet – Traffic&Transportation. 2025;37(1):151-169.  Intelligent Transport Systems (ITS)  

160 

5.1 Simulation settings 

We introduced two road networks for model evaluation. The first is a synthetic arterial network consisting 

of three homogeneous intersections (1×3), as shown in Figure 8. Each intersection has four entries with three 

lanes, respectively. The second is a real-world arterial in Beijing, China, with five heterogeneous intersections 

as shown in Figure 9 which was imported from the Open Street Map (OSM). 

 
Figure 8 – 1×3  synthetic road network layout 

 
Figure 9 – Road network of Yangzhuang in Beijing 

We first introduced the 1 × 3 road network. Each intersection in the road network follows the same 4-phase 

signal timing plan. The sine wave as rate parameter for dynamic traffic demand is used to create schedule for 

number of vehicles to be generate each simulation second. Besides, we randomly shift traffic pattern as a form 

of data augmentation. The traffic demand data is generated dynamically at every simulation step with an 

exponential distribution of headway. The importance of each intersection is predetermined as α1 = 0.3,                

α2 = 0.3, α3 = 0.4. In fact, there have been many research studies and methods proposed to rank or evaluate the 

intersections in traffic networks, such as complex network theory, graph theory and PageRank etc. For example, 

Liu et al [32] utilised a graph attention neural network to estimate the importance of each intersection. Then, 

they introduced the importance into the reward function to find the optimal traffic light scheme. Huang et al 

[33] proposed a novel traffic node importance evaluation method based on clustering in represented 

transportation network. Xu et al. [19] identified critical nodes which would cause a dramatic reduction in traffic 

efficiency of the network if they were fail. Focus on these important nodes, they introduce a novel traffic signal 

control approach based on deep reinforcement learning. In summary, different important values of 

intersections imply their different locations in the road network, different traffic volumes they carried or the 

scope of influence and propagation speed when their congestion occurs. All these factors directly affect the 

optimisation targets design and outcomes of traffic control algorithms.  
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5.2 Experimental settings 

Hyperparameter settings 

Both the actor network and the critic network are used to feed forward fully connected neural network with 

two hidden layers, since our state representation is designed as vectors, not image-like. The detail network 

structure information of the actor and the critic can be seen in Table 2. 

Table 2 – Network structure of synthetic arterial scenario 

Network Layers Dimension Activation 

Actor 

Input 1 21 N/A 

Hidden 2 63 Elu 

Output 1 1 Tanh 

Critic 

Input 1 66 N/A 

Hidden 2 198 Elu 

Output 1 1 N/A 

 

The hyperparameters of the proposed IALight are shown in Table 3, both common DRL hyperparameters 

and general TSC parameters are included. In common DRL hyperparameters, the discounting factor   is used 

to adjust the influence of short-term and long-term effects. The learning rates of the actor and the critic 

determine the size of the steps taken towards the optimal solution respectively. The batch size determines the 

number of training samples used in each iteration of the training process. The soft update factor   controls the 

rate at which the target network parameters are updated, while the update target frequency determines how 

often the target network can be updated. The replay frequency determines how often the online network is 

updated. 

Table 3 – Hyperparameter settings 

Parameter Description Value 

𝛼𝑎𝑐𝑡𝑜𝑟 Actor learning rate 0.0001 

𝛼𝑐𝑟𝑖𝑡𝑖𝑐 Critic learning rate 0.0005 

𝛾 Discount factor 0.99 

𝑁𝑏𝑎𝑡𝑐ℎ Batch size 32 

𝑁𝑏𝑢𝑓𝑓𝑒𝑟 Buffer size 20000 

𝜏 Soft update factor 0.01 

𝐹𝑟𝑒𝑞𝑟𝑒𝑝𝑙𝑎𝑦 Replay frequency 32 

𝐹𝑟𝑒𝑎𝑡𝑎𝑟𝑔𝑒𝑡 Update target frequency 128 

𝑔min Minimum green time 5 

𝑔max Maximum green limit 65 

𝐶min Minimum cycle limit 40 

𝐶max  Maximum cycle limit 255 

 

For traffic signal parameters, ming  serves an important role in ensuring traffic safety and efficiency at 

signalised intersections, it provides sufficient time for vehicles to cross an intersection or a traffic flow to 
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progress smoothly when the green light start. maxg  is used to minimise total delays and balance the needs of 

different traffic movements. minC  and maxC  are cycle length restraints. We obtain these constraint values from 

practical knowledge and projects in traffic engineering. In fact, the ming  and maxg  need to be calculated based 

on the specific conditions of each intersection, such as vehicle speed, the size of intersection, the length of 

segments, etc. Taking a four-phase controller intersection as an example, if ming  is set to 5s, the minimum 

cycle minC  is derived from the sum of minimum green (5s), yellow (2s) and all red (2s) of each phase, i.e. 40 

seconds. The value of maxC  we presented here is considered with as  many traffic signal controllers or 

standards that use a byte to store the duration of the cycle, and its maximum value is 255. 

Baselines 

We compared our method with two categories of baseline methods: conventional traffic control methods 

and DRL-based methods. All baseline methods are simply described as follows: 

 Self-Organised Traffic Light (SOTL) [30]: A conventional approach which dynamically adapts traffic 

signal timing and sequencing based on real-time traffic conditions and demand. 

 Max-Pressure (MP) [31]: The MP controller is a network-level adaptive control method that has 

advantages over other traditional methods. Each intersection calculates a pressure based on the queues in 

adjacent links, then selects the stage with the highest pressure. 

 Independent DQN (I-DQN): Each intersection is controlled by a DQN model with fixed green time, there 

is no communication or information sharing among each DQN agent. 

 Independent DDPG (I-DDPG): Each intersection is controlled by a DDPG model with fixed phase 

sequence and variable green time, there is also no communication or information sharing among each 

DDPG agent. 

 PressLight: A state-of-the-art RL method for TSC which optimises the pressure of each intersection based 

on DQN. 

 IPDALight: An efficient RL-based method that combines the merits of both the newly introduced concept 

of intensity and variable phase duration. 

Evaluation metrics 

The performance of different methods is evaluated by the following metrics: 

 Episode Reward: Average reward of each episode which is used to show the training efficiency and 

convergence. 

 Average queue length (AQL): Average queue length of each simulation step at an intersection, can be 

calculated as follows: 

1

1 N
avg i
t t

i

Q Q
N 

   (12) 

where N  is the total number of movements at the intersection, i
tQ  is the queue length of movement i  at 

time t . A shorter AQL represents fewer cars waiting on all movement entry links. 

 Average travel time (ATT): Average travel time of all vehicles at an episode. The travel time of vehicles 

is calculated by the time between when the vehicle enters the road network and arrives at its destination. 

The average travel time of an episode can be expressed as follows: 

1

1
( )

N
avg s e

i i

i

T tt
N 

   (13) 

where N  denotes the total number of vehicles that finish their trips, s
it  and e

it  are the departure time and 

arrival time, respectively. A lower ATT means a better operation efficiency of traffic systems. 
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 Average vehicle speed (AVS): Average vehicle speed is calculated by dividing the cumulative speed of 

all vehicles by the total number of vehicles, denoted as follows: 

1

1 N
avg

i

i

V v
N 

   (14) 

where N  denotes the total number of vehicles, iv  is the speed of vehicle i . A higher AVS means a 

smoother traffic operation. 

 Average Waiting Time (AWT): Average waiting time of vehicles at time t or in each episode: 

1

1 N
avg

i

i

W w
N 

   (15) 

where N  denotes the total number of vehicles, iw  is the waiting time of vehicle i . The lower AWT means 

a higher operation efficiency of intersections along the arterial. The AWT can be treated as delay in some 

special scenarios. 

5.3 Convergence comparison 

The training convergence comparison results are shown in Figure 10. We adopt a sliding average to smooth 

the series data and reduce data noise. This will help us to observe the trends of the data, without being disturbed 

by short-term fluctuations. It should be noted that we only presented the training results in the 1×3 synthetic 

road network. In order to provide a clear convergence comparison, we normalised the episode reward of each 

DRL-based method because each reward design is different. 

 
Figure 10 – Average rewards for each training episode 

Figure 10 demonstrates that our IALight has a better convergence and higher reward after 100 episodes of 

training. Although the I-DDPG is capable of quickly achieving high reward values, its performance becomes 

highly unstable in later episodes. We have rewritten the PressLight and IPDALight methods based on the 

SUMO simulation platform (the original methods are conducted on CityFlow), the network of agents is set the 

same as the original method. However, the stability performance of training is not particularly satisfactory. 

5.4 Performance results and discussion 

In this section, we present the evaluation metrics comparisons which defined in Section 5.2 for the proposed 

IALight methods and all traditional and DRL-based baselines. The overall performance in the 1×3 synthetic 

road network is shown in Figure 11, 12 and 13. The total number of simulation steps for each test episode is 7200, 

just like the training settings. Figures 11, 12 and 13 provide a queue, average speed and delay metrics comparison 

for each intersection in the arterial. From the figures we can see that the IALight has a better performance 

when it comes to improving the efficiency for intersections along the arterial. 
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Figure 11 – Average speed comparison of intersections on the 1×3 synthetic arterial 

 
Figure 12 – Queue comparison of intersections on the 1×3 synthetic arterial 

 
Figure 13 – Delay comparison of intersections on the 1×3 synthetic arterial 

In order to provide a clearer comparison, we further summarised the arterial metrics including the AQL, 

ATT and AWT in Table 4. The unit for the AQL is vehicle, while the unit for both ATT and AWT are seconds, 

and for the AVS, the unit is m/s. The DRL-based methods can generally perform better than the conventional 

methods after well trained and optimised hyperparameters. This demonstrates that the proposed IALight can 

promote better cooperative control for arterial intersections. 

Table 4 – Metric comparison on 1×3 synthetic arteria 

Method AQL [veh] ATT [s] AWT [s] AVS [m/s] 

SOTL 7.835 88.183 11.843 8.954 

Max-Pressure 4.110 73.906 10.059 10.234 

I-DQN 4.693 77.737 11.290 9.936 

I-DDPG 3.581 62.628 5.168 10.966 

PressLight-sumo 3.624 67.985 5.515 10.754 

IPDALight-sumo 3.775 69.133 5.401 10.604 

IALight 3.570 55.018 5.005 11.642 
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We present a time-space diagram as shown in Figure 14 to demonstrate the cooperative control effectiveness 

of our method. The time-space diagram is suggested by the Highway Capacity Manual (HCM) to analyse 

arterial progression for a set of traffic signal timing plans along the arterial. The x-axis is simulation time, and 

the y-axis is the distance between intersections. We store the speed and location information for each vehicle 

in the network at every time step by using the FCDOutput option of the SUMO, and then plot the trajectories 

of vehicles  travelling from west to east and the corresponding traffic signal status duration along the arterial 

as an example. As demonstrated in the Figure 14, most vehicles are able to pass through the following two 

intersections without additional stops after departing from the first intersection. 

 
Figure 14 – Time-distance diagram of the 1×3 synthetic arterial 

In addition to synthetic arterial experiments, we further conducted an experiment on the Yangzhuang Street, 

which consist of five intersections in Beijing. Unlike the synthetic network, the traffic signal phases and 

sequence of each intersection in the Yangzhuang Street are heterogeneous, as shown in Figure 15. What needs 

to be noted is that the fourth intersection is a pedestrian crosswalk. However, pedestrian traffic was not 

considered in the research conducted here. Therefore, we predefined a fixed green time for the pedestrian phase 

at intersection 4. The dynamic traffic demand is generated based on the traffic flow data collection by 

geomagnetic sensors installing on each approaching lane. 

 
Figure 15 – Traffic signal phase settings 

Figure 16 illustrates the result of the overall performance comparison between the IALight and baselines. 

The x-axis is the evaluation metrics, and the y-axis represents corresponding values for each metric. In Figure 

16, the proposed IALight can outperform all other benchmark methods on the real-world network’s simulation 

experiment. 
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Figure 16 – Evaluation metrics 

In addition to the overall control effect of the whole arterial, our proposed IALight can also focus on and 

improve the operation efficiency of the critical node with the highest importance in the arterial network. It is 

widely known that the critical intersection is the main factor and the bottlenecks that affect the operational 

efficiency of the arterial. If the critical intersection is not managed effectively, it can increase the probability 

and spread of congestion, and even may leading to unexpected large-scale congestion. Therefore, we examined 

the metrics of the second intersection of the Yangzhuang arterial, which is set as the critical node. As shown 

in Figure 17, 18 and 19, the proposed method could also improve the queue length, average speed and delay better 

than other baseline methods on the intersection with the highest importance. 

 
Figure 17 – Average speed comparison on Intersection 2 

 
Figure 18 – Queue comparison on Intersection 2 



Promet – Traffic&Transportation. 2025;37(1):151-169.  Intelligent Transport Systems (ITS)  

167 

 
Figure 19 – Delay comparison on Intersection 2 

We further examined the results of each intersection along the Yangzhuang arterial under the proposed 

IALight control, as shown in Table 5. It can be seen that as the critical node, intersection 2 manages to maintain 

effective traffic control even under the heaviest traffic flow. Notably, intersection 4 serves as a pedestrian 

crossing, with fewer stages, resulting in comparatively shorter waiting times and delays for motor vehicles. 

Table 5 – Metrics of each intersection of Yangzhuang Street 

Intersection AQL [veh] AWT [s] AVS [m/s] 

1 32.115 15.938 6.844 

2 28.618 14.025 7.861 

3 29.031 15.182 7.754 

4 10.802 9.605 7.793 

5 31.096 15.449 6.905 

6. CONCLUSION 

In this paper, an intersection importance-aware MARL-based TSC method is proposed for arterial traffic 

coordination control. In agent formulation, we propose a novel traffic intensity considering both stopped and 

moving vehicle state information to reflect the traffic demand efficiently. To enhance the practicality of our 

method, we employed a DDPG agent to optimise phase green time under a fixed cyclical phase sequence. 

Finally, an intersection importance-aware MARL model based on the MADDPG named IALight is proposed 

to improve the global arterial operation performance measures. Our IALight model is evaluated on the SUMO 

simulation software under a synthetic and a real-world road network in Beijing. The simulation results show 

that the proposed method outperforms the traditional and DRL-based baselines and improves the arterial 

operation effectively. 

It is worth noting that we conducted our work based on the importance of each intersection is known and 

did not investigate how to evaluate the importance. The importance evaluation is quite an important work for 

traffic management, it is determined to be not only related to the static structure of the road network but also 

closely tied to the operational status of the traffic flow. These will be taken into account in our future work to 

provide more detailed information for arterial or network-wide cooperative control. 
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魏路，张小燕，樊利军，高磊，杨建 

IALight：基于重要度感知的多智能体强化学习干线交通协同控制 

摘要： 

在城市交通管理中，多路口协同控制对于优化干线或网络交通运行效率具有重要意

义。在干线协同控制方面，多智能体强化学习（MARL）被认为是一种高效的解决

方案并具有良好的效果。然而，大多数现有的基于 MARL 的方法对各个路口一视同

仁，忽视了每个路口的重要性差异，例如不同路口是否具有交通流量高、连接多条

主要道路、作为高速公路或商业区的入口或出口点等特性。同时，如何提高强化学

习交通控制方法的效率和实用性仍然是一项具有挑战性的工作。为了解决这些问题，

本文提出了一种新颖的基于重要性感知的 MARL 方法用于交通优化控制，并命名为

IALight。首先，我们引入了归一化的交通压力，以确保交叉口强化学习智能体的状

态和奖励设计能够准确反映交通流的状态；其次，设计了一个奖励调节模块，可根

据路口的重要度对奖励进行修正和调节。为了提高现实所提方法的实用性和安全性，

我们设计了一种固定相序模式下的绿灯时长优化策略。基于虚拟路网和实际路网仿

真建模的交通场景中的综合实验表明，所提出的 IALight 相比传统交通控制方法和基

于深度强化学习交通控制等基准方法，平均车辆行程时间分别降低了 20.41%和

17.88%。 

关键词： 

交通信号控制；交叉口重要度；多智能体强化学习；干线协同控制。 


