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ABSTRACT 

The rapid development of Intelligent Transportation Systems (ITS) is often hindered by 

missing data due to technical or equipment failures, impacting data analysis and application. 

To address this issue and leverage the advantages of tensor completion methods in 

multidimensional data imputation, we propose a Bayesian Robust Tensor Ring 

Decomposition Model with Gaussian-Wishart priors (BRTRC). The BRTRC model 

structures traffic data into tensor formats such as “road segment × day × time of day” and 

“road segment × week × day of the week × time of day.” Using tensor ring decomposition, 

the model reduces tensor complexity and redundancy. To approximate real values more 

accurately, Gaussian-Wishart priors are applied to the horizontal and frontal slices of the core 

factors and conjugate priors are set on the hyperparameters, allowing automatic 

characterisation of data changes in Bayesian modelling to avoid overfitting. Additionally, the 

BRTRC model introduces a sparse tensor to identify outliers in the data and employs a 

variational Bayesian inference method to estimate model parameters and latent variables. 

Experiments on two real traffic datasets demonstrate that the BRTRC model effectively 

imputes traffic data under both random and non-random missing patterns, robustly identifies 

and removes outliers and improves data quality and reliability. Extending the model to the 

fourth order shows superior performance in recovering high-dimensional characteristics of 

intersecting data compared to other models. 

KEYWORDS 

traffic data; tensor ring decomposition; Gaussian-Wishart prior; robust tensor; variational 

Bayesian. 

1. INTRODUCTION 

With the progress of society and the improvement of the quality of life, the number of private cars has 

increased significantly. This surge in private car ownership has heightened the dependence on transportation 

resources. Unfortunately, the development of transportation infrastructure has not kept pace with this demand, 

leading to frequent traffic accidents and congestion [1]. In the 1990s, the United States introduced the concept 

of Intelligent Transportation Systems (ITS). The core of the ITS is the collection of spatiotemporal traffic data 

from various sensors (e.g. cameras, floating cars and loop detectors). This real-time data – including traffic 

flow, speed and congestion levels – provides reliable information for decision-making in traffic policy, 
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planning and design, traffic control and management and information dissemination, such as traffic signal 

control and travel time prediction. However, equipment and network failures often result in the loss of 

spatiotemporal traffic data. This data is crucial for planning traffic routes and predicting vehicle travel. Missing 

data can decrease prediction accuracy, severely impacting the development of smart transportation [2]. 

Therefore, interpolating missing traffic data has become a critical research issue in ITS [3]. A substantial body 

of literature addresses the imputation of missing data in transportation systems. Li et al. [4] and Ni et al. [5] 

conducted comprehensive reviews of imputation methods for traffic data, categorising them into three types: 

prediction-based methods, interpolation methods and statistical learning-based methods. 

Traffic data exhibit distinct temporal and spatial correlations [6]. Temporally, traffic flow and speed data 

collected over time show that adjacent time intervals generally have similar traffic patterns. Additionally, there 

is a notable similarity in traffic data between adjacent days for each road segment and detector. Spatially, roads 

are intricately connected and influence each other. For example, when an accident or congestion occurs 

downstream, the upstream speed significantly decreases while traffic volume increases. Conversely, an 

increase in upstream speed and volume leads to noticeable increases in downstream speed and volume. 

Therefore, conducting a detailed spatiotemporal analysis of traffic data can uncover intrinsic features that are 

beneficial for imputing missing data. To achieve this, traffic data can be represented in tensor form. For 

instance, traffic data collected from multiple road segments over several weeks can be organised into different 

representations: a third-order tensor (road segment × day × time of day), a fourth-order tensor (road segment 

× week × day of week × time of day), etc [7]. 

For the modelling of traffic data, we should first consider the strong spatiotemporal correlation model. 

Tensor decomposition can effectively capture the potential relationship between different dimensions of high-

dimensional data and model the original multidimensional data through multi-linear structure information [8]. 

In tensor decomposition, common frameworks such as CANDECOMP/PARAFAC (CP) [9, 10] and Tucker 

decomposition [11–14] have been widely used in data recovery, image denoising, infrared detection and so on. 

The primary problem with interpolation of traffic data is to make robust predictions about those unobservable 

entries, rather than estimating model parameters. This has inspired researchers to adopt a probabilistic 

approach to solving the missing data interpolation problem. First, Salakhuttinov and Mnih et al. developed a 

Bayesian matrix decomposition algorithm, which provided the basis for this probabilistic algorithm [15]. Chen 

et al. extended this Bayesian matrix algorithm to higher orders and developed a Bayesian Gaussian CP rank 

tensor decomposition model (BGCP) to learn underlying statistical patterns in spatio-temporal traffic data and 

developed a Markov Chain Monte Carlo algorithm (MCMC) to estimate this model [16]. Tucker rank 

decomposition decomposes the original tensor into a core tensor and a set of factor matrices, which is more 

expressible than the CP decomposition for high-dimensional data. Tan et al. developed a traffic data 

completion algorithm based on Tucker decomposition, which first represented traffic data as a dynamic tensor 

model [7]. Gong et al. also developed a data interpolation method based on de-trending and tensor 

decomposition, which fully considered the spatial-temporal characteristics of traffic flow and well filled the 

missing part of data [17]. 

The recovery of high dimensional traffic data presents the challenge of tensor completion. Recently, novel 

tensor decomposition methods have emerged, including tensor tubal rank decomposition [18], tensor train 

decomposition (TT) [19] and tensor ring decomposition (TR) [20, 21]. These methods, along with factory-

based models and alternate least squares (ALS), have led to a proliferation of tensor completion models. 

Notable examples include Tubal-ALS with tube rank [22], TT-ALS with TT rank [23] and TR-ALS with tensor 

ring (TR) rank [24]. Long et al. took the lead in integrating TR rank into Bayesian networks and produced a 

Bayesian tensor ring decomposition method [25]. Despite their contributions, both the tube rank and the TT 

rank exhibit limitations. The utility of the tube rank is limited to third-order tensors and cannot handle higher-

dimensional data. The rigidity of the TT rank in dealing with diverse data comes from its specific requirements 

for the first and last core tensor rank in the decomposition. The inherent ring structure of the TR rank mitigated 

this problem. Unfortunately, none of these methods take into account noise and outliers, which are unavoidable 

in actual traffic data. To solve this problem, Zhao et al. extended the traditional Bayesian CP rank tensor 

decomposition by introducing sparse tensor modelling and enhancing robustness through hierarchical Student-

t distribution [26]. However, this method is not suitable for traffic data that has damaged temporal and spatial 

correlation. Therefore, Wang et al. proposed a Bayesian robust CP decomposition model (BRCP) for traffic 

data completion based on sparse tensor modelling [27]. Taking the above problems into consideration, in order 

to reduce the complexity and redundancy of the tensor, we propose to decompose high-dimensional traffic 

data using tensor rings. TR can explore more potential structures than TT due to its more balanced ring 
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structure and smaller rank [25]. Additionally, the presence of noise and outliers significantly impacts the 

performance and accuracy of data imputation. To address this challenge, we introduced a sparse tensor in the 

BRTRC model to represent outliers in the data and employed a Variational Bayesian (VB) inference method 

to estimate model parameters and latent variables. 

The paper makes three main contributions: (1) It proposes a Bayesian robust tensor ring decomposition 

model for traffic data completion; (2) By fully considering the spatiotemporal characteristics and distribution 

features of traffic data, we perform a fully Bayesian treatment on the tensor TR decomposition. Gaussian-

Wishart priors are placed on the hyperparameters of the horizontal and frontal slices of the core factor and 

sparse tensor modelling is introduced, which are intended to enhance imputation performance; (3) Experiments 

on real datasets demonstrate that the BRTRC model can produce accurate imputations for traffic data in both 

random missing scenarios and non-random scenarios. 

The rest of this paper is divided into five sections. Section 1 explains some of the symbols and their 

definitions that are commonly used in the paper, as well as some preliminary knowledge of calculations and 

tensor ring decomposition that are commonly used in tensor learning. Section 2 describes the Bayesian robust 

tensor ring decomposition model. Section 3 details the derivation process of the model in the VB framework. 

Section 4 validates the model by putting it together with five other models on two real spatiotemporal traffic 

datasets and comparing the completion effects of several models under random missing (RM) and non-random 

missing (NM) scenarios. Section 5 summarises the paper. 

2. NOTATIONS AND PRELIMINARIES 

In this section, we first introduce some of the basic tensor symbols used in this paper and then give an 

algebraic framework for the tensor ring decomposition. More details on the tensor ring decomposition can be 

found in [25, 28, 29]. 

2.1 Notations 

First, some symbols commonly used in tensor decomposition [8]. x , x , X , X represents scalar, vector, 

matrix, tensor respectively. ( )p • and ( )q • represent probability density distributions. The fibre of a tensor refers 

to keeping one dimension changing and fixing the other dimensions. The column, row and tube fibres of the 

third-order tensor 1( ) , 1,...,n n nR I Rn n N−   =Z R  are denoted respectively as ( ) ,N

n ni r（: , ）Z ， ( )

1,:,
N

n nr r−（ ）Z ，
( ) ,N

n nr i−1（ , :）Z . The slice of a tensor is equivalent to a two-dimensional matrix, which keeps two dimensions 

changing and fixes the other dimensions. The horizontal, lateral and frontal slices of the third-order tensor are 

denoted as: ( )

1 ,N

nr −（ , : :）Z ， ( ) ,N

ni（: , :）Z ， ( ) :,:,N

nr（ ）Z . Tr X（ ） represents the trace operation of a square matrix, 

where I IX R . 

( )vec X  represents the vectorisation of tensors. , ( ), ( )vec vec=X Y X Y  represents the inner product of tensors

X andY . 
1

2,
F
=X X X  represents the Frobenius norm of tensor X , which is the square root of the sum of 

squares of absolute values of all elements in the vector, commonly used to compute similarity between tensors. 
1 1 ... N NI J I J  X Y R  represents the Kronecker product operation between tensors X andY , where 1 ... NI I 

X R ,
1 ... NJ J 

Y R . =Z X Y  denotes the Hadamard product of two tensors, with its elements represented as 

1 2 N 1 2 N 1 2 Ni ,i ,...i i ,i ,...i i ,i ,...i=Z X Y , where 
1 2 Ni ,i ,...iX  and 

1 2 Ni ,i ,...iY  respectively denote entries of tensors X andY . 

2.2 Tensor ring decomposition 

Definition 1 (Tensor Ring Decomposition (TR Decomposition)) [28]: For an Nth-order tensor 1 ... NI I 
Y R , 

it can be decomposed by using the TR decomposition into a series of latent core factor tensors 1( ) n n nR I Rn −  
Z R . 

The decomposition model can be represented as follows: 

(1) (2) ( )( ,: ,: ,: )N

1 2 N 1 2 Ni ,i ,...i Tr i i i=（ ） （: , ） （: , ）. . . （: , ）Y Z Z Z  (1) 

The tensor ring decomposition can be succinctly grasped as the trace of the product sequence of mode-2 

slices of tensor ( )(:, ,:)n

niZ . In this context, 1( ) ,: n nR Rn

ni
− 

（: , ）Z R  represents the ni
th horizontal slice of the core tensor
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( )nZ , Tr •（ ） signifies the trace operation of a matrix and ,...,0 1 NR R R（ , ） denotes the TR rank, where 0 NR R= . To 

enhance clarity, the aforementioned expression can be presented in indexed form: 

( )

1

( , )
1 2 N

1 2 N

i ,i ,...i N
n

1 2 N n-1 n n

r ,r ,...r n

i ,i ,...i Tr r i r
=

=  （ ） （ , ）Y Z  (2) 

where1 n nr R  is an index for latent dimensions and1 n ni I  is an index for data dimensions. It is worth noting 

that any two adjacent latent tensors, such as ( )nZ and ( 1)n+Z , have equivalent dimensions on their corresponding 

modes, denoted as nr . For convenience, we abbreviate the TR decomposition as follows: 
(1) (2) ( )( )N

1 2 Ni i i= （ ）, （ ）. . . , （ ）Y R Z Z Z  

The tensor ring decomposition is shown schematically in Figure 1 

NI

1I

2I

nI 

(1)

(2) n

N

NI

1I

2I
nI

1R

2R

3R nR

1nR +

NR

1 1

1 1( , )r r 

( , )
N N

N N

r r 

( )
2 2

2 2,r r  ( )
1 1
,

n n

n n

r r
− −


( , )
n n

n n

r r 

1 1

1 1( , )
N N

N N

r r
− −

− −







 
Figure 1 – Tensor ring decomposition 

Definition 2 (Tensor Permutation) [25]: For an Nth-order tensor 1 ... NI I Y R , a tensor permutation is defined 

as 1 1... ...n n N nP I I I I −   Y R : 

( )2 1 2 1, ,..., , , ,...,nP

n N n 1 2 Ni i i i i i i ,i ,...i− = （ ）Y Y  (3) 

Theorem 1 (Cyclic Permutation Property) [28]: Based on the definitions of tensor permutation and TR 

decomposition, it can be concluded that the tensor permutation of tensorY is equivalent to its factors circular 

shifting, as shown below: 

( ) (1) (2) ( ) (1) (2) ( )

2 1 2 1, ,..., , , ,..., ( ,: (:, ,:) (:, ,:)) ( )nP N N

n N n 1 2 N 1 2 Ni i i i i i Tr i i i i i i− = =（: , ） . . . （ ）, （ ）. . . , （ ）Y Z Z Z R Z Z Z  (4) 

Definition 3 (Tensor Contraction Product (TCP)) [29]: The tensor contraction product of a third-order core 

factor tensor A is defined as follows: 

0 1( ... )(1) (2) ( )( ) N NR I I RNTCP  = , . . . ,Z Z Z Z R  
(5) 

and (/ )nZ , which is the tensor contraction product of a set of core factors excluding the nth core tensor, is defined 

as follows: 

( ) 1 1 1 1
\ ( ... ... )( 1) ( 2) ( ) (1) ( 1)( , , ) n n N n n
n R I I I I Rn N N nTCP + − − + + −= , . . . , . . . ,Z Z Z Z Z Z R  

(6) 
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3. MODEL DESCRIPTION  

Given an incomplete tensor 1 ... NI I 

Y R , let Y denote the incomplete tensor consisting of all observed 

entries, which are defined by{ | }
1 2 Ni ,i ,...i 1 2 Ni ,i ,...i （ ）（ ）Y . Furthermore, we are given an indicator tensorO of the 

same size as Y , which equals 1 if the entry in 
1 2 Ni ,i ,...iO coincides with the observed entry, i.e. 1 2 Ni ,i ,...i （ ） , 

otherwise it is 0. In the framework of Bayesian robust tensor model, the incomplete tensor Y can be expressed 

as follows: 

 = + +Y L S  (7) 

where L represents the low-rank part that represents the global information generated by the TR 

decomposition, S  is the sparse tensor that represents the local information and  is the isotropic noise.
 

On the basis of the TR decomposition, assuming that all observed entries obey a Gaussian distribution, the 

generative model for the data is as follows: 

(1) (2) ( ) 1~ ( ( ) , ) i ,i ,...i1 2 N

1 2 N

N

1 2 N i ,i ,...ii i i  −

 +（ ）, （ ）. . . , （ ）Y N R Z Z Z S
O  (8) 

where ( )•N  denotes the Gaussian distribution, 
1 2 Ni ,i ,...iS  is the sparse value corresponding to the sparsity on the 

observation entry and   is the noise accuracy. 

In order to model accurately, prior distributions are set on the core tensor, sparse term and noise accuracy. 

From Figure 1 it can be seen that each core tensor ( )nZ in the tensor ring decomposition shares dimension 1nr −  

with its preceding core tensor ( 1)n−Z  and dimension nr  with its succeeding core tensor ( 1)n+Z  , so two conjugate 

priors 
1

1

n

n

r −

−  and 
n

n

r  are needed to control the distribution of the covariance matrices in different dimensions. 

Such a design allows the model to share information between different core tensors and to be constrained by 

common hyperparameters. Placing a multivariate Gaussian distribution on the core tensor ( )

1{ }n N

n=Z  and setting 

conjugate priors ( )

n

n

i  and 
1

1

n n

n n

r r−

−   on the hyperparameters, 

1

1 1

1

1

( ) ( ) 1 ( ) ( ) 1 1

1

( ) ( ) 1 1

( | , , ) ( , ,( ) )

( ( ,( ) )    [1, ]

n n n

n n n n n n

n n n

n

n n n

n

I R R

n n n n n n n n

i r r n n n i r r

i r r

I

n n n n

n i r r

i

p r i r

vec i n N

 



−

− −

−

−

− − −

−

− −

  =  

==    





（ , ）|

（ ）) |

Z N Z

M N Z

 (9) 

where ( )vec •  denotes the vectorisation operator,  is the Kronecker product, ( )

n

n

i  is the mean of ( )n

ni（ ）Z , and 

1 1

1

1 n n

n

R Rn

r
− −

−

− R  and n n

n

R Rn

r

 R  are both covariance matrices controlling the 1nr −

th horizontal and nr
th frontal slices 

of ( )nZ , respectively, and their inverses are the accuracies in the Gaussian distribution. To enhance the 

robustness of the model and the updating of the hyper-parameters, we refer to the paper of Chen et al. [11] for 

the placement of Gaussian-Wishart distributions on the prior parameters of the horizontal and frontal slices. 

( ) ( )
1 1 1 1 1

1 1 1 1 1 1

0 0 0 0, ( ,( ) ) | ,
n n n n n

n n n n n

r r r r r W v   
− − − − −

− − − − − −   |N W  (10) 

( ) ( )1

1 1 1 1, ( ,( ) ) | ,
n n n n n

n n n n n

r r r r r W v    −   |N W  
(11) 

where ( )•W denotes the Wishart distribution with probability density function (12) 

( )
1

( 1)
12

1 1
| , | | exp( ( ))

2

Nv I

W v Tr W
C

− −
− =  − W  

(12) 

where W is the scale matrix , 1 1

0
n nR RW − −

R , 
1

n nR RW 
R  are a positive definite matrix used to control the 

distribution of the precision ground, C is a normalisation constant, v is the degree of freedom used to control 

the convergence speed and the number of samples of the precision matrix, and NI  is the slice dimension. 
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Using a hierarchical induced prior, a Gaussian distribution with zero mean and accuracy  is placed over 

the index entries of the sparse tensor S , whose model is expressed as follows: 

( )1( | 0, ) | 0,
i ,i ,...i1 2 N

1 2 N 1 2 N

1 2 N

i ,i ,...i i ,i ,...i

i ,i ,...i

p   −

 = S N S
O  (13) 

On the accuracy   we place the Gamma distribution: 

( )0 0( ) amma | ,
1 2 N

1 2 N

i ,i ,...i

i ,i ,...i

p G a b  =   (14) 

Similarly, a Gamma distribution is placed on the noise precision  in the model: 

( )0 0( ) amma | ,p G a b  =  (15) 

Both 0a  and 0b  are hyperparameters placed on Gamma distributions and their probability density functions 

are given by ( ) ( )1

0 0

1
amma | , exp

( )

a aG a b b b
a

  −= −


. 

According to the mean-field approximation, the joint distribution of the Bayesian Robust Tensor Ring 

Decomposition model is as follows: 

1 1 1

( ) ( ) ( ) 1 1 1

1

1

( , ) ( |{ } , , ) ( | , , ) ( , ) ( , ) ( , ) ( ) ( )
n n n n n n n

N
n N n n n n n n n n

n i r r r r r r

n

p p p p p p p p      
 − − −

− − −

  = 

=

 =     Y Y Z S Z S  (16) 

For simplicity, all parameters and hyperparameters are represented by   and unknown entries \Y  are 

inferred by observing the index entries Y .The expression for the predictive distribution is given by 

\( | ) ( | ) ( | )p p p d   =   Y Y Y Y  (17) 

where ( | ) ( ) / ( )p p d   =   ， ，Y Y Y . 

4. VARIATIONAL BAYESIAN POSTERIOR INFERENCE FOR MODELS  

Variational Bayesian (VB) inference is a method used to approximate the posterior distribution of complex 

Bayesian models by approximating the intricate posterior distribution with a simpler parametric distribution. 

By minimising the Kullback-Leibler (KL) divergence, an appropriate distribution is found to approximate the 

true posterior distribution of the model. This process can be expressed as follows [30]: 

( ) ( , )
( ( ) || ( | )) ( )ln{ } ln ( ) ( )ln{ }

( | ) ( )

q p
KL q p q d p q d

p q


 



 
  =  = −  

  
Y

Y Y
Y

 (18) 

where 
( , )

( )ln{ }
( )

p
q d

q

 
 


Y

 is the lower line of evidence for the model (ELBO), ln ( )p Y  is a constant about 

( )q  . According to the mean-field approximation, the approximate posterior distribution is as follows: 

1 1

( ) 1 1

1

( ) ( ) ( , ) ( , ) ( , ) ( ) ( )
n n n n

N
n n n n n

r r r r

n

q p p p p p p    
− −

− −



=

 =   Z S  (19) 

This implies that each parameter in is separable from the others, allowing for iterative adjustments of 

each parameter without affecting the others. Therefore, the optimisation of the model can be expressed as 

follows: 

( \ )ln ( ) [ln ( , )]
jj j qq E p const   =  +Y  (20) 

( \ )[ ]
jqE   •  represents the posterior distribution of all parameters in except for the variable 

j . 
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4.1 Posterior distribution of the core tensor ( )( )nq Z  

Assume that the posterior distribution ( )( )nq Z  of the core tensor follows a Gaussian distribution, which is 

expressed as follows: 

( )( ) ( ) ( )

1

( ) ( , )
n

n n

n

I

n n n n

n i i

i

q vec i 
=

= V（ ）|Z N Z  (21) 

Based on Equation 20, the variational posterior distribution of the core tensor, denoted as ( )( )nq Z , is derived 

as follows: 

( ) ( )

( )

( )

1

( )

( \ )

( ) (/ ) (/ ) 1 ( )

( ) (/ )

ln ( ) [ln ( , )]

1
[( ( ( ) [( ) )] [ ]) ( )

2

2 ( ( ) [( ) ]( [ ]))

n

n nin in

inin in

n

q

T
n n T n n n n

n r r n

T
n n T

n

q E p const

vec i E E E vec i

vec i E E E const





−



−

=  +

= − +  

− − +

( )

（ ）

Z
Z Y

Z Z Z Z

Z Z Y S

Oi Oi

Oi Oi Oi

 (22) 

Therefore, the mean and covariance are updated as follows: 

( ) (/ )( ) [( ) ]( [ ])
n n inin in

n n n T

i i E E E = −V Z Y S
Oi Oi Oi  (23) 

1

(/ ) (/ ) 1 1( ( ) [( ) )] [ ])
n n nin in

n n T n n n

i r rE E E
−

− −= +  V Z Z
Oi Oi

 
(24) 

where 1 1 1( ... ... ) 1n N n in

in

I I I I+ − 
Y Oi

Oi
R , 1 1 1 1( ... ... )(/ ) n N n n nin

in

I I I I R Rn + − −
Z Oi

Oi
R . inO denotes entries observed in 

in

Y
Oi

. 

4.2 Posterior distribution of hyperparameters ( )( )nq   

Taking the posterior distribution of hyperparameter 
n

n

r  as an example, assuming the frontal slices of ( )nZ  

follow a Gaussian-Wishart distribution, it can be expressed using the following equation: 

( ) ( )1

1 1 1, ( ,( ) ) | ,
n n n n n n

n n n n n n

r r r r r rq W v    − =   |N W  (25) 

According to Equation 20, the variational posterior distribution of the hyperparameter ( )
n

n

rq   is derived as 

follows: 
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where the parameters are updated as follows: 
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where 
n

n

r  is the mean vector, n

n

R

ru R  is the mean obtained by taking the mean of each column of the nr
th 

frontal slice of ( )nZ , 1 is the set initial mean, which is usually a zero vector of the same size as 
nr
u , 1  is used 

to control the size of elements in the precision matrix and is generally set to 1, m is the number of samples in 

the slice. The posterior distribution of hyperparameter 
n

n

r  can be derived using a similar approach. 

4.3 Posterior distribution of sparse tensor ( )q S  

Assuming that the posterior distribution of the sparse tensor follows a Gaussian distribution, i.e. 

( )2( ) | ,
1 2 N 1 2 N 1 2 N

1 2 N

i ,i ,...i i ,i ,...i i ,i ,...i

i ,i ,...i

q 


= 
（ ）

S N S S  (29) 

the variational a posteriori ( )q S  for the hyperparameters according to Equation 22 is derived as follows: 

( \ )

2 (1) (2) ( )

ln ( ) [ln ( , )]

1
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2 1 2 N 1 2 N 1 2 N 1 2 N
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 =  +

= − + + − +（ ）, （ ）. . . , ( )

SS Y

S S Y R Z Z Z
 (30) 

The posterior mean and variance are updated as follows: 

2 1( [ ] [ ])
1 2 N 1 2 Ni ,i ,...i i ,i ,...iE E   −= +  (31) 

2 (1) (2) ( )[ ]( ( ))
1 2 N 1 2 N 1 2 N

N

i ,i ,...i i ,i ,...i i ,i ,...i 1 2 NE i i i = − （ ）, （ ）. . . , ( )S Y R Z Z Z  
(32) 

4.4 Posterior distribution of sparse tensor hyperparameters ( )q   

Assuming that the posterior distribution of the hyperparameters ( )q   for each entry of the sparse tensor 

follows a Gamma distribution, its Gamma distribution can be represented as follows: 

( )( ) amma | ,
1 2 N 1 2 N 1 2 N
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The variational a posteriori ( )q   for the hyperparameters according to Equation 20 is derived as follows: 
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Parameters 
1 2 Ni ,i ,...ia  and 

1 2 Ni ,i ,...ib  can be updated as follows: 

2 2

1

2

1
(( ) )

2

1 2 N

1 2 N 1 2 N 1 2 N

i ,i ,...i 0

i ,i ,...i i ,i ,...i i ,i ,...i 0
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b b

 

 

= +

= + +S

 (35) 

4.5 Posterior distribution of noise precision ( )q   

Assuming that the posterior distribution of the hyperparameters ( )q   also follows a Gamma distribution, 

its Gamma distribution can be represented as follows: 
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( )( ) amma | ,q G a b  =  (36) 

The variational posteriori ( )q   for the hyperparameters according to Equation 22 is derived as follows: 
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Parameters a  and b  can be updated as follows: 

1

2 1 2 N

1 2 N

0 i ,i ,...i

i ,i ,...i

a a = +  O  (38) 

2
(1) (2) ( )1

[ ( ( ) ]
2 1 2 N 1 2 N
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0 i ,i ,...i i ,i ,...i 1 2 N
F

b b E i i i = + − −（ ）, （ ）. . . , ( )Y R Z Z Z SO  
(39) 

The above constitutes the variational posterior derivation of the model. The model’s Evidence Lower 

Bound (ELBO) can be expressed as follows: 

( )( ) [ln ( , )] ( ( ))qq E p H q =  + L Y  (40) 

where
( )[ ]qE  •  represents the expectation of the posterior distribution of all hyperparameters, ( )H • is the entropy 

of the posterior distribution q . ( )qL  normally decreases with the number of iterations and finally tends to 

flatten, with which the convergence of the model can be judged. 

4.6 Algorithm implementation 

In the above, the posterior derivations for each parameter and hyperparameter update have been obtained 

through the VB framework. As a result, we can formulate the algorithm for implementing the Bayesian 

Gaussian Robust Tensor Ring Decomposition (BRTRC), as shown in Algorithm 1: 

 

Algorithm 1 – BRTRC Algorithm 

Inputs: a Nth-order incomplete tensor 1 ... NI I 

Y R , an indicator tensor 1 ... NI I 
RO   

Initialisation: ( )nZ ， ( )n
V ，

1

1

n

n

r −

− ，
n

n

r ，1 n N  ， 1 11 n nr R− −  ，1 n nr R  ， 2 ， S ，

， ，top-level hyperparameter  ，  ，W ， v， a ， b ， a ， b . 

repeat 

for n = 1to N do 

Updating 
( )( )nq Z  according to Equation 23 and Equation 24  

end for 

for n = 1to N do 

Updating 
( )( )nq   according to Equation 27 and Equation 28  

end for 

Updating ( )q S  according to Equation 31 and Equation 32 

Updating ( )q   according to Equation 35 

Updating ( )q   according to Equation 38 and Equation 39 

Calculate the lower limit of convergence for each parameter according to Equation 40 

until convergence 

Output: a low-rank complement tensor L  and a sparse tensor S . 
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4.7 Initialisation parameters 

To ensure a well-performing model, proper initialisation and initial values for hyperparameters are crucial. 

Therefore, for the initialisation of the core tensor ( )nZ  , we adopt the TR approximation [24]. When 

interpolating traffic data, it is assumed that the TR rank is initially R in all dimensions, i.e. set to R (1, 1)ones N +

. Thus for the initial means 0 = ， 1 0 ( )W W eye R= = ， v R= , a ， b ， a ， b  in the Gaussian-Wishart 

distribution on the prior parameters, the initial values are all 610−  and the sparse tensor 
1 2 Ni ,i ,...iS  is sampled as a 

random sample of ( )0,1N . 

5. EXPERIMENTAL ANALYSIS 

In order to evaluate the effectiveness of the algorithm in recovering missing traffic data in practical 

applications, experiments will be conducted on two real spatiotemporal traffic datasets. The algorithm in this 

paper will be compared with several state-of-the-art traffic data complementation algorithms, including 

Bayesian Robust CP Decomposition (BRCP) [27], Tensor Ring-Variable Bayesian Inference(TR-VBI)[25], 

Bayesian Augmented Tensor Factor Factorisation (BATF) [16], Bayesian Gaussian CP Decomposition 

(BGCP) [31], High-Precision Low-rank Tensor Completion (HaLRTC) [32], SVD-Combined Tensor 

Decomposition Model (STD) [33]. In order to consider the data loss situation in practice, two kinds of missing 

scenarios are set up in the experiments, which are random missing (RM) and non-random missing (NM). For 

the random missing scenario, in this paper, we just randomly delete some data items in the spatiotemporal 

traffic dataset, but in practice, the problem of missing data is often caused by a variety of reasons, for example, 

due to the breakage, attenuation, interruption or interference of optical fibre, which can lead to the inability of 

optical fibre to transmit data for a period of time, rather than randomly losing data. As a result, data lost from 

optical fibres tends to show some temporal continuity and localisation, i.e. all sensors on a certain roadway are 

missing data during a certain period of time. To simulate this situation, a non-random missing scenario, namely 

Fibber Optic Disruption, will be designed following the approach introduced by Chen et al [31]. This scenario 

aims to replicate the situation where data loss occurs in a continuous and localised manner due to fibre optic 

disruptions. This realistic missing data scenario better reflects the challenges encountered in real-world traffic 

data applications. 

For model performance evaluation, this study utilises the Mean Absolute Percentage Error (MAPE) and 

Root Mean Square Error (RMSE) as metrics. These metrics represent the relative error and absolute error, 

respectively, between the predicted values and actual values. 

1

| |1
MAPE =

in in

in

N

iN =

−


Y Y

Y

OiOi

Oi

 (41) 

2

1

1
RMSE = ( )

in in

N

iN =

− Y Y
OiOi  

(42) 

where N denotes the total number of missing data, 
in

YOi  is the actual value of the missing data and 
in

Y
Oi

 is the 

value that has been model-complemented. In addition, all experiments are simulated on Matlab 2020b on a 

laptop with a 12th Gen Intel Core i7-12700H CPU and 16GB RAM. 

The first step is to perform an experimental simulation on the Guangzhou large-scale spatiotemporal traffic 

speed dataset. This dataset consists of measured vehicle speed data from 214 road sections (mainly main roads 

and expressways) in Guangzhou, China, over a two-month period from 1 August 2016 to 30 September 2016. 

The dataset has a 10-minute time window, i.e. there are 144 time windows per day and the average vehicle 

speed of each road section is recorded for each time window, which can be represented by a size of 

214×61×144. Three-dimensional tensor, where each element represents the value of vehicle speed at a 

spatiotemporal location, the first dimension is the road segment, the second dimension is the day and the third 

dimension is the time window, and about 1.29% of the dataset is missing. 

(https://doi.org/10.5281/zenodo.1205228). The three kinds of BRCP, BATF and BGCP are all tensor-based 

CP decomposition, they all decompose the potential information into a sum of several rank one quantities, and 

therefore, for better interpolation results, we set the rank of all three models to 80 and the number of iterations 

to 200. Tensor ring decomposition is easier for high rank or sparse tensors and less core tensor can be used to 

https://doi.org/10.5281/zenodo.1205228
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approximate the original tensor. If the rank is set too high, it will lead to an increase in the dimension of the 

core tensor, especially for large-scale datasets such as the Guangzhou Traffic Speed dataset, which will lead 

to a situation where the size of the array exceeds the maximum memory available in the system in Matlab, 

which cannot be run due to equipment reasons. Therefore, the rank in BRTRC is set to 30 and TR-VBI is a 

model based on tensor ring decomposition, so the rank is set to 30 like BRTRC, and the two models HaLRTC 

and STD do not need too many parameter settings.  

Since only 1.29% entries are not observed in the raw data, a certain number of entries needs to be manually 

deleted to constitute missing data and thus divide the raw data into two groups: the observed and the missing. 

For these “missing” entries, we also have the corresponding ground truth, which allows us to assess the 

imputation performance directly. The model performance is evaluated by imputing those missing entries. Five 

synthetic datasets with missing rates between 10% and 50% are created based on the Guangzhou traffic speed 

dataset [31]. 

Table 1 shows a comparison of the interpolation performance of several models under random missing 

scenarios. The best data are highlighted in bold. The five Bayesian network-based models clearly outperform 

the interpolation of the STD and HaLRTC, which are common decompositions and traditional low-rank tensor 

complementation methods. With the exception that the HaLRTC performs a little better than the three models 

BRCP, BATF and BGCP at low missing rates from 10% to 20%, but the interpolation performance of HaLRTC 

gets worse and worse as the missing rate of the data increases, while the five Bayesian network-based models 

are less sensitive to the missing rate relative to the other two models. This is because the Bayesian tensor 

decomposition framework can utilise a priori information to guide parameter estimation rather than relying 

solely on the observed data. This increases the robustness and generalisation ability of the model, especially 

in the case of sparse or noisy data. BRCP, BATF and BGCP are tensor-based CP decompositions, while 

BRTRC and TR-VBI is a model based on tensor-ring decomposition, which is more complex for multimodal 

or heterogeneous data and can flexibly portray the correlation or difference between different modes more 

adequately than CP decomposition. Therefore, in the same Bayesian network, the performance of the BRTRC 

and the TR-VBI is much better than the other three models. Especially when the deletion rate is as low as 10% 

to 20%, the BRTRC and the TR-VBI still perform better than the HaLRTC. The BRTRC has better robustness 

due to the addition of Gaussian-Wishart priors based on the distribution characteristics of traffic data. 

Combined with the experimental results, it can be proved that the recovery effect of the BCTRC is better than 

that of the TR-VBI. 

Table 1 – Performance of models under random missing scenarios MAPE/RMSE 

RM 
10% 20% 30% 40% 50% 

MAPE/RMSE MAPE/RMSE MAPE/RMSE MAPE/RMSE MAPE/RMSE 

BRTRC(30) 0.0663/2.9029 0.0677/2.9614 0.0689/3.0395 0.0729/3.1893 0.0756/3.3152 

TR-VBI(30) 0.0672/2.9391 0.0701/3.0581 0.0731/3.1928 0.0776/3.4107 0.0816/3.5959 

BRCP(80) 0.0832/3.5926 0.0836/3.5999 0.0838/3.6160 0.0837/3.6165 0.0844/3.6429 

BATF(80) 0.0828/3.5787 0.0832/3.5863 0.0833/3.5955 0.0836/3.6105 0.0841/3.6290 

BGCP(80) 0.0833/3.6000 0.0838/3.6060 0.0838/3.6186 0.0841/3.6268 0.0847/3.6546 

HaLRTC 0.0777/3.1917 0.0815/3.3324 0.0850/3.4748 0.0887/3.6143 0.0931/3.7730 

STD 0.0880/3.7708 0.0911/3.8308 0.0936/3.9286 0.0963/4.0265 0.0993/4.1253 

 

Table 2 shows a comparison of the interpolation performance of several models in non-random missing 

scenarios, with the best data highlighted in bold. Used in the non-random missingness is the fibre missingness 

scenario designed by Chen et al. in order to simulate realistic time-correlated missingness scenarios in the fibre 

missingness experiment. In this scenario the temporal correlation in the original data is destroyed, so it is 

difficult to borrow information from other dimensions [16]. In the case of the same loss rate, the information 

lost by optical fibre loss is more than that lost by non-random loss. In order to avoid overfitting in data recovery, 

the TR rank of the BRTRC and the TR-VBI is set to 5, and the CP rank of the BRCP, BATF and BGCP is set 

to 20. From the table, it can be seen that the recovery performance of all the models is drastically reduced in 
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the non-random scenarios compared to the random missing scenarios. Since the previously mentioned temporal 

correlation is destroyed, it may not be possible to find similar or related data using different times or days on 

the same road section, so the data recovery for the same missing rate non-random missing scenario is more 

difficult. The error will be larger, but the tensor decomposition framework based on the Bayesian network is 

still better than the performance of the traditional tensor complementation models such as the STD and the 

HaLRTC. In the Bayesian network, the BRTRC still has the best performance. 

Table 2 – Performance of models under non-random missing scenarios MAPE/RMSE 

NM 
10% 20% 30% 40% 50% 

MAPE/RMSE MAPE/RMSE MAPE/RMSE MAPE/RMSE MAPE/RMSE 

BRTRC(5) 0.0957/4.0524 0.0959/4.0524 0.0963/4.0709 0.0967/4.0783 0.0967/4.0812 

TR-VBI(5) 0.1019/4.3754 0.1026/4.3953 0.1032/4.4513 0.1049/4.5411 0.1078/4.6048 

BRCP(20) 0.0982/4.1352 0.0980/4.1400 0.0989/4.2197 0.1003/4.2909 0.1022/4.4497 

BATF(20) 0.0976/4.1252 0.0985/4.1718 0.0987/4.2133 0.1003/4.3912 0.1034/4.5607 

BGCP(20) 0.0985/4.1452 0.0984/4.1569 0.0993/4.2357 0.1011/4.3643 0.1042/4.5579 

HaLRTC 0.1033/4.1576 0.1046/4.2086 0.1062/4.2792 0.1088/4.3813 0.1131/4.5271 

STD 0.1019/4.1881 0.1054/4.3300 0.1068/4.4029 0.1115/4.5573 0.1133/4.6391 

 

Figure 2 illustrates a comparison of traffic data imputation for Road Segment #1 during the first two weeks 

of August. The figure depicts the contrast between the BRTRC, BRCP and the ground truth values under a 

30% missing data scenario. Notably, this example showcases the impact on data imputation for a specific road 

segment and a specific time period. The graph reveals that the traffic speed data exhibit strong spatiotemporal 

correlations, with periodic fluctuations over time. Except for the second day, the peaks and valleys of the traffic 

data curves exhibit a consistent pattern across days. This temporal correlation is a key factor enabling effective 

data imputation. In the scenario of random missing data, both models exhibit well-fitting curves that closely 

match the ground truth curves. However, the BRTRC demonstrates superior fitting performance, particularly 

evident in accurately capturing fluctuations, especially at highly fluctuating peak points. This comparison 

indicates that the BRTRC outperforms the BRCP in terms of imputing missing traffic data, particularly when 

dealing with significant fluctuations in the data. 

 
Figure 2 – Time series of the BRTRC under random missing scenario of section #1 from 1 to 14 August 

Figures 3 and Figures 4 respectively depict experiments in a non-random missing data scenario for Road 

Segment #1. The scenarios involve 50% missing data rates for the periods from 1 August to 14 August and 12 

September  to 25 September. These timeframes represent the traffic flow conditions at the beginning of August 

and the end of September. In these figures, the green rectangles represent the portions affected by fibre optic 

disruptions, while the white rectangles represent the observed values. Notably, in the non-random missing data 
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scenario, the observed speed data for an entire day is missing. Approximating the missing parts using adjacent 

dates becomes challenging in this context. As a result, the curves representing the recovered data by the models 

deviate more noticeably from the ground truth curves compared to the scenario of random missing data. Even 

in such challenging scenarios, the performance of the BRTRC model outshines other models in terms of data 

imputation. Taking 15 September as an example, the errors between the recovered values from the BRTRC 

model and the ground truth values are significantly smaller, especially at the peaks of the curves. These 

observations indicate that while the non-random missing data scenario presents difficulties in approximating 

the missing data, the BRTRC model still exhibits better data imputation performance compared to other 

models. 

 
Figure 3 – Time series of the BRTRC under non-random missing scenario of section #1 from 1 to 14 August 

 
Figure 4 – Time series of the BRTRC under non-random missing scenario of section #1 from 12 to 25 September 

To further validate the superiority of the model in this paper in terms of recovery performance for high-

dimensional traffic data, the model is extended into a higher order fourth-order tensor and the traffic data is 

partitioned into 214 × 9 × 7 × 144, where each element represents the value of the vehicle speed in a 

spatiotemporal location: the first dimension is the road segment, the second dimension is the week, the third 

dimension is the day of week and the fourth dimension is the t time interval. Since the STD mainly solves the 

problem of non-convexity, it does not provide too much improvement in the fourth-order tensor, and therefore 

does not participate in the comparison. Table 3 and Table 4 show the comparisons of traffic data recovery 

performance in random missing scenarios and non-random missing scenarios after the model is extended to 

the fourth order, respectively. Due to the high computational cost of the fourth-order tensor, the ranks of the 

BRCP, the BATF and the BGCP are only set to 50 and the ranks of the BRTRC and the TR-VBI are still set 

to 30. Combined with the data in the content of the previous chapter for comparison, it is obvious to find that 

the performance of the recovery of traffic data in the case of the same rank is not as good as that in the case of 
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third-order under the expression of fourth-order tensor. This verifies Chen’s result in his thesis that the recovery 

effect of traffic data is related to the expression of the data and the recovery effect of the data in the third-order 

expression under the same model is better than that of the fourth-order expression [31]. In addition, through 

the data comparison in the table, it can be clearly seen that the recovery effect of the BRTRC in high-

dimensional traffic data in random missing scenarios is better than that of other models. In the non-random 

deletion mode, we can find that when the deletion rate is 10%, the recovery effect of the BAFT is better than 

that of other models. With the increasing of the deletion rate, the recovery effect of the BRTRC gradually 

exceeded that of other models. The BRTRC models with 20% and 30% deletion rates both had the highest 

MAPE, and when the deletion rates reached 40% and 50%, the recovery effect of the BRTRC was significantly 

better than that of other models. 

Table 3 – Performance of the models in a fourth-order tensor random missing scenario 

RM 
10% 20% 30% 40% 50% 

MAPE/RMSE MAPE/RMSE MAPE/RMSE MAPE/RMSE MAPE/RMSE 

BRTRC(30) 0.0693/3.0429 0.0697/3.1064 0.0723/3.1852 0.0762/3.2993 0.0786/3.4052 

TR-VBI(30) 0.0701/3.3118 0.0737/3.2654 0.0759/3.3041 0.0798/3.4802 0.0872/3.8151 

BATF(50) 0.0867/3.7243 0.0871/3.7331 0.0874/3.7414 0.0876/3.7517 0.0876/3.7634 

BRCP(50) 0.0872/3.6924 0.0886/3.7399 0.0878/3.8160 0.0885/3.8165 0.0897/3.8429 

BGCP(50) 0.0896/3.8517 0.0900/3.8540 0.0898/3.8548 0.0900/3.8608 0.0903/3.8740 

HaLRTC 0.0776/3.1716 0.0817/3.3231 0.0857/3.4802 0.0900/3.6397 0.0951/3.8259 

Table 4 – Performance of models in non-random missing scenarios with fourth-order tensor 

NM 

10% 20% 30% 40% 50% 

MAPE/RMSE MAPE/RMSE MAPE/RMSE MAPE/RMSE MAPE/RMSE 

BRTRC(5) 0.1027/4.3083 0.1006/4.2362 0.1013/4.3117 0.1018/4.3297 0.1039/4.4802 

TR-VBI(5) 0.1050/4.4993 0.1060/4.5553 0.1066/4.5670 0.1074/4.6501 0.1101/4.9191 

BATF(20) 0.1018/4.2397 0.1025/4.2866 0.1029/4.3208 0.1033/4.5345 0.1055/4.7011 

BRCP(20) 0.1022/4.2457 0.1014/4.2016 0.1013/4.3019 0.1027/4.4491 0.1053/4.5448 

BGCP(20) 0.1019/4.2691 0.1018/4.2086 0.1014/4.3158 0.1025/4.4291 0.1062/4.6320 

HaLRTC 0.1089/4.3367 0.1109/4.4173 0.1136/4.5303 0.1178/4.7054 0.1243/4.9463 

 

The second set of experiments was conducted on the Birmingham Parking Lot Dataset. This dataset 

comprises parking occupancy data from 30 parking lots operated by the NCP Company, spanning a period of 

77 days from 4 October to 29 December 2016. Data was collected at half-hour intervals between 8:00 a.m. and 

5:00 p.m. each day, representing the occupancy status of the parking lots (i.e. the number of vehicles parked). 

The dataset can be represented as a tensor of the size 30x77x18. Approximately 14.89% of the data in this 

dataset is missing (source: https://doi.org/10.24432/C51K5Z). Similarly, synthetic data is created by 

artificially removing a certain number of items at random from the original data. 

Table 5 provides a comparison of the recovery performance between the proposed model and the Bayesian 

Robust CP Decomposition (BRCP), Bayesian Augmented Tensor Factorisation (BATF), Bayesian Gaussian 

CP Decomposition (BGCP) and High-Accuracy Low-Rank Tensor Completion (HaLRTC) models in a random 

missing data scenario. The best-performing results are highlighted in bold. Given that the Birmingham Parking 

Lot Dataset is relatively smaller than the previous dataset, adjustments were made for accurate 

experimentation. In the BRTRC model, the TR rank was set to 10, while the CP rank for BRCP, BATF and 

BGCP was set to 30. The missing rate remained at 10% to 50%. Due to the dataset’s relatively high missing 

https://doi.org/10.24432/C51K5Z
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rate of 14.89% and the significant differences between data points, this can have a substantial impact on the 

evaluation metrics. From Table 3, it is evident that while the HaLRTC exhibits lower MAPE values compared 

to other models at 10% and 20% missing rates, its RMSE values are generally higher. This implies that the 

HaLRTC tends to have smaller relative errors but larger absolute errors in non-random missing data scenarios. 

The bolded data in the table highlights that the BRTRC model consistently achieves the lowest RMSE and 

relatively small relative errors across missing rates from 10% to 50%. Overall, the BRTRC model outperforms 

the other models in terms of recovery performance. 

Table 5 – Performance of models under random missing scenarios MAPE/RMSE 

RM 

10% 20% 30% 40% 50% 

MAPE/RMSE MAPE/RMSE MAPE/RMSE MAPE/RMSE MAPE/RMSE 

BRTRC(10) 0.0527/17.864 0.0599/18.643 0.0603/19.527 0.0673/19.979 0.0737/21.393 

BRCP(30) 0.0631/19.052 0.0621/19.585 0.0625/20.127 0.0632/20.957 0.0648/22.053 

BATF(30) 0.0662/18.909 0.0645/19.628 0.0613/20.410 0.0693/20.973 0.0789/26.385 

BGCP(30) 0.0754/19.942 0.0706/21.016 0.0652/21.717 0.0726/22.321 0.0754/24.300 

HaLRTC 0.0547/18.753 0.0598/19.810 0.0637/24.284 0.0780/28.857 0.0910/31.230 

 

Table 6 presents a comparison of the imputation performance of various models in a non-random missing 

data scenario. Overall, the imputation performance of the models significantly declines in the non-random 

missing data scenario. This reduction is particularly notable due to the dataset’s inherent high missing rate and 

substantial differences between data points, resulting in larger discrepancies between evaluation metrics across 

models. Notably, the performance of the HaLRTC model is severely affected in this scenario due to its 

sensitivity to missing rates and noise. Both relative and absolute errors increase dramatically with higher 

missing rates. Conversely, the BRTRC model demonstrates robustness in the face of such challenges. Its 

MAPE values exhibit minimal variation and its RMSE values consistently remain below 100, outperforming 

the other models. This highlights the strong robustness of the BRTRC model even in the presence of non-

random missing data and significant variations between data points. 

Table 6 – Performance of models under non-random missing scenarios MAPE/RMSE 

NM 

10% 20% 30% 40% 50% 

MAPE/RMSE MAPE/RMSE MAPE/RMSE MAPE/RMSE MAPE/RMSE 

BRTRC(5) 0.1160/38.891 0.1134/47.664 0.1173/48.508 0.1188/69.653 0.1212/82.073 

BRCP(10) 0.1524/41.376 0.1423/47.293 0.1787/56.003 0.1731/80.943 0.1724/101.323 

BATF(10) 0.1172/50.572 0.1276/56.644 0.1163/56.146 0.1369/94.795 0.1674/103.789 

BGCP(10) 0.1254/76.724 0.1181/64.984 0.1202/55.779 0.1285/75.236 0.1743/164.961 

HaLRTC 0.0707/60.053 0.0929/72.859 0.1166/117.86 0.1395/163.35 0.1898/221.84 

 

Figure 5 is selected as a line graph of data recovery experiments conducted for parking lot #1 under random 

missing scenario, in a two-week time period from 6 December to 19 December, with 30% missing rate, where 

the blue line is the real value in the original dataset and the red line is the value recovered by BRTRC model. 

From the figure, it can be seen that the parking lot occupancy data shows periodicity over time, with peaks 

occurring at similar times of the day. It can be clearly seen that the data recovered by the BRTRC model under 

the random missing scenario and the original dataset fit very well, and the BRTRC has a very good 

performance. 
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Figure 5 – Occupancy rate of the BRTRC in parking lot #1 under random missing scenario from 6 to 19 December 

Figure 6 and Figure 7 depict data recovery experiments conducted on the Parking Lot data under a non-random 

missing data scenario. Specifically, these figures represent the recovery experiments for two-week periods 

with a 30% missing data rate: 4 to 17 October (Figure 6) and 4 to 17 December (Figure 7). Similar to the fibre 

optic missing data in the traffic data context, the non-random missing data scenario in the parking lot data 

disrupts the time correlation. In both figures, the green rectangles represent the portions affected by the missing 

data, while the white rectangles depict the regions without missing values. The considerable variations between 

data points and the disruption of time correlation contribute to the reduced recovery performance in the non-

random missing data scenario compared to the random missing data scenario. Consequently, there is a 

noticeable disparity between the imputed values and the ground truth values, particularly evident at peak 

points. For instance, in Figures 7, on 13 December, the trend of the imputed curve deviates significantly from 

the trend of the actual values. In summary, these figures underscore the challenge posed by non-random 

missing data scenarios, where disruptions in time correlation and substantial variations between data points 

can lead to decreased recovery performance and larger discrepancies between imputed and actual values. 

 
Figure 6 – Occupancy rate of the BRTRC in parking lot #1 under non-random missing scenario from 4 to 17 October 
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Figure 7 – Occupancy rate of the BRTRC in parking lot #1 under non-random missing scenario from 6 to 19 December 

6. CONCLUSION 

In this paper, we propose a Bayesian robust tensor ring decomposition algorithm applied to traffic data 

complementation. It has good performance in recovering missing data and strong robustness to noise and 

handling outliers. This should be the first application of the TR rank decomposition to recover spatio-temporal 

traffic data in Bayesian networks. The distributional characteristics of the traffic data improve the prior 

distribution method and the conjugate prior placed on the core tensor via the Gaussian-Wishart distribution 

gives a good recovery performance on both random missing scenarios and non-random missing scenarios. Our 

proposed BRTRC model has been compared to the BRCP, TR-VBI, BATF, BGCP, HaLRTC, STD, which are 

several state-of-the-art models in spatio-temporal traffic data recovery, on two real datasets: the Guangzhou 

large-scale traffic speed dataset and the Birmingham parking lot dataset. The experimental results of our model 

outperform the above models, and by extending the model to the fourth order, it is verified that the model has 

a better recovery effect for the high-dimensional characteristics of traffic data compared to other models. 
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