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ABSTRACT 

Controller subjective evaluation is one of the most important ways to assess air traffic 

complexity. However, the inconsistency of human experts has a negative impact on the 

inference of complexity analysis models. To solve this problem, this paper proposes to 

construct a weakly supervised air traffic complexity dataset using highly reliable traffic 

situation similarity as labelling information. On this basis, a distance metric learning model 

is trained to generate a distance metric matrix that satisfies the similarity relationship. Finally, 

the K-means algorithm is combined to realise preferred complexity situation level 

classification and evolution analysis. Taking the actual operating data of a mid-southern area 

sector of China as an example, the effectiveness of the proposed method is verified. 

Experimental results show that the aircraft density, aircraft ground speed variance, heading 

disorder, convergence speed and horizontal conflict have a greater impact on the complexity 

situation. Compared with the K-means algorithm based on Euclidean distance, metric 

learning improves the optimal silhouette coefficient and Davidson-Boldin index by 31.80% 

and 12.97%, respectively. In addition, it is confirmed that the situation evolution is driven by 

one or two key influencing factors. 

KEYWORDS 

air traffic complexity; subjective similarity; weakly supervised; distance metric learning; 

cluster analysis. 

1. INTRODUCTION 

The continuous growth of air traffic demand drives the vigorous development of air transport industry. At 

the same time, it is accompanied by the emergence of airspace congestion, flight conflicts and other problems. 

In order to maintain proper separation between aircraft and ensure their safe, efficient and orderly operation, 

air traffic controllers need to monitor traffic situation in real time and issue control instructions to pilots [1]. 

However, when the traffic density reaches airspace capacity limits, controllers are in a high workload state, 

which may lead to operational errors and unsafe incidents. Air traffic complexity [2], as an indicator describing 

the difficulty of controllers in monitoring and managing traffic in the airspace they are responsible for, can 

reflect the control pressure faced by controllers to a certain extent. Accurately analysing air traffic complexity 

situation in advance, on the one hand, helps adjust traffic flow to achieve a balance between airspace capacity 
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and demand; on the other hand, it also provides a reference basis for re-sectorising control sectors to realise 

dynamic airspace configuration. 

How to analyse the complexity of air traffic has always been a hot issue for researchers. In earlier studies, 

the number of aircraft was used to describe the traffic situation in a given airspace. For example, the Enhanced 

Traffic Management System (ETMS) [3] achieves the purpose of monitoring and alerting airspace sectors by 

comparing the predicted future traffic flow with the predefined flow threshold. Recent studies have shown that 

air traffic complexity is often affected by multiple factors such as sector geometry, traffic flow, aircraft 

performance, potential conflicts, weather conditions etc [4]. Laudeman et al. [5] proposed the concept of 

dynamic density (DD) by linearly combining various potential influencing factors. Compared with traffic 

density, it has a higher correlation with air traffic complexity and is more interpretable. In addition, in order to 

capture the complex nonlinear relationships existing among influencing factors, nonlinear models such as 

neural networks are also widely used [6-7]. Essentially, these models use various influencing factors calculated 

from trajectory data as input to predict quantitative indicators of air traffic complexity, such as controller 

physical activity, subjective evaluation, sector status etc. In particular, the subjective evaluation of controllers 

has become one of the most important ways to measure air traffic complexity [8-10].  

As with general supervised learning tasks, the prediction accuracy of air traffic complexity models relies 

on sufficient and reliably labelled datasets. However, obtaining such datasets often requires the active 

participation of domain experts and expensive time costs, such as air traffic controllers providing real-time 

feedback on subjective feelings about airspace operating conditions and workloads. Because of the above 

reasons, the collected datasets have limitations such as small sample size and low variability. In addition, due 

to the inconsistency of controllers’ subjective evaluations, it is often difficult to ensure the accuracy of labelling 

information, thus causing interference to the learning process of the model [11]. To alleviate this problem, Cao 

et al. [12] introduced transfer learning concept into airspace operation complexity evaluation for small-

training-sample environment. It fully mines and utilises the knowledge of other sectors to improve the 

prediction accuracy of target sector complexity. Li et al. [13] proposed deep unsupervised learning approach 

for airspace complexity evaluation, which directly circumvents the use of labelled samples. They introduced a 

new loss function to enhance the generalisation ability of the unsupervised model, and verified that the 

proposed model can obtain the best evaluation performance in six airspace sectors. In addition, Antulov-

Fantulin [14] established a mathematical model to determine air traffic complexity based on air traffic 

controller tasks for the given traffic situations, which has been verified in en-route airspace. Similar, Jurinić et 

al. [15] proposed a new set of terminal airspace complexity indicators based on air traffic controller tasks and 

input. Pérez Moreno et al. [16] attempted to define which variables determine airspace complexity based on 

machine learning models. They found that the aircraft number, traffic flows occupancy and aircraft vertical 

distribution are the main indicators. On this basis, they further developed a dynamic complexity indicator and 

used machine learning models to predict its complexity [17]. 

Through extensive communication and discussion with frontline controllers, we found an interesting 

phenomenon, where most controllers believe it is easier to subjectively calibrate the complexity similarity (i.e. 

coarse-grained labels) between different airspace operation scenarios than to calibrate the complexity level (i.e. 

fine-grained labels) of each scenario. Based on the above phenomenon, we attempted to model the air traffic 

complexity analysis problem as a weakly supervised learning paradigm. Weakly supervised learning, as an 

important paradigm of machine learning, can make full use of inaccurate supervision information (i.e. 

similarity) to overcome the problems of high labelling difficulty and high noise from accurate categories and 

improve the generalisation ability of the model [18]. Inspired by the successful application of weakly 

supervised learning paradigm in various tasks, such as image retrieval, face recognition etc., this paper 

constructs an air traffic complexity dataset from a weakly supervised perspective and on this basis proposes a 

framework for the situation analysis of air traffic complexity. The framework fully combines distance metric 

learning and cluster analysis technology to provide rich insights in quantifying the importance of complexity 

factors, classifying complexity situation levels and revealing the causes of situation evolution. A case study of 

the proposed framework is conducted using real operation data from a mid-southern area sector of China. In 

general, the main contributions of this paper are as follows: 
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1) To the best of our knowledge, this paper is the first to introduce the weakly supervised learning paradigm 

to the problem of air traffic complexity analysis. 

2) It provides a new way to identify the importance of complexity factors. By introducing distance metric 

learning methods, the importance of different complexity factors themselves and their interactions is 

quantified, and the key influencing factors that drive the change of situation level are given. 

3) It presents a new method for determining the complexity level of air traffic. The proposed framework 

combines metric learning and cluster analysis to obtain the number of complexity levels that meet the 

controller’s cognitive preferences, which to some extent alleviates the inconsistency (i.e. inconsistency 

within and between controllers) in the process of calibrating the accurate complexity level in past studies. 

2. METHODOLOGY 

The proposed analysis framework for air traffic complexity situation is shown in Figure 1. It first generates 

a weakly supervised dataset with airspace operation scene pairs as basic data items, where each scene pair 

includes its own complexity factors and similarity labels between the two. Potential influencing factors are 

calculated based on flight trajectory data and specific factor definitions, while similarity labels are derived 

from controllers’ subjective evaluation of paired radar images. Based on the generated dataset, the distance 

metric learning model is trained to generate distance metric matrices to reflect the importance of the 

influencing factors themselves and the interactions between factors. Finally, using the distance metric matrix 

as prior information, a biased cluster analysis based on K-means algorithm is performed to realise the 

perception of air traffic complexity from two aspects: the basic levels of situation classification and the critical 

factors of situation evolution. 

Potential 

complexity factors Distance 

metric learning

Subjective 

similarity labels

Trajectory data

Radar images

Weakly supervised dataset generation

Distance metric 

diagonal matrix

Distance metric full 

matrix

Complexity factors 

importance quantification

Biased cluster 

analysis

Situation classification 

basic levels

Situation evolution 

critical factors

Complexity situation 

awareness analysis

 

Figure 1 – The main framework for analysing air traffic complexity situation 

2.1 Weakly supervised dataset generation 

In order to obtain a weakly supervised dataset for the airspace sector evaluation, complexity factors are first 

constructed from three perspectives: traffic flow, aircraft performance and potential conflicts, as shown in Table 

1. These complexity factors are derived from literature [6]. Due to its comprehensiveness and convenience, 

most mainstream studies on airspace complexity analysis and prediction continue to use this set of factors. For 

the consistency of comparative analysis, this paper adopts the same settings. Among them, traffic flow factors 

directly reflect the distribution of aircraft in the sector currently and in the future, and are usually used as basic 

factors to describe the airspace traffic situation in the practical application of air traffic control systems. 

Aircraft performance factors mainly include the speed parameters of aircraft operation while potential conflict 

factors quantify the risk of collision between aircraft. For example, the separation and convergence sensitivity 

factors describe the effects of changes in aircraft speed and heading on relative distances, and are important 

factors that cause a surge in controller workload. The calculation method of specific factors can be found in 

the literature [6] and will not be described in detail here. Specifically, we collected the real flight trajectory 

data of a mid-southern area sector of China from 12:00–13:00 on 1 to 7 December 2019. The selected data not 

only ensures the diversity of airspace operation scenarios, but also takes into account the time cost of ATCOs 

to label similarity information. Each data piece contains flight number, timestamp, position (longitude, latitude 

and altitude), speed and other information. On this basis, the above complexity factors were calculated with 1 

minute as the basic time granularity. Further, the air traffic control radar images of the corresponding period 

(one image per minute, a total of 420 images) were extracted and submitted to the control experts for calibration 

of complexity similarity information. Just like the subjective complexity level calibration in mainstream 

literature, similarity information used in this paper is also based on the controller’s subjective perception of 

the airspace situation. 
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Table 1 – Characterisation of air traffic complexity factors 

Types (ID) Variables Meanings 

Traffic flow 

(1-6) 

N Number of aircraft in the sector 

F5, F15, F30, F60 
Number of aircraft entering the sector in the next 

5, 15, 30, and 60 minutes 

Sdens Aircraft density within sector 

Aircraft 

performance 

(7-9) 

σgs
2 Variance of aircraft ground speed 

σgs /vgs 
The ratio of the standard deviation of the aircraft 

ground speed to the mean 

vvs Aircraft mean vertical speed 

Potential conflict 

(10-23) 

Svpro_1, Svpro_2 Average and minimum vertical proximity 

Shpro_1, Shpro_2 Average and minimum horizontal proximity 

Strack_dis, Sspeed_dis Heading and speed disorder 

Sdiv, Sconv Separation and convergence speed 

Ssensi_d, Sinsen_d Separation sensitivity and insensitivity 

Ssensi_c, Sinsen_c Convergence sensitivity and insensitivity 

Sinter_vert, Sinter_hori Vertical and horizontal conflicts 

 

The specific calibration process is shown in Figure 2. Specifically, two images are randomly selected from 

all air traffic control radar images by sampling with replacement and submitted to the controllers as a scene 

pair. Then, based on the experts’ cognitive experience of the airspace traffic situation, we evaluate whether the 

two images are close in complexity. If there is no obvious difference, the scene pair is marked as similar; 

otherwise, it is marked as dissimilar. By repeating the above process multiple times, similar sets and dissimilar 

sets of complexity samples can be obtained. Considering the relevant regulations of the area control centre, 

four controllers are randomly selected to participate in the calibration process from the airspace to be evaluated. 

These four controllers are all third-level controllers (which represent highly competent and experienced 

controllers certified by the Air Traffic Management Bureau of China) responsible for the corresponding area 

sector. They all have more than 8 years of work experience and are between 40 and 50 years old. In order to 

ensure the reliability of the controller’s labelling information, each scene pair is evaluated three times by the 

four experienced controllers, and scene pairs with consistent evaluation results are selected. In total, we 

calibrated 2,500 scene pairs, including 2,397 pairs with consistent evaluations (including 1,352 similar pairs 

and 1,045 dissimilar pairs) and 103 pairs with inconsistent evaluations. For those with inconsistent evaluation 

results, considering that they rarely occur, we exclude them from the dataset. 

 

Figure 2 – Weakly supervised information labelling process for air traffic complexity samples 
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2.2 Complexity factors importance quantification 

In order to make the distance metric between complexity samples comply with the similarity and 

dissimilarity relationships calibrated by the controllers, the importance of each factor needs to be accurately 

assessed. Traditional distance metric methods, such as Euclidean distance, essentially assume that different 

factors of complexity samples have the same importance, which may cause problems such as similar scene 

pair being too far away or dissimilar scene pair being too close. Distance metric learning (DML) [19] is one 

of the effective ways to alleviate this problem. It usually uses a given weakly supervised sample set to learn a 

distance metric matrix, so that in the new metric space, similar scene pairs are closer and dissimilar scene pairs 

are further apart. The learned metric matrix can also be applied to various general tasks, such as classification, 

clustering, feature extraction, information retrieval and others. 

Specifically, this paper selects a classic distance metric learning algorithm based on pairwise constraints, 

namely the Mahalanobis metric for clustering (MMC) [20], to generate the distance metric matrix. MMC takes 

minimising the sum of squared Mahalanobis distance between pairs of similar scenes as the optimisation goal, 

and takes the sum of Mahalanobis distance between pairs of dissimilar scenes to be greater than a predefined 

threshold (usually 1) as a constraint to build an optimisation model. The specific model is as follows: 

min
𝐴≥0

∑ 𝑑𝐴
2(𝑥𝑖, 𝑥𝑗)          𝑠. 𝑡.  ∑ 𝑑𝐴(𝑥𝑖 , 𝑥𝑗) ≥ 1

(𝑥𝑖,𝑥𝑗)∈𝐷𝑆(𝑥𝑖,𝑥𝑗)∈𝑆𝑆

 (1) 

where 𝑥𝑖 ∈ 𝑅23  represents a sample composed of 23 complexity factors, and 𝑆𝑆  and 𝐷𝑆  are similar and 

dissimilar sets of complexity samples, respectively. 𝑑𝐴(𝑥𝑖, 𝑥𝑗) = √(𝑥𝑖 − 𝑥𝑗)
𝑇

𝐴(𝑥𝑖 − 𝑥𝑗) is the Mahalanobis 

distance between 𝑥𝑖 and 𝑥𝑗, and 𝐴 ∈ 𝑅23×23 is the distance metric matrix to be learned. 𝐴 ≥ 0 means that 𝐴 is 

a positive semi-definite matrix to ensure that it satisfies the non-negativity and triangle inequality 

characteristics of distance metric. When 𝐴 is the identity matrix, 𝑑𝐴(𝑥𝑖, 𝑥𝑗) degenerates into the Euclidean 

distance; when 𝐴 is a diagonal matrix, it indicates that only the importance of the factors themselves is 

considered; when 𝐴 is a full matrix, it indicates that the importance of both the factors themselves and their 

interactions is considered. Since this problem is a convex optimisation problem, it can be solved using the 

classic gradient descent algorithm. 

2.3 Complexity situation awareness analysis 

In order to further mine the cluster information contained in the complexity samples and reasonably divide 

the complexity levels, an improved K-means clustering algorithm based on the metric matrix is proposed to 

realise the classification of air traffic complexity levels under weak supervision information. Specifically, as a 

common cluster analysis technique, K-means clustering aims to minimise the sum of squared Euclidean 

distances between each sample and the cluster centre to which it belongs, so as to generate a partitioning 

scheme containing K clusters. Its optimisation goal is as follows: 

f = ∑ ∑ 𝑟𝑖𝑗||𝑥𝑖 − 𝜇𝑗||2

𝐾

𝑗=1

𝑁

𝑖=1

 (2) 

where 𝑁 is the number of samples, 𝐾 is the number of clusters, 𝜇𝑗 is the centre of cluster 𝑗. When sample 𝑥𝑖 

is in cluster 𝑗, 𝑟𝑖𝑗 is 1; otherwise it is 0. In contrast, the improved K-means clustering algorithm uses the well-

learned Mahalanobis distance to replace the traditional Euclidean distance to find clusters that are more in line 

with the expected semantics (i.e. the similarity relationship of complexity samples). The specific optimisation 

goal is as follows: 

f = ∑ ∑ 𝑟𝑖𝑗𝑑𝐴
2(𝑥𝑖, 𝜇𝑗)

𝐾

𝑗=1

𝑁

𝑖=1

 (3) 

where 𝑑𝐴(𝑥𝑖, 𝜇𝑗) is the Mahalanobis distance between sample 𝑥𝑖 and the centre 𝜇𝑗 of cluster 𝑗 under the metric 

matrix 𝐴. Table 2 gives the detailed steps of the algorithm. 
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Table 2 – K-means clustering algorithm based on Mahalanobis distance 

Input: complexity dataset 𝐷 = {𝑥1, 𝑥2, … , 𝑥𝑁}, the number of clusters 𝐾, distance metric matrix 𝐴 

Output: complexity sample classification results 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐾} 

1. Randomly select 𝐾 samples from the complexity dataset as the center vector of the initial cluster {𝜇1, 𝜇2, … , 𝜇𝐾} 

2. Repeat: 

3.      Initialise 𝑐𝑖 = {}, 𝑖 = 1,2, … , 𝐾 

4.      For 𝑖 = 1,2, … , 𝑁 

5.           Calculate the Mahalanobis distance 𝑑𝑖𝑗 = 𝑑𝐴(𝑥𝑖 , 𝜇𝑗), 𝑗 = 1,2, … , 𝐾 between sample 𝑥𝑖 and cluster 𝜇𝑗  

6.           Determine the cluster 𝜆𝑖 to which sample 𝑥𝑖 belongs based on 𝜆𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗∈{1,2,…,𝐾}𝑑𝑖𝑗  

7.           Classify sample 𝑥𝑖 into the corresponding cluster  𝑐𝜆𝑖
= 𝑐𝜆𝑖

∪ {𝑥𝑖} 

8.      Update the centre vector of each cluster 𝜇𝑖 =
∑ 𝑥𝑥∈𝑐𝑖

|𝑐𝑖|
, 𝑖 = 1,2, … , 𝐾 

9. Until the centre vectors of all clusters converge 

With the determined traffic situation complexity level, a natural idea is to identify the important factors that 

cause the situation to evolve. Hereby, the normalised factor gap 𝐺𝑖𝑗
𝑘  is defined to describe the degree of change 

in the 𝑘-th factor between normalised sample 𝑖 and 𝑗. It is formalised as follows: 

𝐺𝑖𝑗
𝑘 = (𝑥𝑖

𝑘 − 𝑥𝑗
𝑘)𝐴𝑑𝑖𝑎𝑔(𝑘, 𝑘)(𝑥𝑖

𝑘 − 𝑥𝑗
𝑘) (4) 

where 𝐴𝑑𝑖𝑎𝑔(𝑘, 𝑘) is the 𝑘-th element on the main diagonal of the learned distance metric diagonal matrix  

𝐴𝑑𝑖𝑎𝑔, 𝑥𝑖
𝑘 is the 𝑘-th factor of the normalised sample 𝑖. Using 𝐺𝑖𝑗

𝑘 , we can directly compare the contribution of 

different factors to the distance between two situation samples. 

3. CASE STUDY 

3.1 Experimental settings 

In the experiment, a total of 2,000 scene pairs are randomly selected from the generated dataset, including 

1,000 similar scene pairs and 1,000 dissimilar scene pairs. The proposed algorithm is implemented using the 

distance metric learning framework metric_learn 0.6.2 [21] and the machine learning library Scikit-learn 

0.22.2 [22]. In the parameter settings of the metric learning model, the maximum number of iterations is 100, 

the convergence threshold is 0.001, and the initialisation method is the unit matrix. On this basis, two types of 

metric matrices are generated, namely diagonal matrix and full matrix. As for the parameter settings of the K-

means clustering algorithm, the number of clusters is set in the range of 2 to 20. To evaluate the performance 

of different clustering algorithms and determine the optimal number of clusters, the silhouette coefficient (SI) 

and the Davidson-Boldin index (DBI) are selected, which can be calculated as follows: 

SI =
1

𝑁
∑

𝑏(𝑖) − 𝑎(𝑖)

max {𝑎(𝑖), 𝑏(𝑖)}

𝑁

𝑖=1
 (5) 

DBI =
1

𝐾
∑ max

𝑗≠𝑖

𝑐(𝑖) + 𝑐(𝑗)

||𝜇𝑖 − 𝜇𝑗||2

𝐾

𝑖=1
 (6) 

where 𝑏(𝑖) is the minimum average distance between sample 𝑖 and other clusters, 𝑎(𝑖) is the average distance 

between sample 𝑖 and all other samples with the same cluster, 𝑐(𝑖) is the average distance of all samples in 

cluster 𝑖. Among them, the larger the SI, the better the cluster performance, and the opposite is true for DBI. 
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3.2 Analysis of weakly supervised sample effectiveness 

To compare the differences in calibration consistency between complexity level and complexity similarity, 

we further subjectively calibrated all radar images on a complexity level from 1 to 4, where each image was 

also evaluated three times by four controllers. A total of 5,040 calibration results were recorded (12 calibrations 

per image, a total of 420 images). Figure 3 compares the consistency of strong supervision information (i.e. 

complexity level) and weak supervision information (i.e. complexity similarity) during multiple calibrations 

by a controller. It can be seen that the calibration consistency of strong supervision information is poor. There 

are not only many cases where the complexity level differs by 1, but also a small number of cases where the 

complexity level differs by 2. It can be expected that the difficulty of calibration will increase significantly 

when there are more complexity levels. In comparison, the calibration consistency of weakly supervised 

information is better, with only a few cases with different similarities. 

Furthermore, Figure 4 shows the subjective calibration consistency of different controllers. Through 

comparison, it can be found that the consistency of complexity levels decreases significantly, while the 

consistency of complexity similarity is less affected. This phenomenon directly reflects the advantages of 

weakly supervised information, which not only avoids the cognitive differences of different experts on 

different complexity levels, but also improves the availability of supervised samples to a certain extent, and 

obtains more reliable calibration results with less time cost. 

 
(a) 

 
(b) 

Figure 3 – Consistency analysis of subjective calibrations by the same controller: a) complexity level; b) complexity similarity 

 
(a) 

 
(b) 

Figure 4 – Consistency analysis of subjective calibrations by different controllers: a) Complexity level; b) Complexity similarity 

3.3 Analysis of distance metric learning effectiveness 

In order to verify the effectiveness of metric learning, the Mahalanobis distances of all similar scene pairs 

and dissimilar scene pairs were calculated respectively, and their distribution is shown in Figure 5. It can be 

seen that similar scene pairs are smaller than dissimilar scene pairs in terms of the median Mahalanobis 

distance. Furthermore, the two boxplots are completely separated in the region consisting of the lower and 

upper quartiles, with no overlap. This shows that the Mahalanobis distance of similar scene pairs is generally 

smaller than the distance of dissimilar scene pairs, which fully confirms the effectiveness of the metric learning 

model. 
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Figure 5 – Mahalanobis distance between similar scene pairs and dissimilar scene pairs 

Figure 6 further visualises the two types of learned metric matrices, and the depth of their colours reflects 

the size of the weight coefficients. The elements on the diagonal are the weight coefficients of each complexity 

factor, and the elements on the off-diagonal are the weight coefficients of the interaction between the two 

factors. Since the complexity factor is normalised before metric learning, the size of the weight coefficient can 

reflect the importance of different factors and interactions between factors. Figure 6(a) shows the distance metric 

matrix in the form of a diagonal matrix, from which the key factors that affect the distance between two scenes 

can be summarised. Specifically, for traffic flow factors (1~6), factor 1 (number of aircraft) and factor 6 

(aircraft density) are the most important, reflecting that the traffic volume in the current period has a greater 

impact on complexity; for aircraft performance factors (7~9), factor 7 (variance of aircraft ground speed) and 

factor 8 (ratio of standard deviation of ground speed to mean value) are the most important, reflecting that the 

fluctuation of aircraft ground speed has a greater impact on complexity. For potential conflict factors (10~23), 

factor 14 (heading disorder), factor 15 (speed disorder), factor 16 (separation speed), factor 17 (convergence 

speed) and factor 23 (horizontal conflict) are the most important. Figure 6(b) further shows the metric matrix of 

the full matrix type. As for the elements on the diagonal, although the value of the weight coefficient is different 

from that of the diagonal matrix, the influencing factors with the larger coefficients of the two are relatively 

consistent; as for the off-diagonal elements, the weight coefficients of most elements are near 0, showing that 

most of the interactions between factors are not significant. In addition, the weight coefficients of some 

elements are small negative numbers. This phenomenon often occurs between factors with positive correlation, 

such as factor 1 (number of aircraft) and factor 6 (aircraft density), factor 14 (heading disorder) ) and factor 15 

(speed disorder) etc., whose purpose is to weaken the impact of simultaneous changes in the two factors on 

the distance metric. 

 
(a) 

 
(b) 

Figure 6 – Distance metric matrix visualisation: a) Distance metric diagonal matrix; b) Distance metric full matrix 
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3.4 Analysis of complexity level classification 

In order to determine the optimal number of clusters for complexity samples and evaluate the performance 

of different clustering algorithms, Figure 7 shows the DBI and SI results of the K-means clustering algorithm 

based on Mahalanobis distance (i.e. improved K-means) and Euclidean distance (i.e. original K-means). In 

general, under the same number of clusters, the DBI of the improved K-means is smaller than that of the 

original K-means, while the SI index is the opposite. This phenomenon directly shows that the Mahalanobis 

distance based on metric learning can make the inside of the cluster more compact and the outside of the cluster 

more separated, effectively improving the performance of the clustering task. In addition, regardless of the 

clustering algorithm, when the number of clusters is 4, the two evaluation indicators achieve the optimal, so 

the complexity dataset should be divided into four levels, from low to high, namely, levels 1, 2, 3 and 4. 

 
(a) 

 
(b) 

Figure 7 – Clustering performance comparison: a) DBI; b) SI 

Based on the analysis results in Section 3.3, factor 6 (aircraft density), factor 7 (aircraft ground speed 

variance), factor 14 (heading disorder), factor 17 (convergence speed) and factor 23 (horizontal conflict) are 

regarded as the key influencing factors of the complexity sample. Table 3 further provides the changes in cluster 

centres at different levels. It can be found that as the values of these factors continue to increase, the level of 

air traffic complexity also gradually rises. In particular, for a new complexity sample, the distance metric 

matrix can be used to linearly transform the sample into the learned metric space. On this basis, by calculating 

its distance from the cluster centre of each complexity level, the level to which the complexity sample belongs 

can be obtained, thereby realising the complexity level assessment of online data. 

Table 3 – Cluster centres of key factors of different complexity levels 

Key factors 

Complexity level 

Level 1 Level 2 Level 3 Level 4 

Sdens 7.64 9.40 16.60 20.05 

σgs
2 5979.08 6359.71 6912.80 8721.20 

Strack_dis 52.05 117.34 181.16 286.04 

Sconv 169.74 584.67 912.39 1282.11 

Sinter_hori 17.55 23.83 50.60 61.42 

3.5 Analysis of complexity situation evolution 

When the air traffic complexity level changes over time, by combining the cluster centres of key factors 

and the changes in the values of each factor, the key causes that affect the level changes can be inferred to a 

certain extent. Taking the complexity sample from 12:00–13:00 on 7 December 2019 as an example, Figure 8 

shows the change process of air traffic complexity level per minute. It can be seen that the complexity level 

changes continuously from 1 to 4 over time. 
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Figure 8 – Evolution of air traffic complexity levels over time 

In order to identify the dominant factors that cause the evolution of the complexity level, based on the 

specific values of the key factors before and after the three changes, the gap in Mahalanobis distance between 

the factors in two adjacent periods is calculated, and the factors with a gap greater than 0.01 are displayed in 

bold, as shown in Table 4. It can be found that the dominant factors of changes at different levels are different, 

often consisting of 1–2 factors. Specifically, the dominant factor when the complexity level changes from 1 to 

2 is aircraft density; the dominant factor when the complexity level changes from 2 to 3 is aircraft ground 

speed variance; and the dominant factor when the complexity level changes from 3 to 4 is heading disorder 

and horizontal conflicts. 

Table 4 – Key factors before and after changes in complexity levels 

Level changes Time period 
Key factors 

Sdens σgs
2 Strack_dis Sconv Sinter_hori 

Level 1->2 
12:19-12:20 8.05 5661.63 41.69 177.56 15 

12:20-12:21 11.75 5587.46 58.00 553.71 19 

Normalisation factor gap 0.038 0.000 0.001 0.008 0.002 

Level 2->3 

12:35-12:36 13.81 6028.93 132.85 498.33 29 

12:36-12:37 14:20 7694.39 143.91 839.25 35 

Normalisation factor gap 0.000 0.011 0.000 0.007 0.003 

Level 3->4 

12:54-12:55 19.44 7390.04 178.17 983.31 52 

12:55-12:56 18.65 8073.01 302.71 1117.54 67 

Normalisation factor gap 0.002 0.002 0.046 0.001 0.021 

4. CONCLUSION 

Air traffic complexity analysis has always been the focus of air traffic researchers. Although controller 

subjective evaluation is considered a mainstream method, it still has certain limitations, such as inconsistent 

assessment of traffic situations. This paper attempts a new idea to solve this problem, which is to use highly 

reliable similarity information to replace level information that is difficult to accurately label. On this basis, 

distance metric learning and cluster analysis techniques are combined to analyse air traffic complexity, which 

can bring valuable insights from the aspects of factor importance, situation level classification, situation level 

evolution etc. A case study was conducted in a mid-southern area sector of China to illustrate the potential of 

the proposed framework. 

Future work will verify the generality and effectiveness of the proposed method in more airspace sectors, 

and it is interesting to compare the differences in complexity analysis results for different airspace sectors or 

time periods. In addition, predicting the complexity of target sectors based on small-scale datasets of multiple 

adjacent sectors is another interesting topic. 
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题目: 基于弱监督学习的主观空中交通复杂性分析 

摘要 

管制员主观评价是评估空中交通复杂性的重要手段之一。然而，人类专家的不一致

性对复杂性分析模型的推理产生了负面影响。为了解决这一问题，本文提出以高可

靠的交通态势相似度作为标注信息，构建弱监督的空中交通复杂性数据集。在此基

础上，训练距离度量学习模型，生成满足相似关系的距离度量矩阵。最后，结合 K-

means 算法，实现有偏好的复杂度态势等级分类和演变分析。以中国中南部区域扇区

的实际运行数据为例，验证了所提方法的有效性。实验结果表明，飞机密度、飞机

地面速度变化、航向紊乱、收敛速度和水平冲突对复杂度态势的影响较大。与基于

欧氏距离的 K-means 算法相比，度量学习算法的最优轮廓系数和 Davidson-Boldin 指

数分别提高了 31.80%和 12.97%。此外，还证实了态势演变是由一个或两个关键影响

因素驱动的。 
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