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ABSTRACT 

Non-motorised travel and public transportation travel are recognised as low-carbon travel 

modes, in contrast to car travel, which is considered a non-low-carbon option. Based on this, 

the paper proposes a stratified assessment method for the urban low-carbon travel potential. 

The proportion of the motorised travel population that could potentially shift to non-

motorised travel within the entire travel population is defined as the urban Tier 1 low-carbon 

travel potential. Meanwhile, the proportion of the car travel population that could potentially 

shift to public transportation travel within the entire travel population is defined as the urban 

Tier 2 low-carbon travel potential. This method holistically presents the potential for 

improvement in urban traffic carbon emission control. This method considers distance as a 

primary negative factor affecting the residents’ willingness to engage in non-motorised travel 

compared to motorised travel. Additionally, it recognises connection, delay and transfer as 

the main negative factors influencing the residents’ willingness for public transportation 

travel over car travel. By comparing the actual travel distances of residents and the actual 

intensity of connection, delay and transfer in public transportation travel modes with the 

assumed maximum acceptable distances and intensity for residents, the method identifies the 

number of people who could potentially shift to corresponding levels of low-carbon travel in 

hypothetical scenarios. Based on this, the corresponding low-carbon travel potential values 

are calculated. The method then further analyses the trend of these values as the residents’ 

acceptable thresholds for non-motorised travel distances and acceptable intensity for public 

transportation travel connection, delay and transfer change. A relationship curve is fitted, 

which intriguingly exhibits a reverse “S” shape, allowing for the identification of the “rapid 

release zone” and “key points” on the curve. These insights are essential for effectively 

targeting interventions to increase the adoption of low-carbon travel modes. This paper takes 

the cities of Shanghai and Wuhan in China as examples, conducting a stratified assessment 

of the low-carbon travel potential for both cities based on 19,732 daily travel origin– 

destination (OD) survey samples from residents. Additionally, the low-carbon travel 

potential of the two cities is visualised by district, enabling an analysis of the characteristics 

of low-carbon travel potential in each city and a comparison of the differences in low-carbon 

travel potential between them. 
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1. INTRODUCTION 

The rapid advancement of modern industrial society has been paralleled by a surge in carbon emissions, 

which, after propelling human industrial civilisation into the 21st century, has introduced significant 

environmental challenges, garnering global attention. The Paris Agreement, ratified by 178 nations in 

December 2015, aims to confine the global average temperature rise to well below 2°C above pre-industrial 

levels, with an aspirational target of limiting it to 1.5°C [1]. By October 2021, the “carbon neutrality” goal has 

encompassed over 80% of the global GDP (calculated using purchasing power parity) and over 77% of 

greenhouse gas emissions [2]. Urban transportation contributes a substantial share to total carbon emissions, 

offering considerable scope for energy conservation and emission reduction. The International Energy Agency 

(IEA) forecasts that by 2030, the transportation sector’s carbon emissions will constitute 41% of the total CO2 

emissions from fuel combustion, a rise from 24.6% in 2018 [3]. Moreover, a resurgence of global 

transportation activities to pre-COVID-19 levels could lead to an additional 600 million tons of carbon 

emissions in 2021 [4]. In China, based on 2020 statistical data, transportation carbon emissions account for 

15% of terminal carbon emissions, with road traffic carbon emissions representing 90% of the total 

transportation carbon emissions and passenger road transport contributing 42%, of which 90% is attributed to 

passenger cars. 

Non-motorised and public transportation modes significantly contribute to reducing the overall carbon 

emissions of cities [5–8]. Non-motorised travel, which includes walking and cycling, is characterised by a 

zero-carbon footprint when focusing solely on the act of travel. Public transport, with its higher passenger 

capacity compared to private vehicles [9–12], results in significantly lower per capita carbon emissions for 

these modes of travel. According to statistics from the UK Department for Business, Energy and Industrial 

Strategy, the carbon emissions per person per kilometre for a mid-sized gasoline car is approximately 192 g, 

while for buses, it is only about 105 g per person per kilometre; it is even lower for rail transit, at about 41 g 

per person per kilometre [13]. Considering that both non-motorised travel and public transportation are 

considered low-carbon travel modes, but they differ in degree and focus, this study defines non-motorized 

travel as “Tier 1 low-carbon travel”, public transportation as “Tier 2 low-carbon travel” and car travel as “non-

low-carbon travel”. 

To investigate the influence mechanism of urban transportation system factors on the residents’ travel mode 

choice preferences, we propose a stratified urban low-carbon travel potential assessment method. This method 

aims to provide urban managers and builders with insights for city development, offering theoretical support 

for guiding the residents’ travel behaviour toward more low-carbon travel options. The stratified assessment 

method defines the proportion of the population that could potentially shift to Tier 1 and Tier 2 low-carbon 

travel within the total travel population as the urban Tier 1 and Tier 2 low-carbon travel potential, respectively. 

This represents the potential space for residents to transition from non-low-carbon to low-carbon travel modes 

through traffic guidance measures. The higher the potential value, the greater the proportion of residents who 

could potentially shift to low-carbon travel modes under effective measures, thus enhancing the value of 

implementing traffic guidance strategies. This method is based on origin-destination (OD) surveys of urban 

residents and assesses the number of people who might shift to low-carbon travel by considering their 

acceptable thresholds for non-motorized travel distances and the connection, delay and transfer intensity for 

public transportation modes. The urban low-carbon travel potential values established by this method fluctuate 

as the residents’ acceptable intensity thresholds change and analysing these trends is a key objective of the 

research. The thresholds associated with the rapid release zone help urban managers to discern urban travel 

patterns, identify differences between cities and develop targeted transportation policies. As a result, this can 

lead to a reduction in the overall carbon emissions from urban transportation at a lower marginal cost. 

This study uses two major cities in China, Shanghai and Wuhan, as examples to apply the method for a 

stratified assessment of urban low-carbon travel potential. There are differences in the development status of 

various regions within large cities and urban development and improvement strategies should be carried out 

with a focus on specific areas. Infrastructure construction conditions vary across different urban districts, with 

city centres typically offering better environments for non-motorised travel and more extensive public 

transportation coverage. To provide a more nuanced analysis of the differences between various urban areas, 

the study conducts district-level assessments based on the rapid release zone and key scenarios of the urban 

low-carbon travel potential. Key scenarios form the foundation for further sub-district analysis within a city. 

By comparing the proportion of the residents’ travel modes under various key scenarios, the study examines 

the changing characteristics and inter-district differences in different areas of multiple cities. This analysis 

provides a basis and reference for developing tailored development strategies for each district. 
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In summary, this study makes innovative contributions in the following three aspects:  

Firstly, the study introduces a stratified assessment method for urban low-carbon travel potential that 

comprehensively considers both non-motorised travel and public transportation travel of residents. The 

research focus is on the potential for low-carbon travel in cities, rather than an evaluation of the current state, 

which is the most significant contribution of this paper.  

Secondly, the study simultaneously considers non-motorised and public transportation travel as low-carbon 

modes of travel for residents and classifies them based on their carbon reduction levels. It offers a 

comprehensive examination of the potential changes in urban transportation carbon emissions as the city 

transitions towards low-carbon travel modes. The study defines evaluation metrics for each tier of low-carbon 

travel, choosing the total distance for non-motorised travel and the aspects of connection, delay and transfer 

for public transportation travel as the negative factors affecting travel choices. It investigates how these travel 

factors influence the residents’ mode selection and their underlying impact mechanisms.  

Thirdly, the study focuses on the delineation of the rapid release zone of urban transportation low-carbon 

travel potential as a key research element and establishes the corresponding non-motorised travel distance 

thresholds and public transportation connection, delay and transfer thresholds for the study areas. It also 

considers the developmental differences among various urban regions, assesses the low-carbon travel potential 

of urban transportation in different areas and conducts comparative analyses between regions.  

The three contributions outlined above are pivotal in guiding the creation and optimisation of urban low-

carbon travel strategies, offering novel methods and perspectives for cities in the pursuit of identifying areas 

in need of improvement. This method’s low dependency on data volume makes it accessible for use in urban 

and regional contexts with varying levels of development. 

2. LITERATURE REVIEW 

This section of the literature focuses on three primary areas: the assessment and control of carbon emissions 

in urban transportation, the distances urban residents travel and aspects of transportation connection, delay, 

and transfer and the migration of the urban residents’ travel patterns. 

2.1 Urban transportation low-carbon travel intentions and travel choices 

In the overall carbon emissions of a city, transportation carbon emissions constitute a significant portion. 

Assessing this component and promoting its gradual reduction have a positive impact on the improvement of 

total carbon emissions. The residents’ adoption of low-carbon travel methods can effectively reduce urban 

traffic carbon emissions and their willingness to engage in low-carbon travel indirectly affects the city’s total 

carbon emissions. Relevant research has found that the residents’ personal characteristics [14, 15] and their 

subjective perceptions of the neighbourhood environment [16], travel time [17] and low-carbon knowledge 

[18] all influence their choice of travel mode. The number of parking lots within a city, the level of traffic 

congestion and the overall standard of public transportation are urban characteristics that also influence the 

residents’ choices of travel modes [14]. 

The carbon emission reduction benefits of low-carbon travel behaviours are also a focus of research. Some 

researchers have assessed the reduction in urban traffic carbon emissions resulting from low-carbon travel 

replacing car travel for short-distance trips [19] and following the improvement of low-carbon transportation 

systems [20]. The assessments primarily consider objective factors such as travel distance [21], travel purpose 

[21], population size [22], environmental characteristics [22] and land use [23], as well as the residents’ 

subjective satisfaction with low-carbon travel. 

2.2 Urban residents’ travel distance and transportation connection, delay and transfer 

In the study of the transition between motorised and non-motorised travel modes in the residents’ daily 

commutes, static threshold values of various indicators are often used as a basis for assessment. This leads to 

the determination of the proportion of motorised travel that could be converted within the city and, 

consequently, an estimation of the potential reduction in urban carbon emissions that could be achieved 

through the shift in travel modes. Among these, travel distance serves as a key indicator for the transition from 

non-motorised to motorised travel, with the threshold commonly set at three miles [24] and some studies set it 

at eight miles [25]. In the process of transitioning from car travel to public transport, factors such as connection, 

delay and transfer within the public transportation system have a significant negative impact [26]. 
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Current research generally posits that the residents’ travel distance is simultaneously related to both 

individual resident attributes and societal public characteristics. Individual resident attributes include factors 

such as income level, interest in car ownership and travel purposes [27]. Social public attributes encompass 

factors like urban form and regional characteristics [27, 28]. Travel distance further influences the choice of 

the residents’ travel modes [29] and it is significantly higher than other factors across different populations 

[30]. At the same time, the shorter the average travel distance of residents, the higher the urban traffic 

efficiency, the lower the probability of traffic congestion, and reducing the motorised travel distance of 

residents can also decrease the carbon emissions of urban transportation [31]. Numerous scholars have 

explored control measures for the residents’ motorised travel distances, including urban planning [32], travel 

policies [33] and the dissemination of traffic information [34], as well as the effectiveness of these measures. 

Research on urban public transportation focuses on the last mile of public transportation travel, and how to 

quickly transfer residents to main transportation arteries is key to improving its transportation efficiency. The 

connection of rail transit is a hot topic in research and the convenience of connections is one of the core 

indicators for assessing the suitability of rail transit [35]. In addition to residents walking directly to rail transit 

stations, feeder buses are the primary mode of connection, with ride-hailing services, taxis and shared bicycles 

also complementarily handling a portion of the connection flow [36]. The operating hours and route 

accessibility of feeder buses play a crucial role in the overall accessibility of urban public transportation [37], 

and their route demand [38] and dispatching [39] are key to optimising public transportation efficiency. 

Research on urban traffic delays primarily focuses on the reliability of travel time, as it directly affects 

whether city residents can reach their destinations within predefined time thresholds, making it one of the most 

crucial traffic indicators of concern to urban residents. The reliability of travel time depends on the probability 

of unforeseen delays occurring during travel. To improve the reliability of travel time, scientific prediction of 

travel time is essential. Some researchers have constructed vehicle travel time prediction models based on 

urban traffic big data [21, 40] and introduced various external influencing factors to assess their impact on 

vehicle travel time [41]. Some studies have also analysed the subjective inclination characteristics of the 

population towards high-delay probability travel [42] and the impact of travel delays on population traffic 

behaviour [23], considering optimising urban vehicle operation systems to reduce overall travel time [43]. 

Additionally, compared to driving, public transportation travel is characterised by higher delays and lower 

emissions. Comparing the travel times of these two modes [44], researchers have evaluated the inherent 

relationship between this difference and emission reduction [22], as well as estimated the reduction in 

emissions from substituting public transportation for driving [45]. These aspects have received considerable 

attention from researchers. 

The issue of transfers within urban public transportation systems centres on identifying factors that affect 

transfer barriers in an intermodal transportation framework and their potential solutions. Macro-level 

influencing factors mainly include station location [46], socio-economic factors [47], built environment [47] 

and transportation modes [48]. Micro-level factors are primarily the waiting time and walking distance 

associated with transfers [49], and the psychological state of passengers during the transfer process is also 

included in the research scope [50]. In terms of strategy, some researchers have constructed optimisation 

models for urban public transportation networks that can reduce the number of transfers E and minimise 

waiting times [51], aiming to enhance the connectivity of the urban transportation system [52]. Additionally, 

some studies have assessed the transfer costs of urban public transportation systems and proposed related 

improvement measures [53]. 

2.3 Urban residents’ travel mode transition 

Research on the transition of the urban residents’ travel modes focuses on how travel patterns change under 

various conditions, including changes in the travel environment [54–56], the process of transportation facility 

deployment and shifts in traffic safety hazards. Environmental changes encompass extreme conditions such as 

disastrous weather [57], floods [58], road damage [59] or energy constraints [60]. The analysis also considers 

the influencing factors that lead to these changes, such as the built environment [61], residential location [62], 

demographic characteristics [63], social psychology [64], transportation layout [65] and work systems [65], 

along with their impact characteristics [66]. 

In the construction of urban traffic resilience assessment systems, some researchers have also considered 

the migration of the residents’ travel patterns. For example, Martins et al. [67] introduced the concept of 

“maximum possible distance” as the critical distance for the transition between walking, cycling and motorised 

travel. Using this concept, they assessed the proportion of non-motorised travel under certain conditions as a 
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primary basis for evaluating the intrinsic traffic resilience of a city. Based on the premise of the migration of 

the residents’ travel patterns due to the changes in the acceptable intensity thresholds for public transportation 

connection, delay and transfer, this study constructs an assessment system for the low-carbon travel potential 

of urban transportation. 

3. DATA SOURCES AND CALCULATION METHODS 

 
Figure 1 – Framework of the Stratified Assessment System 

The stratified research method primarily includes several stages: stratified division, determination of travel 

intensity indicators, construction of assumption scenarios, classification of samples within a single scenario, 

fitting of low-carbon travel potential trends with changes in travel intensity and determination of key points 

and rapid release zones, among others. Figure 1 illustrates the overall framework and analytical process. The 

stratification is carried out based on different travel mode classification standards. Sample classification within 

a single scenario considers both the travel details and actual travel modes of respondents within the selected 

travel time for the given OD coordinates. Finally, through the determination of key points and rapid release 

zones, it is possible to conduct analyses between cities as well as analyses of different zones within a city. In 

section 3 of the article, “Data sources and calculation methods,” we primarily explain the Questionnaire and 

the stratified assessment system construction. The part on Assessment Results and Evaluation is detailed in 

section 4, “Assessment results and discussion.” 

3.1 Urban resident daily travel OD survey 

Analysis area and data sources 

This study selects Shanghai and Wuhan as the research objects to investigate the OD data of the urban 

residents’ daily travel. Shanghai, located in the eastern region of China, is a direct-administered municipality 

of the People’s Republic of China and serves as the country’s economic and financial hub, with a permanent 
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population of over 24 million [68]. Shanghai has a high level of urban development and its slow-moving traffic 

and public transportation systems are at the forefront [69]. As one of the cities with the densest permanent 

population in China, Shanghai has a strong demand for rail transit. By 30 December 2021, Shanghai’s rail 

transit had opened 20 lines with an operational mileage of 831 kilometres [70], leading the country in rail 

transit mileage. Wuhan, the capital of Hubei Province, holds the top position in urban scale and development 

level in the central region of China, with a permanent population of over 13 million [71]. The Yangtze River 

and the Han River converge here and the city is dotted with numerous lakes, earning it the reputation of “City 

of a Hundred Lakes” [72]. The natural geographical environment poses many restrictions on the construction 

of Wuhan’s traffic network. Both cities hold significant economic, social and transportation statuses. 

Considering these factors, selecting Shanghai and Wuhan for a comparative study on low-carbon travel 

potential is justified. Despite both cities being intersected by rivers, their scales differ significantly. This 

disparity influences urban layouts; Wuhan’s city centre is more dispersed due to the division by the Yangtze 

and Han rivers, leading to diverse and complex transportation demands among residents. In contrast, 

Shanghai’s city centre is more concentrated, facilitating easier coverage by public transportation systems into 

core urban areas. Additionally, Wuhan’s stage of urban development differs from Shanghai; although it ranks 

fifth in China for metro operational mileage [73], its network coverage lags behind Shanghai’s. Shanghai 

boasts more advanced transportation infrastructure and higher public transportation usage, while Wuhan 

requires further improvements in public transportation and pedestrian facilities. 

By conducting a comparative analysis of Shanghai and Wuhan, we gain a comprehensive understanding of 

their similarities and differences in terms of low-carbon travel. This not only helps identify their respective 

strengths and weaknesses but also provides valuable insights for other cities to develop scientifically sound 

strategies for low-carbon travel, thereby promoting sustainable urban development. 

In the study of the urban residents’ daily travel issues, it is a common method to divide the city into several 

traffic analysis zones (TAZs) and convert OD points to the centre of their respective TAZs for analysis and 

processing, thereby simplifying the data calculation [74–76]. However, in the urban residents’ daily travel, the 

specific location within the TAZ cannot be ignored due to the issues involved in the residents’ walking and 

the “last mile” connection of public transportation. If the TAZ is too large, it cannot accurately reflect the 

problems in travel; if the TAZ is too small, it cannot serve the purpose of simplifying calculations. Therefore, 

it is more rational to calculate directly using precise OD point data. To obtain precise OD point information 

for the sample, a map selection function is embedded in the electronic survey questionnaire. However, regional 

analysis in urban traffic optimisation is a necessary step. By analysing TAZs one by one, the differences in 

low-carbon travel potential between different urban areas can be intuitively demonstrated, which helps identify 

the main reasons for the differences and facilitates urban builders in carrying out targeted urban traffic 

optimisation. Therefore, in the regional analysis of cities, the delineation of TAZs is necessary. Considering 

the large area of the two cities and to ensure that each analysis zone has enough samples and considering that 

in Chinese urban construction, districts are generally used as basic management and approval units, the 

administrative divisions of the cities are used as the basis for TAZs in this study. 

To accurately capture the entire travel process of residents, this study employs the Baidu Maps API to 

obtain the best transportation options for residents. In this study, we selected the shortest travel time route as 

the optimal route. Baidu Maps (https://map.baidu.com/), being one of the most popular internet mapping 

service providers in China, integrates real-time road conditions such as road classifications and speed limits 

into its recommended routes for car travel. For public transportation, it considers multiple modes including rail 

transit and buses. We obtained the shortest travel time routes for non-motorised travel, public transport travel 

and car travel based on the respondents’ preferences and travel times, which serve as the baseline for 

subsequent analysis. Detailed route information for public transport includes key data such as total walking 

distance, total travel time and number of transfers. 

Survey process and socio-demographic characteristics of respondents 

To obtain sample data on the travel characteristics of urban residents in Shanghai and Wuhan, this study 

conducted a survey using questionnaires. The survey was carried out in 2020 and lasted over three years. The 

research team distributed electronic survey questionnaires via the internet, totalling 19,732, of which 9,581 

were valid for Shanghai and 10,151 were valid for Wuhan. The content of the survey questionnaires mainly 

covered the respondents’ daily travel patterns and OD coordinates. 

Given that both cities are mega-cities, with the survey targeting the entire resident population, it is 

impractical to conduct a reasonable survey through quota sampling. Therefore, we adopted a random sampling 
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method. We used the Cochran formula to calculate the sample size, considering the population size, confidence 

level (95%) and margin of error (1%), resulting in an approximate sample size of 9,603 for each city. 

Ultimately, we distributed 10,000 questionnaires in Shanghai and received 9,581 valid responses; in Wuhan, 

we distributed 11,000 questionnaires and received 9,432 valid responses, totalling 19,732 valid samples with 

an effective response rate of 93.96%. During the questionnaire screening process, we verified the OD points 

and travel mode information in each questionnaire individually, excluding significantly invalid questionnaires 

to ensure data accuracy and representativeness. 

 
Figure 2 – Sociodemographic statistics of survey respondents 

In the survey questionnaire, we also collected sociodemographic information such as gender, age, education 

level and monthly income (in Chinese Yuan) of the respondents, as shown in Figure 2. The figure reveals that 

there are slightly more female respondents than male respondents overall, with this difference being more 

pronounced in Wuhan compared to Shanghai. In Wuhan, there is a higher proportion of younger respondents, 

whereas in Shanghai, the distribution of respondents is more even across age groups. Overall, the ratio of male 

to female respondents is close to 1:1 and respondents are broadly distributed across different age groups, 

education levels and monthly income levels. While not fully reflective of the entire urban population, these 

findings are representative to a certain extent. 

3.2 Urban low-carbon travel potential intensity indicators 

Calculation of non-motorised travel intensity 

In this study, non-motorised travel intensity is defined as the total distance travelled between the origin and 

destination using non-motorised modes, such as walking or cycling, denoted as 𝐼𝑛. 

The acceptable non-motorised travel distance for urban residents is influenced by various factors, including 

the built environment, travel philosophy and road safety [77–79]. However, in the analysis of urban residents 

as a group, travel distance is the most important and universally applicable factor. By assessing travel distance, 

the differences brought about by the built environment in different urban areas can be reflected [80]. Non-

motorised travel includes various modes such as walking and cycling and there are differences in the routes 

taken for different travel modes. However, the overall differences are relatively small. Statistical data from the 

entire sample shows that cycling routes, on average, increase by 3.299% compared to walking routes. 

Considering that both cities in this study are flat terrain, in actual travel, the walking distance often represents 

the shortest path for non-motorised travel. Therefore, we use walking distance to represent non-motorised 

travel distance. Therefore, the calculation of non-motorised travel intensity for urban residents should be as 

follows: 

𝐼𝑛 = 𝐷𝑥𝑦 (1) 

where 𝐼𝑛  represents the non-motorised travel intensity between points 𝑥  and 𝑦  for residents, measured in 

kilometers (km); 𝐷𝑥𝑦 represents the actual distance travelled by non-motorised means between points 𝑥 and 

𝑦. 
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Calculation of public transportation travel intensity 

In this study, the intensity of public transportation travel is composed of three aspects: connection intensity, 

delay intensity and transfer intensity. 

Connection intensity (𝐼𝑐) is defined as the total walking distance during the entire process of travelling 

between the origin and destination using public transportation. Delay intensity (𝐼𝑑) is defined as the ratio of 

the travel time of the shortest path between the origin and destination using public transportation to the travel 

time of the shortest path for car travel. Transfer intensity (𝐼𝑡) is defined as the number of transfers required 

when travelling between the origin and destination using public transportation. 

In urban commuting, the maximum acceptable connection distance for residents does not have a linear 

relationship with the total travel distance. Casey P. and Wen also highlighted the non-vehicular connection 

distance in public transportation as a critical indicator of the probability of low-carbon travel [81, 82]. 

Therefore, the absolute value of the connection distance is more important. Therefore, the connection intensity 

is calculated based on the total walking distance extracted from the shortest travel time optimal public transport 

route. Therefore, the calculation formula for connection intensity is as follows: 

𝐼𝑐 = 𝐷𝑥 +𝐷𝑦 +∑𝐷𝑇𝑧

𝑛

𝑧=1

 (2) 

where 𝐼𝑐 represents the connection intensity of public transportation travel between points 𝑥 and 𝑦, measured 

in kilometres (km). 𝐷𝑥 represents the non-motorised travel distance from the origin point 𝑥 to the departure 

station, 𝐷𝑦 represents the non-motorised travel distance from the arrival station to the destination point 𝑦, 𝐷𝑇𝑧 

represents the non-motorised travel distance during the zth transfer and 𝑛 represents the number of transfers. 

The maximum acceptable delay distance for residents differs from the connection distance and changes 

with the increase in travel distance. In both long-distance and short-distance travel, residents are willing to 

accept different time differences between public transportation and cars. Using the absolute size of time 

differences between different modes of travel to reflect delay levels is not appropriate. It is more reasonable to 

use the ratio of travel times between public transportation and other car travel modes, such as driving, taxis or 

ride-hailing services [44, 83]. Singapore’s plan to reduce door-to-door travel time for public transportation to 

1.5 times that of car travel by 2020 supports this perspective [84, 85] and this 1.5 times ratio of public 

transportation to car travel time has also been used to evaluate the public transportation accessibility of 

Shenzhen’s urban network. Therefore, delay intensity is defined as the ratio of the minimum travel time for 

public transportation to the minimum travel time for car travel, and the formula is as follows: 

𝐼𝑑 =
𝐷𝑃𝑥𝑦

𝐷𝐶𝑥𝑦
 (3) 

where 𝐼𝑑 represents the delay intensity of public transportation travel between points 𝑥 and 𝑦, 𝐷𝑃𝑥𝑦 represents 

the minimum travel time for public transportation travel between points 𝑥  and 𝑦 and 𝐷𝐶𝑥𝑦  represents the 

minimum travel time for car travel between points 𝑥 and 𝑦. 

Transfers between different public transportation modes or lines can also reduce the residents’ willingness 

to choose public transportation. The issue of transfers in public transportation is influenced by various factors, 

including the distance to the connection point and the design of the connection station, which is already 

reflected in the connection intensity. Other factors are affected by the design of individual transfer stations. To 

assess the impact of transfers on the residents’ travel at the urban scale, the transfer intensity is defined as the 

number of transfers on the route with the shortest travel time. The calculation formula is as follows: 

𝐼𝑡 = 𝑁𝑇𝑥𝑦 (4) 

where 𝐼𝑡  represents the transfer intensity of public transportation travel between points 𝑥  and 𝑦 , 𝑁𝑇𝑥𝑦 

represents the number of transfers during public transportation travel between points 𝑥 and 𝑦. In cases where 

public transportation provides a direct route without transfers, 𝑁𝑇𝑥𝑦 is taken as 0, so 𝑁𝑇𝑥𝑦 is an integer greater 

than or equal to 0. 
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3.3 Urban low-carbon travel mode classification 

Construction of the classification reference system 

The necessity of travel [81] and the influence of external environmental factors [82, 83] are the criteria for 

classifying the urban residents’ travel modes. Martins et al. [76] and Wang et al. [74] classified travel modes 

based on the residents’ willingness to travel non-motorised distances. This study approaches the classification 

of travel modes from two dimensions: subjective willingness and objective travel modes. In terms of subjective 

willingness, the relationship between the residents’ actual travel intensity and the assumed willingness travel 

intensity is judged, reflecting the subjective willingness of residents to choose travel modes at that intensity. 

In terms of objective travel modes, different modes of travel result in different carbon emissions. The study 

categorises travel modes by different transportation modes and ranks them according to the average carbon 

emissions per person per kilometre for each mode, which mainly includes walking, cycling, rail transit, buses 

and cars. 

Considering that walking and cycling are quite similar in terms of travel choice, encountered difficulties 

and per capita carbon emissions, we categorise walking and cycling together as non-motorised travel. 

Similarly, buses and rail transit are combined into public transportation for further analysis. This is because 

both share similar travel logic, face similar travel issues and require transfers and connections during trips. 

Additionally, buses often extend and complement rail transit, frequently appearing together in multimodal 

transport systems. Public transportation travel exhibits marginal effects in the reduction of carbon emissions, 

as the transportation process always involves some level of carbon emission. Non-motorised mode travel 

should be more vigorously promoted for short-distance trips [86, 87], as it can achieve true zero carbon 

emissions. Within the stratified assessment system for urban low-carbon travel potential, two types of travel 

mode classification systems are constructed, respectively, based on non-motorised travel and public 

transportation travel, along with their corresponding evaluation indicators. 

Travel mode classification based on non-motorised travel distance 

In the process of constructing the urban Tier 1 low-carbon travel potential assessment, non-motorised travel 

intensity is used as the basis for classifying the residents’ subjective willingness, while the use of non-

motorised modes for daily travel is taken as the objective basis for classifying travel modes. The Maximum 

Non-Motorised Travel Intensity (MNI) represents the maximum intensity of non-motorised travel that 

residents are willing to accept. On the subjective willingness level, it is assumed that the residents are willing 

to travel by non-motorised modes if the actual non-motorised travel intensity does not exceed this threshold. 

When the actual non-motorised travel intensity exceeds the threshold, the residents are unwilling to travel by 

non-motorised modes. On the travel mode level, walking and cycling are collectively referred to as non-

motorised travel modes, while any motorised vehicle, including public transportation, is referred to as 

motorised travel modes. In the Tier 1 low-carbon travel potential assessment for cities, the residents’ travel 

modes are classified into four categories: Active Tier 1 low-carbon travel, passive Tier 1 low-carbon travel, 

non-convertible motorised travel and convertible motorised travel, as illustrated in Figure 3. 

Active Tier 1 low-carbon travel is when the residents’ non-motorised travel intensity is below their 

acceptable maximum intensity and they have chosen to travel by non-motorised means; this indicates that the 

residents are suitable for choosing non-motorised travel. 

Passive Tier 1 low-carbon travel is when the residents’ non-motorised travel intensity exceeds their 

acceptable maximum intensity, yet they still opt for non-motorised travel; this suggests that the residents are 

compelled to travel non-motorised due to personal or objective reasons, making this a passive choice. 

Non-convertible motorised travel is when the residents’ non-motorised travel intensity is below their 

acceptable maximum intensity, but they have chosen motorised travel; this indicates that the choice of 

motorised travel is unrelated to non-motorised travel intensity and even with improvements in the residents’ 

travel environment, the travel choices of this group cannot be changed. 

Convertible motorised travel is when the residents’ non-motorised travel intensity exceeds their acceptable 

maximum intensity and they have chosen motorised travel; the travel mode of these residents may change due 

to improvements in the pedestrian system and this group represents the low-carbon travel population that cities 

can target. 
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Figure 3 – The Tier 1 low-carbon travel assessment model classification for cities 

Therefore, the proportion of Convertible Motorised Travel samples in the total sample is defined as the 

Urban Tier 1 Low-Carbon Travel potential, reflecting the potential reduction in the total carbon emissions of 

the urban transportation system following the city’s measures to improve the non-motorised travel 

environment. 

Travel mode classification based on public transportation connection, delay and transfer 

In the process of constructing the Tier 2 low-carbon travel potential assessment for cities, the choice of 

public transportation by the residents for their daily travel is used as the objective basis for classifying travel 

modes, with the corresponding evaluation metric being the public transportation intensity threshold. The 

maximum public transportation intensity that the residents are willing to accept during travel is represented by 

three indicators: Maximum Connection Intensity (MCI), Maximum Delay Intensity (MDI) and Maximum 

Transfer Intensity (MTI). This study assumes that if the actual connection intensity, delay intensity and transfer 

intensity of residents do not exceed the threshold, their public transportation intensity is below the threshold 

and they are willing to travel by public transportation. Conversely, if any of these three indicators exceeds the 

corresponding threshold, the residents are subjectively unwilling to travel by public transportation. On the 

travel mode level, motorised travel is further divided into two categories: public transportation and non-public 

transportation. Public transportation includes low-carbon travel modes such as buses and rail transit, while 

non-public transportation includes car travel, ride-hailing and taxis. In the urban Tier 2 low-carbon travel 

potential assessment, the residents’ travel modes are similarly classified into four categories: active Tier 2 low-

carbon travel, passive Tier 2 low-carbon travel, non-convertible car travel and convertible car travel, as 

illustrated in Figure 4. 

Active Tier 2 low-carbon travel refers to the situation where the residents’ public transportation intensity 

is below their acceptable maximum intensity, meaning that the connection, delay and transfer intensities are 

all below their acceptable maximum and the residents have actively chosen non-motorised or public 

transportation modes. 

Passive Tier 2 low-carbon travel occurs when the residents’ public transportation intensity exceeds their 

acceptable maximum intensity, with at least one of the connection, delay or transfer intensities surpassing the 

acceptable maximum, yet residents still choose non-motorised or public transportation modes; this may be due 

to personal reasons such as economic status or travel philosophy, leading them to opt for low-carbon travel 

modes despite discomfort. 

Non-convertible car travel indicates that the residents’ public transportation intensity is below their 

acceptable maximum, but they have not chosen non-motorised or public transportation modes; this suggests 

that the choice of car travel is not due to the connection, delay and transfer factors of the public transportation 

system, but rather due to personal travel choices, including time, travel philosophy and public transportation 

safety, among other factors. Therefore, even when the public transportation system’s connection, delay and 

transfer conditions are improved, the travel mode will not shift from car to public transportation. 

Convertible car travel refers to the situation where residents choose car travel because their public 

transportation intensity exceeds the acceptable maximum; these residents face deficiencies in the public 

transportation system’s connection, delay and transfer aspects and may shift to public transportation when the 

system is improved. 
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Figure 4 – The Tier 2 low-carbon travel assessment model classification for cities 

Like the Tier 1 low-carbon travel potential model mentioned earlier, the proportion of convertible car travel 

samples in the total sample is defined as the Urban Tier 2 low-carbon travel potential, reflecting the potential 

reduction in total urban transportation carbon emissions as the city takes measures to improve public 

transportation connection, delay and transfer conditions. 

3.4 Calculation of urban low-carbon travel potential indicators and construction of the evaluation 

system 

Calculation of the urban Tier 1 low-carbon travel potential indicators and construction of the evaluation 

system 

The urban Tier 1 low-carbon travel potential model is divided into four categories: active Tier 1 low carbon 

travel, passive Tier 1 low carbon travel, non-convertible motorised travel and convertible motorised travel. 

The calculation methods are as follows: 

𝑃𝑎1 =
𝑐𝑎𝑟𝑑(𝐴𝑇1)

𝑇
× 100% 

(5) 

𝑃𝑝1 =
𝑐𝑎𝑟𝑑(𝑃𝑇1)

𝑇
× 100% (6) 

𝑃𝑛1 =
𝑐𝑎𝑟𝑑(𝑁𝑀)

𝑇
× 100% (7) 

𝑃𝑐1 =
𝑐𝑎𝑟𝑑(𝐶𝑀)

𝑇
× 100% (8) 

where 𝑇 represents the total number of effective samples. 𝑃𝑎1 indicates the proportion of active Tier 1 low 

carbon travel samples in the total samples, with 𝐴𝑇1 Being the set of Active Tier 1 low carbon travel samples, 

which includes samples where 𝐼𝑛 < 𝑀𝑁𝐼 and the travel mode is non-motorised. 𝑃𝑝1 indicates the proportion 

of passive Tier 1 low carbon travel samples in the total samples, with 𝑃𝑇1 being the set of passive Tier 1 low 

carbon travel samples, which includes samples where 𝐼𝑛 ≥ 𝑀𝑁𝐼 and the travel mode is non-motorised. 𝑃𝑛1 

represents the proportion of non-convertible motorised travel samples in the total travel samples, with 𝑁𝑀 

being the set of non-convertible motorised travel samples, which includes samples where 𝐼𝑛 < 𝑀𝑁𝐼 and the 

travel mode is motorised. 𝑃𝑐1 represents the proportion of convertible motorised travel samples in the total 

travel samples, with 𝐶𝑀 being the set of convertible motorised travel samples, which includes samples where 

𝐼𝑛 ≥ 𝑀𝑁𝐼 and the travel mode is motorised. As described in Section 3.3.2 of this paper, the proportion of 

convertible motorised travel samples in the total travel samples represents the urban Tier 1 low-carbon travel 

potential and 𝑃𝑐1 is the value of the Tier 1 low-carbon travel potential. 

To investigate the trend of 𝑃𝑐1 with changes in MNI and to identify the key stages of change in the urban 

Tier 1 low-carbon travel potential, a series of scenarios were constructed based on the variation of MNI values. 

The range of MNI values was determined by considering the distribution of the sample and supported by 

existing research data. In this study, MNI was set to range from 0 to 50, with uniform intervals of 1, resulting 
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in 51 scenarios. For example, scenario number 49 has an MNI value of 48, which is referred to as scenario 

N48. The overall scenario numbering and corresponding MNI values are shown in Table 1: 

Table 1 – Series of scenarios constructed based on the changes in the MNI 

MNI 0 1 2 …… 48 49 50 

Scenario number 1 2 3 …… 49 50 51 

 

After constructing the 51 scenarios for the Tier 1 low-carbon travel potential, the non-motorised travel 

intensity limit 𝐼𝑛 was set for each scenario in both cities. Based on the actual travel patterns of the statistical 

samples, 𝑃𝑎1, 𝑃𝑝1, 𝑃𝑛1 and 𝑃𝑐1 were calculated, yielding the Tier 1 low-carbon travel potential 𝑃𝑐1 for each 

city. With MNI as the independent variable and the Tier 1 low-carbon travel potential value as the dependent 

variable, a curve fitting was performed to obtain the overall change in the urban Tier 1 low-carbon potential. 

This curve reflects the level of the city’s overall Tier 1 low-carbon travel potential, i.e. the change in non-

motorised travel potential, which can be used to analyse the overall differences in non-motorised travel 

environment and the residents’ travel philosophy between different cities. Selecting characteristic points with 

significant representation from the function curve serves as key scenarios for horizontal comparison within the 

city, evaluating the Tier 1 low-carbon travel potential in different areas of the same city, analysing the causes 

of the different residents’ willingness to choose non-motorised travel and corresponding measures to address 

these differences. 

Calculation of the urban Tier 2 low-carbon travel potential indicators and construction of the evaluation 

system 

The Tier 2 low-carbon travel potential model is divided into four categories: active Tier 2 low carbon travel, 

passive Tier 2 low carbon travel, non-convertible car travel and convertible car travel. The calculation methods 

are as follows: 

𝑃𝑎2 =
𝑐𝑎𝑟𝑑(𝐴𝑇2)

𝑇
× 100% 

(9) 

𝑃𝑝2 =
𝑐𝑎𝑟𝑑(𝑃𝑇2)

𝑇
× 100% (10) 

𝑃𝑛2 =
𝑐𝑎𝑟𝑑(𝑁𝐶)

𝑇
× 100% (11) 

𝑃𝑐2 =
𝑐𝑎𝑟𝑑(𝐶𝐶)

𝑇
× 100% (12) 

where 𝑇 represents the total number of effective samples. 𝑃𝑎2 indicates the proportion of active Tier 2 low 

carbon travel samples in the total samples, with 𝐴𝑇2 being the set of active Tier 2 low carbon travel samples, 

which includes samples where 𝐼𝑐 < 𝑀𝐶I, 𝐼𝑑 < 𝑀𝐷𝐼, 𝐼𝑡 < 𝑀𝑇𝐼 and the travel mode is either non-motorised or 

public transportation. 𝑃𝑝2 indicates the proportion of passive Tier 2 low carbon travel samples in the total 

samples, with 𝑃𝑇2 being the set of passive Tier 2 low carbon travel samples, which includes samples where 

𝐼𝑐 ≥ 𝑀𝐶𝐼 or 𝐼𝑑 ≥ 𝑀𝐷𝐼 or 𝐼𝑡 ≥ 𝑀𝑇𝐼 and the travel mode is either non-motorised or public transportation. 𝑃𝑛2 

represents the proportion of non-convertible car travel samples in the total travel samples, with 𝑁𝐶  being the 

set of non-convertible car travel samples, which includes samples where 𝐼𝑐 < 𝑀𝐶I, 𝐼𝑑 < 𝑀𝐷𝐼, 𝐼𝑡 < 𝑀𝑇𝐼 and 

the travel mode is car travel. 𝑃𝑐2 represents the proportion of convertible car travel samples in the total travel 

samples, with 𝐶𝐶 being the set of convertible car travel samples, which includes samples where 𝐼𝑐 ≥ 𝑀𝐶𝐼 or 

𝐼𝑑 ≥ 𝑀𝐷𝐼 or 𝐼𝑡 ≥ 𝑀𝑇𝐼, and the travel mode is car travel. As described to Section 3.3.3 of this paper, the 

proportion of convertible car travel samples in the total travel samples represents the urban Tier 2 low-carbon 

travel potential and 𝑃𝑐2 is the value of the Tier 2 low-carbon travel potential. 

To investigate the trend of 𝑃𝑐2 with changes in MCI, MDI and MTI and to identify the key stages of change 

in the urban Tier 2 low-carbon travel potential, a series of scenarios were constructed based on the variation 

of these values. The range of MCI, MDI and MTI values was determined by considering the sample 

distribution, related research and reports from government and corporate departments. In this study, MCI was 

set to range from 0 to 5.0 with uniform intervals of 0.1, MDI from 0.50 to 3.00 with uniform intervals of 0.05 

and MTI from 0 to 4 with uniform intervals of 1, resulting in a total of 13,005 scenarios. For example, scenario 
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number 305 has MCI = 0, MDI = 2.95 and MTI = 0, which is referred to as scenario C0.1D2.95T0. The overall 

scenario numbering and corresponding MCI, MDI and MTI values are shown in Table 2: 

Table 2 – Series of scenarios constructed based on changes in MCI, MDI and MTI 

MCI 
MDI 

MTI 
0.50 0.55 0.60 …… 2.90 2.95 3.00 

0 

1 2 3  49 50 51 0 

52 53 54  100 101 102 1 

103 104 105  151 152 153 2 

154 155 156  202 203 204 3 

205 206 207  253 254 255 4 

0.1 

256 257 258  304 305 306 0 

       

…
 

460 461 462  508 509 510 4 

…
    ……    

…
 

4.9 

12496 12497 12498  12544 12545 12546 0 

       

…
 

12700 12701 12702  12748 12749 12750 4 

5.0 

12751 12752 12753  12799 12800 12801 0 

       

…
 

12955 12956 12957  13003 13004 13005 4 

 

By integrating connection intensity, delay intensity and transfer intensity, 13,005 scenarios for the Tier 2 

low-carbon travel potential were simulated and constructed. Following the same approach as for the Tier 1 

low-carbon travel potential scenarios, connection intensity 𝐼𝑐, delay intensity 𝐼𝑑 and transfer intensity 𝐼𝑡 limits 

were set for each scenario in both cities. Based on the actual travel patterns of the statistical samples, 𝑃𝑎2, 𝑃𝑝2, 

𝑃𝑛2 and 𝑃𝑐2 were calculated, yielding the Tier 2 low-carbon travel potential 𝑃𝑐2 for each city. With MCI, MDI 

and MTI as independent variables and the Tier 2 low-carbon travel potential as the dependent variable, due to 

the complexity of the multi-factor function, separate curve fittings were performed for each independent 

variable. Similarly, three curves were constructed to explore the overall changes in the Tier 2 low-carbon travel 

potential from the aspects of public transportation connection distance, delay distance ratio and transfer times, 

reflecting the differences in public transportation infrastructure and the residents’ public transportation 

philosophy between the two cities. Key points were selected from each curve and critical scenarios were 

formed to evaluate the differences in Tier 2 low-carbon travel potential across different regions of the city, 

identifying differences in the city’s internal public transportation system construction, analysing the causes 

and proposing urban construction improvement plans. 

4. ASSESSMENT RESULTS AND DISCUSSION 

4.1 Travel characteristics of respondents 

In daily travel, the OD distance is an important characteristic shared by residents [88], which directly affects 

the volume of traffic carbon emissions [89]. The OD distribution reflected in the survey questionnaire is shown 

in Figure 5. The OD distance distribution indicates that the vast majority of the respondents’ daily travel is 

within a range of 10 km, which is similar to the characteristics reflected by the data from Beijing taxi statistics 

[90]. After the travel distance exceeds 15 km, the change in the number of respondents becomes more gradual. 

Among Shanghai respondents, those with travel distances less than 5 km account for 35.9% of all respondents, 
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while in Wuhan, this proportion is 38.8%. For respondents with travel distances less than 5 km, considering 

only the travel distance, using non-motorised modes of travel is already within an acceptable range [91]. 

The urban built-up area of Shanghai is larger than that of Wuhan and the difference in urban scale is also 

reflected in the distribution of respondents' travel distances. Compared to Wuhan, the proportion of Shanghai 

respondents whose daily travel is within 10 km is smaller. After the travel distance exceeds 30 km, especially 

after 50 km, the proportion of Shanghai respondents gradually exceeds that of Wuhan respondents. 

 
Figure 5 – Distribution of the respondents’ daily travel OD distances 

The proportions of various travel modes in the daily travel of the Shanghai and Wuhan respondents are 

shown in Figure 6. Overall, the proportions of different modes in both cities are very close. More than 50% of 

respondents in both cities travel by public transportation, which still has a certain gap compared to Singapore’s 

public transportation travel ratio of over 60% [84]. In addition to public transportation, the proportion of non-

motorised modes is about 27% and the proportion of car travel is 20–21%. 

 
Figure 6 – Proportion of different travel modes in daily travel of Shanghai and Wuhan respondents 

Figures 7 and 8 further clarify the OD distance distribution of respondents using different travel modes. Given 

the overall sample characteristic that Shanghai respondents tend to have longer daily travel distances, the 

distribution of car travel among respondents in Shanghai and Wuhan is generally similar, with similar 

proportions across various distance segments. The difference in the overall sample’s travel distance 

distribution is mainly concentrated among the public transportation user group. Travel distances of the Wuhan 

respondents’ public transportation are concentrated within a range of 20 km, accounting for 84.4% of all 

respondents travelling on public transportation and the proportion drops rapidly after 10 km. Shanghai 

respondents can adapt to longer-distance public transportation travel, with the proportion of people travelling 

more than 10 km reaching 44.2%, while in Wuhan, this proportion is 52.1%. The construction of the rail transit 

system in the outer areas of Shanghai is superior to that of Wuhan, providing infrastructure conditions for 

residents to travel long distances by public transportation. 
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Shanghai has a significantly higher proportion of respondents who travel by non-motorised means within 

the 5–10 km range compared to Wuhan, where respondents tend to concentrate their non-motorised travel 

within the 5 km range. Shanghai respondents are more willing to accept longer non-motorised travel distances 

for their daily commutes. The OD distance of non-motorised travel for these respondents is also their non-

motorised travel intensity value 𝐼𝑛. 

 

 
Figure 7 – OD distance distribution of Shanghai respondents 

by different travel modes 

 
Figure 8 – OD distance distribution of Wuhan respondents by 

different travel modes 

 

Further exploration of the travel characteristics of respondents using public transportation in both cities is 

shown in Figures 9–11, which depict the distribution of connection intensity 𝐼𝑐, delay intensity 𝐼𝑑 and transfer 

intensity 𝐼𝑡 values for respondents during their public transportation trips. 

 
Figure 9 – Distribution of connection intensity 𝐼𝑐 for public transportation respondents 

 

Figure 9 illustrates the distribution of connection intensity 𝐼𝑐 for respondents using public transportation. It 

is evident that the distribution trends of connection intensity 𝐼𝑐 for respondents in Shanghai and Wuhan are 

highly similar, with Shanghai respondents having a higher connection intensity. If a connection intensity 𝐼𝑐 of 

2 km is used as a dividing line, 62.3% of Shanghai respondents have a connection distance less than 2 km, 

while 66.0% of Wuhan respondents have a connection distance less than 2 km. This indicates that Shanghai 

respondents are willing to accept a higher connection intensity, which is also reflected in the non-motorised 

travel population. Improving the urban slow-travel system can not only increase the proportion of non-

motorised travel in the city but also improve the proportion of public transportation travel. 
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Figure 10 – Distribution of delay intensity 𝐼𝑑 for public transportation respondents 

Figure 10 illustrates the distribution of delay diversion intensity 𝐼𝑑 values among respondents using public 

transportation. The distribution trends of 𝐼𝑑 values for respondents in Shanghai and Wuhan are similar, but the 

peak values differ. Respondents in Wuhan face a higher proportion of time extension when using public 

transportation, indicating that the efficiency of Wuhan’s public transportation system is lower than that of 

Shanghai’s. 

 
Figure 11 – Distribution of transfer intensity 𝐼𝑡 for public transportation respondents 

Figure 11 illustrates the distribution of transfer intensity 𝐼𝑡  for respondents using public transportation. 

Shanghai respondents using public transportation have a significantly higher transfer intensity 𝐼𝑡 compared to 

Wuhan respondents. In Shanghai, 71.0% of respondents using public transportation have 0 or 1 transfer, while 

in Wuhan, this proportion reaches 82.4%. Particularly, the proportion of respondents with no transfers is much 

higher in Wuhan than in Shanghai. When analysing the public transportation routes in both cities, especially 

the rail transit routes, Shanghai’s network is more evenly distributed and respondents typically reach their 

destinations through transfers involving multiple lines. In contrast, Wuhan’s distribution is uneven. For 

instance, Wuhan’s Metro Line 2, which runs through densely populated areas and commercial centres such as 

Hankou, Wuchang and Optics Valley, allows many residents along its route to reach their destinations without 

the need for transfers. 

In summary, Shanghai residents have a higher connection and transfer intensity in public transportation and 

considering the OD distance distribution of non-motorised travel residents, it is believed that Shanghai 

residents can accept a higher connection intensity. Additionally, due to the more advanced construction of 

Shanghai’s rail transit, more residents are accustomed to transfer-based travel and the evenly distributed rail 

transit network provides practical conditions for such travel. Wuhan’s rail transit network started later and 

geographical constraints limit the network layout, but the delay intensity has not increased, which is a relatively 

good setting under restrictions. However, the high population density along some lines leads to uneven metro 

traffic, revealing significant shortcomings. 
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4.2 Assessment and comparison of urban Tier 1 low-carbon travel potential 

Under the Tier 1 travel potential assessment system, considering the actual travel mode choices of all valid 

survey samples, the corresponding Tier 1 low-carbon travel potential 𝑃𝑐1 values for Shanghai and Wuhan in 

51 scenarios were calculated. The statistical data are listed in Table 3: 

Table 3 – Urban Tier 1 low-carbon travel potential values in various scenarios 

Scenario number MNI Shanghai 𝑷𝒄𝟏 Wuhan 𝑷𝒄𝟏 

1 0 66.83% 67.13% 

2 1 65.67% 65.95% 

3 2 62.68% 62.45% 

…
    

50 49 2.12% 0.27% 

51 50 2.02% 0.23% 

 

To determine the relationship between the urban Tier 1 low-carbon travel potential and MNI, a relationship 

curve was plotted with MNI as the independent variable and the Tier 1 low-carbon travel potential value 𝑃𝑐1 

as the dependent variable. To compare the differences between Shanghai and Wuhan’s Tier 1 low-carbon 

travel potential curves, the corresponding curves of both cities were plotted on the same coordinate system, 

resulting in the relationship curve between the urban Tier 1 low-carbon travel potential and MNI values shown 

in Figure 10. 

To determine the relationship between Tier 1 urban low-carbon travel potential 𝑃𝑐1 and MNI, MNI is used 

as the independent variable and the Tier 1 urban low-carbon travel potential value 𝑃𝑐1 as the dependent variable 

to plot the relationship curve. The logistic four-parameter fitting algorithm is applied to fit the relationship 

curve, resulting in a reverse “S”-shaped fitted curve. The relationship curve and the fitted curve are shown in 

Figure 12 and the fitting results are detailed in Table 4. The “S”-shaped curve consists of a significant rapid 

release zone in the middle of the curve and a flat stage at both ends. The point of fastest change, i.e. the point 

of maximum derivative, is selected as the midpoint of the rapid release zone, denoted as point B and the points 

where the derivative reaches 50% of its maximum value are selected as the start and end points of the rapid 

release zone, denoted as points A and C. Points A, B and C represent the Tier 1 low-carbon travel potential 

situation when the residents’ maximum willingness non-motorised travel distance is at a low, medium and 

high level, respectively. The rapid release zone of the curve implies that as the residents’ maximum willingness 

non-motorised travel distance increases from the low level at point A to the high level at point C, more residents 

will shift from motorised to non-motorised travel modes, indicating a rapid change in urban Tier 1 low-carbon 

travel potential. Selecting key points within this stage makes the subsequent regional analysis more 

representative. 

Table 4 – Fitting results of the relationship curve between urban Tier 1 low-carbon travel potential and MNI 

MNI 𝑨𝟏 s.e. 𝑨𝟐 s.e. 𝒙𝟎 s.e. p s.e. R2(COD) 
Adjusted 

R2 

Shanghai 0.66554 0.00225 -0.03957 0.00264 11200.99103 69.99977 1.66083 0.01879 0.99972 0.9997 

Wuhan 0.66544 0.00354 -0.0438 0.00317 9752.84045 85.38463 1.77389 0.02915 0.99933 0.99929 

 

The fitting process of Figure 12 conforms to the following: 

𝑃𝑐 =
𝐴1 − 𝐴2

1 + (𝑥 𝑥0⁄ )𝑝
+ 𝐴2 

(13) 

where 𝐴1 is the value of the low-carbon potential when the independent variable approaches 0, 𝐴2 is the value 

when the independent variable approaches infinity. 
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Figure 12 – Fitting curve of urban Tier 1 low-carbon travel potential and MNI 

The rapid release zone of Shanghai’s Tier 1 low-carbon travel potential curve corresponds to the starting 

point A, with an MNI of 0.90 km and a Tier 1 low-carbon travel potential value of 65.5%, the point of fastest 

change B corresponds to an MNI of 4.75 km, with a Tier 1 low-carbon travel potential of 52.9%,and the 

ending point C, with an MNI of 14.51 km and a Tier 1 low-carbon travel potential value of 23.8%. This 

indicates that as the Shanghai residents’ willingness to travel non-motorised increases from 0.90 km to 14.51 

km, 41.7% of the urban Tier 1 low-carbon travel potential can be released. For Wuhan, the starting point A of 

the rapid release zone corresponds to an MNI of 1.10 km, with a Tier 1 low-carbon travel potential of 65.1%, 

the point of fastest change B corresponds to an MNI of 4.70 km, with a Tier 1 low-carbon travel potential of 

51.3%,and the ending point C corresponds to an MNI of 13.06 km, with a Tier 1 low-carbon travel potential 

of 22.1%. This indicates that as the Wuhan residents’ willingness to travel non-motorised increases from 1.10 

km to 13.06 km, 43.0% of the urban Tier 1 low-carbon travel potential can be released. 

Combining the above analysis, the positions of the corresponding key points for the two cities are similar, 

with only minor differences. The range of the rapid release zone in Shanghai is slightly larger than that in 

Wuhan, but the points of fastest change are almost the same, indicating that the travel distance of 4.70 km–

4.75 km has a significant impact on the residents’ choice of non-motorised travel in different cities. The 

threshold for the residents’ travel mode choice is concentrated in this range. For short trips within 5 km, the 

proportion of residents choosing non-motorised travel is high and further optimising the built environment has 

a relatively poor effect on reducing overall carbon emissions. For medium-short trips 5–10 km, non-motorised 

travel is still within an acceptable range and if the travel philosophy of this group of residents’ changes, the 

city’s carbon emission reduction effect will be most significant. However, it is too difficult for residents to 

travel by walking for 5–10 km [78, 79], which puts new requirements on the construction of urban non-

motorised lanes, cycling safety and the deployment of shared bicycles [92, 93]. 

Summarising the information presented in this section, for Shanghai, the key points A, B and C correspond 

to MNI values of MNI = 0.90 km, MNI = 4.75 km and MNI = 14.51 km, respectively. The corresponding 

scenarios A, B and C are N1, N5 and N15, which are selected as key scenarios for regional analysis. For 

Wuhan, the key points A, B and C correspond to MNI values of MNI = 1.1 km, MNI = 4.70 km and MNI = 

13.06 km, respectively. The corresponding scenarios A, B and C are N1, N5 and N13, which are selected as 

key scenarios for regional analysis. 

4.3 Assessment and comparison of urban Tier 2 low-carbon travel potential 

Under the Tier 2 travel potential assessment system, considering the actual travel mode choices of all valid 

survey samples, the corresponding Tier 2 low-carbon travel potential 𝑃𝑐2 values for Shanghai and Wuhan in 

13,005 scenarios were calculated. The statistical data are listed in Table 5: 
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Table 5 – Urban Tier 2 low-carbon travel potential values in various scenarios 

Scenario number MCI MDI MTI Shanghai 𝑷𝒄𝟐 Wuhan 𝑷𝒄𝟐 

1 0 1.0 0 19.38% 18.43% 

2 0 1.1 0 19.38% 18.43% 

3 0 1.2 0 19.38% 18.43% 

…
      

2000 0.7 2.0 4 19.29% 18.21% 

…
      

4000 1.5 3.1 3 14.08% 13.25% 

…
      

6000 2.3 4.2 2 8.20% 7.06% 

…
      

8000 3.1 5.3 1 11.67% 9.19% 

…
      

10000 3.9 1.3 1 19.33% 18.07% 

…
      

13003 5.0 5.8 4 1.16% 1.09% 

13004 5.0 5.9 4 1,16% 1.05% 

13005 5.0 6.0 4 1.16% 0.96% 

 

To determine the relationship between urban Tier 2 low-carbon travel potential and MCI, MDI and MTI, 

each was used as an independent variable, with the Tier 2 low-carbon potential value 𝑃𝑐2 as the dependent 

variable and function curves were plotted. To analyse the impact of one factor while disregarding the negative 

effects of the other two factors, the Tier 2 low-carbon potential values 𝑃𝑐2 corresponding to the maximum 

values of the other two factors were selected to plot the relationship curves. Like the Tier 1 low-carbon travel 

potential analysis, the corresponding curves for Shanghai and Wuhan were plotted on the same coordinate 

system, resulting in the relationship curves between urban Tier 2 low-carbon travel potential and MCI value 

(Figure 12.a), MDI value (Figure 12.b) and MTI value (Figure 12.c). 

Furthermore, using the logistic four-parameter fitting algorithm (Equation 13), the functional relationships 

between Tier 2 urban low-carbon travel potential and MCI, MDI and MTI are fitted. The fitted curves are 

shown in Figure 13 and the fitting results are detailed in Table 6. Similar to the Tier 1 low-carbon travel potential 

analysis, the curves were divided into a significant rapid release zone and a flat section, with points A, B and 

C identified as key points. Points A and C represent the start and end points of the rapid release zone, while 

point B represents the point of fastest change. The determination of the rapid release zone and the point of 

fastest change helps urban managers and builders to identify efficient areas for construction and improvement 

in the urban public transportation field. 

Table 6.a – fitting results of the relationship curve between urban Tier 2 low-carbon travel potential and MCI 

MCI A1 s.e. A2 s.e. x0 s.e. p s.e. R2(COD) 
Adjusted 

R2 

Shanghai 0.19123 0.00104 -0.0029 0.00101 1605.8919 0.01136 3.52449 0.08769 0.99849 0.9984 

Wuhan 0.18314 0.00070 -0.0013 0.00066 1618.21987 0.0079 3.61806 0.06203 0.99942 0.99939 

Table 6.b – Fitting results of the relationship curve between urban Tier 2 low-carbon travel potential and MDI 

MDI A1 s.e. A2 s.e. x0 s.e. p s.e. R2(COD) 
Adjusted 

R2 

Shanghai 0.19689 0.00080 0.00698 0.00063 1.22252 0.00797 10.7326 0.06271 0.99727 0.9971 

Wuhan 0.18725 0.00107 0.00821 0.00096 1.23344 0.01279 9.96983 0.11894 0.99791 0.99778 
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Table 6.c – Fitting results of the relationship curve between urban Tier 2 low-carbon travel potential and MTI 

MTI A1 s.e. A2 s.e. x0 s.e. p s.e. R2(COD) 
Adjusted 

R2 

Shanghai 0.19375 0.0054 -0.0185 0.01644 1.23307 0.13646 1.90417 0.40671 0.99878 0.9951 

Wuhan 0.18433 0.00229 -0.0025 0.00385 0.9134 0.02452 2.44001 0.29178 0.99978 0.99913 

 
Figure 13.a – Fitting curve of urban Tier 2 low-carbon travel potential and MCI value 

For Shanghai, the starting point A of the rapid release zone corresponds to an MCI of 0.77 km, with a Tier 

2 low-carbon travel potential of 17.8%, the point of fastest change B corresponds to an MCI of 1.38 km, with 

a Tier 2 low-carbon travel potential of 12.4% and the ending point C corresponds to an MCI of 2.20 km, with 

a Tier 2 low-carbon travel potential of 5.0%. Therefore, it can be seen that as the acceptable public 

transportation transfer distance for Shanghai residents increases from 0.79 km to 2.21 km, 12.8% of 

respondents may switch to public transportation. For Wuhan, the starting point A of the rapid release zone 

corresponds to an MCI of 0.79 km, with a Tier 2 low-carbon travel potential of 17.0%, the point of fastest 

change B corresponds to an MCI of 1.37 km, with a Tier 2 low-carbon travel potential of 11.8% and the ending 

point C corresponds to an MCI of 2.19 km, with a Tier 2 low-carbon travel potential of 4.8%. Therefore, it can 

be seen that as the acceptable public transportation transfer distance for Wuhan residents increases from 0.79 

km to 2.19 km, 12.2% of respondents may switch to public transportation. 

The connection key points of the two cities are almost the same, indicating that the impact of the urban 

public transportation connection distance on the residents’ travel mode choices is similar across different cities, 

with no significant inter-city differences. If the public transportation connection distance is greater than 1.4 

km, most citizens cannot accept public transportation travel. If the connection distance can be kept within 1 

km, the practical difficulties of residents using public transportation in terms of connection distance are 

eliminated. Both cities should focus on optimising the public transportation connection distance within the 

range of 1 km to 1.4 km. 

For Shanghai, the starting point A of the rapid release zone corresponds to an MDI of 1.55, with a Tier 2 

low-carbon travel potential of 18.2%, the point of fastest change B corresponds to an MDI of 2.38, with a Tier 

2 low-carbon travel potential of 12.1% and the ending point C corresponds to an MDI of 3.48, with a Tier 2 

low-carbon travel potential of 4.9%. Therefore, as the acceptable public transportation delay proportion for 

Shanghai residents increases from 1.55 to 3.48, 13.3% of the urban Tier 2 low-carbon travel potential can be 

released. The potential changes fastest when the residents’ delay proportion is 2.38. For Wuhan, the starting 

point A of the rapid release zone corresponds to an MDI of 1.77, with a Tier 2 low-carbon travel potential of 

16.9%, the point of maximum change B corresponds to an MDI of 2.58, with a Tier 2 low-carbon travel 

potential of 11.5%, and the ending point C corresponds to an MDI of 3.61, with a Tier 2 low-carbon travel 
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potential of 4.8%. Therefore, as the acceptable public transportation delay proportion for Wuhan residents 

increases from 1.77 to 3.61, 12.1% of the urban Tier 2 low-carbon travel potential can be released. The 

potential changes fastest when the residents’ delay proportion is 2.58. 

 
Figure 13.b – Fitting curve of urban Tier 2 low-carbon travel potential and MDI value 

Based on the above analysis, Shanghai outperforms Wuhan in terms of public transportation delay. The key 

points and rapid release zones in Shanghai are all shifted further left, indicating higher efficiency in public 

transportation transfer. Interestingly, while Shanghai’s public transportation transfer efficiency is already 

superior to that of Wuhan, it is also more sensitive to optimising travel delays. This sensitivity enables 

Shanghai to achieve greater rapid release of potential for optimising low-carbon travel. 

 
Figure 13.c – Fitting curve of urban Tier 2 low-carbon travel potential and MTI value 

For Shanghai, the starting point A of the rapid release zone corresponds to an MTI of 0.20, with a Tier 2 

low-carbon travel potential of 18.8%, the point of fastest change B corresponds to an MTI of 0.70, with a Tier 

2 low-carbon travel potential of 14.4% and the ending point C corresponds to an MTI of 1.73, with a Tier 2 

low-carbon travel potential of 6.1%. Therefore, as the acceptable number of public transportation transfers for 

Shanghai residents increases from 0.20 to 1.73, 12.7% of the urban Tier 2 low-carbon travel potential can be 

released. The potential changes fastest when the number of transfers is 0.70. For Wuhan, the starting point A 

of the rapid release zone corresponds to an MTI of 0.26, with a Tier 2 low-carbon travel potential of 17.6%, 

the point of fastest change B corresponds to an MTI of 0.64, with a Tier 2 low-carbon travel potential of 13.1%, 
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and the ending point C corresponds to an MTI of 1.31, with a Tier 2 low-carbon travel potential of 5.8%. 

Therefore, as the acceptable number of public transportation transfers for Wuhan residents increases from 0.26 

to 1.31, 11.8% of the urban Tier 2 low-carbon travel potential can be released. The potential changes fastest 

when the number of transfers is 0.64. However, since the number of transfers must be an integer, the subsequent 

analysis considers that the rapid release area of Tier 2 low-carbon travel potential for both Shanghai and Wuhan 

falls within the range of MTI=0 to MTI=2, with the point of fastest change occurring at MTI=1. 

Based on the analysis above, Shanghai residents are more willing to accept a higher number of transfers 

compared to Wuhan residents and are more accustomed to reaching their destinations through transfers. The 

impact of transfer times on potential changes varies between the two cities, with Shanghai’s rapid release zone 

being broader and the potential value change being greater. Wuhan’s rapid release zone is narrower, indicating 

a faster change. However, as mentioned earlier, the difference of less than one transfer between the two cities 

is concealed in actual operations. Both Shanghai and Wuhan should aim to control the number of transfers to 

0 or 1 to increase the proportion of public transportation travel among city residents. From an economic 

perspective, reducing the number of transfers is valuable when it is within two times, but it is challenging to 

change people’s travel mode choices when the number of transfers exceeds two. 

Table 7 – Key scenarios for assessing urban Tier 2 low-carbon travel potential 

Scenarios A B C 

Shanghai C0.8D1.6T0 C1.4D2.4T1 C2.3D3.5T2 

Wuhan C0.8D1.8T0 C1.4D2.6T1 C2.2D3.7T2 

 

Summarising the information provided in this section, for Shanghai, the key points A, B and C correspond 

to MCI of 0.79 km, MDI of 1.55 and MTI of 0, MCI of 1.38 km, MDI of 2.38 and MTI of 1, and MCI of 2.21 

km, MDI of 3.48 and MTI of 2, respectively. The corresponding scenarios A, B and C are C0.8D1.6T0, 

C1.4D2.4T1 and C2.3D3.5T2, which are selected as key scenarios for regional analysis. Points A and C and 

their corresponding scenarios A and C represent the start and end of the rapid release zone in the assessment 

of Shanghai’s Tier 2 low-carbon travel potential. 

For Wuhan, the key points A, B and C correspond to MCI of 0.79 km, MDI of 1.77 and MTI of 0, MCI of 

1.37 km, MDI of 2.58 and MTI of 1, and MCI of 2,19 km, MDI of 3.61 and MTI of 2, respectively. The 

corresponding scenarios A, B and C are C0.8D1.8T0, C1.4D2.6T1 and C2.2D3.7T2, which are selected as key 

scenarios for regional analysis. Points A and C and their corresponding scenarios A and C represent the start 

and end of the rapid release zone in the assessment of Wuhan’s Tier 2 low-carbon travel potential, as shown 

in Table 7. 

4.4 Regional Assessment and comparison of urban low-carbon travel potential 

The content discussed in Section 4.3 of this paper focuses on the overall differences between Shanghai and 

Wuhan, and does not provide an in-depth analysis of the differences within various regions of a single city or 

the levels of construction differences. Overall urban analysis is not conducive to identifying the weaker parts 

of urban slow-travel systems and public transportation systems. Therefore, further regional analysis within the 

city can help urban managers and urban planners to carry out urban planning and construction work. Through 

the assessment and construction of the two-tier low-carbon travel potential system for the entire city as 

described in the previous sections, three key scenarios A, B and C were selected for the assessment of the two-

tier low-carbon travel potential in each city. In this section, further analysis will be carried out based on the 

key scenarios mentioned in the previous text. 

As described earlier, the division of TAZs mainly considers the following factors: First, it is necessary to 

ensure that each TAZ has enough effective samples, so the city cannot be divided into too many TAZs. Second, 

the urban population distribution is not uniform and the sample statistics roughly conform to the population 

density distribution. If TAZs are divided according to the grid method, it would lead to significant differences 

in the population distribution of the analysis areas, inevitably resulting in some analysis areas with too few 

samples. Finally, during the urban construction process in China, district-level administrative units are 

important decision-makers. Overly detailed division of TAZs would make it difficult for the corresponding 

administrative agencies to play a decisive role in urban construction within their areas. Therefore, considering 

the above factors, urban district-level administrative regions were selected as the TAZs for this study. 
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Regional assessment and comparison of Shanghai’s low-carbon travel potential 

Shanghai has a total of 16 administrative districts, as detailed in Figure 14. The central urban areas include 

the Huangpu District, Xuhui District, Changning District, Jing'an District, Putuo District, Hongkou District, 

Yangpu District and the inner part of Pudong New Area. The outer urban areas include the Minhang District, 

Baoshan District, the outer part of Pudong New Area, Jinshan District, Songjiang District, Qingpu District, 

Fengxian District and Chongming District. Among them, Pudong New Area has a vast area, which includes a 

larger part of the city centre. The Chongming District, mainly consisting of the Chongming Island, has 

relatively limited connections with other parts of Shanghai. 

 
Figure 14 – Shanghai district map 

Figure 15 illustrates the distribution and proportion of the four types of resident travel modes within each 

TAZ in Shanghai’s Tier 1 low-carbon travel potential assessment system for the three key scenarios 

corresponding to N1, N5 and N15. 

 
(a) 

 
(b) 

 
(c) 

Figure 15 – Shanghai Tier 1 low-carbon travel potential assessment key scenario corresponding district map: 

a) Key scenario A: N1; b) Key scenario B: N5; c) Key scenario C: N15 

Regarding the urban Tier 1 low-carbon travel potential assessment system, the differences between key 

scenarios A-C can divide the urban areas into three categories. 

First, the central urban area, including districts 1–7 and the parts of district 11 close to the city centre, has 

a common characteristic of high convertible motorised travel proportion at the starting point of the rapid release 

zone, Scenario A. However, as MNI increases, the Tier 1 low-carbon travel potential is rapidly released and 

the convertible motorised travel proportion decreases rapidly, indicating that the travel distances of most 

residents are relatively short, with most daily travel distances within 15 km. 
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Second, in the western and northern parts of the city, including districts 9, 10 and 14, the convertible 

motorised travel proportion does not decrease to a sufficiently low level from Scenario A to Scenario C and 

the Tier 1 low-carbon travel potential value is not fully released, indicating that a considerable proportion of 

residents in these areas have travel distances greater than 15 km, especially in the Qingpu District, where nearly 

half of the residents have daily travel distances greater than 15 km. Especially in district 14 are daily travel 

distances exceeding 15 km. The residents in the far urban areas work in the city centre, and the large distance 

between the workplace and residence is a significant factor. 

Finally, in the southern parts of the city, including districts 8, 12, 13 and 15, the convertible motorised 

travel proportion is relatively low in Scenario A, indicating that a considerable proportion of the residents 

travel by non-motorised modes. During the transition from Scenario A to Scenario C, nearly 30% of the Tier 

1 low-carbon travel potential remains unreleased, indicating that some residents have short travel distances, 

but there is also a significant proportion with longer travel distances, possibly due to the presence of 

independent urban sub-centres in the area, where some residents only need to reach the sub-centre for daily 

life. 

District 16, due to its special geographical location, weak connections with other parts of the city, coupled 

with its agricultural production focus, sees most residents travelling shorter distances. As the MNI increases, 

its Tier 1 low-carbon travel potential is quickly unleashed. 

Figure 16 illustrates the distribution and proportion of the four types of resident travel modes within each 

TAZ in Shanghai’s Tier 2 low-carbon travel potential assessment system for the three key scenarios 

corresponding to C0.8D1.6T0, C1.4D2.4T1 and C2.3D3.5T2. 

 
(a) 

 
(b) 

 
(c) 

Figure 16 – Shanghai Tier 2 low-carbon travel potential assessment key scenario corresponding district map: 

a) Key scenario A: C0.8D1.6T0; b) Key scenario B: C1.4D2.4T1; c) Assessment key scenario C: C2.3D3.5T2 

For the Tier 2 low-carbon travel potential assessment system, the differences between key scenarios A–C 

can also categorise the regions of Shanghai into three levels. 

Firstly, the areas with a well-developed public transportation system are mainly the central urban areas, 

including districts 1–7 and district 9. Among them, districts 3 and 5 show the fastest release of Tier 2 low-

carbon travel potential, while district 1 is relatively the worst. 

Secondly, the areas with a developed public transportation system are mainly the peripheral urban areas, 

including districts 8, 11 and 13–15. The Tier 2 low-carbon travel potential in these areas is within 25% in 

Scenario A and as the scenario changes from A to C, the potential is released to some extent, placing them at 

a mid-level in the city’s overall context. 

Lastly, the areas with a weak public transportation system are mainly district 10 in the north and district 12 

in the south. They have the highest Tier 2 low-carbon travel potential in Scenario A and only a small part of 

the potential is released during the transition from Scenario A to C, indicating that their public transportation 

systems are lagging the city’s average level in terms of connection, delay and transfer. 

Regional assessment and comparison of Wuhan’s low-carbon travel potential 

Wuhan has a total of 13 administrative districts, as detailed in Figure 17. The central urban areas include the 

Jiang'an District, Jianghan District, Qiaokou District, Hanyang District, Wuchang District, Qingshan District 

and Hongshan District. The outer urban areas include the Dongxihu District, Hanshan District, Caidian 

District, Jiangxia District, Huangpi District and Xinzhou District. 
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Figure 18 illustrates the distribution and proportion of the four types of resident travel modes within each 

TAZ in Wuhan’s Tier 1 low-carbon travel potential assessment system for the three key scenarios 

corresponding to N1, N5 and N13. 

For the Tier 1 low-carbon travel potential assessment system, the differences between key scenarios A-–C 

can roughly divide Wuhan into three regions. 

Firstly, the urban core area led by district 2, mainly including the central urban areas of districts 1–3 and 5, 

has a core feature that its Tier 1 low-carbon travel potential is rapidly released as MNI increases, especially 

during the process from MNI=1km to MNI=5km and at MNI=13km, the convertible motorised travel 

proportion has dropped to a low level. This indicates that the most residents’ travel distances are within the 

13 km range and even a considerable part is within the 5 km range. Improving the non-motorised travel 

environment in this area and constructing dedicated non-motorised travel roads can help residents choose more 

low-carbon walking or cycling modes. 

 
Figure 17 – Wuhan district map 

Secondly, the urban peripheral area led by districts 4 and 7, including the central urban areas of districts 4, 

6 and 7, as well as the outer urban areas of districts 8, 10 and 11, has a significant feature that the Tier 1 low-

carbon travel potential is released less during the process from Scenario A to Scenario B, and the release of 

Tier 1 low-carbon travel potential is relatively considerable during the process from Scenario B to Scenario C. 

This indicates that the most residents’ travel distances are beyond the 5 km range and from the perspective of 

travel mode itself, walking distances of more than 5 km are already difficult to be used as a daily commuting 

mode. To increase the proportion of non-motorised travel in this area, more consideration should be given to 

bicycle modes and more bicycle lanes should be planned and constructed. 

 
(a) 

 
(b) 

 
(c) 

Figure 18 – Wuhan Tier 1 low-carbon travel potential assessment key scenario corresponding district map: 

a) Key scenario A: N1; b) Key scenario B: N5; c) Key scenario C: N13 
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Finally, the urban satellite cities composed of districts 9, 11 and 12 have a characteristic that some Tier 1 

low-carbon travel potential has been released during the process from Scenario A to Scenario B, but there is 

little change during the process from Scenario B to Scenario C. This indicates that there is a severe polarisation 

in the travel distances of residents in this area, with some residents commuting within the area without the 

need to reach the central urban area, and their daily travel distances are within 5 km, which is conducive to the 

conversion from motorised to non-motorised travel modes. However, another part of the residents has travel 

distances of more than 13 km and there are practical obstacles to converting their travel modes to non-

motorised travel, so public transportation construction should be sought to solve this problem. 

Figure 19 illustrates the distribution and proportion of the four types of resident travel modes within each 

TAZ in Wuhan’s Tier 2 low-carbon travel potential assessment system for the three key scenarios 

corresponding to C0.8D1.8T0, C1.4D2.6T1 and C2.2D3.7T2. 

 
(a) 

 
(b) 

 
(c) 

Figure 19 – Wuhan Tier 2 low-carbon travel potential assessment key scenario corresponding district map: 

a) Key scenario A: C0.8D1.8T0; b) Key scenario B: C1.4D2.6T1; c) Key scenario C: C2.2D3.7T2 

For the Tier 2 low-carbon travel potential assessment system, the differences between key scenarios A–C 

can also categorise Wuhan’s regions into three levels. 

Firstly, the areas with well-developed public transportation systems primarily include the urban centre 

districts 1–7, along with the outer district 8. Among them, districts 2 and 6 have the fastest release of Tier 2 

low-carbon travel potential during the transition from Scenario A to Scenario C, indicating that these are the 

areas with the most complete public transportation system construction in Wuhan. District 2, as the core area 

of Wuhan, has a high density of rail transit stations and many lines. Although district 6 does not have the same 

level of rail network density as district 2, its linear layout allows residents to travel conveniently by public 

transportation, especially by rail transit, due to the two subway lines extending along the long axis of the 

district. 

Secondly, the areas with a developed public transportation system mainly include some peripheral urban 

areas, including districts 10 and 11. In Scenario A, the proportion of convertible car travel in these areas is at 

a mid-level in the city and during the transition from Scenario A to Scenario C, the Tier 2 low-carbon travel 

potential has been released to some extent. Both areas are outer urban areas with weak infrastructure, but both 

have rail transit lines extending to the core of the district, providing a rail transit solution for the residents’ 

travel. With the increase in MCI, MDI and MTI, the low-carbon travel potential in these areas can also be 

released. However, the road network in these areas still needs to be further densified to build a connection 

system within the district, facilitating residents' travel to the city centre. 

Lastly, the areas with a weak public transportation system mainly include district 9 in the southwest and 

districts 12 and 13 in the northeast. During the transition from Scenario A to Scenario C, the Tier 2 low-carbon 

travel potential in these areas is difficult to release, indicating that the public transportation system construction 

in these areas is too weak. Among them, district 9 still has rail transit lines reaching the central area, while 

districts 12 and 13, due to their long distance from the city centre, have not yet had rail transit lines reaching 

the core of the district. The lack of convenient public transportation solutions for cross-regional travel is the 

key factor limiting the release of their Tier 2 low-carbon travel potential. 
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5. CONCLUSIONS 

The urban low-carbon travel potential stratified assessment method proposed in this study focuses on 

identifying the potential for residents of non-low-carbon travel to shift to low-carbon travel and it defines the 

proportion of the convertible non-low-carbon travel population as the urban low-carbon travel potential. To 

adapt to the actual conditions of many underdeveloped regions, we collect basic data through questionnaire 

surveys and conduct subsequent quantitative analyses. Based on the carbon emission levels of travel modes, a 

two-tier assessment system is constructed, which reveals the trends of urban low-carbon travel potential as the 

maximum acceptable travel distances for non-motorised travel, and the maximum acceptable connection, delay 

and transfer strengths for public transportation travel change. The curves obtained show an inverse “S” shape. 

The middle part of the curve is defined as the “rapid release zone,” with the starting and fastest change points 

defined as key points A, B and C and their corresponding scenarios defined as key scenarios A, B and C. The 

“rapid release zone” of the curve is the most critical, where the urban low-carbon travel potential value 

decreases rapidly with the increase in the residents’ thresholds for non-motorised travel intensity and public 

transportation connection, delay and transfer intensity. The determination of the non-motorised travel threshold 

interval and the public transportation connection, delay and transfer threshold interval corresponding to the 

rapid release zone is the core contribution of this study. This allows for the judgment of the extent of measures 

that can quickly release the urban low-carbon travel potential and increase the proportion of low-carbon travel. 

Measures to improve non-motorised travel and public transportation conditions mainly include two directions: 

one is to increase the residents’ acceptance thresholds for non-motorised travel intensity and public 

transportation connection, delay and transfer intensity, and the other is to reduce the actual non-motorised 

travel intensity and public transportation intensity in the residents’ travel. The former includes improving the 

urban slow-travel environment, optimising the public transportation experience and enhancing the convenience 

of public transportation transfers, while the latter includes adding public transportation lines, improving public 

transportation operation plans and constructing new public transportation facilities. The implementation of 

these measures is based on a significant cost investment and insufficient investment cannot achieve the 

expected benefits, while excessive investment may not necessarily yield proportional returns. The assessment 

method proposed in this study can clearly define where the cost investment for improving low-carbon travel 

conditions should start and stop, helping urban managers to formulate precise transportation policies and 

achieve an increase in the proportion of low-carbon travel at the lowest marginal cost. 

This study applied this method to assess the Tier 1 and Tier 2 low-carbon travel potentials of Shanghai and 

Wuhan, finding that the rapid release zones of low-carbon travel potential in Shanghai and Wuhan are quite 

similar, with the same change patterns, but the potential values and details of the changes are different, which 

are related to the city’s scale and public transportation system, especially the rail transit system. Through 

regional analysis under key scenarios, significant differences in low-carbon travel potential are found in 

different urban areas, with both cities showing a huge difference between the core and outer areas, which is 

related to the imbalance in the construction of urban slow-travel systems and public transportation systems. 

However, the key challenges of urban development are concentrated in the middle zones of cities, which face 

longer commuting distances than the outer suburbs or satellite cities, as well as poorer travel conditions and 

less coverage by public transportation compared to the city centre areas. 

Due to differences in their developmental stages and urban layouts, different cities face distinct 

development issues. Public transportation networks, especially rail transit networks, play a crucial role in inter-

district travel. The density of the city centre affects the demand for public transportation among urban 

residents. Cities with more dispersed central areas or decentralised city centres place higher demands on public 

transportation systems. Dense urban construction in central areas presents fewer challenges but requires the 

development of more suburban routes to connect with the outer regions of the city. Each city has its own 

vulnerabilities and requires tailored development strategies and policy directions, as well as public education 

initiatives. 

6. LIMITATIONS AND OUTLOOK 

The urban low-carbon travel stratified assessment method proposed in this study uses the carbon emission 

levels of travel modes as the basis for grading, assessing the Tier 1 low-carbon travel potential corresponding 

to non-motorised travel and the Tier 2 low-carbon travel potential corresponding to public transportation travel. 

The main considerations are the impact of travel distance on the residents’ willingness to travel non-motorised 

and the impact of connection, delay and transfer on the residents’ willingness to travel by public transportation. 
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However, factors affecting the residents’ willingness to travel non-motorised and public transportation are 

comprehensive and complex. Social development, industrial layout, economic level, population structure and 

other factors may also affect the residents’ willingness to travel non-motorised and public transportation. 

However, these factors involve more than just urban transportation and the problems they cause cannot be 

solved solely by improving urban slow-travel conditions and public transportation travel conditions. Therefore, 

these factors are not considered in this study. Factors such as urban climate conditions, slow-travel comfort, 

urban air quality and public transportation efficiency will also affect the residents’ willingness to choose non-

motorised and public transportation travel. Therefore, constructing an urban low-carbon travel potential 

assessment system that considers more comprehensive factors is the direction of our research. Further 

expanding the assessment to more cities, enriching the assessment data, finding development patterns for 

different types and levels of cities and identifying universal indicators for the construction of urban slow-travel 

systems and public transportation systems are the expected outcomes. For regional assessment within the city, 

due to the limitation of sample size, it is not possible to refine the analysis to smaller administrative units. 

Considering that public transportation lines often cross regions, overly detailed TAZs do not have significant 

advantages. However, if the data volume is further increased, it is possible to identify the weak areas of urban 

development more accurately. In addition, based on the research, we plan to develop automation and 

visualisation using ArcGIS and Python to help promote the method to other cities, providing decision-making 

support for increasing the proportion of low-carbon travel and reducing urban transportation carbon emissions 

in various locations. 
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丁科元，张妍，郭海旭，周旭，彭然 

城市低碳出行潜力的分级评估 

摘要： 

非机动出行和公共交通出行被认为是低碳的出行方式，而驾车出行则是非低碳的出

行方式。本文据此提出一种城市低碳出行潜力的分级评估方法，将可能转变为非机

动出行的机动出行人群在全部出行人群中的数量占比定义为城市交通一级低碳出行

潜力，将可能转变为公共交通出行的驾车出行人群在全部出行人群中的数量占比定

义为城市交通二级低碳出行潜力，以此整体性呈现城市在控制交通碳排放方面的可

进步空间。该方法考虑距离是非机动出行较之于机动出行的主要不利因素而影响居

民非机动出行意愿，接驳、延迟、换乘是公共交通出行较之于驾车出行的主要不利

因素而影响居民公共交通出行意愿，从而通过对居民实际出行距离以及公共交通出

行模式下实际接驳、延迟、换乘强度值与假定居民最大可接受出行距离以及最大可

接受接驳、延迟、换乘强度值的比较，识别假定场景中可能转变为相应等级低碳出

行的人群数量并据此计算相应的低碳出行潜力值，然后进一步分析其值随居民对于

非机动出行可接受距离以及公共交通出行可接受接驳、延迟、换乘强度阈值变化的
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趋势并拟合其关系曲线，发现拟合曲线呈现反向“S”型态，由此识别了曲线的“快速

释放区”及“关键点”。本文以中国上海市及武汉市为例，基于 19,732 份居民日常出行

OD 调查样本对两个城市的低碳出行潜力进行了分级评估，同时也对两个城市的低碳

出行潜力进行了分区可视化呈现，由此分析了两个城市的低碳出行潜力特征并比较

了两个城市的低碳出行潜力差异。 

关键词： 

城市低碳出行潜力；非机动出行；公共交通出行；接驳；延迟；换乘 


