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ABSTRACT 

This study introduces a novel, adaptable framework for identifying and prioritising road 

traffic accident hotspots using the Getis Ord Gi* spatial autocorrelation tool. The framework 

classifies regions as hotspots or coldspots based on accident severity and frequency. A unique 

weighting system is developed to compute the Crash Severity Index (CSI), considering the 

severity of crashes in terms of fatalities and injuries. The identified hotspots are prioritised 

using the CSI, providing policymakers with a structured approach to allocate resources for 

crash remedial measures. The main contribution of this work is the development of a flexible 

framework applicable to various cities, states or countries to improve road safety. The 

framework’s effectiveness is demonstrated through a case study in Punjab, India, revealing 

that Sangrur, Hoshiarpur and Police Commissionerate Ludhiana are the top three hotspots. 

The study also offers a detailed analysis of crash statistics in Punjab, emphasising the severity 

of pedestrian crashes. This approach addresses the current lack of structured hotspot 

identification and prioritization strategies, marking a significant advancement in road safety 

management. 
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1. INTRODUCTION 

Road accidents are a regrettable fact of life. The severity of the crash determines the level of alarm caused 

by the number of fatalities and damage. Road accidents cause significant property damage and loss of life. 

Over 1.3 million lives are lost annually due to road accidents, according to global statistics. 20 to 50 million 

people experience non-fatal injuries, often resulting in impairments [1]. Road traffic safety analysis aims to 

prevent fatalities by understanding the causes of accidents and implementing safety measures. Identifying 

dangerous road regions through accident spatial pattern analysis, collision location comparison and relevant 

data is the pivotal step in formulating an effective road safety strategy. Spatial analysis is the study of collision 

occurrence patterns through the examination of their proximate zones or places. Traffic accidents exhibit the 

key characteristics of geographical variability and spatial dependency of point data. Spatial dependence 

characterises the influence of neighbouring events on events at a specific location, while geographical 

variability pertains to the spatial connections between random parameters and recorded occurrences in the 

model, which are not explicitly defined [2]. The development of GIS is a crucial tool for road safety studies 

[3]. There are very few signs that collision prevention initiatives are being adopted in low- and middle-income 
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nations, as are other road safety measures [4]. Despite only comprising 60% of the global vehicle population, 

middle- and low-income countries bear responsibility for a staggering 93% of road crash fatalities [5]. 

Pedestrians in developing nations experience a disproportionately high number of injuries and fatalities. 

Vulnerable road users, including pedestrians, cyclists and motorcyclists, account for over 50% of global road 

traffic fatalities [1]. In 2022, India reported a total of 461,312 road accidents, resulting in 168,491 fatalities 

and injuries to 443,366 persons. Pedestrian fatalities saw a significant increase of 10.5%, rising from 24,242 

in 2021 to 26,797, highlighting the critical need for pedestrian safety measures. Pedestrians accounted for 

19.5% of all road user deaths, underscoring their vulnerability compared to other types of road users [6]. The 

increasing proportion of pedestrians in road accident deaths highlights the urgent necessity for pedestrian 

safety. Further analysis of hotspot locations reveals that high-speed roadway categories such as National 

Highways, State Highways and surfaced roads are particularly high-risk areas for pedestrians. Locations with 

high vehicular densities significantly jeopardise pedestrian safety [7]. Moreover, the design standards for 

pedestrian crossing facilities in urban areas may not be appropriate for national highways, especially multi-

lane highways, thereby increasing their accident proneness [8]. High pedestrian volume and wider minor roads 

contribute to the risk at unsignalised intersections, resulting in pedestrian fatalities [9]. Factors like high 

approach speeds, the tendency of vehicles to overtake, high vehicular volumes, encroachment on footpaths and 

extensive pedestrian-vehicular interactions make intersections particularly hazardous for pedestrians. 

Additionally, issues such as jaywalking by pedestrians [10, 11], vehicles non yielding right-of-way [12], poor 

lane discipline, inaccessible pedestrian crosswalks, inadequate sight distances, wider minor carriageways, the 

absence of pedestrian signal heads and lack of enforcement exacerbate the risks at these junctions. These 

combined factors contribute to making intersections highly dangerous for pedestrian safety. Similarly, high 

approach speeds, low pedestrian volumes, wider road widths, on-street parking, insufficient lighting and 

inadequate pavement markings contribute to making midblock locations dangerous for pedestrians [13]. GIS-

based Hotspot Identification (HSID) methods can effectively identify such crash hotspot locations [14]. Thus, 

it is imperative to consider pedestrians as a distinct category in road safety analysis in India. Pedestrians face 

unique risks due to infrastructural inadequacies and high vehicular interactions. Prioritising pedestrian safety 

can lead to more targeted interventions and resource allocations, ultimately reducing the disproportionately 

high rates of pedestrian injuries and fatalities. 

The Ministry of Road Transport and Highways (MoRTH), India, recently incorporated measures to monitor 

and address severe road accidents. This report focuses on identifying and selecting “accident blackspots,” 

among other aspects [15]. Analysing the transformation of a crash location into a hotspot, particularly for 

pedestrian accidents, necessitates a specialised approach. Limited studies in India have incorporated temporal 

variation in GIS hotspot analysis, despite extensive research on identifying accident hotspots using two-

dimensional spatial analysis [16]. While accidents are sporadic occurrences in time and space, they exhibit 

spatial dependence and autocorrelation, which must be considered when evaluating them [17]. Utilising 

statistical information gathered at the scene of an accident is among the most popular techniques for analysing 

traffic accidents. Some studies use straightforward techniques like counting the number of incidents and 

categorising them according to the severity of the injuries [18]. The limitations of these techniques have 

become apparent with the advancement of modern spatial analysis tools. Some Limitations include the inability 

to analyse the correlation between place and time, challenges in identifying and prioritising accident-prone 

areas and difficulties in considering environmental factors [2]. Furthermore, the tables and charts derived from 

the accident datasets obtained from the traffic police are intricate and unsuitable for effectively communicating 

with planners and the general public. Utilising robust spatial-temporal analysis techniques is imperative for 

enhancing the examination of accident datasets [19]. GIS has been extensively utilised in numerous traffic 

safety studies. These studies provide a spatiotemporal evaluation of traffic accidents, but most of the results 

are presented as simple graphs that do not capture the dynamic evolution of accident clusters over time [20]. 

A deeper understanding of spatial and temporal characteristics of accidents is essential for identifying accident 

hotspots more comprehensively [2]. 
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2. LITERATURE REVIEW 

Road Traffic Crash (RTC) hotspot study aims to identify and highlight road segments needing rapid safety 

enhancements to attain significant crash diminution through efficient safety alleviation. RTC hotspot zones are 

determined through a comprehensive analysis that incorporates local knowledge, expert judgment, crash 

analysis and crash data. To identify hotspots, Cheng et al. [17] used the Systemic approach and thoroughly 

cross-validated five multivariate models of crash-type-based HSID (hotspot identification) approaches that 

take into account geographical and temporal random effects [21]. Rear-end, sideswipe, head-on, hit object, 

broad-side and other crashes were the types of crashes that were gathered for this study. Additionally, the 

relationships between nearby junctions across crash categories were shown by the spatial random effects. The 

shortcomings of this study were the small sample size (137 data points) and the variable performance of HSID 

methods based on the size of crash data. The proposed study uses a sizeable amount of crash data for hotspot 

analysis to overcome this drawback. By proposing a Time Index (TI) and a Cause Index (CI), respectively, 

along with the traditional EPDO approach, Barman and Bandyopadhyaya [18] intend to leverage weather and 

time information to identify a collection of hotspots using a multi-dimensional K-means clustering technique 

[22]. TI is defined to give different weights to Day and Night-time crashes. In contrast, fog crashes, which are 

a definite visibility problem, receive the least weightage under CI and crashes caused by faulty geometry 

receive the greatest weightage. The suggested method’s performance was compared to the CF (Crash 

Frequency) and EPDO (Equivalent Property Damage Only) techniques using road collision data from Patna, 

India. It was found that the suggested strategy produced the lowest possible false identifications. However, k-

means clustering has problems clustering the data when clusters fluctuate in density and size. To address this 

limitation, Getis Ord Gi* statistics were used in the current study to identify and prioritise traffic crash hotspots.  

Chen et al. [19] introduced a novel HSID approach based on the quantitative risk assessment (QRA) method 

[23] Accidents likely to occur at a specific location are considered a risk. The empirical Bayesian technique 

estimates the likelihood of an accident for all exposed vehicles. The potential costs of collisions can be 

represented as the total of the crash probabilities for all passing vehicles and the accompanying effects of 

crashes when used as a criterion to rank high-risk areas. However, this study lacks the application of spatial 

effects [24] and Full Bayesian methods [25], which leaves it open for further improvements. To overcome this 

shortcoming, the proposed methodology utilises the most recent GIS-based analytical tool for spatiotemporal 

analysis. Based on a Road Safety Risk Index (RSRI), F. Ouni and M. Belloumi [22] investigated the 

performance stability of two spatial autocorrelation measures [26]. The ratio of the share of crashes that occur 

in the detected hotspot to the proportion of the entire study region covered by it is defined as the 

RSRI. Identifying potential hotspots improves the ability to evaluate a particular route by identifying 

“hazardous probable lengths,” which seeks to predict future traffic accidents. The variety within the areas is 

addressed by spatial autocorrelation indices, which provide helpful information that can be used to develop 

safety regulations. The main limitation of this study was the under-reporting of crash data and the small sample 

size of data. Tola et al. [23] presented a GIS technique for classifying crash hotspots based on a spatial 

autocorrelation study using four-year crash data throughout Ethiopian regions [27]. The methods utilised in 

this investigation, which included the crash severity index, Getis Ord Gi* and Moran’s I spatial autocorrelation 

of collision incidents, successfully located and ranked crash hotspots. The respective crash costs differ from 

region to region and are used to calculate the severity index of crashes for each level of severity. However, the 

main drawback of this study was that the severity index created by the Roads and Traffic Authority of NSW 

(New South Wales) [28] was employed instead of an agreed-upon or specified collision costing equation for 

certain crash severity levels in Ethiopia.  

The inverse network distance-band spatial weights matrix of intersections (INDSWMI) and the k-nearest 

distance-band spatial weights matrix between crashes and intersections (KDSWMCI) have been developed by 

Zhang et al. [25] as a new method for immediately detecting crash hotspot intersections (CHIs) [29]. Getis-

Ord Gi* statistic, INDSWMI and KDSWMCI were used in intersection hotspot analysis (IHA) to detect CHIs 

and evaluate the Intersection Prediction Accuracy Index (IPAI). IPAI is an indicator to measure the prediction 

accuracy of the IHA. The methodology created by Lee and Khattak [26] allows for quantitative analysis of 

major geographical clustering patterns defined by crash severity [30].  
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The current and most frequently used crash hotspot analysis methods can be broadly categorised: 

1) Geo-statistical analysis  

⎯ Spatial autocorrelation (Placement of each crash feature value spatially) [31] 

⎯ Density Estimation (Examining the crash units spatially) [32] 

2) Non-spatial analysis  

⎯ Full Bayesian [33] 

⎯ Empirical Bayes [34] 

⎯ Regression models [35] 

Geo-statistical analysis of crash hotspots is preferred over non-spatial analysis due to its simplified 

mathematical calculations and reduced data requirements [30]. Furthermore, geo-statistical analysis enables 

the integration of crash data with geographic factors and the generation of visually comprehensible results. 

The different methods for geo-statistical analysis are given in Figure 1. 

 
Figure 1 – Different methods for geo-statistical analysis and its significance 

The most effective and widely used methods for identifying the precise cluster position (hotspot) within a 

network or sector are Kernel Density Equation (KDE), Getis Ord Gi* and Global Moran’s I. In a geographic 

hotspot analysis, the number of events across a unit area at a given position (i.e. first-order attributes) is 

examined using the KDE. KDE is better suited for visual representation than hotspot detection [36] Compared 

to the KDE, the level of statistical significance of clustered accidents is assessed by means of Z-Score for both 

Geary’s C and Moran’s I [37]. The global statistics technique, which serves as a gauge for the whole research 

network, is followed by Moran’s I and Geary’s C. Spatial analysis utilising local indices are preferred for RTC 

hotspot detection. Local Moran’s I is a prominent local spatial analysis method frequently used in hotspot 

detection of motorised vehicle accidents [38]. The Moran indices family, however, does not distinguish 

between cold and hotspots. As a result, Getis Ord Gi* is more suited since it differentiates between clusters of 

local events with low and high values of feature attributes. When analysing spatial correlation and variance, 

the local statistics method (such as local Moran’s I [39] and Getis-Ord Gi* statistics [40]) is preferable to the 

global statistics system. In particular, the Getis-Ord Gi* statistic is beneficial for detecting statistically 

significant values of crash hotspots or cold spots [41]. 

3. METHODOLOGY 

This study aims to identify and prioritise accident hotspots in the Indian state of Punjab by examining the 

severity and spatial pattern of accident occurrences by using the most current GIS-based analytical methods of 

the Getis Ord Gi* statistics. This section outlines the comprehensive methodology employed for the hotspot 

analysis (Figure 2).  
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Figure 2 – Proposed methodology to identify Crash hotspots and coldspots 

3.1 Black spot identification  

A comprehensive and systematic approach to road safety management is necessary to mitigate accidents. 

The initial stage of road safety management involves identifying accident hotspots or blackspots. Accident 

blackspots encompass various terms such as “high-risk areas,” “dangerous road stretches,” “places needing 

improvement” and “accident-prone situations.” In India, a blackspot is defined as a 500-meter stretch that has 

had five road collisions (involving severe injuries and fatalities) or ten deaths in the previous three 

calendar years [15]. The crash data consists of latitude and longitude coordinates for each individual crash 

location. Combining adjacent crash locations within a 500m stretch is essential for identifying blackspots. The 

integration of data points is crucial for co-locating crash locations. Integration refers to assessing the 

coordinates of feature vertices in features belonging to single or multiple feature data types. Those close 

enough to be presumed to represent the same position are given a shared coordinate value. An essential step 

for data point integration is defining an “x,y tolerance.” The shortest distance between the data points before 

they are deemed equal is referred to as the x,y tolerance. Alternatively, the “x,y tolerance” can also be defined 

as the distance that establishes the zone in which feature values can concur. Its goal is to incorporate line work 

and bounds into a correctly configured input feature type spatial reference. For an output geo-dataset, 

the default “x, y tolerance” is set to 1 mm or its equivalent in map units. If the default value is unsatisfactory, 

it can be altered. The desired value for “x,y tolerance” in blackspot identification is 500 m. This enables the 

integration of individual crash locations. Integration is limited to basic feature types such as point, multipoint, 

line or polygon. Crash locations, being “point” type geo datasets, are integrable. Blackspot identification 

involves identifying features within a specified x, y tolerance and allocating shared coordinate points for these 

features. 
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3.2 Quantification of the severity of individual blackspots 

Transport safety practitioners often rely on crash severity and crash count as predictors for assessing the 

probability of collisions on road sections [42]. The frequency of crashes determines the crash likelihood, while 

the severity determines the resulting damage. Safety improvement programs primarily prioritise preventing 

serious and fatal crashes due to their higher per-person costs compared to non-injury and minor injury crashes 

[43]. Federal road agencies and transport departments strive to decrease crash rates on their road networks. 

However, to accurately pinpoint high-risk locations (referred to as hotspots or blackspots), it is imperative to 

consider both crash count and crash severity. 

Crash Severity Index 

The Crash Severity Index (CSI) is a pivotal component of the proposed framework, designed to quantify 

the severity of each road traffic crash based on its associated costs and societal impact. The CSI assigns 

differential weightings to various types of crashes, thereby enhancing the precision and significance of 

identifying hotspots and coldspots within the studied region. 

In this study, we employ a 1:3:5 weighting methodology to differentiate between minor injury crashes (C3), 

serious injury crashes (C2) and fatal crashes (C1). This weighting scheme is grounded in the study by Geurts 

et al. (2004), which compared several weighting systems. The chosen system allocates weights of 1, 3 and 5 

to minor injuries, serious injuries and fatalities, respectively, reflecting the escalating social and economic 

costs associated with each level of severity. The 1:3:5 ratio was selected due to its demonstrated effectiveness 

in accurately representing the severity distribution and impact of road traffic crashes. Geurts et al. [40] found 

that this ratio resulted in the smallest percentage deviation in predicting hazardous accident sites compared to 

other tested ratios, such as 1:1:1 and 1:10:10, thereby affirming its robustness in hotspot analysis. 

The CSI for a specific crash is computed using the following formula (Equation 1):  

CSI = 5C1 + 3C2 + C3 (1) 

where C1 are the fatal crashes, C2 are the serious injury crashes and C3 are the minor injury crashes. 

While the 1:3:5 ratio serves as the basis for the current analysis, the CSI framework is inherently adaptable, 

allowing for the integration of alternative weighting systems as necessitated by regional differences or specific 

study goals. For instance, other regions or studies might adopt the World Road Association’s (PIARC) 

suggested ratio, which offers a different perspective by placing greater emphasis on the disparity between fatal 

accidents and less severe injuries. Such adaptability ensures that the CSI remains relevant and applicable across 

various geographic and operational contexts, enabling tailored approaches to road safety analysis and 

intervention planning and allowing for an evidence-based, region-specific response to road safety.  

3.3 Region-wise prioritization 

Accident rates and resulting damages decrease with accurate identification of high-risk areas. Further 

research is needed to develop a comprehensive and localised strategy for identifying accident hotspots, as there 

is a lack of local studies and investigations on this topic. The investigation and study of crash hotspots in India 

are currently insufficient due to the absence of a structured strategy for identifying and prioritising these 

hotspots, as well as a suitable database for recording and reviewing the nationwide hotspot characterization 

and the effectiveness of countermeasures. Simultaneously, there is no evaluation of both the scientific 

identification and ranking of these methods, as well as their effectiveness in reducing accidents, following the 

investment and acquisition of such measures. Prioritising accident hotspots and tailoring identification 

techniques can effectively address the problem of traffic crashes. The main objectives of implementing road 

safety measures are to identify crash hotspots and assess locations with significant potential for reducing 

accidents. Prioritising regional blackspots/crash hotspots is essential for efficiently allocating safety budgets 

and promoting faster and more effective improvements in road network safety. 

Getis Ord Gi* 

The hotspot analysis can be done either through Global or Local Indexes. Global Indexes test the extent of 

overall clustering, i.e. the degree to which points nearby have like values to those located further away. Local 

indexes quantify the degree to which points close to a given point have comparable attribute values within a 

particular area defined by a specified radius. Hence, spatial autocorrelation analysis through local indexes is 
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better suited for crash hotspot analysis. The local tools include cluster and outlier analysis (Local Anselin 

Moran’s I), Getis Ord Gi*, Kernel Density Equation and Kriging. Only Local Anselin Moran’s I and Getis Ord 

Gi* are useful for studying the spatial autocorrelation of road traffic crashes. However, the Moran indices 

family lacks the ability to differentiate between coldspots and hotspots. Getis Ord Gi* is the optimal tool for 

accurately classifying both low-value clusters (coldspots) and high-value clusters (hotspots). 

For spatial analysis using Getis Ord Gi*, an arbitrary variable X is chosen for which Gi* statistics examine 

whether some spatial autocorrelation exists. Every data point has an associated event (xi). The selected variable 

X is said to have spatial autocorrelation over an area i if xi  bears similar values in contiguous regions. 

Considering pivotal (central) point i (i = 1, 2, 3, 4, …, n), if the entire study area is split into n regions of 

indefinite extent, it yields one of the simplest forms of Gi* statistics as stated below [40] -  

Gi
∗ =

∑ wijxi
n
j=1

∑ xj
n
j=1

 (2) 

where Gi* defines the spatial autocorrelation of feature i, xj is the value of X at a specified location j. The 

spatial weight assigned to features i and j is wij. The value of wij is calculated using a user-specified threshold 

distance, d. The choice of d determines the outcome of the Gi* statistics. The total weights (Wi) can be 

computed as follows:  

Wi = ∑ wij

n

j=1

 (3) 

Characteristically, the sample variance (s2) and sample mean (x̅) for a normal asymptotical condition are 

used to standardise the Gi* statistics [41]. 

x̅ =
∑ xj

n
j=1

n
 (4) 

s2 =
∑ xj

2n
j=1

n
− x̅2 

(5) 

The expectation value (E) and variance (Var) of Gi* is given as follows: 

E(Gi
∗) =  

Wi

n
 (6) 

Var(Gi
∗) =

s2

x̅
∗

Wi(n − Wi)

n − 1
 (7) 

where n is the number of occurrences 

Z(Gi
∗) =  

∑ wijxi
n
j=1 − x̅ ∑ wij

2n
j=1

s√n ∑ wij
2n

j=1 − (∑ wij)
n
j=1

2

n − 1

 
(8) 

Equation 8 gives the Z-score corresponding to the Gi* statistics. The Z-score indicates the statistical 

significance of the area of concern; in other words, the Z-score suggests the intensity of clustering within the 

given data set. 

The likelihood that the studied crashes occurred randomly or in a clustered manner is given the p-value for 

the spatial pattern analysis. The p-value is expressed as a probability; for instance, a p-value of 0.02 indicates 

a 2% chance that the crashes occurred randomly or arbitrarily. High magnitudes of Z-score and low p-values 

indicate data clustering. A Z-score in close proximity to zero indicates arbitrarily distributed data. The 

maximum positive and maximum negative values of Z-scores indicate the cluster of high and low values of 

feature attributes, respectively. Getis Ord Gi* method employs the Gi* statistic to categorise a geographic area 

as either a hotspot or a coldspot based on the feature attribute values of its neighbours. Hotspots are the regions 
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having high positive, statistically significant values of Z-score and are encompassed by areas having high 

attribute values. In contrast, coldspots are regions having negative, statistically significant values of Z-score 

and are encircled by areas having low attribute values. A statistically significant Z-score is generated if the 

local aggregate of the concerned area and its surrounding values considerably deviates from the likely local 

value corresponding to a random distribution. The final equation that is used to identify and classify accident 

hotspots in the Getis Ord Gi* hotspot analysis tool of ArcGIS is as follows:  

Gi
∗ =

∑ wijxj −
∑ xj

n
j=1

n
n
j=1 ∗ ∑ wij

n
j=1

√∑ xj
2n

j=1 − ∑ xj
n
j=1

n ∗ √n ∑ wij
2n

j=1 − (∑ wij)
n
j=1

2

n − 1

 

(9) 

3.4 Intra-city blackspot prioritization 

After identifying the crash hotspot regions, it is crucial to prioritise the blackspots within those areas or 

cities. This will aid policymakers in formulating a systematic plan for crash countermeasures. Blackspots or 

sites with higher crash severity should be prioritised over others. Prioritising intra-city blackspots will enhance 

the allocation of resources for crash remedial measures in a more rational and weighted manner. 

4. CASE STUDY 

The proposed methodology is exemplified by identifying and prioritising accident hotspots (based on 

severity) within Punjab, India. 

4.1 Study area and data collection  

The study was carried out in the Indian state of Punjab to identify and prioritise blackspots based on the 

crash hotspots detected. The map of India, including its states and union territories, as well as Punjab with its 

districts and road networks, was acquired by BHUVAN, the Indian Geo-Platform of the Indian Space Research 

Organisation (ISRO), in the form of various shape files (Figure 3). Crash data was collected from the Punjab 

police. Hotspot and crash severity analysis was performed using crash data spanning three consecutive years 

(2019–2021). The analysis included all types of recorded crashes, such as vehicle-vehicle crashes, pedestrian-

vehicle crashes and others. 

 
Figure 3 – Punjab state boundary (a) and its road network (b) 

(a) (b) 
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4.2 Analysis 

Blackspot identification and quantification of the severity of individual blackspots 

This study utilised the spatial statistics toolkit of ArcGIS 10.5 for blackspot identification and crash hotspot 

analysis. The stepwise procedure adopted for blackspot identification and severity quantification is 

summarised below: 

1) Plotting the map of the Punjab state showing all its district boundaries. 

2) Calculating Crash Severity Index (CSI) associated with each crash (as per Eq. (1)). 

3) Integrating neighbouring crashes within a 500-metre range to identify blackspots. This is done by setting 

the “x,y tolerance” at 500 metres. 

The output obtained is given in Figure 4, which illustrates the blackspots with diameters proportional to the 

crash frequency. Additionally, the colour intensity of a blackspot corresponds to the severity of crashes 

occurring within it. A smaller diameter, dark red blackspot suggests a lower number of highly severe crashes. 

 
 

Figure 4 – Blackspots within Punjab 

Spatial pattern analysis of crashes 

After identifying blackspots, it is imperative to analyse the spatial relationship of the crashes. The Euclidean 

distance method was employed for spatial pattern analysis. The following methods can be used to 

conceptualise spatial association: 

1) Fixed distance, 

2) Inverse distance,  

3) Inverse squared distance,  

4) K-nearest neighbours,  

5) The zone of indifference,  

6) The space-time window method, and  

7) Contiguity edges and corners. 

This study employed the fixed distance method, where crashes within a threshold distance of 500 metres 

were assigned a weightage value of 1, while those outside this distance were assigned a weightage value of 0. 

The spatial autocorrelation report (Figure 5) provides information about the nature of the data, specifically 

whether it is dispersed, random or clustered. The obtained results for this study include a z-score of 32.312, a 

p-value of 0.00 and a Moran’s Index of 0.1335, which indicates that there is less than 1% likelihood that the 

clustered pattern could be the result of random choice, or in simpler words, the data is clustered in nature. 
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Figure 5 – Spatial autocorrelation report 

Hotspot identification 

Crash spatial pattern analysis reveals clustering, enabling hotspot identification. CSI values are assigned to 

all crashes. A threshold distance value of 500 metres, specifically chosen to represent the accident blackspot 

stretch in India, was utilised for hotspot analysis by employing the Getis Ord Gi* statistics. The output 

identifies the crash hotspot, coldspot and randomly distributed regions within the geographic boundaries of the 

Punjab state (Figure 6).  

 
Figure 6 – Crash hotspot and coldspot distribution 

4.3 Descriptive crash statistics of Punjab 

All crashes 

Descriptive statistics of all the crashes that occurred in the state of Punjab are summarised in Table 1, which 

shows that the most severe crashes occurred in the year 2020, followed by 2019 crashes, although 2019 

reported 85.8% more total crashes, 5.8% more fatal injury crashes and 16.6% more minor injury crashes, 

respectively, compared to 2020. This can be attributed to the fact that in 2019, the total number of crashes was 

reduced in the year 2020 at the expense of a very slight decrease in the number of fatal crashes and a marked 

increase in cases of serious injury crashes. Crashes that occurred in 2021 accounted for the least amount of 

damage. Friday witnessed the most severe crashes of all days a week, with Wednesday accounting for the least. 

Monday and Thursday saw the greatest and least number of crashes reported, respectively, whereas the highest 

sum of fatal crashes occurred on Sunday. Crashes occurring in winter had the highest value of CSI, along with 

a greater amount of total, fatal, serious and minor injury crashes than the summer and monsoon crashes. The 

period 06:00 p.m.–09:00 p.m. witnessed by far the highest severity of all crashes occurring throughout the day, 

although a 6.1% more crash frequency was observed between 12:00 a.m. and 03:00 a.m. compared to 06:00 
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p.m.–09:00 p.m. “Hit from back” type of crashes caused the most significant damage compared to all other 

collision types. However, 40.8% more “hit and run” cases than “hit from back” collisions were observed. 

Table 1 – Descriptive crash statistics of all crashes in Punjab 

Parameter 
Crash 

frequency 

Crashes 
Crash Severity Index 

(CSI) Total 

fatal 

Total 

serious 

Total 

minor 

Year 

2019 3722 675 835 316 6196 

2020 2003 638 984 271 6413 

2021 1620 437 593 329 4293 

Day of the 

week 

Monday 1098 255 342 156 2457 

Tuesday 1045 257 334 117 2404 

Wednesday 1041 243 294 127 2224 

Thursday 1017 233 352 125 2346 

Friday 1074 261 395 142 2632 

Saturday 1048 232 348 124 2328 

Sunday 1022 269 347 125 2511 

Season 

Summer 2530 558 775 284 5399 

Monsoon 2257 545 727 283 5189 

Winter 2558 647 910 349 6314 

Time of 

offence 

12:00 a.m.–03:00 

a.m. 
1579 132 200 68 1328 

03:00 a.m.–06:00 

a.m. 
268 60 90 38 608 

06:00 a.m.–09:00 

a.m. 
680 156 207 98 1499 

09:00 a.m.–12:00 

p.m. 
851 252 391 125 2558 

12:00 p.m.–03:00 

p.m. 
941 236 354 138 2380 

03:00 p.m.–06:00 

p.m. 
884 275 397 161 2727 

06:00 p.m.–09:00 

p.m. 
1488 463 551 219 4187 

09:00 p.m.–12:00 

a.m. 
654 176 222 69 1615 

Type of 

collision 

Fixed/stationary 

object 
31 7 31 5 133 

Head on collision 779 314 437 123 3004 

Hit and run 2551 437 376 205 3518 

Hit from back 1812 493 769 305 5077 

Hit from side 1395 354 594 213 3765 

Pedestrian 235 40 20 12 272 

Run off road 168 11 36 8 171 

Vehicle overturn 84 16 47 12 233 

With animal 19 5 1 0 28 

With parked vehicle 104 43 62 23 424 

Others 167 30 39 10 277 
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Pedestrian crashes 

Vulnerable road users comprise pedestrians, two-wheelers and bicycles, of which pedestrians have the 

second highest share of total road accident fatalities caused in India. In India, pedestrian road users accounted 

for 17.8% of road crash fatalities in 2020; in 2021, this number rose to 18.9%. Moreover, Punjab is the only 

Indian state to have witnessed more casualties in lesser instances of pedestrian crashes [15]. This proves that 

pedestrian crashes in Punjab have a high degree of severity, necessitating its study. The descriptive crash 

statistics of pedestrian crashes in Punjab are given in Table 2.  

Table 2 – Descriptive crash statistics of pedestrian crashes in Punjab 

Parameter Crash frequency 

Crashes 
Crash Severity 

Index (CSI) Total 

fatal 

Total 

serious 

Total 

minor 

Year 

2019 233 28 21 4 207 

2020 232 51 51 19 427 

2021 146 42 32 35 341 

Day of the 

week 

Monday 85 19 13 9 143 

Tuesday 103 16 21 7 150 

Wednesday 102 17 13 11 135 

Thursday 82 21 10 8 143 

Friday 98 21 17 14 170 

Saturday 78 10 19 6 113 

Sunday 63 17 11 3 121 

Season 

Summer 194 44 39 17 354 

Monsoon 178 35 32 20 291 

Winter 239 42 33 21 330 

Time of 

offence 

12:00 a.m.–03:00 a.m. 47 3 9 5 47 

03:00 a.m.–06:00 a.m. 26 4 6 3 41 

06:00 a.m.–09:00 a.m. 61 18 6 6 114 

09:00 a.m.–12:00 p.m. 75 13 14 9 116 

12:00 p.m.–03:00 p.m. 74 16 15 12 137 

03:00 p.m.–06:00 p.m. 83 16 10 8 118 

06:00 p.m.–09:00 p.m. 170 37 34 14 301 

09:00 p.m.–12:00 a.m. 75 14 10 1 101 

Vehicles 

involved 

Auto rickshaw 1 0 0 0 0 

Bicycle 1 0 0 0 0 

Bus 29 2 3 6 25 

Light motorised vehicle 223 49 31 23 361 

Cycle rickshaw 1 0 0 0 0 

Heavy articulated vehicle 8 4 0 0 20 

Motorised two-wheeler 116 18 40 11 221 

Mid-size passenger 

vehicle 
41 6 14 6 78 

Mid-size goods vehicle 67 16 8 8 112 

Others 122 26 6 4 152 

Type of 

Section 

Intersection 437 86 62 41 657 

Midblock 174 35 42 17 318 
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From Table 2, it can be observed that the year 2020 experienced the most severe pedestrian crashes in Punjab. 

In 2019 and 2020, a similar number of total pedestrian-related crashes were reported. The day-wise trend in 

pedestrian crashes was similar to that of all crashes, with Fridays being the most severe. However, the highest 

crash frequency was observed on Tuesday and Wednesday. The summer season had the highest severity of 

pedestrian crashes, despite the winter season having more frequent crashes. Similar to all types of crashes, 

pedestrian crashes were observed to be most severe between 06:00 p.m.–09:00 p.m. The light motorised 

vehicle category, which includes cars, jeeps, vans and taxis, was determined to cause the highest amount of 

damage in pedestrian accidents. A compelling analysis revealed that approximately 71.5% of pedestrian 

crashes took place at intersections, resulting in significantly greater severity than midblock pedestrian crashes. 

5. RESULTS AND DISCUSSION 

5.1 Region-wise hotspot prioritization 

The utilization of state-wide hotspots allows for the prioritization of districts within the state for crash 

remedial action. The severity values of various districts in Punjab can be used to establish a ranking system 

(Table 3). The hotspot analysis reveals that Sangrur, Hoshiarpur and Police Commissionerate Ludhiana form 

the top three hotspots (high clusters) within Punjab, whereas Gurdaspur, Pathankot and Rupnagar form 

significant coldspots (low clusters). Furthermore, it is interesting to note that though the number of crashes for 

Kapurthala (247) is greater than that of SAS Nagar (230), SAS Nagar is a region of more significant concern 

due to its higher number of fatal crashes and consequently, a higher Crash Severity Index (CSI). The districts 

in Punjab featured in the Crash Severity Index (CSI) rankings present a nuanced landscape of road safety 

challenges, each shaped by local factors ranging from infrastructure quality to traffic behaviour and 

enforcement practices. For instance, Sangrur, which leads the rankings, may struggle with the dual burden of 

high vehicular traffic and potentially inadequate road infrastructure, exacerbating the risks associated with 

high-speed travel and commercial transportation. Issues such as unmarked rural roads and intersections 

commonly found in this district further increase the likelihood of road crashes. Hoshiarpur, with its significant 

number of serious crashes, possibly suffers from the challenges typical of rural areas, such as limited street 

lighting, poor road signage and a culture of high-speed driving with inconsistent enforcement of traffic 

regulations. Ludhiana, as an industrial epicentre, deals with heavy traffic congestion compounded by the 

frequent intermingling of heavy-duty industrial vehicles and standard commuter traffic. This interaction, 

combined with possibly overstressed and poorly maintained urban roads, creates a fertile ground for traffic 

crashes. In districts like Fatehgarh Sahib and Ferozepur, the mix of agricultural and urban traffic during peak 

seasons, coupled with insufficient pedestrian pathways, likely contributes to their high CSI scores. Mansa, 

though lower on the list, faces its unique challenges, such as narrow roads and limited visibility, which are 

symptomatic of smaller, less urbanised regions. These conditions underscore the pressing need for region-

specific interventions that not only enhance physical road conditions through better infrastructure but also 

improve traffic safety through stringent enforcement and localised educational campaigns aimed at promoting 

safe driving practices. 

Table 3 – Crash hotspots ranked according to crash severity index 

Rank 
Crash 

frequency 
District 

Crashes 
Crash Severity Index 

(CSI) 
Total 

fatal 

Total 

serious 

Total 

minor 

1 785 Sangrur 210 361 214 2347 

2 599 Hoshiarpur 195 281 123 1941 

3 577 Police Commissionerate 

Ludhiana 

163 297 117 1823 

4 502 Fatehgarh Sahib 191 269 42 1804 

5 439 Ferozepur 150 187 102 1413 

6 278 Fazilka 123 137 18 1044 

7 230 SAS Nagar 87 109 34 796 

8 247 Kapurthala 69 126 52 775 

9 197 Police Commissionerate 

Amritsar 

86 96 15 733 

10 208 Mansa 84 90 34 724 
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Addressing these challenges effectively demands a holistic approach that integrates enhanced road design, 

improved enforcement mechanisms and community engagement to educate and alter driving behaviours. Such 

efforts are essential for mitigating the risk factors contributing to high crash severities across these diverse 

districts in Punjab. This comprehensive strategy should focus on the peculiarities of each district, ensuring that 

solutions are as varied and specific as the problems they aim to solve. 

5.2 Intra-city hotspot prioritization 

The ranking of hotspot locations within a city or district, categorised by all crash incidents and pedestrian-

specific crashes, is presented in Table 4. The initial section of the table that encompasses all types of crashes 

reveals that high Crash Severity Index (CSI) scores are commonly linked with unsignalised intersections. 

These intersections lack crucial traffic control measures, creating significant risk zones where road users’ paths 

converge, increasing the probability of collisions. These areas often experience a mix of high vehicular traffic 

and complex driving behaviours, such as poor lane discipline and failure to yield, which escalate the risk of 

accidents. Additionally, the table highlights that pedestrian-specific crashes predominantly occur in areas 

bustling with pedestrian traffic where jaywalking is rampant. This underscores a glaring shortfall in pedestrian 

infrastructure, including crosswalks, pedestrian signals and safety barriers, which are vital for secure pedestrian 

navigation across busy roadways. These locations are also prone to poor visibility issues, inadequate street 

lighting, or deficient road signage, further heightening the risk of incidents involving both pedestrians and 

drivers. Other critical zones requiring focus include high-traffic commercial areas, vicinities around 

educational institutions and universities, public transportation hubs, residential sectors with limited 

recreational spaces and densely populated marketplaces or event spots.  

To mitigate these risks, targeted measures are necessary, such as installing traffic control devices at 

unsignalised junctions, enhancing pedestrian infrastructure and initiating public education campaigns to curb 

jaywalking and promote safer crossing habits. By addressing these behaviours and infrastructural deficiencies, 

such interventions are expected to considerably reduce both vehicular and pedestrian-related crashes, thereby 

improving overall traffic safety. Prioritising these hotspots is crucial for urban planners and traffic safety 

officials to efficiently allocate resources and tackle the most perilous conditions in urban settings. 

Table 4 – Intra-city crash hotspot prioritization 

Type of 

crash 
Rank 

Crashes 

Crash Severity Index (CSI) 

Crash hotspot 

Total 

fatal 

Total 

serious 

Total 

minor 
Latitude Longitude 

All crashes 

1 10 33 4 153 31.25 75.70 

2 15 23 7 151 30.66 76.29 

3 9 18 9 108 30.94 75.83 

4 9 18 1 100 31.49 75.89 

5 6 19 9 96 30.27 76.04 

6 7 19 3 95 31.38 75.38 

7 8 16 4 92 31.82 75.66 

8 5 21 4 92 30.97 75.81 

9 6 17 4 85 30.89 75.89 

10 3 21 3 81 30.90 75.88 

Pedestrian 

crashes 

1 2 2 3 19 30.13 75.82 

2 2 2 3 19 30.25 75.84 

3 0 6 0 18 30.18 74.32 

4 3 1 0 18 30.58 74.83 

5 3 1 0 18 30.64 76.82 

6 2 2 0 16 31.57 75.04 

7 2 1 3 16 30.16 75.89 

8 2 1 2 15 30.26 75.99 

9 2 0 4 14 30.26 75.94 

10 1 3 0 14 30.74 76.69 
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6. CONCLUSION 

The principal aim of hotspot analysis is to accomplish two main objectives of effective road safety 

management, which are as follows:  

1) Identifying dangerous road stretches or crash hotspots. 

2) Ranking crash hotspots to strategically deploy crash countermeasures.  

This study intended to demonstrate a GIS technique for locating and quantifying statistically significant 

spatial distribution based on crash severity and frequency in Punjab. Analysis of the spatial pattern of crash 

locations helps identify spatial autocorrelation among crashes. Using Getis Ord Gi* in conjugation with 

integrating individual crash locations allowed for identifying crash hotspots based on crash severity. One 

benefit of using spatial autocorrelation is that it enables statistical investigation of the spatial pattern of crashes. 

Gi* statistics is superior to Moran’s I index for detecting crash hotspots since it can distinguish between high 

and low crash clusters. The crash frequency is often considered the critical parameter for blackspot/hotspot 

prioritization. This study proves that crash severity is a more significant factor for hotspot analysis as it 

considers the costs associated with and damage inflicted by accidents.  

Gi* statistics were applied after studying the spatial dependency of crashes to pinpoint clusters with high 

and low crash severity, i.e. hotspots and coldspots. According to the region-wise hotspot evaluation, Sangrur, 

Hoshiarpur and Fatehgarh Sahib are the top three hotspots (high clusters) in Punjab, while Gurdaspur, 

Pathankot and Rupnagar are major coldspots (low clusters). The intra-city hotspot study resulted in the 

prioritization of individual crash locations (for all crashes and pedestrian crashes) based on the Crash Severity 

Index (CSI). 

The study’s findings suggest that crash hotspot detection techniques, such as using Getis Ord Gi* and 

integrating crash locations, can be used to evaluate geographical patterns of accidents and identify high-

severity (hotspots) and low-severity (coldspots) clusters. The study demonstrated the significant advantage of 

using Getis Ord Gi* to analyse crash data in Punjab for selecting suitable sites to deploy crash 

countermeasures. Hence, the inclusion of Getis Ord Gi* in accident hotspot analysis should be prioritised for 

future road safety research in India.  

To further advance the robustness and applicability of the proposed framework, future studies will explore 

the incorporation of alternative weighting systems, such as those suggested by the World Road Association – 

PIARC and other possible ratios, to evaluate their effectiveness in enhancing the precision of our proposed 

framework for various regional contexts. Further strengthening of the proposed methodology in terms of high 

performance, even in the case of a small sample size (very few crashes), may be taken up as a future study. 
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कलीप्रसन्न मुदुली, देओरीशभ साहू, इंद्रजीत घोष 

 

सड़क यातायात दुघघटना हॉटस्पॉट्स की पहचान और प्राथममकता मनर्ाघरण के मलए एक वैज्ञामनक 

रूपरेखा 

 

सारांश 

यह अध्ययन Getis Ord Gi* स्थामनक सहसंबंर् उपकरण का उपयोग करके सड़क यातायात दुघघटना 

हॉटस्पॉट्स की पहचान और प्राथममकता मनर्ाघरण के मलए एक नवीन और अनुकूलनीय रूपरेखा प्रसु्तत 

करता है। यह रूपरेखा दुघघटना की गंभीरता और आवृमि के आर्ार पर के्षत्ो ंको हॉटस्पॉट या 

कोल्डस्पॉट के रूप में वगीकृत करती है। इसमें एक अमितीय वेमटंग मसस्टम मवकमसत मकया गया है, 

जो दुघघटना गंभीरता सूचकांक (CSI) की गणना के मलए दुघघटनाओ ंकी गंभीरता को मृतु्यओ ंऔर घायलो ं

के संदभघ में ध्यान में रखता है। पहचाने गए हॉटस्पॉट्स को CSI के माध्यम से प्राथममकता दी जाती है, 

मजससे नीमत मनमाघताओ ंको दुघघटना मनवारण उपायो ंके मलए संसार्न आवंमटत करने का एक संरमचत 

दृमिकोण ममलता है। इस अध्ययन का मुख्य योगदान एक लचीली रूपरेखा का मवकास है, जो मवमभन्न 

शहरो,ं राज्ो ंया देशो ंमें सड़क सुरक्षा सुर्ार के मलए लागू की जा सकती है। इस रूपरेखा की 

प्रभावशीलता पंजाब, भारत के एक केस स्टडी के माध्यम से प्रदमशघत की गई है, मजसमें संगरूर, 

होमशयारपुर, और पुमलस आयुक्तालय लुमर्याना शीषघ तीन हॉटस्पॉट्स के रूप में उभरते हैं। अध्ययन 

पंजाब में दुघघटना आँकड़ो ंका मवसृ्तत मवशे्लषण भी प्रसु्तत करता है, जो पैदल यात्ी दुघघटनाओ ंकी 

गंभीरता पर जोर देता है। यह दृमिकोण हॉटस्पॉट पहचान और प्राथममकता मनर्ाघरण की मौजूदा 

संरचनात्मक रणनीमतयो ंकी कमी को दूर करता है, जो सड़क सुरक्षा प्रबंर्न में एक महत्वपूणघ प्रगमत 

को मचमित करता है। 
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