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ABSTRACT 

This paper presents a closed queuing network model to address bike queues in bike-sharing 

systems with finite docks. The model tackles issues of bike spillover and user attrition due to 

fully occupied docks and bike shortages at stations. The objective is to determine throughput 

rates and other performance metrics for these systems. To overcome computational 

challenges, we propose an approximation algorithm based on the developed model. Our 

analysis reveals intrinsic properties of bike-sharing systems with finite docks: (i) The 

effective system throughput rate increases with bike fleet size and eventually converges to a 

ceiling value. (ii) Adding more docks at stations can unnecessarily increase or even decrease 

the effective throughput rate. (iii) Under certain conditions, the system can reach a self-

balancing state, avoiding bike surpluses or deficiencies at each station and maximising 

throughput. (iv) Users can successfully return bikes with a limited number of tries, provided 

there is at least one station on their route with a non-zero probability of having available 

docks. A small-scale artificial example and a case study demonstrate the accuracy and 

applicability of the approximation algorithm and the properties of the systems. 

KEYWORDS 

finite-docked bike-sharing system; throughput rate; approximation algorithm; closed 

queueing network. 

1. INTRODUCTION 

Docked bike-sharing systems (DBSSs) provide shared micro-mobility services that promote cycling, urban 

mobility and public transportation usage. By April 2022, over 1,700 DBSSs operated more than 8.93 million 

bikes worldwide [1]. However, finite numbers of bikes and docks can lead to stations lacking available bikes 

for rent or idle docks for returns, affecting service quality [2], efficiency [3] and user satisfaction [4]. 

Understanding the relationship between DBSS efficiency and its deployment, including the number of docks, 

stations and bike fleet sizes, is crucial for effective planning and operations. 

Over the past decade, extensive research on DBSS planning and operation has been conducted at strategic, 

tactical and operational levels. Strategic-level planning involves long-term infrastructure decisions, such as 

bikeway network design [5–7], station network design [8–10] and fleet sizing [2, 11]. Tactical-level operations 

address medium-term decisions, including bike inventory levels [12–13] and user demand management [2, 

14–17]. Operational-level operations focus on short-term bike relocation to respond to dynamic user demands 

[15, 18–21]. For a comprehensive review of DBSS literature, see Shui and Szeto [22]. Previous studies have 

significantly reduced costs, improved service performance and increased profits through optimising stations, 

bikeways, bike relocation and user incentives.  

DBSS operation has three distinct characteristics. First, DBSSs have a limited number of docks per station, 

which can cause bike to spill over from a station. Consequently, users may need to divert to nearby stations to 

return their bikes. To emphasise the limitation on the number of docks at each station, we refer to these systems 

as finite docked bike sharing systems (FDBSSs). Second, there is uncertainty associated with user demand and 
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cycling time. User arrivals at stations and cycling times between stations are inherently random due to user 

independence and varying cycling speeds. Third, the bike fleet size in a DBSS is approximately fixed over 

short periods (e.g. one day or half a week) because all bikes must circulate among stations within the system, 

forming a closed queuing network. Considering these characteristics, treating a finite-docked bike-sharing 

system (FDBSS) as a closed queuing network under uncertainties appears to be a promising approach. 

Several models have been proposed to analyse FDBSSs within the framework of closed queueing network. 

George and Xia [23] first used a closed queueing network to optimise fleet size, assuming an infinite number 

of docks at stations. Fricker and Gast [2] developed a model to optimise bike fleet size, aiming to minimise 

the number of fully occupied or vacant docks, assuming users could always return bikes at available stations. 

Li et al. [24] proposed a closed queueing network model considering multi-class users by treating bikes as 

virtual consumers and stations and bikeways as virtual nodes. Due to the exponential growth of virtual nodes, 

calculating the steady-state probabilities of bike distributions is challenging [25]. Celebi et al. [9] presented a 

decision model to minimise unsatisfied bike rental and return demand by optimising station location and dock 

allocation, without considering user origin-destination distributions. Vishkaei et al. [26] extended George and 

Xia’s model [23] to optimise fleet size, dock allocation and bike flow, while minimising the average number 

of lost users, taking into account station capacity limitations. Despite these efforts, systematic analysis of the 

FDBSS efficiency with service failures remains limited. Furthermore, analysing the FDBSS by using the 

closed queueing network theory requires computing the steady-state probabilities of bike distributions, which 

grow exponentially with the number of bikes, stations and docks, significantly increasing computational 

complexity.  

Despite significant advancements in the FDBSS research, several gaps persist. First, the existing FDBSS 

planning and operation models heavily rely on optimisation, necessitating dynamic and precise user demand 

data. However, during the planning stage, only approximate daily or hourly user demands are available. 

Current studies, particularly data-driven ones, struggle to assess system service capabilities and their 

relationships with bike and dock quantities under limited user demand and riding data conditions. Second, bike 

rental and return failures impact the quality and efficiency of the FDBSS services. Methods for diagnosing 

which stations will experience bike surpluses or deficiencies under uncertainties have not been developed. 

Third, previous closed queuing network models for FDBSSs often require computing normalisation constants 

for exact steady-state probabilities of bike distributions, a process that is time-consuming and limits their 

applicability to large-scale FDBSSs. Therefore, an approximation algorithm is needed to estimate bike queues, 

i.e. the number of bikes at stations or on bikeways. 

To address the existing gaps in the FDBSS research, we model bike rental and return processes at an 

aggregate level, focusing on dock limitations and macroscopic performance evaluations. Our study aims to 

answer several fundamental questions: How can the FDBSS service efficiency be effectively measured? Can 

service efficiency be improved by increasing the bike fleet size and the number of docks? Can bike surpluses 

or deficiencies be avoided at each station without bike relocation? Addressing these questions necessitates an 

approximation algorithm to estimate bike queues at stations and reveal the inherent operational properties of 

FDBSSs.  

Our contributions are threefold. First, we develop a closed queuing network formulation for FDBSS, thus 

deriving an approximation algorithm to determine performance metrics, including throughput rates, expected 

bike quantities on bikeways and at stations, bike dwell times and the probability of rental and return failures 

at stations. Second, we explore the inherent characteristics of the FDBSS, focusing on the impacts of bike fleet 

size and dock allocation on throughput rates and identify the critical conditions required for achieving FDBSS 

self-balancing. Despite its importance for the design and planning of bike-sharing systems, the FDBSS 

characteristics have not been fully explored when docks are limited and demands are uncertain. Third, we 

introduce a diagnostic method to predict which stations may experience bike surpluses or deficiencies, even 

under uncertain user demands and variable riding speeds. Our model is less data-intensive and suitable for 

evaluating potential FDBSS design schemes during the planning stage. To the best of our knowledge, such 

methods have not been explored in previous studies. 

The structure of this paper is as follows: Section 2 formulates the FDBSS and develops a throughput rate 

approximation algorithm. Section 3 examines the operational properties of the FDBSS and introduces a 

diagnostic method for forecasting bike surpluses and deficiencies at each station. Section 4 provides a small-

scale example and a case study to illustrate the model. Section 5 concludes the paper. Due to space constraints, 

proofs of the propositions, corollaries and FDBSS properties are omitted. Interested readers may request these 

from the authors. 
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2. MODEL FORMULATION  

2.1 Problem description 

Consider a FDBSS with m  stations and a fleet of n  bikes, where station j , 1, 2, ...,j m=     has jB  docks. 

Suppose users departing from station i , 1, 2, ...,i m=     may ride to station j  with probability 
ijp , 

10, 1m

jij ij
p p=  = , ,  1, 2, ...,i j m=    . We call [ ]ijP p= , ,  1, 2, ...,i j m=     the routing matrix. Users can return bikes to 

their destination station j  if there are docks available; if all docks at station j  are full, they may ride to next 

station, say, s , with probability 
js  to return bikes. We will refer to [ ]js = , ,  1, 2, ...,j s m=     as the overflow 

routing matrix. If station s  is still fully occupied, they continue riding to other stations until they can 

successfully return bikes. In this process, those users who cannot return bikes at their destination stations are 

served inefficiently. 

Depending on whether bikes can be rented and returned successfully, a station may have four types of bike 

arrivals and departures. The first type is the arrival bikes, which are voluntarily returned to the station that is 

their intended destination. The second type is also arrival bikes, which cannot be returned to other fully 

occupied stations and are involuntarily forced to be returned at the station. The third type is the departure bikes, 

which are rented at and voluntarily leave the station. The fourth type is also the departure bikes, which cannot 

be returned and are involuntarily forced to leave the fully occupied station. In the long run, based on the 

principle of bike conservation, the number of bikes arriving at a station should equal the number of bikes 

departing. Thus, at a station, the total of the first and second arrival bikes is equal to the total of the third and 

fourth departure bikes. This is a fundamental fact for model development. Note that the second and fourth 

types of bike flow are regarded as inefficient as those users cannot directly reach their destination stations. The 

bike classification allows for a more accurate evaluation of the FDBSS service performance. 

A key metric for measuring FDBSS efficiency is the user service completion rate, which is equivalent to 

the throughput rate of a queueing system [25, 27]. We aim to formulate the nominal and effective system 

throughput rates under a closed queuing network framework, where the former quantifies the third and fourth 

bike departure flows, while the latter is only the third one. 

In this paper, we make the following assumptions to clarify the premises for the model formulation: 

A1. The period concerned is the morning or evening rush hours because these periods may have the most 

serious bike surplus and deficiency [2]. We assume that users arrive at station j  with a Poisson rate j , 

1, 2, ...,j m=    , during rush hours. Such an assumption has been wildly adopted in previous related studies, 

e.g. Çelebi et al. [9], George and Xia [23].  

A2. We assume that the users between stations i  and j  take exponential cycle times with rate 
ij ,

,  1, 2, ...,i j m=     due to the heterogeneities in cycling speed and call [ ]ij = , ,  1, 2, ...,i j m=     the ride time 

matrix. This assumption was also used in previous related studies [23, 24, 26].  

A3. We assume that arriving users will leave the FDBSS if there are no available bikes at the stations and that 

if the docks at a station are fully occupied, users will ride to the next station to return bikes; if the station 

is also full, users will continue riding to another station until they can successfully return bikes [9].  

2.2 Closed queueing network  

In this section, we first present a closed queueing network formulation for the FDBSS under uncertainty. 

We then prove that a user arrival flow at an origin station can partly transform into a Poisson bike arrival flow 

at a destination station, demonstrating that the FDBSS exhibits the M M property (M implies Markov). The 

M M property says that in a closed queueing network, a station behave as if it were separate service system 

[25]. This characteristic means that any station can be examined in isolation from the rest of the FDBSS. Next, 

we propose a formulation for the FDBSS network to develop a counterpart version of the MM property 

proposition. We then model the behaviour of a station as a single-server system by formulating the bike arrival 
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and departure flows at an individual station. Note that the user arrivals hereinafter all refer to users wanting to 

rent bikes at stations. 

Network-based formulation 

According to George and Xia [23] and Li et al. [24], treating an FDBSS as a closed queuing network allows 

user arrivals to be interpreted as virtual service for available bikes and bike arrivals as job arrivals. Following 

this approach, we model user inter-arrival times as the service times for each bike and job arrival times as bike 

arrival times at each station. This method enables us to analyse bike traffic in an FDBSS using closed queuing 

network theory. 

For any bike in FDBSS, under steady state equilibrium, the time proportion of the bike dwelling at station 

i , i , i.e. the ratio of a bike’s dwelling time at the station to its overall dwelling times at stations, is equal to 

the sum of the products of the time proportion at station i  and the routing probabilities from station i  to station 

j ,
ijp . Then, 

j  is the unique positive solution for the equations 

1

1

=      

 1

m

i i ij j

m

j j

p 



=

=




=
 (1) 

The nominal throughput rate at station j , denoted as ( )ja n , is the sum of the products of the flow rates of 

bike departures from total source stations (including station j itself) and the routing probability to station j . 

Specially, ( )ja n  is calculated as ( )ja n  is, where ( )ja n  is the flow rate of bike departures from station and 
ijp  

routing probability from station i  to station. Thus, we have the following FDBSS traffic equations: 

1( ) ( )m

ij i ij
a n a n p==   (2) 

From Equations 1 and 2 it follows: 

1

( ) ( )

( ) ( )

j j

m

i i

a n a n

a n a n



=

=


= 
 (3) 

The following proposition can provide the foundation that the FDBSS is equivalent to a separable closed 

queueing network, where the stations behave as if they were in isolation from the rest of the system. 

Proposition 1 (Property of MM). Given each station with finite docks, if users arriving at each station to 

rent bikes follow a Poisson process, then, despite bikes potentially spilling over due to fully occupied docks, 

the arrivals of bikes at each station also follow a Poisson process. 

Proposition 1 guarantees that a user arrival flow at each origin station can partly transform into a Poisson 

bike arrival flow at each destination station, thus allowing any station in FDBSSs to behave as if it were a 

single node independent of the rest of the system. This characteristic enables us to decompose the analysis of 

queues in the FDBSS into that of a single station.  

Station-based formulation 

Proposition 1 allows us to analyse the queueing process at a station in detail instead of the overall FDBSS. 

By assumption A3, there is no user queue if the station has vacant docks. Therefore, station j  can be treated 

as an M/M/1/ jB  queue system. In this context, the inter-arrival times of bikes at the station follow an 

exponential distribution and the service times, which correspond to the intervals between arrivals of users 

wanting to pick up a bike, also follow an exponential distribution. The ‘1’ denotes a single server, which is the 

arrival flow of users who want to rent bikes at the station; and ‘ jB ’ denotes the station’s capacity, representing 

the number of bikes that can be parked at station j . In our model, the queue represents bikes parked at the 

station, waiting to be picked up by users. When a user arrives and finds a vacant bike, they immediately take 
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a bike, reflecting the service mechanism of the system. If all docks are occupied, arriving bikes will divert to 

the next station to return bikes, which aligns with the M/M/1/ jB  queue system’s capacity constraints. 

According to the state transitions of the bike rental and return at the station, as shown in Figure 1, letting k  

bikes at station j  denotes the state of the station, the rates of entering and leaving the state of k  bikes at 

station j , ( )ja k  and ( )j k  can be written as follows: 

( ),  =0,1, , -1 
( )

0,  = , 1,  

j j

j

j j

a n k B
a k

k B B

   
= 

+   
 (4) 

( ) ,      =1, ,
j j j

k k B =    (5) 

where ( )ja n , 1, 2, ...,j m=    also denotes the average bike arrival rate at station j  in the FDBSS with n  bikes 

and can be solved from the traffic equations in Equation 2. 

  
Figure 1 – Transition states for bike rental and return at a station 

 

Under steady-state conditions, the rate of entering the state of k  bikes equals the rate of leaving the state 

at the station. Based on the fact that the state of k  bikes can be changed to the states of 1k −  and 1k +  bikes 

only, we have the following balance equations: 

( )( ( ) 1) ( ( ) 1) ( ( ) ),    1, 2, , 1
j j j j j j j j

a P X t k P X t k a P X t k k B = − + = + = + = =     −  
(6) 

Owing to the fact  0 ( ) 1jB

k j
P X t k= = =  and letting 

j j j
a =  , we can solve the probabilities of vacant and 

fully occupied docks at station j  as follows: 

1

1
,        1 

1
( 0)

1
,             1 

1

j

j

jB

j

j

j

j

P X

B








+

−


−
= = 

 =
 +

 
(7) 

( )
+1

1
,     1 

1
( )

1
,             1 

1

j

j

B

j j

jB

j

j j

j

j

P X B

B

 






 −


−
= = 


=

 +

 
(8) 

 

By assumption A3, the presence of vacant and fully occupied docks at stations may affect bike arrival rates 

and thus change the elements in the routing matrix P. Now, we compute the actual routing matrix in the FDBSS. 

Specifically, the average bike arrival rate from station i  to station j  includes voluntary and involuntary 

arrival rates, ( )1 ( 0)i i i ij
P X p − = , ( )i i i i ij

a P X B = , respectively. Thus, the actual routing probability from 

station i  to station j  is equal to the proportion of bike flow from station i  to station j  to total bike arrival 

flows at station j . Then, we have the following: 
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( )

( ) 

( ) ( )

( ) ( ) 

1

1

1 1

11 ( 0) ( )

1 ( 0) ( ) 1

i i

i i

B B

i i i ij i i i iji i ij i i i ij

ij m m
B B

i i ij i i i ij i i i ij i i i ij
i i

p aP X p a P X B
p

P X p a P X B p a

      

       

+

+

= =

− + −− = + =
= =

− = + = − + − 

 (9) 

where if station j  is the next return station for station i , then 0
ij

   ; otherwise 0
ij

 = . Here, station j  is 

the destination node for station i ; station i , 1, 2, ...,i m=     is the source nodes for station j . Indeed, stations i  

and j  can be both the source and destination nodes for each other, hence Equations 7–9 can be applied to all 

stations. 

2.3 Approximation algorithm  

This section aims to derive an approximation algorithm for computing system throughput rate and other 

service performance metrics. Recall that calculating the exact throughput rate requires solving the steady-state 

probabilities of bike distributions in a closed queueing network [25], which is very time-consuming even for 

those with small numbers of stations and jobs [25, 27–28]. For a deeper understanding of the computational 

challenges involved, interested readers can refer to the detailed analyses by Li et al [24] and Bolch et al. [25]. 

To this end, we employ the Mean Value Analysis [28] to derive an approximation algorithm for system 

throughput rates. Note that bikes do not leave the station in the order they arrive; that is, stations do not operate 

according to the first-come, first-served (FIFO) rule. According to the PASTA (Poisson Arrivals See Time 

Averages) property of the Arrival Theorem [27], the distribution of bikes for FDBSS with n  bikes, as observed 

by a bike arriving at a station, is equivalent to the stationary distribution for FDBSS with 1n−  bikes. This 

property holds under more general conditions and is not limited to FIFO service. In our analysis, the key 

requirement is that the bike arrivals are Poisson and the system is in a steady state. Under these conditions, the 

arriving bike observes the system as it would be seen by an external observer at a random point in time, 

irrespective of the service discipline employed. Thus, according to the PASTA property of the Arrival 

Theorem, the expected dwell time at station j  for n  bikes is equal to the sum of the expected dwell time of 

that bike and the total expected dwell times of all bikes except that bike, which is as follows: 

1 ( ( 1))
( ( ))

j

j

j

E N n
E T n



+ −
=  (10) 

where ( )
j

N n  and ( )
j

T n  represent the bike amount (i.e. queue length) and dwell time at station j  in the FDBSS 

with n  bikes. A bike’s circulation time in the FDBSS includes its total dwell times at stations and cycling 

times on bikeways, i.e. 1 1 1( ( ))m m m

j i jj j i ij ij
E T k p  = = =+   . The system throughput rate can be treated as the 

frequency at which total bikes traverse total bikeways and stations, from which it follows: 

( ) 1 1 1( ( ))m m m

j i jj j i ij ij
a n n E T k p  = = = = +     (11) 

The effective throughput rate for station j  corresponds to the minimum of the expected bike arrival rate 

and the user arrival rate at that station. Thus, we have the following: 

( ) min( , )j j jTH n a =   (12) 

where ( )
j j

a a n =  denotes expected bike arrival rate at station j  in the FDBSS with n  bikes. 

By Little’s formula, the expected number of bikes at station j  can be written as follows: 

( ( )) min( ( ) ( ( )), )j j j jE N n TH n E T n B=   (13) 
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Using Equations 1–3, 7–13,we can design an approximation algorithm to calculate the system throughput rate. 

The approximation algorithm is outlined in the pseudo-code below and its solutions can be verified using 

simulation. This approximation algorithm is attractive because it does not require calculating joint probabilities 

for all possible combinations of bike numbers at all stations, making it efficient for large-scale FDBSSs. 

 

Algorithm 1 – Approximate algorithm 

Input: Users arrive at station j  with a Poisson rate j , 1, 2, ...,j m=    , bike fleet size n , number of docks at each 

station jB , 1,  2,  ...,  j m= , average bike cycle time ij  between stations i  and j  and routing matrix [ ]ijP p= ,

, 1,  2,  ...,  i j m= . 

Output: System and station effective throughput rates TH  and jTH , average bike inventory E( )jN , dwell times 

E( )jT  and probabilities of surplus and deficiency P( 0)jX =  and P( )j jX B=  at each station. 

Initialise: Solve Equation 1 to obtain limiting probabilities; 

Step 1. For 
1,2,  ...,j m=  

 

        Let ( (0)) 0
j

E N =  and (0) 0a = ; 

        Step 2. For 1, ,k n=   , do 

Compute the expected dwell time at station i for n bikes from Equation 10; 

            If min( )
j

k B  then 

  
1 1 1( ) ( ( ))m m m

j i jj j i ij ij
a k k E T k p  = = = = +    ; 

  
( ) ( )

j j
a k a k =

; 

            Otherwise 

  Solve the actual routing probability from Equations 10, 11 and 12; 

  Solve Equation 1; 

  
( ) 1 1 1( ( ( )) )m m m

j i jj j i ij ij
a k k E T k p  = = == +  

; 

  
( ) ( )j ja k a k =

; 

            End if 

( ) min( ( ), )
j j j

TH k a k =
; 

1( ) ( )m

i i
TH k TH k== 

; 

( ( )) min( ( ) ( ( )), )
j j j j

E N k TH k E T k B=
; 

     End 

End 

 

 

This algorithm is very easy to be coded and can even be carried out manually with the aid of an electronic 

calculator for small values of n , m  and jB . 

Based on the system throughput rates, we can evaluate various system performance metrics listed in Table 

1. These metrics provide insights into the FDBSS service levels from different perspectives. For example, the 

effective throughput rate can identify stations with low availability, while the ineffective throughput rate 

(nominal minus effective) can highlight stations with a high rate of failed bike returns, guiding potential 

FDBSS improvements. In addition, by analysing the average bike inventory, dwell times and probability of 

surplus and deficiency at each station, the operators may make informed decisions on the FDBSS deployments 

and bike relocations. 
  



Promet – Traffic&Transportation. 2025;37(2):421-439.  Smart Cities and Urban Mobility  

428 

Table 1 – FDBSS service performance metrics 

Indicator Description Formula 

Effective system 

throughput rate 
Users successfully rent bikes per unit time ( ) ( )1

m

i i
TH n TH n==   

Effective station 

throughput rate 

Users successfully renting bikes at station 

j  per unit time 
1 1 1

( ) min ,
( ( ))

j

j

jm m m

i i jj j i ij ij

TH n
n

E T n p




  = = =

=
 

   +   

 

Nominal system 

throughput rate 

Users riding bikes from all stations per unit 

time 
( ) 1 1 1( ( ( )) )m m m

i i ji j i ij ij
a n n E T n p  = = == +    

Ineffective system 

throughput rate 
Users failing to return bikes per unit time ( ) ( )a n TH n−  

Expected bike 

inventory at station 
Expected number of bikes at station j  ( )min( ( )) ( ) ( ( )),

j j j j
E N n TH n E T n B=  

Expected bike dwell 

Time at station 
Average bike stay duration at station j  ( )( ( )) ( ( 1)) 1

j j j
E T n E N n = − +  

Probability of bike 

deficiency at station 

The probability that the number of bikes at 

station j  is less than 1 j
B  1

( )
j j

P X B     

Probability of bike 

surplus at station 

The probability that the number of bikes at 

station j  is greater than 2 j
B  2( )j jP X B     

Note: 
1

0 1   and 
2

0 1   are the upper and lower percentages of bikes inventories relative to docks, which are usually set 

by the FDBSS operators to initiate the bike relocations when bike inventories are out of the upper and lower thresholds. 

3. FDBSS PROPERTIES  

The FDBSS differs from traditional queuing systems in that its stations do not have dedicated servers for 

bike rental and return operations. Consequently, some properties of classic closed queuing networks may not 

always apply to FDBSS. In this section, we explore the inherent properties of FDBSS to understand how 

various resources, such as the number of bikes and docks, affect service performance metrics. We begin by 

presenting the main property of the BSS throughput rate. 

Property 1. The FDBSS throughput rate does not decrease as the bike fleet size increases, given the dock 

allocation.  

Section 4 will show that the effective system throughput rate initially increases with the bike fleet size and 

eventually converges to a ceiling value. Thus, increasing the fleet size beyond a certain value – optimal bike 

fleet size – cannot always raise the throughput rate. We are now prepared to define the optimal bike fleet size. 

Definition 1 (Optimal fleet size). A bike fleet size is said to be optimal if

( ) ( ) ( ) ( )OPT
=max{ 1 0  and  1 0}n k TH k TH k TH k TH k− −  + − = , Zk + . 

Remark. The approximation algorithm can easily find the optimal bike fleet size by iterating k  from 1 to fleet 

size n  and calculating ( )1TH k + , ( )TH k  and ( )1TH k − . When the fleet size exceeds the optimal level, the 

additional bikes not only fail to increase the FDBSS service capacity but also reduce service quality, making 

them uneconomical. This will be observed in Section 4. 

The fleet size influences both bike dwell times at stations and bike utilisation. The following property 

provides further insight. 

Property 2. Increasing the bike fleet size in BSS cannot decrease the expected dwell time of bikes at station 

j , i.e. ( ( 1)) ( ( )), 1, 2, ...,
j j

E T n E T n j m+   =    . 

Property 2 indicates that releasing a larger fleet size can increase the expected bike dwell times at stations, 

leading to longer bike circulation times in the FDBSS. While Property 3 demonstrates that longer bike 

circulation times can improve effective bike utilisation. 
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Property 3. The effective bike utilisation, 1 1( ) ( ) ( ( ))m m

i j i ij
n TH n E T n n = ==   , decreases with bike fleet size n  

and increases with longer expected circulation time, 1 1 1( ( ))m m m

i i ji i i ij ij
E T k p  = = =+   , given dock allocation and 

number of stations.  

The unanswered question is whether the initial bike allocation for the FDBSS stations affects the throughput 

rates. The following property provides the answer.  

Property 4. Given the dock allocation and bike fleet size, the initial bike allocation for stations cannot affect 

the FDBSS and station throughput rates. 

Remark. Since bike rental and return services are Markov processes, the FDBSS can reach equilibrium states 

after a long time of operation. Therefore, the throughput rates do not depend on the initial bike allocation due 

to FDBSS’s memoryless property. 

Identifying bike surplus or deficiency is crucial, as it can lead to a negative user experience and prompt 

users to switch to alternative transport modes. To clarify the conditions causing bike surplus and deficiency at 

stations, we begin with the following definition. 

Definition 2 (Bike surplus or deficiency at stations). (i) Station j  is said to be bike deficient if the 

probability of the station having fewer than 
1 j
B  bikes is greater than 1

 , i.e.
1 1

( )
i j

P X B     ; (ii) Station 

j  is said to be bike surplus if the probability of the station having more than 
2 j
B  bikes is greater than 2

 , i.e. 

2 2
( )

j j
P X B     , where 1

0 1   and 2
1    are the thresholds of probabilities that bikes inventories 

are less than or exceed their respective upper and lower limits, as usually determined by the FDBSS operators; 

 denotes a floor integer. 

The following proposition and its corollary provide a diagnostic method to predict which stations are bike 

surplus or deficient. 

Proposition 2. 

(i) Station j  is bike surplus if the arrival rates of bikes and users, 
j

a and 
j

 , satisfy the following: 

2 2

2

1 1

21 1

2

,  1

,                  1
1

j j j j

j j

B B B B

j j j j

B B

jj j

j j j

j j

a a a

a

B B a

B

 










   + − +   

+ +

  −
  

−


 −  
 =

+

 (14) 

(ii) Station j  is bike deficient if bike and user arrival rates, 
j

a  and 
j

 , satisfy the following: 

1 1 11

11 1

1

1

, 1

,                          1
1

j j jj

j j

B B BB

j j j j

B B

jj j

j j

j j

a a

a

B a

B

 
 









   − ++    

+ +

 − 
  

−


   
 =

+

 

 (15) 

(iii) Station j  is bike balancing if bike and user arrival rates, 
j

a  and
j

 , satisfy the following: 

2 21 1
1 111

1 21 1 1 1

1 2

1 2

 and ,  1

 and ,                                           1
1 1

j j j jj j jj

j j j j

B B B BB B BB

j j j ji i i

B B B B

jj j j j

j j j j

j j j

a a aa

a a

B B B a

B B

    
 

 

 
 



   + − +   − ++       

+ + + +

  −− 
  

− −


   −   
  =

+ +








 (16) 

If the probability of station j  having zero bikes is greater than  , i.e. ( 0)
j

P X =  , then station j  is said 

to be vacant. If the probability of station j  having Bi bikes is greater than  , i.e., ( )
j j

P X B =  , then station 

j  is said to be full. Letting 
1

1
j

B = , 
2

1
j j

B B = − , 1 2
  = =  can immediately obtain the following Corollary 

1 of Proposition 2. 
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Corollary 1. 

(i) Station j  is full if bike and user arrival rates, 
j

a  and 
j

 , satisfy the following: 

0

,  1

1
,            1

1

j

j

j

j j

j

jj

B

j

B kB k

k j j

a a

a

a

B







−

=


 





 =
 +

 (17) 

(ii) Station j  is vacant if bike and user arrival rates, 
j

a  and 
j

 , satisfy the following: 

0

, 1

1
,             1

1

j

j

j

j j

j

jj

B

j

B kB k

k j j

a

a

a

B









−

=


 





 =
 +

 

 (18) 

(iii) Station j  is bike-balanced if bike and user arrival rates, 
j

a  and 
j

 , satisfy the following: 

0 0

 and ,  1

1
,                                              1

1

j

j

j

j j

j j

j jj j

B B

j j

B k B kB Bk k

k kj j j j

a

a a

a

B

 
 

 




− −

= =


  

 



 =
 +

 (19) 

 

Using Proposition 2 and Corollary 1, we can identify stations with bike surpluses or deficiencies, thereby 

determining the origin-destination (OD) distribution needed for scheduling bike relocation trucks. Proposition 

3 establishes the simple self-balance condition that allows FDBSS to operate at a maximal throughput rate 

without the need of bike relocation. Let T
P  denotes the transpose of matrix P, we have the following: 

Proposition 3. (i) The necessary and sufficient condition for the FDBSS throughput rates to be maximised is

( )T− =I P λ 0; (ii) if a BSS satisfies this condition, each station is bike-balancing. 

Remark. The condition ( )T− =I P λ 0  is challenging to satisfy in the real-world FDBSS scenarios, as even 

minor perturbations in the routing matrix P and user arrival rate vector  can disrupt it. Moreover, incentivising 

users to alter their original travel intentions to meet this condition is difficult, as regulating the extent of user 

incentives precisely is challenging. 

According to Assumption A3, docks can be fully occupied at certain stations, even if the probability of 

having non-full docks is less than one. Consequently, users may be unable to return bikes at these stations and 

must seek other stations. This scenario raises the possibility of users repeatedly attempting to return bikes at 

stations with temporarily full docks, but consistently failing. To address this issue, we define a single bike 

return, followed by Proposition 4. 

Definition 3. A user attempting to return a bike to a station, regardless of success, is considered one return 

attempt. 

Proposition 4. In an FDBSS, users can successfully return bikes a limited number of times, provided there is 

at least one station along their route with a probability of fully occupied docks less than 1. 

Proposition 4 reveals two intriguing bike return patterns. We next discuss the first pattern. Consider users 

who are only aware of stations 1–4, as shown in Figure 2 and can only return bikes to these stations. If the 

probability of fully occupied docks at each of these four stations is 1, users must continuously circulate among 

these stations to return bikes, as no bikes can be returned. This pattern is unfavourable due to its inefficiency. 
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Next, we discuss the second pattern. Here, users are aware of stations 5–10, also shown in Figure 2, and can 

return bikes only to these stations. Suppose station 10 consistently has available docks due to its high user 

arrival rate, while stations 5–9 always have fully occupied docks (i.e. the probability of fully occupied docks 

at these five stations is 1. In this pattern, all users, regardless of their initial station, can only successfully return 

bikes at station 10, resembling a black hole where all bike returns are concentrated. 

 
Figure 2 – A FDBSS with bike surplus and deficient stations 

Proposition 4 shows that if the probability of fully occupied docks at each station is less than 1, the 

expected number of times a user returns a bike is limited. In particular, when the FDBSS and user arrival are 

uniform, i.e. have identical 
j

 , 
j

B , ijp , ij  and ij , and hence identical probabilities of fully occupied docks at 

stations, we have the following corollary. 

Corollary 2. For the uniform FDBSS, the expected number of tries a user returns a bike is 1 ( )p− , where 

0 1p   is the probabilities of fully occupied docks at each station. 

A uniform FDBSS implies that each station has an identical probability of fully occupied docks. Users 

attempting to return bikes may encounter the identical probability of a successful return at any station and 

hence may experience the same expected number of times returning bikes. 

4. NUMERICAL EXPERIMENTS  

This section presents two examples to validate the proposed approximation algorithm and examine the 

operational properties of the FDBSS. In Section 4.1, a small-scale artificial example is used to illustrate the 

performance of the algorithm, the properties of the FDBSS and the diagnostic approach for identifying stations 

with bike surpluses and deficiencies. Section 4.2 applies the developed approximation algorithm to a real-

world case to demonstrate its practical application. To test the validity of the approximate algorithm, we 

developed a Markov simulation program to simulate the arrivals, departures and movements of users and bikes 

within the network. 

4.1 Experiments on a small artificial BSS  

Figure 3 shows a small FDBSS with four stations, as well as the average cycle times, routing matrix P  and 

overflow routing matrix  . The number of docks at all four stations is identical, denoted as B . The average 

user arrival rate at each station is set at 10 pax/min. The initial numbers of bikes and docks at each station both 

range synchronously from 1 to 100.  

 
Figure 3 – Small artificial BSS 
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Performance of approximation algorithm 

Figure 4 compares system throughput rates from the simulation to those from the approximation algorithm. 

Figure 5 plots the relative error, which measures the accuracy of the approximation algorithm compared to the 

simulation model. The relative error can be defined as follows: 

( ) ( ) ( )app sim sim
( , ) , , 100% ,n B TH n B TH n B TH n B  = −  

 (20) 

where ( )app
,  TH n B  and ( )sim

,  TH n B  denote the system throughput rates from the approximation algorithm and 

from the simulation model, respectively. Figure 5a shows that the relative error decreases from 23% to 2% as 

the fleet size and total number of docks increase. Figure 5a illustrates that the relative error decreases from 23% 

to 2% as the fleet size and total number of docks increase. However, the throughput rate experiences a peak of 

less 5% error rates as the number of docks increases from approximately 100 to 250, which can be attributed 

to the significant decrease in throughput rate for scenarios with 100 to 250 docks, as shown in Figure 4. Such 

accuracy performance implies that the approximation algorithm is more advantageous for its applications on 

large-scale FDBSS.  

 

 
a) Simulation 

 
b) Approximation 

Figure 4 – BSS effective throughput rates vs. the fleet size and docks 

The relative errors of the approximation algorithm are also tested for different numbers of stations. We set 

the number of stations from 4 to 20 stations, respectively, and accordingly updated the parameters, including 

 ,  , P  and  . Figure 5b demonstrates that the relative errors of the approximation algorithm are bounded by 

less than 1%. The accuracy of the algorithm appears to be independent of the number of stations. Practically, 

our approximation algorithm is promising for industrial applications due to its ease of programming and its 

ability to provide accurate evaluations of throughputs in large-scale FDBSSs.  

 

 
a) 

 
b) 

Figure 5 – Relative error of effective throughput rates between simulation and approximation 
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Effects of bike fleet size on throughput rate 

Figure 6 illustrates the changes in nominal and effective system throughput rates with varying bike fleet sizes 

for different dock allocations. The nominal and effective throughput rates are equal for fleet sizes below their 

optimal values: 231 bikes (point B) for 1004 docks and 530 bikes (point C) for 4004 docks. These rates 

remain constant for fleet sizes ranging from 170 (point A) to 231 (point B) for 1004 docks and from 170 

(point A) to 530 (point C) for 4004 docks. However, when the fleet size exceeds these optimal values, the 

effective throughput rates remain constant and more users are unable to return bikes, thereby reducing the 

FDBSS service quality. The effective throughput rate increases up to an upper bound as fleet size increases, 

confirming Property 1. Differentiating between effective and nominal throughputs clarifies the misconception 

that larger bike fleet sizes always enhance FDBSS efficiency. This distinction is crucial for determining the 

appropriate bike fleet size. 

 
Figure 6 – Nominal and effective throughput rates vs. bike fleet sizes 

 

Effects of number of docks on throughput rate 

Figure 7a shows the effective system throughput rates with the bike fleet size for 4×100, 4×140 and 4×180 

and 4×220 docks. In the figure, if fleet size is less than 224 bikes or more than 648 bikes, the effective system 

throughput rates are identical for the four dock allocations; if fleet size is between 224 and 648 bikes, say, 320 

bikes, refer to points 1A , 1B , 1C  and 1D , the effective system throughput rates are 34.5, 30.6, 27.1 and 26.5 

pax/min for 4×100, 4×140 and 4×180 and 4×220 docks, respectively. This implies that allocating more docks 

can decrease effective system throughput rates for certain fleet sizes. Figure 7a also displays that if the fleet 

sizes exceed their optimal values, 400, 484, 582 and 647 bikes, associated with points 2A , 2B , 2C  and 2D , 

for the four dock allocations, the effective throughput rate remains nearly constant as docks increase. 

Figure 7b illustrates the relationship between the FDBSS throughput rate and the number of docks at each 

station for varying bike fleet sizes. For small fleet sizes ( n =40-160), increasing the number of docks does not 

enhance the effective system throughput rate. For large fleet sizes ( n =240–400), it initially decreases the 

throughput rate before stabilising. This occurs because small fleet sizes have low probabilities of fully occupied 

docks and high probabilities of successful bike returns, meaning additional docks do not significantly increase 

the throughput rate. Conversely, with large fleet sizes, more docks can lead to bike accumulation at certain 

stations, reducing bike availability at others and thereby decreasing the system throughput rate. Overall, 

observations from Figure 7 indicate that increasing the number of docks does not improve the effective system 

throughput rate for small and large fleet sizes and can even reduce it for medium fleet sizes. Thus, the belief 

that allocating more docks at stations improves the FDBSS efficiency is a misconception. 
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a) bike fleet size 

 
b) number of docks 

Figure 7 – Effects on effective throughput rate 

Diagnosis of station states 

This section aims to demonstrate whether Proposition 2 can diagnose stations with bike surplus and 

deficiency. Table 2 lists the parameter settings for four scenarios, where scenarios 1, 3 and 4 have identical 

average user arrival rates. In addition, according to Jiang [29], a well-performing FDBSS should ensure that 

each station has at least 20% of its total docks vacant and 20% of its total docks occupied during peak periods. 

Thus, we set 1
0.2 = , 2

0.8 = , 1 2
0.8 = = . 

Table 2 – Scenarios settings 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Initial number of bikes in 

stations 
( )70 70 70 70，，，

 
( )70 70 70 70，，，

 
( )70 70 70 70，，，

 
( )70 70 70 70，，，

 

Number of docks  ( )100100100100， ， ，
 

( )100100100100， ， ，
 

( )100100 70130， ，，
 

( )100100100100， ， ，
 

Average user arrival rate 

(person/minute) 
( )10 10 10 10，，，

 
( )6 6 10 10，，，

 
( )10 10 10 10，，，

 
( )10 10 10 10，，，

 

Routing matrix 

1 7 2 7 3 7 1 7

1 7 2 7 3 7 1 7

3 11 2 11 4 11 2 11

5 11 1 11 3 11 2 11

 
 
 
 
  
   

1 7 2 7 3 7 1 7

1 7 2 7 3 7 1 7

3 11 2 11 4 11 2 11

5 11 1 11 3 11 2 11

 
 
 
 
  
   

1 7 2 7 3 7 1 7

1 7 2 7 3 7 1 7

3 11 2 11 4 11 2 11

5 11 1 11 3 11 2 11

 
 
 
 
  
   

1 6 1 3 1 3 1 6

1 3 1 6 1 6 1 3

1 3 1 6 1 6 1 3

1 6 1 3 1 3 1 6

 
 
 
 
  
   

 

Table 3 lists the simulated and approximated probabilities of bike surplus and deficiency for the four 

scenarios. It shows that the approximated and simulated probabilities are consistent, which suggests that 

Proposition 3 can effectively diagnose. Figure 8 displays the nominal and effective system throughput rates for 

the four scenarios. It indicates that bike surplus and deficiency occur in scenarios 1, 2 and 3 (Figure 8a–c), not 

in scenario 4 (Figure. 8d). Only in scenario 4 can the condition T( )− =I P λ 0  be verified to hold. The FDBSS then 

has equal and maximal nominal and effective throughput rates, as shown in Figure 8d and is thus completely 

self-balanced.  

 



Promet – Traffic&Transportation. 2025;37(2):421-439.  Smart Cities and Urban Mobility  

435 

Table 3 – Comparison of approximations and simulation probabilities of bike surplus and deficiency 

 Approximation Simulation 

Station No. 1 2 3 4 1 2 3 4 

Scenario 1 

( )
i

P X    0.9923 0.9998 0.0000 0.9997 0.9735 0.9955 0.0000 0.9625 

( )
i

P X    0.0000 0.0000 0.9521 0.0000 0.0000 0.0000 0.9885 0.0000 

Scenario 2 

( )
i

P X    0.0109 0.4210 0.3906 1.0000 0.0000 0.3775 0.2820 0.9976 

( )
i

P X    0.6379 0.0589 0.0707 0.0000 0.7085 0.0000 0.0360 0.0000 

Scenario 3 

( )
i

P X    0.9178 0.9988 0.0000 0.9898 0.8976 0.9905 0.0000 0.8776 

( )
i

P X    0.0000 0.0000 0.9676 0.0000 0.0000 0.0000 0.9895 0.0000 

Scenario 4 

( )
i

P X    0.4750 0.4750 0.4750 0.4750 0.4420 0.5145 0.4860 0.4630 

( )
i

P X    0.0415 0.0415 0.0415 0.0415 0.0005 0.0025 0.0000 0.0275 

Note: The colours of the numbers indicate the stations with bike deficiency, surplus and balance, respectively. 

 

 
Figure 8 – Throughput rate vs. bike fleet size 
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4.2 Experiments on a real-world BSS 

The proposed model can be applied to real-world FDBSS. We implemented it in the Higher Education 

Town, Dushu Lake, Suzhou, China, as illustrated in Figure 9. This system comprises 37 stations, 442 bikes and 

1260 docks. Operational data was collected over 24 hours on 12 October 2019, including user rental and return 

times, as well as station, dock and user identities. Data analysis yielded the average travel time, routing matrix 

and an average effective system throughput rate of 86.58 pax/h. We set 1
0.2 = , 2

0.8 = , 1 2
0.8 = = . To 

estimate user arrival rates at stations, we used bike operation data and video footage from cameras at stations 

to identify lost users who were unable to rent bikes. We also identified users who could not return bikes at 

fully occupied stations and redirected them to available stations based on their features, bodily form and 

clothing. Subsequently, we established the overflow routing matrix. Observations indicate that users generally 

return bikes to the nearest station from their destination stations. For brevity, the average cycle times, adjacency 

return and routing matrices, and dock allocation are not listed here. 

By using the approximation algorithm, we can easily compute that the effective system throughput rate is 

88.4 pax/h, with a relative error of 2.04% compared to the real throughput rate of 86.58 pax/h. Figure 10 displays 

the average user arrival rates and effective station throughput rates. The FDBSS has 30 bike-deficient stations 

and four bike-surplus stations (No. 4, 5, 7 and 34), where user demands at stations 1, 9, 22, 26, 27 and 37, 

exceeding more than 5 pax/h, cannot rent bikes. The bike queues within the FDBSS are highly unbalanced. 

Relying solely on users is insufficient to achieve self-balance, leading to potential unavailability of bikes for 

renting and returning at surplus and deficient stations. 

 
Figure 9 – Bike station locations in case example 

 
Figure 10 – Average user arrival rates and effective throughput rates 
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Figure 11 shows the effective system throughput rates with bike fleet size. As the fleet size expands from 0 

to 225 bikes, the effective system throughput rate gradually increases in a zigzag pattern, reaching its maximum 

value of 88.4 pax/h once the fleet size exceeds the optimal 225 bikes. The fleet size of 442 bikes is clearly 

excessive. 

 
Figure 11 – Effective throughput rates vs. bike fleet sizes 

5. CONCLUSION 

This paper presents a closed queuing network model to approximate bike queues in finite docked bike 

sharing systems (FDBSS), accounting for bike spillovers from stations. The derived approximation algorithm 

can efficiently solve for system throughput rates, expected bike dwell time and optimal bike fleet size. 

Additionally, a method for diagnosing stations with bike surplus and deficiency is developed, revealing 

operational properties of the FDBSS. The proposed algorithm and diagnostic method are straightforward to 

code and offer high solution efficiency, indicating strong potential for industrial applicability. Furthermore, 

our study dispels the misconception that simply expanding bike fleet size and adding more docks will 

invariably enhance the FDBSS efficiency. 

Future research can be explored in several directions. First, this paper assumes stationary user arrivals, 

whereas time-varying user arrivals are common in the real FDBSS. Thus, the approximation algorithm could 

be extended to examine the FDBSS with dynamic user arrival rates. Second, FDBSS planning involves various 

decision variables, including station locations, spacing and cycling distances, which are not investigated in this 

study and should be considered in future research. Third, we have proven that if the condition T( )− =I P λ 0  

holds, the FDBSS can maximize its throughput rate. It is necessary to optimize dock allocation to adjust user 

flows spilling over from stations to meet this condition, allowing the FDBSS to operate at maximum system 

throughput without the need for bike relocation. 
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彭向、王静妍、张勇 

有限车桩自行车共享系统中排队近似 

摘要： 

面向有限车桩共享自行车系统，本文提出了近似估计自行车排队的封闭排队网络模

型。该模型能考虑因站点满桩和空桩而导致的自行车溢出和用户流失，确定系统吞

吐率及其他绩效指标。为了克服封闭排队网络的计算困难，基于所建模型提出了一

种近似算法。通过揭示有限车桩共享自行车系统的固有特性表明: (i) 系统有效吞吐率

随自行车数量增加而增加，最终收敛到上限值。(ii) 增加车桩不一定增加甚至会降低

有效吞吐率。(iii) 系统在某些条件下能实现自平衡，此时各站点的自行车不会过剩或

不足，且系统吞吐率最大。(iv) 用户还车路线上只要存在站点的空桩概率大于零，用

户有限次尝试归还即能成功还车。通过小算例和真实案例证明了近似计算法的准确

性和适应性以及系统的特性。 
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有限车桩自行车共享系统、吞吐率、近似算法、封闭排队网络 


