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ABSTRACT 

Previous studies have primarily focused on the effect of the built environment on ridership 

during weekdays and weekends. This paper aims to investigate the spatial heterogeneity of 

the effect of built environment factors on ridership at metro stations during National Day 

holidays. Beijing is divided into three zones from inner to outer areas. Taking metro station 

boarding and alighting ridership during National Day holidays as the dependent variable, 13 

built environment factors were selected as independent variables according to the “7D” 

dimension of the built environment. The recommended pedestrian catchments (PCA) 

combinations for the three zones in Beijing are 400 m_500 m_400 m by using the Multi-

Scale Geographically Weighted Regression (MGWR) model. We investigated the effect of 

built environment factors on metro ridership and spatial heterogeneity. The influencing 

factors that have significant effects on both boarding and alighting ridership are building 

density, number of commercial facilities, bus lines density, number of entrance and exit, 

number of office facilities, mixed utilization of land and road density. The MGWR model 

results are helpful to propose targeted strategies for revitalising the built environment around 

metro stations. 
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1. INTRODUCTION 

The holiday travel has become a popular way for people to relax and unwind in recent years, and the travel 

demand is increasing during holidays. Beijing, being a famous tourist city in China, has a large number of 

tourists, and this has significantly affected the city’s travel patterns. The city’s mode of travel is also gradually 

shifting from car travel to metro transit travel [1, 2]. In accordance with the consensus on transit-oriented 

development (TOD), the urban transportation and planning departments actively promote the rapid 

development of the metro transit system [3]. TOD greatly promotes the city’s green travel and ensures 

sustainable land use development. In the research on travel behaviour, it is found that behaviours such as urban 

travel behaviour and leisure consumption are highly related to holidays [4, 5]. Undoubtedly, people’s travel 

during holidays plays a significant role in the development of the urban economy and metro transportation [6]. 

In China, the National Day holidays is listed as one of the longest holidays of the year. The Beijing economy’s 

robust vigour was showcased with a flowing population, booming consumption and busy construction during 

National Day holidays. Compared with weekdays or weekends, metro ridership, bus and high-speed railway 
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shows an increasing trend during the National Day holidays. During the National Day holidays, the average 

daily ridership in Beijing metro reaches over 5 million [7], far higher than the average daily ridership of 1 

million on weekdays [8]. This indicates that Beijing’s public transport system will face greater pressure during 

the National Day holidays. In daily operation, when the Beijing metro system faces the large ridership, some 

stations will take measures such as temporary traffic restriction and fare increase according to the situation. 

Therefore, when Beijing metro meets holidays or activities, this paper takes into account a series of flexible 

measures to adjust the Beijing metro ridership. 

However, the current analysis of metro transit ridership primarily focuses on data from weekdays and 

weekends. Due to the differences in travel patterns between non-holidays (weekdays) and National Day 

holidays [9, 10], tourists were more time-sensitive during holidays. Fast and schedule-accurate [11] metro 

transit helped travellers plan their trips or activities. The metro transit experiences increased the burden during 

holidays, yet few studies have delved into the relationship between built environment factors and metro 

ridership during these periods [12]. Therefore, it is necessary to explore affecting metro ridership in the built 

environment factors around metro stations during holidays in Beijing, which helps predict passenger demand 

and develop targeted urban transportation management strategies.  

Previous scholars have mainly used global regression models such as Ordinary Least Squares (OLS) [3, 

13], Two Stage Least Square (2SLS) [14], Spatial error model (SEM) [15, 16], and Spatial lag model (SLM) 

[16], to explore the relationship between metro station-level ridership and the built environment factors. The 

global model was found to calculate coefficients that were not significant differences in space [17]. The 

Geographically Weighted Regression (GWR) model [18–20], as a local regression model based on geo-

graphical location, takes into account the spatial variability of the factors influencing metro ridership. The 

model was proved to have better fitting results compared to the OLS model and can reveal the factors of spatial 

heterogeneity in these studies [17, 21, 22]. However, the GWR model assumes that all processes are limited 

to operate on the same spatial scale. This limitation of the GWR model was removed by the proposal of Multi-

Scale Geographically Weighted Regression (MGWR) [23, 24], which allows each influencing factor to have 

its optimal bandwidth, permitting different processes to be operated at different spatial scales. The MGWR 

model is widely used in analysing the spatial variability of residential land prices [25], the evolution of the 

spatial pattern of environmental and scientific factors [26, 27], and other domains. Some scholars [28, 29] 

applied the MGWR model to the relationship between the built environment factors and the ridership during 

the weekdays and weekends, but it lacks studying the ridership during holidays.  

Influencing factors mainly included environmental factors, socio-economic factors and transportation 

environment factors. Most scholars [3, 15, 30] selected the influencing factors based on previous research 

results or according to their insights. Some scholars have tried to systematically select influencing factors for 

evaluating the built environment. Cervero and Kockelman [31] have proposed “density”, “diversity” and 

“design” as the principles for evaluating the built environment, namely the “3D” dimension of the built 

environment. Later, Cervero et al. [32] added two additional dimensions: “transportation distance” and 

“destination accessibility,” thus proposing the “5D” dimension of the built environment. Since then, many 

studies have used variables related to the “5D” dimension of the built environment to analyse the effect of the 

built environment on urban metro ridership [13, 33, 34]. Therefore, the “5D” dimension of the built 

environment has developed relatively maturely for a while. In recent years, Chris De Gruyter et al. [35] added 

the “demand management” and “demographic” dimensions to the “5D” dimension of the built environment 

and proposed the “7D” dimension of the built environment. Therefore, selecting the built environment 

influencing factors based on the built environment “7D” dimension [28] may be more helpful to 

comprehensively analyse the built environment’s effect on metro ridership.  

The station’s catchment area was typically determined by the walking distance for most pedestrians 

accessed to metro stations, so this area was also called Pedestrian Catchment Areas (PCA) [3, 36, 37]. Metro 

station PCA was mostly determined based on pedestrian accessibility [38], drawing on previous studies [39] 

and comparing the regression goodness-of-fit [28]. Metro station PCA shapes were mostly circular buffer 

zones [40], Thiessen polygons or Thiessen polygons overlapping with circular buffer zones [28]. In addition, 

Transit Oriented Development (TOD) was analysed for stations with a circular buffer centred on the public 
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station. In the area of dense metro station distribution, metro station PCA will overlap, but the overlapping 

areas may all have an effect on the ridership. Therefore, many circular buffers of different sizes were used in 

the literature, with radius ranging from 250 metres to 1000 metres [3, 15, 16, 40], with a wide range of sizes. 

There may still be significant differences in urban transit usage in different areas of the same city, and the 

distribution of metro stations is also different. Some scholars divided the city into three zones and used a 

uniform PCA for each zone to analyse the metro stations ridership [18], but did not determine different 

recommended metro station PCAs according to different zones. In the mega-city of Beijing, there is an 

imbalance in the distribution of ridership [28], and the density of inner and outer peripheral metro stations will 

be different. Therefore, in this study, the circular buffer zone is chosen as the metro station PCA shape, and it 

is necessary to divide the city into different zones and use different metro station PCA to analyse the effect of 

the built environment on metro stations, which may improve the explanatory power of the model. 

This study contributes in three ways. Empirically, no study has explored the effect of the built environment 

on metro ridership during the National Day holidays. We use the MGWR model to analyse the effect degree 

and spatial heterogeneity of the built environment on metro ridership. Methodologically, although a few studies 

have considered different zones to use different PCA to collect the built environment influencing factors, some 

regression models have been used to explore the global and local relationships between the metro ridership 

and influencing factors. However, they did not determine the best PCA combination for different areas to make 

the regression model fit the best. Finally, although some studies point out that certain built environment 

influencing factors are correlated with the metro ridership, there is a lack of targeted built environment renewal 

strategies for specific station. To address these problems, using the Beijing metro transit as a case study, we 

identified the influencing factors based on the “7D” dimension of the built environment. We utilised the 

MGWR model to investigate the effect of the built environment on metro station ridership during National 

Day holidays. The main objectives are: (1) to determine the PCA combinations of metro stations with the best 

goodness of fit of the regression mode; (2) to study the differences in the effect of the built environment factors 

on metro ridership during the National Day holidays; (3) to propose built environment renewal strategies for 

low-vitality metro stations. With the goal of improving the accuracy of ridership prediction at metro stations 

during the National Day holidays, the results have a significant reference value for zoning the metro stations 

PCA, proposing targeted built environment renewal strategies and scientifically formulating ridership service 

and management plans. 

2. DATA SOURCES 

2.1 National Day holidays ridership data 

All 291 metro stations that were been built and in service were taken into consideration during data 

collection in 2020. Figure 1 shows all the metro stations in Beijing, and the colours on the map show the range 

of three zones: the area within the third ring road (red), the area between the third ring road and the fifth ring 

road (yellow), and the area outside the fifth ring road (white). We obtained hourly boarding and alighting 

ridership data for the Beijing Metro during the week from 1 October 2020 to 7 October 2020, as well as 

weekday ridership from 12 October 2020 to 16 October 2020. There are two distinct peak periods for boarding 

and alighting ridership on non-holidays (weekdays) [28]. However, no obvious peak hours were found in the 

trend analysis of hourly boarding and alighting ridership during the holidays (Figure 2). The total metro ridership 

on holidays is much higher than the weekdays ridership. It was finally determined that the study periods for 

both boarding and alighting ridership during the holidays were from 7:00–20:00. To minimise the effect of 

daily traffic fluctuations, we took the average of the seven-day boarding and alighting ridership as the 

dependent variable, respectively. Figure 3 show the spatial distribution of boarding and alighting ridership at 

291 metro stations. Metro stations in blue indicate stations with low ridership and low vitality. 
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Figure 1 – Beijing metro stations distribution map 

 
Figure 2 – Boarding and alighting ridership of metro stations during National Day holidays and weekdays in Beijing 
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(a) (b) 

Figure 3 – Spatial distribution of metro stations during National Day holidays: a) The boarding ridership of metro Stations during 

National Day holidays in Beijing; b) The alighting ridership of metro stations during National Day holidays in Beijing 

2.2 Influencing factors 

According to the 7D dimension of the built environment, we constructed the index system of influencing 

factors (Table 1). The road network data, building outline data and building height data were obtained from the 

Open Street Map (https://www.openstreetmap.org/ (accessed on 10 October 2021)). Points of interest (POIs) 

were obtained from the Golder API (https://lbs.amap.com/ (accessed on 10 October 2021)). Population data 

was obtained from WorldPop (https://www.worldpop.org/) [41, 42]. POIs can better reflect the influencing 

factors of metro ridership and passenger’s travel purposes [43, 13]. It is divided into three main land use types: 

the numberof commercial facilities (the number of shopping, restaurants, scenic, and hotel facilities), the 

number of office facilities (the number of financial and office facilities) and the number of public service 

facilities (the number of science, education, medical, government and transportation facilities).  

Table 1 – Built environment influencing factors 

Built environment dimension Influencing factors Unit 

Density Building density (Den. B) m2/km2 

Diversity Mixed utilisation of land (MUL)  

Design 
Road density (Den. R) km/km2 

Floor area ratio (FAR)  

Destination accessibility 

Number of commercial facilities (Num.CF) 

quantity Number of office facilities (Num. OF) 

Number of public service facilities (Num. PSF) 

Distance to transit 
Density of bus line (Den. BL) 

km/km2 
Number of entrance and exit (Num.EE) 

Demand management 
Number of parking lots (Num.PL) 

quantity 
Number of bus stops (Num.BS) 

Demographics 
Population density (Den. P) persons / km2 

Resident population (RP) persons 

https://www.worldpop.org/)%20%5b41
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3.  RESEARCH METHODOLOGY 

3.1 Research framework 

The research framework is shown in Figure 4. We employ the following five steps to explore the effect of 

the built environment on the metro ridership during the National Day holidays by using the MGWR model. 

These steps include: (1) data collection, (2) metro station zoning, (3) factors construction, (4) factors selection 

and (5) results. Firstly, the data is prepared based on multi-source big data. Secondly, Beijing is divided into 

three zones, and the PCA of each zone is determined according to the development of the metro station. 

Subsequently, 36 PCA combinations were identified. Thirdly, according to the “7D” dimension of the built 

environment, the influencing factors data set is constructed. Then, the multicollinearity test and spatial 

autocorrelation test were used to select the influential factors with high correlation. Finally, the PCA 

combination suitable for this study was determined by comparing the MGWR model results. The results are 

visualised to analyse the effects of the built environment on metro ridership and spatial heterogeneity, and to 

propose urban renewal strategies for low-vitality metro stations. 

 
Figure 4 – Research framework 
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3.2 Delineation of metro station PCA during National Day holidays 

A crucial step for using regression models to assess the factors influencing metro ridership is to define the 

catchment area of a station. Researchers usually focus on analysing metro station ridership using a uniform 

PCA in a city. In order to capture the variation in metro transit ridership by adopting different PCA sizes for 

different areas of a city, we divided Beijing into three zones based on the distribution of metro stations. The 

three zones are: the area within the third ring road, the area between the third ring road and the fifth ring road, 

and the area outside the fifth ring road. The distribution of metro stations within the third ring road is more 

intensive, and those between the third ring road and the fifth ring road are relatively uniform, while those 

outside the fifth ring road show a radial pattern, with a sparser distribution. Since on National Day holidays 

tourists prefer to stay in hotels near metro stations or attractions for the convenience of traveling, the tourists 

starting point and destination may overlap more around the metro station, resulting in a better fitting of the 

MGWR model for the smaller size PCA range of metro stations. Circular buffer zones with radii of 200 metres, 

300 metres and 400 metres were selected for the metro stations within the third ring road, circular buffer zones 

with radii of 300 metres, 400 metres and 500 metres for the metro stations between the third ring road and the 

fifth ring road, and circular buffer zones with radii of 400 metres, 500 metres, 600 metres and 700 metres for 

the metro stations outside the fifth ring road. A total of 36 PCA combination scales were constructed. 

3.3 Multiple collinearity test and spatial autocorrelation test of the National Day holidays influencing 

factors 

Multiple collinearity test 

Before fitting the regression model, there may be a high intercorrelation between the untested influencing 

factors. The 36 PCA combination scale models were tested for multicollinearity and the Variance Inflation 

Factor (VIF) was used as a measure of the multicollinearity severity of each influencing factor. A VIF value 

greater than 10 indicates that there is serious multicollinearity between the influence factor and others, which 

should be removed [44]. The calculation formula is as follows: 

2
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 is the coefficient of determination of the independent variable i.  

Spatial autocorrelation analysis 

Before building the spatial regression model, it is essential to determine whether all the influence factors 

have spatial autocorrelation. Moran’s I is the correlation coefficient proposed by Patrick Alfred Pierce Moran 

(1950) for measuring spatial autocorrelation [45]. The calculation formula is as follows: 

1 1

2

1 1

( )( )
'  

n n

ij i ji j

n n

iji j

w x x x x
Moran s I

S w

= =

= =

− −
=
 

 
 (2) 

where 
2S  is the variance; n is the total number of metro stations; ix and jx  are the ridership of metro station i 

and metro station j, respectively; x is the mean value of all metro stations’ ridership; and ijw  is the spatial 

weight between metro station i and j.  

Multi-scale geographically weighted regression model 

The multi-scale geographically weighted regression (MGWR) model adopted separate optimal bandwidths 

for each factor and produced more accurate local parameter values [24]. The calculation formula is as follows: 
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where 
iy is the standardised value of National Day holidays ridership at metro site i ; ( ),i iu v  is the latitude and 

longitude coordinates of metro site i; 
0bw is the constant term for metro site i with coordinates ( ),i iu v ; 

bwk  is 

the local regression coefficient of the kth influencing factor for metro station i ; bwk is the optimal bandwidth 

of the kth influencing factor; ikx
 is the standardised value of the kth influencing factor for metro station i; i  is 

the random error for metro station i; n is the number of influencing factor; y is the mean value of metro stations’ 

ridership; ys is the standard deviation of metro stations’ ridership; kx  is the mean of the standardised value of 

the kth influencing factor; xks  is the standard deviation of the standardised value of the kth influencing factor. 

4.  RESULTS 

4.1 Results of the multicollinearity test and spatial autocorrelation test 

Before constructing the MGWR model, it is necessary to determine whether there is a significant linear 

relationship between the explanatory variables. Therefore, the data can be processed through the 

multicollinearity test in order to build a better predictive model. When conducting the collinearity test, the 

population density VIF value was greater than 10 in the metro station PCA combination of 300m_400m_400m, 

indicating that the factor has a serious multicollinearity problem with the other factors (Table 2). Therefore, it 

is excluded from the regression analysis. 

Table 2 – VIF results of 13 influencing factors 

Buffer radius 

combination /m 

VIF results of 13 influencing factors 

Den. B MUL Den. R FAR 
Num.C

F 

Num. 

OF 

Num. 

PSF 

Den. 

BL 

Num. 

EE 

Num. 

PL 

Num. 

BS 
Den. P RP 

200_300_400 2.1 1.3 2.5 2.6 1.7 2.0 2.3 2.0 1.2 2.7 1.5 2.5 1.2 

200_300_500 2.1 1.3 2.7 2.5 2.0 2.1 2.4 2.0 1.2 3.0 1.7 2.7 1.4 

200_300_600 2.2 1.5 2.9 2.6 4.7 2.4 3.6 2.2 1.3 3.5 2.3 2.9 1.8 

200_300_700 2.2 1.6 3.0 2.5 5.6 2.6 4.0 2.3 1.3 4.2 2.7 3.2 2.0 

200_400_400 2.1 2.5 2.7 2.5 2.0 2.8 3.5 2.1 1.2 4.0 1.5 2.5 1.3 

200_400_500 2.1 1.3 2.9 2.6 2.1 2.6 3.1 2.3 1.2 3.8 1.7 2.7 1.5 

200_400_600 2.2 1.5 3.0 2.6 4.6 2.7 4.0 2.4 1.3 3.9 2.2 2.8 1.8 

200_400_700 2.1 1.6 3.1 2.6 5.3 2.8 4.1 2.6 1.3 4.2 2.6 3.1 2.0 

200_500_400 2.1 1.3 2.8 2.4 2.5 3.2 5.0 2.2 1.2 5.7 1.6 2.6 1.7 

200_500_500 2.1 1.3 3.0 2.4 2.5 3.0 1.3 2.4 1.2 5.1 2.4 2.8 1.7 

200_500_600 2.2 1.5 3.2 2.6 4.7 3.0 4.9 2.6 1.2 4.7 2.0 2.9 1.9 

200_500_700 2.2 1.5 3.3 2.6 5.2 3.0 4.7 2.8 1.2 4.6 2.4 3.3 2.0 

300_300_400 2.4 1.2 2.1 3.2 1.6 2.4 2.5 1.7 1.2 2.9 1.4 2.8 1.3 

300_300_500 2.4 1.3 2.3 3.1 1.8 2.3 2.4 1.7 1.2 2.9 1.6 3.1 1.4 

300_300_600 2.5 1.5 2.4 3.0 3.3 2.4 3.3 1.8 1.3 3.1 2.2 3.4 1.7 

300_300_700 2.5 1.5 2.5 2.8 4.9 2.6 3.6 1.9 1.3 3.6 2.7 3.8 1.9 

300_400_400 2.3 1.3 2.0 3.1 1.8 2.9 3.3 1.7 1.2 3.6 2.5 11.2 5.3 

300_400_500 2.4 1.3 2.2 2.2 1.9 2.8 2.8 1.8 1.2 3.3 1.6 5.1 1.5 

300_400_600 2.4 1.3 2.4 3.0 2.2 2.8 3.0 1.9 1.2 3.3 2.0 4.4 1.7 

300_400_700 2.4 1.4 2.5 2.9 2.4 2.8 3.1 2.0 1.2 3.5 2.4 5.8 1.7 

300_500_400 2.3 1.2 2.1 2.7 2.2 3.2 4.5 1.7 1.2 4.9 1.5 3.9 1.6 

300_500_500 2.4 1.3 2.3 2.8 2.2 3.0 3.8 1.8 1.2 4.3 1.6 3.2 1.6 
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Buffer radius 

combination /m 

VIF results of 13 influencing factors 

Den. B MUL Den. R FAR 
Num.C

F 

Num. 

OF 

Num. 

PSF 

Den. 

BL 

Num. 

EE 

Num. 

PL 

Num. 

BS 
Den. P RP 

300_500_600 2.4 1.5 2..4 2.9 4.1 3.0 4.3 2.0 1.3 4.0 2.0 3.5 1.7 

300_500_700 2.5 1.6 2.6 2.9 4.5 3.0 4.1 2.1 1.3 3.9 2.3 3.9 1.8 

400_300_400 2.6 1.2 1.8 3.3 1.9 2.7 4.1 1.5 1.2 4.9 1.5 2.8 1.5 

400_300_500 2.7 1.3 2.0 2.3 1.9 2.6 3.5 1.6 1.2 4.3 1.6 3.1 1.6 

400_300_600 2.7 1.3 2.1 3.2 2.1 2.6 3.5 1.6 1.2 4.0 2.0 3.4 1.8 

400_300_700 2.7 1.3 2.2 3.1 2.2 2.6 3.4 1.7 1.2 4.0 2.4 3.8 1.9 

400_400_500 2.6 1.3 1.9 3.9 1.9 2.9 3.5 1.6 1.2 4.2 1.5 3.1 1.6 

400_400_600 2.7 1.3 2.0 3.7 2.1 2.9 3.4 1.7 1.2 3.8 1.9 3.4 1.7 

400_400_700 2.7 1.4 2.1 3.5 2.1 2.9 3.3 1.8 1.2 3.8 2.2 3.9 1.7 

400_500_400 1.7 1.2 1.7 3.3 2.1 3.2 4.8 1.5 1.2 5.3 1.5 2.9 1.6 

400_500_500 2.6 1.3 1.9 3.4 2.1 3.1 4.0 1.6 1.2 4.6 1.5 3.2 1.6 

400_500_600 2.7 1.3 2.0 3.5 2.2 3.1 3.7 1.7 1.2 4.0 1.8 3.5 1.6 

400_500_700 2.7 1.4 2.1 3.4 2.3 3.0 3.5 1.8 1.2 3.9 2.1 4.0 1.6 

At the same time, whether the influencing factors are spatially clustered will also have a certain impact on 

the result. Spatial autocorrelation test can detect the significant correlation between the influencing factors and 

provide a basis for the feasibility of spatial models. The significance of the influencing factors was assessed 

by calculating Moran’s I value, z-Score and p-Value. The results of spatial autocorrelation tests under one of 

36 PCA combinations in Table 3. The Moran’s I values are all greater than 0, indicating that all of the influencing 

factors have a positive spatial autocorrelation. In addition, z-Score and p-Value indicate that the null hypothesis 

can be rejected [46], which indicates that all influencing factors exhibit significant clustering. 

Table 3 – Spatial autocorrelation test of all factors 

Built environment 

dimension 
Influencing factors Moran’s I z-Score p-Value 

Density Den. B 0.50 12.87 0.00 

Diversity MUL 0.06 1.71 0.05 

Design 
Den. R 0.25 6.48 0.00 

FAR 0.51 13.14 0.00 

Destination accessibility 

Num.CF 0.21 5.10 0.00 

Num. OF 0.43 11.04 0.00 

Num. PSF 0.47 12.16 0.00 

Distance to transit 
Den. BL 0.27 6.91 0.00 

Num.EE 0.21 5.37 0.00 

Demand management 
Num.PL 0.51 13.07 0.00 

Num.BS 0.14 3.59 0.00 

Demographics 
Den. P 0.81 20.95 0.00 

RP 0.30 7.86 0.00 
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4.2 Model fitting results and recommended PCA combinations of metro stations during NationalDay 

holidays 

The coefficient of determination (R2) and the adjusted coefficient of determination (Adj. R2) is higher, 

indicating a better fit. Moreover, lower values of the Akaike information criterion (AICc) and the residual 

square sum (RSS) also indicate a better fit. The results of the goodness-of-fit of the MGWR model for the 36 

different PCA combination scales of the metro stations are shown in Table 4. The maximum coefficients of 

determination (R2) for the boarding and alighting ridership MGWR models are 0.72. The recommended metro 

station PCAs are circular buffer zones with a radius of 400 metres (within thethird ring road ), 500 metres 

(from the third ring road to the fifth ring road), and 400 metres (outside the fifth ring road ). Under this PCA 

combination, the RSS is the lowest for boarding ridership and the second lowest for alighting ridership. 

Table 4 – Goodness of fit results of the MGWR regression models under different PCA combination 

Buffer radius 

combination /m 

Boarding ridership Alighting ridership 

R2 Adj.R2 AICc RSS R2 Adj.R2 AICc RSS 

200_300_400 0.68 0.61 625.39 93.66 0.65 0.58 646.04 101.85 

200_300_500 0.66 0.60 625.36 99.27 0.63 0.56 652.32 108.57 

200_300_600 0.66 0.59 625.13 100.52 0.62 0.55 653.70 110.20 

200_300_700 0.64 0.58 627.89 103.45 0.61 0.54 656.26 112.95 

200_400_400 0.70 0.63 616.17 88.09 0.65 0.58 640.42 102.84 

200_400_500 0.68 0.61 618.39 94.59 0.63 0.56 644.28 108.03 

200_400_600 0.67 0.61 619.38 96.00 0.62 0.56 646.59 110.31 

200_400_700 0.66 0.59 621.88 100.42 0.62 0.55 649.75 111.89 

200_500_400 0.70 0.63 610.22 87.33 0.64 0.57 647.00 104.66 

200_500_500 0.70 0.63 616.39 88.72 0.64 0.56 655.34 105.14 

200_500_600 0.69 0.62 617.75 91.69 0.61 0.55 648.28 112.58 

200_500_700 0.64 0.58 621.13 105.31 0.61 0.55 649.99 113.38 

300_300_400 0.71 0.63 634.31 84.09 0.63 0.55 661.30 109.11 

300_300_500 0.70 0.62 635.73 88.58 0.63 0.55 663.38 108.68 

300_300_600 0.70 0.61 636.57 89.55 0.67 0.59 658.06 94.89 

300_300_700 0.68 0.60 644.53 94.66 0.66 0.57 664.60 99.14 

300_400_400 0.71 0.63 629.76 83.38 0.70 0.61 650.75 88.57 

300_400_500 0.72 0.63 634.03 82.57 0.67 0.59 655.50 95.93 

300_400_600 0.70 0.62 631.90 88.40 0.67 0.58 653.51 96.91 

300_400_700 0.68 0.60 641.20 94.07 0.66 0.57 662.15 99.75 

300_500_400 0.72 0.63 634.14 82.40 0.72 0.63 649.74 80.84 
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Buffer radius 

combination /m 

Boarding ridership Alighting ridership 

R2 Adj.R2 AICc RSS R2 Adj.R2 AICc RSS 

300_500_500 0.66 0.59 639.08 97.90 0.68 0.60 654.62 92.66 

300_500_600 0.66 0.59 636.38 99.10 0.65 0.57 655.51 102.36 

300_500_700 0.65 0.58 641.30 102.35 0.63 0.55 660.28 108.55 

400_300_400 0.70 0.60 667.22 89.72 0.64 0.54 687.39 104.70 

400_300_500 0.67 0.58 674.00 96.23 0.65 0.55 692.69 101.62 

400_300_600 0.69 0.59 672.98 91.70 0.65 0.55 692.82 101.23 

400_300_700 0.68 0.58 677.05 93.44 0.65 0.55 695.29 101.73 

400_400_500 0.70 0.60 669.47 87.96 0.63 0.54 678.15 108.07 

400_400_600 0.70 0.60 668.72 87.76 0.65 0.55 679.27 102.77 

400_400_700 0.66 0.57 660.43 100.20 0.65 0.56 678.32 102.35 

400_500_400 0.72 0.62 665.11 80.49 0.72 0.61 683.45 81.84 

400_500_500 0.72 0.62 669.56 82.15 0.71 0.61 684.22 83.69 

400_500_600 0.72 0.62 665.92 82.96 0.70 0.59 687.52 88.15 

400_500_700 0.70 0.61 666.55 84.82 0.70 0.60 666.48 87.11 

4.3 Analysis of significant factors for boarding and alighting ridership during National Day holidays 

The average values of the MGWR model coefficients of influencing factors are calculated according to 

positive and negative values respectively, as shown in Figure 5. The absolute coefficient value determines the 

degree of influence of the built environment on metro station ridership. The figure shows that for the boarding 

ridership model, the order of the influencing factors are as follows: Number of commercial facilities > Mixed 

utilisation of land > Building density > Number of office facilities > Number of entrance and exit > Density 

of bus line > Road density. For the alighting ridership model, the built environment influencing factors are as 

follows: Number of office facilities > Number of consumer facilities > Mixed utilisation of land > Building 

density > Road density > Number of entrances and exits > Density of bus line. 

  
(a) (b) 

Figure 5 – Horizontal bar chart of positive and negative coefficients of the MGWR boarding and alighting ridership model:  

a) Positive and negative results of the boarding ridership MGWR model;  

b) Positive and negative results of the alighting ridership MGWR model. 
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4.4 Spatial heterogeneity effect of the built environment on metro stations ridership 

The built environment’s significant effect onboarding and alighting ridership are spatially visualised. Figure 

6 illustrates the correlation between different built environment influencing factors and metro ridership. 

Positive regression coefficients indicate that the factor is positively correlated with metro ridership (shown in 

red), while negative regression coefficients indicate that the factor is negatively correlated with metro ridership 

(shown in blue). The larger the circle and the darker the colour in the figure indicate that the influencing factor 

coefficient value is larger, the greater the influence degree, and the more significant effect on metro ridership. 

The following can be seen from the figure:  

1) There are negative and positive correlations between building density and boarding and alighting 

ridership, as shown in Figure 6a and Figure 6b. The coefficients of building density in the southwest of the fifth 

ring road range from 0 to 0.82, indicating that building density strongly influences metro ridership in these 

regions while other factors remain unchanged. The positive correlation is mainly concentrated in the southern 

part of the third ring road and the southern part of the third ring road to the fifth ring road, which may be due 

to the higher concentration of business districts and higher building density in these areas in Figure 6c, which 

are more attractive to out-of-town tourists during the holiday season. In addition, there are large and important 

transportation hubs in the south-western part of the third ring road where building density is high, which will 

increase metro ridership. There is also a positive correlation between building density and ridership. The 

negatively correlated metro stations are located in the northern part of the fifth ring road, probably due to the 

proximity of these metro stations to mega parks with a large area and low building density, which provide a 

large ridership. Therefore, for the metro stations in the peripheral areas of the city, building density shows a 

significant negative effect.  

2) The number of commercial facilities has a significant positive correlation with the boarding and alighting 

ridership during holidays, as shown in Figure 6d and Figure 6e. Figure 6f shows the distribution of commercial 

facilities numbers in the PCA range of metro stations. The coefficient of the number of commercial facilities 

has a significant effect in the northwest outside the fifth ring road, the west and south inside the fifth ring road, 

and a non-significant effect in the north and east inside the fifth ring road. The areas with large coefficient 

values of the number of commercial facilities are mainly concentrated in the western part of the fifth ring road, 

which is consistent with people’s lifestyles. Holiday travellers mostly choose areas with more entertainment 

services, restaurants and shopping malls. These areas are not only for experiencing leisure and sightseeing for 

out-of-town tourists, but also the areas where most office workers go to relieve work fatigue. The commercial 

facilities POIs data includes attractions, parks, museums, historical and other facilities that attract both tourists 

and locals. An increase in the number of commercial facilities will attract a large number of tourists and may 

increase the alighting metro ridership. Therefore, the influence coefficient of the number of commercial 

facilities on the metro stations’ boarding and alighting ridership is relatively high.  

3) The distribution of the influence coefficients of bus line density on the boarding and alighting ridership 

of metro stations is shown in Figure 6g and Figure 6h. Figure 6i shows the distribution of bus line density in the 

PCA range of metro stations. The influence of bus line density on boarding ridership is mainly concentrated 

in the third ring road and the western part of the third ring road to the fifth ring road, and the north-western 

part of the fifth ring road. The difference is that alighting ridership shows a spatial pattern of less influence in 

the eastern and southern parts of the third ring road and more significant influence in the north-western part of 

the fifth ring road, and the regression coefficient is smaller than for the boarding ridership. The possible reason 

for this is that passengers are influenced by nearby activities and other travel purposes after leaving the station. 

They will choose to walk, take an online car-hailing or ride bike-sharing to reach their destinations by 

transferring to other modes. Outside the fifth ring road, people often take buses to transfer to the metro to go 

to the city centre, and the increase in the density of bus routes will increase the metro ridership. However, in 

urban areas with many shopping malls, art districts, and dining and entertainment venues, buses have the 

characteristics of small station spacing, flexible excursions and high frequency, so buses will take up most of 

the ground-level traffic. Under this influence, the metro’s boarding and alighting ridership will be less in 

demand compared to the peripheral areas.  

4) As one of the metro connection modes, the number of entrances and exits has a significant positive effect 

on the boarding and alighting ridership, as shown in Figure 6j and Figure 6k, respectively. Observing the 

coefficient change of the number of entrances and exits on boarding and alighting ridership, it is found that the 

number of entrances and exits in the peripheral area of the city significantly affects the boarding ridership, and 

the centre of the city has a greater effect on the alighting ridership. The coefficient change means that 

increasing the number of entrances and exits in the periphery of the city can attract more people to take the 
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subway. Figure 6l shows that the small number of entrances and exits usually means that the connectivity 

between the metro station and the road is poor, which causes inconvenience to passengers and reduces the 

metro ridership to a certain extent. Increasing the number of entrances and exits can enhance the accessibility 

of metro stations and subsequently increase metro ridership. This confirms the hypothesis that there is a 

positive correlation between ridership and the presence of entrances and exits [16].  

5) The effect of the number of office facilities on the boarding and alighting metro ridership shows a 

significant negative correlation during National Day holidays. Figure 6m and Figure 6n show that most of the 

stations outside the third ring road in southwest Beijing have a significant negative relationship with boarding 

and alighting ridership. The influence coefficients of boarding and alighting ridership are highest outside the 

fifth ring road (the absolute value of local regression coefficient is more than 0.90), and the influence 

coefficient gradually becomes lower from the outside to the inside. Most of these stations outside the fourth 

ring road are low-vitality stations with small metro ridership, as shown in Figure 3. The built environment 

influencing factors are low around these metro stations, such as the number of commercial facilities (Figure 6f) 

and mixed utilisation of land (Figure 6r), while the building density (Figure 6c), bus line density (Figure 6i) and 

road density (Figure 6u) are relatively high. Even though there is a significant negative correlation between the 

number of office facilities and metro ridership, the boarding and alighting ridership are still at a very low level 

(Figure 6m and Figure 6n). The possible reason for this is that the buffer area occupied by the office facilities 

around the metro station is relatively large, while the residential facilities are relatively few and low. These 

stations are dominated by local residents, and fewer foreign tourists enter and egress these metro stations. 

Therefore, office facilities are negatively correlated with boarding and alighting ridership. The larger the 

number of office facilities, the lower the boarding and alighting ridership. The boarding and alighting ridership 

of the metro stations within the third ring road and the fourth ring road are relatively high (Figure 3). The 

building density, the number of commercial facilities and the mixed utilisation of land around these metro 

stations are relatively large, which attracts a large number of metro ridership. More commercial facilities 

around these metro stations may lead to less office facilities, which may be the reason why the office facilities 

of these metro stations are negatively correlated with boarding and alighting ridership.  

6) Mixed utilisation of land can provide more choices for different passengers and promote diversified 

travel demand. The local regression coefficients of the effect of mixed utilisation of land on boarding and 

alighting metro ridership are shown in Figure 6p and Figure 6q, respectively. Figure 6r shows the distribution of 

mixed utilisation of land in the PCA range of metro stations. A negative correlation exists between mixed 

utilisation of land and boarding and alighting metro ridership. In areas with a high land mix, ridership decreases 

instead. In the southern part of the city, there is a negative correlation, which may be due to the fact that in 

central urban areas with high land use mix and small buildings, people prefer walking or other lightweight 

transportation such as bicycles. These areas are also considered pedestrian-friendly neighbourhoods. The 

degree of negative correlation impact is low and negative outside of Beijing’s fifth ring road, which indicates 

a single type of land use in the outer urban areas, mainly residential areas with a large footprint and a low 

degree of land use mix. The reliance of the residents on the metro is relatively low, and travel is mostly by car, 

resulting in lower boarding and alighting metro ridership.  

7) The distribution of the impact of road density on boarding and alighting metro ridership is shown in 

Figure 6s and Figure 6t, respectively. Figure 6u shows the distribution of road density in the PCA range of metro 

stations. The effect of road density on metro ridership is positive in the north-western part of the third ring 

road and negative in the north-western part of the fifth ring road and the south-eastern part of the third ring 

road. This result indicates that the emerging problems of urban traffic congestion, high energy consumption 

and frequent traffic accidents are caused by the rapid growth of private car ownership. People prefer to take 

the subway due to concerns about travel safety and longer travel times. A trend from positive to negative 

impacts can be observed from the urban core to the peripheral areas. The possible explanation is that on the 

one hand, the reduced road density, smooth roads and convenient transportation in peripheral urban areas have 

attracted a large number of people to choose other modes of transportation. On the other hand, due to the 

limitations of the metro’s operating hours and routes, a part of the population prefers to choose other modes of 

transportation. 
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Figure 6 – Local regression coefficient distribution of the built environment influencing factors for boarding and alighting metro 

ridership: (a) Den. B for boarding ridership; (b) Den. B for alighting ridership; (c) Den. B; d) Num.CF for boarding ridership;  

(e) Num.CF for alighting ridership; (f) Num.CF; g) Den. BL for boarding ridership; (h) Den. BL for alighting ridership;  

(i) Den. BL; (j) Num. EE for boarding ridership; (k) Num. ES for alighting ridership; (l) Num. EE; (m) Num. OF for boarding 

ridership; (n) Num. OF for alighting ridership; (o) Num. OF; (p) MUL for boarding ridership; (q) MUL for alighting ridership;  

(r) MUL; (s) Den. R for boarding ridership; (t) Den. R for alighting ridership; (u) Den. R 

4.5 Low-vitality metro station and renewal strategies 

According to the spatial distribution of boarding and alighting metro ridership, the low-vitality metro 

stations are screened out. Targeted updating strategies are proposed according to the influencing factors that 

significantly affect the low-vitality metro stations. The results are shown in Table 5. In the table, “+” indicates 

a positive effect of influencing factors on the low-vitality metro station. Similarly, “-“ means that the factor 

has a negative effect on the low-activity metro station. For updating low-vitality metro stations, we can 

prioritise to adjust the influencing factors that have a greater effect on the metro ridership. For example, 
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Yongdingmenwai (a low-vitality metro station) can focus on increasing the number of entrance and exit and 

increasing building density to improve the metro service capacity and metro ridership. Low-vitality metro 

stations such as Fengtai East Street, Guozhuangzi, and Majiapu can reduce the number of office facilities or 

integrate residential, office, commercial and cultural uses. Changing a single land use pattern can increase 

mixed utilisation of land and purposefully adjust the low vitality metro stations. Low-vitality metro stations 

such as West Diaoyutai, Yizhuangqiao and Fuxingmen can also be combined with commercial facilities 

(scenic, shopping, hotels and commercial enterprises) to improve their vitality.  

Table 5 – Priority update low-viability metro stations of sensitive built environment 

Low-vitality station name Den. B Num. CF Den. BL Num. EE Num. OF MUL Den. R 

Anheqiao   + +    

Coking plant  + + + - -  

Yizhuangqiao  + + + -   

Guangyangcheng  + + + -   

Yongdingmen Wai + + + + - - - 

Chegongzhuang West  + + + - - + 

Fengtai East Street + + + + - -  

Xidiɑoyutɑi + + + + - -  

Beitucheng   + +    

Malianwa  + +    - 

GuoZhuangzi + + + + -   

Jingtai + + + + - - - 

Majiapu + + + + - -  

Fuxingmen + + + + - - + 

Note: “+” indicates a positive effect of influencing factors on the low-vitality metro station, “-“ means that the factor has a negative 

effect on the low-activity metro station. 

5. DISCUSSION 

5.1 Advantages of studying National Day holidays ridership 

Although there have been numerous studies on non-holidays ridership [3, 13, 47, 48], as well as on the 

characteristics of metro transit ridership during holidays [49–52], few scholars pay attention to the effect of 

the built environment around the metro station on the holiday’s ridership. Additionally, there are significant 

differences in the distribution rules of ridership between holidays and non-holidays [50]. For example, we 

compared the ridership of Zhou and Tang [53] and Wang and Li [52], and some metro stations ridership during 

holidays was much higher than non-holidays ridership. This shows that the ridership usually increases during 

holidays, while the ridership during non-holidays is relatively stable. The crowded ridership during National 

Day holidays presents a significant challenge for urban metro transit. The frequent occurrence of crowd 

stampedes [54], the great difference in the service levels among different stations [55] and the importance of 

enhancing the attraction of metro stations [56] suggest that we need to pay attention to the effect of ridership 

during holidays. The advantages of the ridership prediction model constructed in this study are as follows: (1) 

It can improve the operation service level at urban metro transit stations under large ridership. In order to 

optimise the urban built environment, targeted renewal strategies are proposed for metro stations with 

insufficient capacity. (2) It is helpful for the urban metro transit operation and management department in 

formulating timely to deal with emergencies and ensure that the travel demands of tourists and local residents 

are met during holidays. (3) It can reveal the influence of commercial or scenic facilities on the metro stations 

ridership during holidays. For example, Wangfujing, Zoo, Fuxingmen and Yongdingmenwai stations are 
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affected by the scenic facilities, and the boarding and alighting metro ridership increases significantly during 

holidays. 

5.2 Characteristics of the PCA combination of metro stations during the National Day holidays 

In numerous studies, the PCA size of metro stations is generally large and remains consistent during non-

holidays [3, 17, 20, 33, 52, 57]. However, this study focuses on Beijing and divides the city into three zones 

to determine the PCA of metro stations for each zone. Some scholars have also considered dividing the city 

into different zones [18, 48, 58]. But their dependent variable is weekday ridership. Nevertheless, they have 

not taken into account how holiday ridership may lead to different results in determining the PCA size of metro 

stations. The findings of this study reveal that the PCA size of metro stations is relatively small during National 

Day holidays. Metro as one of the convenient transportation ways during holidays, can quickly connect the 

major scenic facilities in the city. As a result, there is a significant increase in boarding and alighting metro 

ridership at stations adjacent to these attractions, such as Xizhimen, Dongzhimen and Tiantongyuan North. 

This reflects the fact that tourists like to gather around metro stations. Not only because of the convenient 

transportation in these areas, but also because of the characteristics of rich cultural tourism resources and 

complete service functions. Choosing a hotel near the metro station can meet the travel needs during the 

holidays. For the above reasons, the MGWR model results indicate that the small PCA size of metro stations 

lead to the increase of model accuracy.  

According to the research results, it is recommended that the PCA radius of the metro stations within the 

third ring road of Beijing be 400 metres, 500 metres from the third ring road to the fifth ring road, and 400 

metres outside the fifth ring road. In this study, the recommended PCA of metro stations verifies that the PCA 

size of the National holiday is lower than in other studies [20, 33, 52, 57]. More than half of the office facilities 

in Beijing from the third ring road to the fifth ring road has driven the development of the surrounding metro 

stations, promoting the development of commercial, cultural and educational functions. The improved service 

quality of facilities within the third ring road to the fifth ring road will result in travellers not being limited to 

metro station vicinity. Therefore, the PCA size of the metro stations will be larger than that one within the 

third ring road. For metro stations outside of the fifth ring road, a recommended PCA of 400 metres is proposed. 

The smaller recommended PCA size of metro stations outside the fifth ring road also indicates that outside the 

fifth ring road, the density of metro lines is low and the spacing of metro stations is large. Therefore, tourists 

are likely to prefer to be closer to the metro for convenient travel during the National Day holidays. The PCA 

combination of metro stations improves the accuracy of the holiday ridership prediction models and provides 

scientific data support for enhancing Beijing Metro’s attractiveness with low ridership during holidays. 

5.3 Spatial heterogeneity of the influence of the built environment on National Day holidays ridership 

During the non-holidays, the most significant factor affecting the built environment is the density of 

residential and office facilities in the “density” dimension [15, 22, 33, 57]. During the National Day holidays, 

the top two factors affecting ridership are the number of commercial facilities in the “destination accessibility” 

dimension, as well as the mixed utilisation of land in “diversity” dimension. The results indicate that both the 

quantity and variety of commercial facilities play crucial roles in attracting tourists during holidays. 

Commercial areas establishments offering cultural and entertainment activities can provide tourists with 

colourful cultural experiences and tourism activities. These places can also meet the travel needs of different 

tourists, which will increase the ridership of some metro stations. Among the number of commercial facilities, 

it is worth paying attention to tourist destinations such as scenic facilities. During holidays, metro stations 

ridership around scenic facilities increases significantly, which may affect the surrounding road traffic and 

urban operation efficiency. Increase transportation connections between attractions and attractions, such as 

promoting the “metro + bus” mode of transportation. Enhancing transportation connectivity between 

attractions could also reduce pressure on metro stations around scenic facilities. Similarly, areas with a higher 

mixed utilisation of land can provide more facilities and services, and these areas often have more compact 

urban designs. Notably, during holidays and non-holidays, the similarity between some studies [3, 14] and this 

study is that there is a positive effect between the mixed utilisation of land and the metro stations ridership on 

non-holidays. However, the difference is that areas with a high mixed utilisation of land tend to have more 

services and recreational facilities, which assume a similar function to scenic facilities. This further suggests 

that areas with a high mixed utilisation of land are better able to attract tourists and local residents, especially 

during holidays. 
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In addition, existing studies has shown that the greater the number of office facilities, the greater the effect 

on the metro stations ridership [34, 52, 58–60]. But we found that during the holidays, the effect was reversed. 

Despite having a large number of office facilities, these areas are not always effective in attracting tourists and 

local residents. Perhaps it is the specific social and economic background of the holiday and the change of 

passenger travel habits. To some extent, it reflects that in areas with many office facilities, the types of land 

use are too single or too few. At the urban level, we propose enhancing the visual appeal of office spaces 

through creative space design and installation art, as well as promoting the office space opening and creating 

an artistic atmosphere. By combining the characteristics of holidays, holding exhibitions or commercial 

activities should attract more tourists. 

5.4 Advantages and limitations of using the MGWR model 

Recently, some scholars [61] have proposed the difference between linear influence and nonlinear 

influence. Among them, machine learning such as Gradient Boosting Decision Trees (GBDT) model [33, 61-

63], random forest [64], deep learning [65, 66], eXtreme Gradient Boosting (XGBoost) model [48, 61, 67] and 

Optimal Parameters-based Geographic Detector (OPGD) [52] model are used to explore the effect of the built 

environment on metro stations. These models have their own characteristics and are suitable for different 

prediction situation and data characteristics.  

The OPGD model [68] lays more emphasis on the driving force of the influencing factors, and is weak in 

explaining the spatial heterogeneity. Machine learning models [69] emphasise more on the degree of fitting of 

feature value to the results of test sets, which may be unreasonable in the process of causal relationship. The 

MGWR model considers the collinearity of multiple influencing factors to find the regression model with the 

best goodness of fit considering spatial heterogeneity. Therefore, this study uses this model to explore the 

effect of built environment factors on the ridership during the National Day holidays.  

The limitations of this study are as follows: (1) We hope to combine nonlinear model and interpretable 

machine learning in future research to explore the causal inference in metro ridership. (2) The study only relied 

on POI data around metro stations, which emphasises information about specific points. Area of Interest (AOI) 

data is not used, which can express the surface of geographical entities in the map data. Using AOI data to 

calculate built environment variables may improve the accuracy of subway passenger flow prediction model. 

(3) We assume that the PCA is a circular buffer. The ways to access and egress to the metro stations in Beijing 

include walking, bus, taxi, online car-hailing, bike-sharing and bicycle. It is still worth discussing how to define 

PCA by considering multiple connection access and egress modes. (4) In the future, more studies are needed 

to compare research results and conclusions for holidays, weekdays and weekends. 

6. IMPLICATIONS 

This research carried several valuable implications for the development of urban metro transit, particularly 

for cities sharing similar morphology with Beijing (i.e. high density, transit-oriented and single-centre) 
provides significant insights. First, it is very important to predict the metro ridership during the National Day 

holidays to ensure travel safety, deal with emergencies and improve urban public services. The MGWR 

regression model was used to forecast the ridership, the present study proposed seven significant influencing 

factors to explain the metro station ridership in Beijing. However, the degree of these influencing factors was 

quite different, with some of them having a high effect in other studies, with other not. In particular, the number 

of commercial facilities, mixing degree of land use and building density are significantly associated with metro 

ridership in Beijing. In addition, the number of office facilities shows a significant negative correlation during 

holidays, which may be due to China’s special national conditions. During holidays, some office facilities may 

choose to close. However, most office facilities will switch some workers their rest time in order to work 

normally on holidays. During this period, they will offer higher subsidies to their workers. These influencing 

factors provide important information for urban metro transit travel demand modellers in travel demand 

analysis. More consideration should be given to factors in order to improve the unbalanced metro ridership in 

the future. 

Second, for urban metro transit planners, the recommended PCA combination can serve as a basis for 

calculating built environment factors around metro stations. The reasonable choice of the PCA is the key when 

constructing regression models for metro station ridership. According to the distribution of metro stations in 

the city, it is divided into three zones. Building density, the number of commercial facilities, mixed utilisation 

of land and the road density within the third ring road have a higher significance on the metro ridership, while 
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the bus line density and the number of entrance and exit extend from the outside to the inside of the fifthring 

road, showing a clear downward trend in spatial influence. The number of office facilities exhibited an inward 

decline trend and demonstrates a negative correlation with metro ridership during holidays. Therefore, it is 

essential to implement different strategies for various areas to adjust metro ridership effectively. 

Third, the analysis results can propose specific built environment strategies for low-vitality metro stations. 

For urban planners, the priority is to adjust the built environment influencing factors that significantly affect 

metro ridership and impose reasonable constraints based on control indicators in urban design. The built 

environment around the metro station encourages density and diversity, which has a positive impact on 

ridership. It is necessary to refer to the MGWR results to determine which influencing factors should be 

improved to increase ridership at low-vitality metro stations. 

7. CONCLUSIONS 

According to the density of metro station distribution, Beijing is divided into three different zones based 

on the built environment “7D” dimension to select the built environment influencing factors, the National Day 

holidays boarding ridership and alighting ridership as the dependent variable. The recommended PCA for each 

zone metro station was determined by using the MGWR model to select the highest goodness-of-fit results. 

The metro station PCA with the highest goodness-of-fit result was used to find the spatial heterogeneity of the 

built environment influencing factors. The main conclusions include:  

1) The metro station PCA with different combination sizes selected by zoning can improve the accuracy of 

the MGWR model and have better explanatory power for the influencing factor’s spatial heterogeneity. The 

findings are valuable for defining the scope of the PCA of metro stations and accurately determining the extent 

of renewal needed in the built environment surrounding metro stations. 

2) There is no obvious peak time for boarding and alighting ridership during the holidays, and the ridership 

lasts for a long time. Therefore, the variability of the MGWR model results is reflected in the fact that the size 

of the metro station PCA during the National Day holidays is different from many studies that take the metro 

station PCA as the walking area within 800 metres of the metro station. The start and end points of the tourists 

will overlap near the metro, which results in a smaller size of the PCA. The recommended PCA combinations 

are circular buffers with a radius of 400 metres, 500 metres and 400 metres for three zones, respectively. 

3) The results of the spatial heterogeneity of the influencing factors can be used for developing targeted 

built environment strategies to improve the vitality of metro stations. The stations with low-vitality are 

screened, the influencing factors affecting their ridership are summarised, and strategies for updating the built 

environment around the metro stations are proposed in order to improve their vitality.  
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探讨建筑环境因素对节假日期间地铁站乘客量的影响——以中国国庆节期间北京地铁

系统为例 

摘要 

以往的研究更关注建成环境对工作日和周末乘客量的影响。为弥补没有关注国庆假日

客流量的空白，本文将探究国庆节期间建成环境对轨道站点客流的影响程度及空间异

质性。将北京市由内到外划分为三个片区。以国庆节期间地铁站上、下车乘客量为因

变量，建筑环境 "7D "维度的 13 个建成环境因素为自变量。拟合优度最佳的多尺度地

理加权回归模型表明三个区域行人集水区半径组合为 400 m_500 m_400 m，探讨了建

成环境因素对地铁乘客量和空间异质性的影响。建筑密度、消费类设施数量、公交线

路密度、出入口数量、办公类设施数量、土地利用混合度和道路密度对上、下车客流

量均有显著影响。MGWR 模型的结果有助于提出针对性的轨道站点周边建成环境更新

策略。 
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