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ABSTRACT 

With the acceleration of urbanisation and the rapid increase in road traffic volume, the 

scientific prediction of traffic accidents has become crucial for improving road safety and 

enhancing traffic efficiency. However, traffic accident prediction is a complex and 

multifaceted problem that requires the comprehensive consideration of multiple factors, 

including people, vehicles, roads and the environment. This paper provides a detailed 

analysis of traffic accident prediction based on multi-source data. By thoroughly 

considering data sources, data processing and prediction methods, this paper introduces 

the various aspects of traffic accident prediction from different perspectives. It helps 

readers understand the characteristics of different data and methods, the process of 

accident prediction and the key technologies involved. At the end of the paper, the main 

challenges and future directions in road crash prediction research are summarised. For 

example, the lack of efficient data sharing between different departments and fields poses 

significant challenges to the integration of multi-source data. In the future, combining deep 

learning models with time-sensitive data, such as social media and vehicle network data, 

could effectively improve the accuracy of real-time accident prediction. 
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multi-source data; road traffic accident; data processing; statistical learning; machine 

learning; deep learning. 

1. INTRODUCTION 

1.1 Research background 

Road traffic injuries represent a major global public health challenge, causing millions of deaths and 

disabilities annually, along with significant economic and social losses. In September 2020, the United Nations 

General Assembly adopted Resolution A/RES/74/299, titled “Improving Global Road Safety”, which launched 

the “Decade of Action for Road Safety 2021–2030”. The goal is to reduce road traffic fatalities and injuries by 

50% by 2030 [1]. According to the WHO’s “Global Status Report on Road Safety 2023”, global road traffic 

fatalities slightly decreased to 1.19 million in 2023 compared to 2022 but remained alarmingly high. Traffic 

injuries are still the leading cause of death among individuals aged 5–29, particularly in low- and middle-

income countries, where pedestrians and cyclists account for over half of the fatalities [2]. 

Traffic accident prediction technologies play a critical role in reducing road traffic fatalities and injuries. 

Leveraging advanced data analysis and machine learning algorithms, high-risk areas and periods can be 
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identified, enabling targeted preventive interventions that lower accident rates and casualties, thereby 

improving road safety. 

The development of intelligent transportation systems and advancements in IoT have diversified traffic 

accident prediction by integrating multi-source data. Traffic cameras, GPS devices, smartphone sensors, 

weather data, social media and dashcams now provide comprehensive insights into traffic conditions, driving 

behaviour and environmental factors. Utilising these data sources enhances prediction accuracy and timeliness, 

facilitating proactive traffic management that reduces accidents and casualties, thereby contributing to a safer 

road environment. 

1.2 Research gap 

Traffic accident prediction relies on historical data and models to estimate the likelihood of accidents 

occurring in specific space-time regions. This multi-faceted problem demands a comprehensive analysis of 

factors such as human behaviour, vehicles, roads and environmental conditions to produce accurate predictions 

[3-5]. Given that these factors may originate from diverse institutions, facilities or datasets, acquiring data 

from multiple sources is essential for precise predictions [6]. This article provides a detailed summary and 

analysis of research on traffic accident prediction using multi-source data, focusing on three main steps: data 

acquisition, data processing and prediction models. 

Traffic accidents typically result from an interaction of factors related to people, vehicles, roads and the 

environment. Earlier research mainly focused on vehicle dynamics, analysing lateral and longitudinal 

movements along with horizontal [7, 8] and vertical indicators [9-11] to evaluate road risk. However, 

environmental factors were often overlooked. Subsequent studies have systematically reviewed how traffic 

and road characteristics contribute to accidents [12]. To enhance prediction accuracy, it is crucial to integrate 

multiple data sources, as each source offers unique insights. Researchers advocate for the inclusion of 

heterogeneous data and consideration of data quality in model accuracy [13]. They also highlight the 

importance of utilising large-scale datasets, addressing spatial heterogeneity, and managing high-dimensional 

data to enable real-time prediction. Nonetheless, previous studies have not fully addressed common challenges 

like missing data, outliers and imbalanced datasets, which this paper aims to rectify. 

The selection of an appropriate prediction model, based on different datasets and data processing techniques, 

is crucial to the accuracy of traffic accident prediction. The development of traffic accident prediction models 

has gone through three stages: statistical learning, machine learning and deep learning. Statistical learning 

methods are suitable for analysing correlations and trends between data [14, 15], machine learning excels at 

uncovering complex patterns and non-linear relationships in the data [16-18], while deep learning can handle 

large-scale, high-dimensional data and autonomously learn complex nonlinear patterns [19]. In recent years, 

neural networks have played a significant role in identifying and describing the factors influencing the 

frequency and severity of road accidents [20]. Existing studies often focus on accident models for specific 

prediction scenarios but lack a systematic introduction to the characteristics and applicable scenarios of the 

main models across the three developmental stages of traffic accident prediction methods, which is one of the 

key distinctions of this paper. 

1.3 Objectives and contributions 

Addressing the shortcomings in previous research on traffic accident prediction, this paper systematically 

examines traffic accident data sources, data processing methods, predictive models and potential future 

developments. It provides a comprehensive review and summary of the key aspects involved in traffic accident 

prediction. 

This paper makes the following main contributions: 

1) This paper presents a multifaceted overview of traffic accident prediction, aiming to elucidate the 

advantages of various data sources and methodologies, the prediction process and key technologies 

involved. 

2) The prediction methods are categorised into three types: statistical learning, machine learning and deep 

learning. For each category, specific models are reviewed, comparing their characteristics, prediction 

objectives and applicable datasets. 

3) The paper also addresses the primary challenges and future research directions in predicting traffic 

accidents using multi-source data. 
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1.4 Research process 

To ensure the high quality and relevance of the research, we retrieved articles from databases such as Web 

of Science, Engineering Village (EI), Science Direct and IEEE, focusing primarily on English journals and 

conference papers published after 1 January 2010. We then reviewed the selected papers individually, 

excluding those that do not contain relevant technical content or lack practical significance. 

To conduct literature retrieval and selection, this study employs various search strings with keywords and 

Boolean operators “AND/OR” for identifying relevant research. The * denotes a wildcard, for example, 

“Forec*” matches “forecast”, “forecasted”, “forecasting”, etc. 

(1) Research data sources: (“traffic accident” OR “traffic crash” OR “traffic collision” OR “crash risk”) AND 

(predict* OR forec* OR detect*) AND “data source” AND (government dat* OR open dat* OR sensor 

dat* OR social media dat* OR geospatial dat* OR private sector dat* OR crowdsourcing dat*). 

(2) Data processing: “data process*” AND (“data cleaning” OR “feature extraction” OR “standardisation” 

AND “normalisation” OR “data balancing”). 

(3) Research methods: (“traffic accident” OR “traffic crash” OR “traffic collision” OR “crash risk”) AND 

(predict* OR forec* OR detect*) AND (method* OR algorithm*) AND (statistical learning OR machine 

learning OR deep learning). 

Using the aforementioned keywords, a search was conducted in the Web of Science Core Collection 

database to identify research on traffic accidents and related hotspots from 1 January 2010 to the present. Figure 

1 demonstrates that research on traffic accident prediction primarily focuses on prediction models and road 

safety. In recent years, the use of deep learning for accident prediction has emerged as a prominent research 

topic. 

 
Figure 1 – Traffic accident research network diagram 

1.5 Outline 

The first section of this paper introduces the background and significance of traffic accident prediction, 

reviews the development history of traffic forecasting, and discusses the critical role of multi-source data in 

accident prediction. The second section provides a detailed description of the sources of multi-source data and 

their processing methods, with an in-depth discussion of traffic accident prediction methods and applications. 

The third section discusses the research results and the current research limitations. 

2. RESEARCH MATERIALS AND METHODS 

2.1 Research data sources 

Traffic accident data comes from various sources, such as government datasets, open datasets, sensor data, 

social media data, geospatial data, private sector and crowdsourcing data [13]. Government and open datasets 

are crucial for accident prediction, offering comprehensive details on accidents, roads and landscapes, and 
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forming a reliable foundation [21]. Sensor data from road equipment, in-car devices and smartphones provide 

precise traffic condition information [22]. Social media has emerged as a valuable source, offering 

supplementary crash prediction insights [23]. Geospatial data captures key information about road conditions, 

traffic flow and road topology [24]. Private sector data, such as that from public transport companies and traffic 

monitoring firms, along with crowdsourced data (e.g. reports of accidents and road conditions via smartphone 

apps), also play a significant role in supporting accident prediction [25, 26]. 

Government datasets and open datasets 

Government datasets, maintained by agencies like police and traffic departments, provide detailed, 

authoritative records of traffic accidents, driver and vehicle information, making them a crucial data source for 

traffic accident modelling [27]. Open datasets, freely accessible to the public, typically offer demographic, 

weather and road network data. Examples include the U.S., U.K. and Australian government open data 

catalogues [28]. Government datasets offer detailed and precise accident records, while open datasets expand 

the scope and depth of analysis. By comparing and integrating these two types of datasets, we can gain a more 

comprehensive understanding of traffic accident patterns, trends and potential risk factors. 

Both government datasets and open datasets provide high reliability, large capacity and diverse information 

for accident prediction. However, data missing and outliers require extra handling [14]. It is necessary to 

quantify the data collected by different organisations and regions through standardised operations [29]. 

Sensor data 

The application of sensor technology enables access to extensive amounts of multi-source heterogeneous 

data related to traffic accidents, including vehicle GPS information, traffic status and weather data. Modern 

vehicles are commonly equipped with vehicle-mounted sensors, which can provide real-time information on 

vehicle conditions, driving behaviour and road environment [30]. Integrating deep learning and clustering 

algorithms facilitates real-time accident prediction [31] and the identification of high-risk areas [32]. 

Sensors collect precise, real-time traffic data, enabling the forecasting of accidents and helping emergency 

management departments optimise resource allocation and traffic control. However, real-time monitoring of 

the entire road network remains challenging due to the high costs and limited coverage of road sensors. 

Additionally, issues with data quality and integrity require costly preprocessing of large datasets [33]. 

Social media data 

In recent years, the widespread use of social media platforms like microblogging, Twitter and Facebook 

has made them valuable sources for traffic accident information. Social media data, which includes text, 

images, videos and voice recordings, has become an important channel for extracting details such as vehicle 

location, speed, accident type and severity [34]. This makes social media highly useful for traffic accident 

prediction, offering distinct advantages. For instance, Lu and Hao retrieved traffic and weather-related tweets, 

integrated spatiotemporal features with weather data and built a warning model by analysing traffic events 

[35]. Other researchers have used machine learning and deep learning models to predict real-time accidents 

based on Twitter traffic data [36]. 

Social media data offers several benefits for accident prediction, including low acquisition costs, high real-

time accuracy and diverse information sources [16]. It serves as an effective supplement to traditional traffic 

data. However, user-generated content is prone to false, repetitive or irrelevant information, requiring rigorous 

data filtering to ensure prediction accuracy [37]. In addition, data containing user privacy information should 

be fully protected, and due to the geographical distribution of users, some regions may lack sufficient data for 

predictive analysis. 

Geospatial data 

Geospatial information pertains to a defined geographic location on Earth’s surface and offers insights into 

spatial distribution and attribute features. Consequently, it can be used to predict the location of traffic 

accidents. The Geographic Information System (GIS) analyses traffic accident data spatially and visually. It 

generates hotspots and heat maps to identify high-accident areas and potentially dangerous road sections by 

overlaying accident data with geographic elements [38, 39]. The Global Positioning System (GPS) employs 

satellite signals to detect and monitor mobile entities on the ground in real time, acquiring data such as traffic 
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flow and accident sites. It can determine potential contributing factors to accidents by scrutinising the driving 

behaviour and trajectory leading up to the accident [40]. 

Due to the need for comprehensive transportation infrastructure, strong technological research and 

development, and data integration capabilities for the collection and application of geographic spatial data, the 

use of it for traffic accident prediction is mainly concentrated in technologically advanced countries such as 

China, the United States and Germany [41]. 

Private sector and crowdsourcing data 

In recent years, the role of the private sector and crowdsourced data in traffic accident prediction has 

become increasingly important. Transportation service companies, bike-sharing and car-sharing companies 

collect a large volume of detailed data on vehicle locations, speeds and routes. Public transportation companies, 

equipped with advanced onboard monitoring systems, record real-time driver behaviour data, such as hard 

braking, sharp turns and speeding [42]. These high-quality and frequently collected data provide detailed 

insights into driver behaviour and its impact on traffic accidents [43]. Given that public vehicles cover a wide 

road network, especially in urban areas, their data offer comprehensive reflections of regional traffic conditions 

[44]. Bike-sharing companies also contribute real-time cycling data, which supplement traditional traffic data 

and help identify risky cycling behaviours [45]. Integrating these data with other datasets allows for a deeper 

exploration of causes and patterns in bicycle accidents, pedestrian collisions and multi-vehicle incidents [46]. 

Crowdsourcing platforms gather real-time data from a large number of users, including traffic flow, road 

conditions, weather changes, etc., which can reflect potential risk factors that may lead to accidents on the road 

in real-time. Compared to traditional fixed sensors or government data sources, crowdsourcing data can cover 

different areas more quickly and widely [47]. 

When using data from private enterprises and crowdsourcing platforms, it is essential to address concerns 

regarding data privacy, security, quality, accuracy and legality. Ensuring the integrity and reliability of the data 

throughout collection, processing and analysis is crucial for trustworthy predictive results. 

2.2 Research data process 

To effectively mine traffic accident features, research data must undergo appropriate preprocessing to 

improve quality and usability. This paper will provide a detailed introduction to data cleaning, feature 

extraction, standardisation, normalisation and data balancing [48]. Additionally, it will address the challenges 

of fragmented traffic accident data and present some effective solutions. 

Data cleaning 

The initial stage of data preprocessing is data cleaning, which involves handling missing values, removing 

noise and redundancy and correcting anomalies [49]. Empty values in traffic accident data can lead to 

incomplete datasets and loss of accident features. In order to improve the integrity and validity of the data, it 

is necessary to fill in or delete these values [50]. Repairing abnormal traffic accident data can improve data 

consistency and stability, and enhance the accuracy of model analysis and prediction. Duplicate information 

in the original data can reduce data diversity and exacerbate the impact of some features. Deleting or merging 

duplicate values can reduce data redundancy and noise [51]. 

When dealing with missing values, it is essential to choose suitable methods that consider the real 

circumstances to prevent excessive eliminations and the loss of a significant amount of valuable data [52]. 

When selecting and deleting duplicate data, it is important to manually label the information to be deleted. 

Labelling information for deletion in a large dataset is a challenging task [53]. 

Feature extraction 

Feature extraction is crucial in traffic accident data processing. It can improve the predictive ability of the 

model, and reduce data dimensionality to enhance computational efficiency, while reducing noise interference, 

revealing potential accident-influencing factors, and enhancing the interpretability of the model. In addition, 

feature extraction helps to integrate multi-source data, and optimise the overall performance and prediction 

performance of the model. 

Statistical methods like principal component analysis (PCA) [54], linear discriminant analysis (LDA) [55] 

and independent component analysis (ICA) [56] help extract class-specific and significant features from 

complex data. Geometric-based techniques, such as multi-dimensional scaling (MDS) and manifold learning, 
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explore the data’s geometrical structure to uncover latent features [57]. Image processing methods capture 

characteristics like textures, shapes, edges and colours [58]. Feature extraction needs to exclude features that 

are not relevant to the problem and reduce the effect of noise on the model. 

Standardisation and normalisation 

Traffic accident prediction typically requires data of different types and sources, but the significant 

differences in scale and magnitude between different types of data pose challenges for evaluating the relative 

importance of each feature. Standardisation or normalisation can effectively eliminate scale differences 

between different features, making traffic accident data more comparable [59]. Moreover, these techniques 

can accelerate model convergence, prevent feature bias and enhance data interpretability [60]. 

Common standardisation and normalisation methods comprise min-max normalisation and Z-score 

standardisation. Min-max normalisation maps the data into specified intervals. It preserves the original data 

structure, making it suitable for cases where the data are stable and free from outliers [61]. Standardisation by 

Z-score adjusts the data distribution to eliminate the impact of outliers or noise. This technique is particularly 

useful when the data are unevenly distributed or contain outliers [62]. 

Data balancing 

The occurrence of traffic accidents exhibits significant temporal and spatial variability, leading to a notable 

imbalance between accident and non-accident samples [63, 64]. This imbalance adversely affects model 

learning, causing it to favour predicting the majority class while ignoring the impact of the minority class [65]. 

Data balancing is performed on traffic accident datasets to rectify the disproportion of positive and negative 

samples, enabling better identification of accident patterns and factors that influence their occurrence [66]. 

Resampling techniques, including oversampling, undersampling and hybrid sampling, are commonly used 

to balance datasets. Oversampling methods, such as SMOTE, duplicate or synthesise minority class samples 

through interpolation in feature space, increasing their representation [67]. Undersampling methods, like 

random undersampling and Tomek links, reduce the number of majority class samples to achieve balance [68, 

69]. Hybrid sampling combines both approaches, augmenting minority samples while reducing majority ones 

[70]. Additionally, data generation techniques leverage artificial intelligence or machine learning to extract 

valuable information from original data and create new data [71]. Anomaly detection improves model 

performance by identifying and processing outliers, reducing dataset noise [72]. Zero-inflated models 

effectively address the issues of overdispersion and zero-inflation in count data, enabling more accurate 

modelling and prediction of sparse data [73]. Cost-sensitive learning further mitigates data imbalance by 

assigning different weights to samples during training [74]. Finally, it is essential to reassess model 

performance after data balancing, ensuring the independence of training and test sets to accurately reflect the 

actual data distribution. 

Data fragmentation processing 

The fragmentation of traffic accident data has emerged as a significant challenge in modern traffic 

management and safety analysis. These data originate from diverse sources, including police records, hospital 

reports, insurance data and traffic management systems, each employing different formats and standards. This 

heterogeneity hinders data integration and sharing, ultimately affecting the accuracy and effectiveness of traffic 

accident analysis. To address this, researchers are developing new data standards, interoperability frameworks 

and integration tools. 

DATEX II is a European standard designed to facilitate the exchange and sharing of road traffic information 

and traffic management data. This standard encompasses various aspects, from data formats and models to 

exchange protocols, aiming to improve traffic data interoperability [75]. DATEX II supports real-time data 

exchange, enabling researchers to access the latest traffic flow information [76]. Similarly, the Traffic 

Management Data Dictionary (TMDD) standardises data exchange between traffic management systems, 

supporting communication among management centres for improved incident mitigation and event 

management [77]. Vehicular ad-hoc networks (VANET) is a network technology designed for communication 

between vehicles and between vehicles and infrastructure. It addresses fragmented traffic accident data by 

facilitating real-time communication between vehicles (V2V) and between vehicles and infrastructure (V2I) 

[78]. Due to network fragmentation during sparse traffic, timely notifications are hindered [79]. Therefore, 

researchers have enhanced VANET connections through roadside units (RSUs) to improve information 
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transmission in high-speed scenarios [80]. While VANET focuses on local communication, the Internet of 

Vehicles (IoV) connects vehicles to cloud services for broader data exchange and analysis. IoV’s real-time 

communication capabilities enable immediate monitoring and response to traffic accidents [81]. Some 

researchers have leveraged blockchain and machine learning to develop IoV edge servers, achieving low-

latency transmission and a prediction accuracy of 90% [82]. 

2.3 Research methods 

Predicting traffic accidents is crucial for proactive safety strategies and road safety improvement. Various 

predictive models have been developed and continuously optimised [83], generally classified into three 

categories: statistical learning methods [84], traditional machine learning methods [85] and deep learning 

methods [86]. The performance of these models varies depending on traffic data, road features, environmental 

factors and the specific problem being addressed [12]. Thus, a broad comparison of models is impractical, as 

performance may differ significantly under different conditions [13]. This paper introduces the characteristics, 

application scenarios and limitations of these methods in predicting traffic accidents using multi-source data. 

Statistical learning 

Statistical learning is the first technique to predict traffic accidents, grounded in assumptions about data 

distribution and supported by mathematical theory, focusing on parametric inference [87]. Historical data are 

analysed to explore the relationships between traffic accidents and factors like traffic flow, weather and road 

type, helping identify key variables and patterns [88]. The following section introduces several commonly 

used statistical learning methods for investigating traffic accident data with time dependencies, primary factors 

of accidents, accident counts, binary or multinomial types of accidents and ordered classification of accidents. 

Traffic accident prediction holds significant importance for enhancing road safety and optimising traffic 

management. With the widespread application of time series data, the development of accurate accident 

prediction models has become a focal point of research. Among time series methods, the ARIMA model stands 

out for effectively capturing trends and seasonal variations in data [89]. However, its performance depends on 

factors like historical data richness, feature selection and parameter tuning. To address ARIMA’s limitations, 

combining it with other methods can improve prediction accuracy. For example, Chen et al. combined ARIMA 

with MLR to predict traffic accident fatality rates using variables like traffic signs and lane areas [90]. 

Accidents are influenced by factors such as individual behaviour, vehicles, road conditions and the 

environment. Identifying these factors is essential for accident prevention and transport planning. Linear 

regression models help analyse key factors like traffic flow and road infrastructure [91] and are effective when 

the dependent variable is continuous. For discrete count data, such as accident frequency, traditional linear 

regression may not meet key assumptions like normal distribution and linearity [92]. In these cases, the 

negative binomial regression model is more suitable [93]. Frequently used for predicting accident frequency, 

it establishes correlations between independent variables and the number of accidents while accounting for the 

discrete nature of the data [94].  

Forecasting road accident severity is critical for traffic safety management, risk assessment, emergency 

response and transport planning, helping reduce accidents and mitigate damages. Logistic regression, a 

commonly used linear model for binary classification problems [95], maps the output of linear regression to a 

probability space via a logistic function [96]. Variables like weather, traffic flow and vehicle type are 

transformed into the numerical form using one-hot encoding or standardisation [97], with the sigmoid function 

mapping prediction results between 0 and 1 to indicate whether an accident will occur [98]. For predicting 

multiple levels of accident severity, the ordered probit model is more appropriate. It not only predicts 

categorical outcomes but also estimates the ordering of dependent variables across categories [99]. For instance, 

accident severity can be classified from minor to severe [100], and the probability of transitions between these 

levels can be determined based on various independent variables [101]. 

The statistical learning methods discussed each has their unique strengths but also come with limitations. 

Linear regression struggles to fit data accurately due to the probabilistic nature of traffic accidents and the 

complex nonlinear relationships in multi-source data [102]. Negative binomial regression relies on specific 

assumptions and is sensitive to outliers and overdispersion, which can lead to endogeneity issues and skew 

parameter estimates [103]. Logistic regression, when faced with large feature spaces or numerous multi-class 

variables, often underfits the data [104]. The ordered probit model requires strict assumptions, such as 

independent observations and no multicollinearity, which can limit its application [105]. 
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Table 1 – Analysis of the literature on the prediction of road traffic accidents based on statistical learning algorithms 

Author 
Data source 

region 

Real-time 

detection 

Dataset 

type 

Accident 

information 

Road 

information 

Vehicle 

information 

Weather 

information 

Other 

information 
Model Evaluation index 

[89] Amhara × A √ × × × × ARIMA Standard deviation 

[90] Shanghai × A, B √ × × × √ ARIMA, MLR  MAE, RMSE 

[106] London × A, B √ × √ √ × ARIMA, SARIMAX MSE, RMSE, MAE, MAPE 

[91] Ireland × A, B √ √ √ √ √ GLM AUC、ROC、CI 

[107] Chile × A, D √ × √ √ × GLM Speed, density  

[92] Hong Kong × A, B √ √ × × × NBR AIC 

[94] Singapore × A, C √ √ × × × RENB 
Ratio of log-likelihood index 

( 2 ), ratio of log-likelihood ( 2R ) 

[108] Turkey × A, B √ × × × × 
NBR, Poisson regression, 

empirical Bayesian 
Z-score, standard error 

[25] Melbourne × A, B, F √ √ × × √ Mixed logit Standard deviation 

[44] Mashhad × F √ √ × × √ Binary logit Chi-square test, OR 

[84] Florida √ A, B, E √ √ × √ × 
Multilevel Bayesian logistic 

regression 
DIC, AUC, accuracy 

[95] Eskisehir × A, B √ √ √ × √ 
Logistic regression, discriminant 

analysis 
Probability value, OR 

[96] Nanjing × Drone data √ √ × × × 
Multilevel logistic regression 

model 
TTC 

[98] Ghana × A, B √ √ √ × √ Ordered logistic regression 
Rates between different types of 

traffic accidents 

[99] Washington × A, B √ √ √ √ √ 
Correlated random parameters 

ordered probit 
Likelihood ratio, AIC 

[100] Hokkaido × A, B, D, F √ √ × √ × Ordered probit 
Standard error, coefficient, t-value, 

Chi-square test 

[101] Florida × A, B √ √ √ × √ Ordered probit Likelihood ratio  

* A, B, C, D, E and F represent government datasets, open datasets, sensor data, social media data, geospatial data and private sector and crowdsourcing data, respectively. 



Promet – Traffic&Transportation. 2025;37(2):499-522.  Safety and Security  

507 

As shown in Table 1, this section provides a detailed compendium of the literature referred to by the statistical 

learning methods described above. A comprehensive analysis of statistical learning methods yields the 

following conclusions. First, most data used in the literature come from government agencies and public 

sources, as these datasets are comprehensive and accurate, providing a reliable foundation for model 

development. Second, statistical learning algorithms, grounded in mathematical theory, are effective in 

identifying linear relationships between variables and traffic accidents. However, the inherently random and 

disordered nature of accidents makes it difficult to fully explain them using purely mathematical approaches. 

Although statistical learning has gradually been replaced by machine learning and deep learning models with 

stronger self-learning capabilities when using big data and multi-source data to predict accidents [109], 

statistical learning methods still exhibit more stable and superior performance in situations where the dataset 

is small and the number of features is limited [13]. 

Machine learning 

Machine learning provides a clear advantage over statistical learning in predicting traffic accidents. It can 

handle vast amounts of data to learn patterns, identify data features and laws and reveal complex, nonlinear 

correlations in traffic data [110]. The adaptive learning and adjustment capabilities allow machine learning to 

update models and parameters in response to new data [111]. Supervised learning is often used to predict 

accident severity by classifying or regressing based on known labels such as time, location, weather, vehicle 

type and driver age. This paper explores common supervised learning methods, including decision tree (DT), 

random forest (RF), support vector machine (SVM) and naive Bayes (NB). It provides an analysis of their 

applications, strengths and limitations in traffic accident prediction. 

DTs have garnered attention for their ability to represent decision rules and predictions in a tree structure, 

making them effective for assessing the impact of key features [112]. They are particularly suitable for 

predicting accidents influenced by various factors, and pruning techniques can reduce overfitting by removing 

less significant variables [113]. However, DT models may suffer from randomness and fail to reliably rank the 

importance of variables. RF addresses this by building multiple decision trees, averaging the significance of 

each feature across trees, and improving prediction accuracy and robustness [114]. DT and RF utilise tree 

structures to classify various categories. In contrast, SVM and NB offer distinct classification approaches. 

SVM maximises the margin between classes by mapping data into a high-dimensional feature space and 

seeking the optimal hyperplane for separating categories [115]. It performs well in binary classification, such 

as identifying accident-prone patterns in real-time [116], but its performance may decline with larger datasets 

and more classification categories [117]. NB calculates posterior probabilities based on feature vectors and 

assigns inputs to categories such as accident severity [118]. While NB is efficient in handling large, high-

dimensional datasets, its assumption of feature independence can limit accuracy in complex traffic 

environments [119, 120]. Combining it with other algorithms or feature engineering may improve performance. 

Unsupervised learning uses unlabelled data to uncover hidden structures or patterns. This approach can be 

used to cluster accident data based on unknown characteristics or labels, such as driving behaviour, road 

conditions and accident causes. Common unsupervised models include fuzzy C-means (FCM), K-means and 

DBSCAN. These clustering algorithms help categorise different types of accidents or risk levels by analysing 

patterns and relationships within the data. Clustering algorithms have the ability to categorise varying types of 

accidents or levels of risk by analysing connections, structure and patterns among datasets. K-means groups 

data points based on the Euclidean distance to the nearest cluster centre but requires a predetermined number 

of clusters [121]. As Kumar’s research has shown, this method is efficient and interpretable, and they used 

threshold-based clustering to classify accident-prone locations [122]. However, K-means assumes each point 

belongs to only one cluster, which can oversimplify real-world scenarios [123]. In contrast, FCM allows data 

points to belong to multiple clusters by assigning membership degrees. This flexibility makes FCM well-suited 

for handling uncertainty in traffic accident data and identifying factors contributing to accident risk [124]. Both 

the K-means and FCM require the number of clusters (K) to be specified in advance, which complicates finding 

the optimal K for model performance. DBSCAN is a density-based clustering algorithm that identifies varied 

accident patterns and pinpoints anomalies or accident hotspot regions by segregating accident data into high 

and low-density clusters [125]. Additionally, DBSCAN demonstrates high computational efficiency and rapid 

clustering speed. It can identify clusters of any shape and define their number and boundaries based on density 

[126]. Nevertheless, it exhibits poor clustering performance when the data density is uneven, the cluster 

spacing is considerable or the data are large in dimension.
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Table 2 – Literature analysis of road traffic accident prediction based on machine learning 

Author 
Data source 

region 

Real-time 

detection 

Dataset 

type 

Accident 

information 

Road 

information 

Vehicle 

information 

Weather 

information 

Other 

information 
Model Evaluation index 

[42] Chongqing × F √ × √ × √ Boosted trees Precision, recall, F1, FPR 

[45] Chengdu × B, F × √ × × √ NBADT Relative importance 

[110] Granada × A √ √ √ √ √ DT IGR, Ginf 

[112] Saskatchewan × A √ √ √ √ × ID3, C4.5 
Correctly classified instances, 

incorrectly classified instances 

[113] Zhongshan × A, B √ √ × × √ GBDT MAPE 

[85] America × A, B √ × √ × √ RF Out-of-bag error rate 

[111] Malaysia × A, B, F √ √ √ × √ CART, RF TPR, FPR, precision 

[114] Harbin × A √ × √ √ × RF, LightGBM ROC, AUC, accuracy 

[16] Italy √ D, F √ × × × √ SVM Accuracy, F1-score, recall precision 

[26] California √ A, B, F √ √ × √ × SVM Precision, recall  

[127] Wuhan × A √ √ × √ × SVM Accuracy, recall, F1-score, AUC 

[17] 
Pittsburgh, 

Philadelphia 
√ D, F √ × × × √ SNB Accuracy, recall, precision 

[118] California × A, B √ × × × × NB Recall, precision 

[121] Hungary × A, B √ × × × × K-means Black dot ratio 

[123] London × A, B √ √ × √ × K-means Variance 

[128] Teheran × C × × √ × × K-means Correct TCR percentage 

[124] America × A, B √ × √ × √ Fuzzy clustering, DT Fit scores 

[129] Medan × A, B √ × × × × FCM Consistency level 

[125] Hunan × A √ √ √ √ √ DBSCAN, BN 
Prior probability, posterior 

probability 

[126] China × A √ × × × × AD-DBSCAN Calinski-Harabasz index 

[130] Portugal × A √ √ × √ × KDE, DBSCAN Moran-I 

* A, B, C, D, E and F represent government datasets, open datasets, sensor data, social media data, geospatial data and private sector and crowdsourcing data, respectively. 



Promet – Traffic&Transportation. 2025;37(2):499-522.  Safety and Security  

509 

This section provides a detailed review of the machine learning methods discussed in the literature, 

summarised in Table 2. The following conclusions can be drawn from the summary of machine learning 

applications in predicting traffic accidents. Machine learning is broadening the scope of datasets used for 

accident prediction by incorporating data from social media and sensors for real-time detection. This capability 

is due to machine learning’s robust data processing abilities, which can analyse high-dimensional data and 

capture complex nonlinear relationships [20]. Therefore, utilising multi-source datasets may improve the 

effectiveness of machine learning. Finally, while machine learning has advanced considerably compared to 

statistical learning for various application scenarios and multi-source data utilisations, it necessitates 

significant computational resources, demands high-quality data and may involve processes like feature 

engineering that heighten the expenses of model computation [28]. 

Deep learning 

Deep learning technology has brought revolutionary changes to traffic accident prediction in recent years. 

As a machine learning technique using artificial neural networks, deep learning has significantly improved the 

performance and application of traffic accident prediction. It autonomously learns complex accident patterns 

through multi-level nonlinear transformations. 

A large amount of image and video data is collected during vehicle operation via traffic monitoring systems 

and onboard cameras. Analysing these data helps identify the vehicle’s movements before an accident and the 

influence of environmental factors [131]. Convolutional neural network (CNN) can extract significant features 

from images through convolutional and pooling layers. It can learn essential characteristics of accident 

occurrence and spatial data correlation [132, 133]. CNN has been successfully applied to real-time detection 

of potential accidents using sensor data from transportation systems [134]. The input data for CNN are usually 

Euclidean data, such as images. To ensure computational efficiency and model performance, the usual 

approach is to resize the image to a uniform size while maintaining a regular structure. However, CNN can be 

prone to overfitting, particularly with limited training samples. Regularisation techniques or dropout are 

commonly used to mitigate this issue and enhance generalisation [135]. Graph convolutional networks (GCN), 

introduced by Thomas N. Kipf and Max Welling in 2017, have emerged as effective tools for handling non-

Euclidean data, such as graph or manifold data. GCN learns node features by performing convolution 

operations on graph-structured data [136]. In traffic networks, GCN can process irregular graph structures like 

road networks, accurately capturing spatial correlations between traffic nodes. This allows for effective 

detection and analysis of traffic accidents across the network [137]. However, preprocessing adjacency 

matrices to represent the connectivity of road networks requires specialised knowledge in the field, and GCN 

is sensitive to data noise. 

Both GCN and CNN are effective in capturing spatial dependencies in data, while recurrent neural networks 

(RNN) are adept at learning temporal dependencies. RNNs are particularly useful for analysing sequential 

data, and capturing timing and semantic relationships [138]. It can better understand the relationship between 

short-term data, but it is difficult to learn information in long-term time series. Long short-term memory 

(LSTM) is a specialised type of RNN that introduces cell states and gating mechanisms, allowing it to retain 

relevant information over extended periods and learn both short-term and long-term dependencies in traffic 

accident data [139]. Additionally, LSTM can be trained via backpropagation algorithms, eliminating the need 

for manual tuning and mitigating gradient explosion issues seen in RNN [19]. Multiple LSTM models can be 

applied to accommodate time series data of varying lengths, predicting traffic accident risks at different levels 

of granularity and periodicity (such as daily, weekly or monthly) [140]. However, LSTM has high data quality 

requirements and is prone to overfitting. Data augmentation or regularisation techniques can be used to avoid 

the above problems. 

Traffic collision prediction is complex due to factors like road network topology, temporal traffic flow 

changes and multi-source data fusion [24]. Therefore, achieving the desired accuracy to predict traffic 

accidents is challenging when relying solely on one model. Consequently, it is necessary to adopt an effective 

strategy of integrating various deep learning models for accident forecasting, which utilises the strengths of 

individual models and enhances prediction performance [141]. For example, the combination of CNN and 

LSTM algorithms simultaneously considers the spatial and temporal characteristics of traffic accidents, 

enhancing their predictive accuracy and comprehensiveness [142]. Integrating deep learning algorithms 

necessitates careful consideration of data consistency and compatibility, guaranteeing harmonious data inputs 

and outputs across multiple algorithms. 
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Table 3 – Literature analysis of road traffic accident prediction based on deep learning 

Author 
Data source 

region 

Real-time 

detection 

Dataset 

type 

Accident 

information 

Road 

information 

Vehicle 

information 

Weather 

information 

Other 

information 
Model Evaluation index 

[37] America √ D, F √ × × × × CNN, RNN Accuracy, F1-score precision, recall 

[131]  √ B, D √ × × × √ CNN Accuracy, precision, F1-score, recall 

[132] UK √ A √ × √ √ × CNN, RF MSE, AUC 

[133] Madrid × A, B √ × √ √ √ CNN Recall, F1-score, precision 

[134] Des Moines √ A, B, C √ × √ × × CNN, ANN ROC-PR, F1-score 

[143] Nashville √ A, B, F √ × × √ √ CNN 

F1 score, average early prediction ratio, 

average early prediction distance, average 

early prediction time 

[144]  × 
Simulator 

data 
√ × × × × DCNN Accuracy, precision, TPR, FPR 

[109] Beijing √ A, B, F √ √ √ √ √ DSTGCN RMSE, recall, F1-score precision, AUC 

[136] 
San Diego, 

Los Angeles 
× A, B, C × × √ × √ GCN, LSTM Precision, F1-score, recall AUC 

[137] 
New York, 

Chicago 
× A, B, F √ √ √ √ √ GCN, CNN RMSE, MAP, accuracy 

[145] 
New York, 

California 
× A, B √ √ √ √ × MADGCN Recall, precision, F1-score, AUC 

[3] UK × A, B √ × × × √ LSTM-GBRT RMSE, R-square, RMSLE 

[19] California × A, B √ × √ × √ LSTMDTR Accuracy, F1-score, recall, AUC, precision 

[140] China × A √ × × × √ LSTM MAE, MSE, RMSE 

[23] 

Northern 

Virginia, 

New York 

√ D, F √ × × × √ LSTM, DBN Accuracy, precision 

[24] New York × A, B, C, F √ √  √ √ CNN, LSTM MSE, MAE, MAPE 

[86] Florida × A, B, C √ ×  √ √ CNN, LSTM AUC, TPR, FPR 

[139] California × A, B, F √ ×  × √ LDA, LSTM Bi-LSTM RMSE, MAE, MAPE 

[141] Taiwan × A √ √  × × ML, CNN, DNN, DBN Accuracy, F1-score, recall, precision 

[142] Ningbo × A, B √ ×  × √ Bi-ConvLSTM, U-Net CE, MSE, RMSE, CSI, FAR, POD 

[146] Paris × A, B √ ×  × √ LSTM, CNN, ANN Accuracy, recall, FAR, ROC 

* A, B, C, D, E and F represent government datasets, open datasets, sensor data, social media data, geospatial data and private sector and crowdsourcing data, respectively. 
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This section offers a comprehensive review of the literature referenced in the previous deep learning 

techniques, illustrated in Table 3. The following findings are obtained by summarising the application of deep 

learning in predicting traffic accidents. First, the intricate configuration of deep learning models typically 

necessitates establishing several crucial structural layers, such as the convolutional layer and the pooling layer 

in CNN. Furthermore, the numerous parameters involved require extensive data to support model training and 

parameter adjustment. Hence, deep learning can capitalise on the benefits of multi-source datasets to a greater 

extent [147]. Second, the multilevel constructs and advanced data processing capabilities of deep learning 

permit it to acquire intricate traffic accident patterns and features while handling nonlinear, high-dimensional 

and unstructured information [109]. Deep learning allows highly parallelised computing using GPUs to 

accelerate model training and inference. Finally, the integration of algorithms that combine various models 

can utilise their respective strengths to capture more comprehensive features to predict accidents. 

Pioneering research 

The above content systematically introduces the applications of statistical learning, machine learning and 

deep learning in traffic accident prediction, and analyses the characteristics of different models. However, 

existing research cannot cover all methods, and the following are some groundbreaking and inspiring studies. 

Lv et al. first attempted to apply the K-nearest neighbour (KNN) algorithm to the real-time prediction of 

highway accidents. Based on features such as vehicle speed, flow rate and density, it was able to predict 80% 

of dangerous traffic conditions, demonstrating the advantages of the algorithm’s simple structure and 

adaptability to nonlinear relationships [148]. With the rapid development of transportation big data, the 

predictive performance of traditional shallow learning models is gradually being questioned. Lv et al. used a 

stacked autoencoder (SAE) in deep learning for traffic flow prediction, successfully matching traffic patterns 

under large and medium traffic volumes, providing a new direction for future traffic accident prediction [149]. 

In the same year, Ma et al. extended deep learning theory to large-scale network analysis, promoting research 

on traffic network congestion and accident prediction [150]. In the field of predicting the severity of traffic 

accidents, Yang et al. proposed the first multi-task deep neural network framework that can predict different 

degrees of injury, death and property damage, and improve the interpretability of the model through 

hierarchical correlation propagation [151]. The multi-task prediction model and model interpretability 

provided in this study have important implications for improving the prediction range and interpretability of 

other models. Reinforcement learning can provide more accurate accident prediction and decision support in 

complex and dynamic traffic environments by continuously interacting and optimising strategies. Cho et al. 

first applied double actors and regularised critics (DARC) to traffic accident prediction and significantly 

improved the safety of autonomous driving by using driving recorder videos as input data [152]. The method 

based on macroscopic road network images proposed by Ji et al. eliminates the dependence on detailed traffic 

dynamics and data, providing new ideas for accident prediction in situations where data are insufficient [153]. 

2.4 Model evaluation 

In the study of traffic accident prediction, the evaluation of model performance is a critical component. By 

quantifying the accuracy and effectiveness of predictive models, we can effectively distinguish the strengths 

and weaknesses of different models, ensuring the reliability of the prediction results. This process also provides 

a scientific basis for the optimisation and adjustment of models. In this section, we will provide an in-depth 

introduction to the commonly used evaluation metrics for both regression and classification problems, aiding 

in a better understanding of model performance. 

Regression problem 

Regression problems involve predicting continuous numerical variables. In traffic accident prediction, 

common regression problems include traffic flow prediction, accident quantity prediction and accident severity 

prediction. The commonly used evaluation indicators include mean square error (MSE), which is the average 

square of the difference between predicted and actual values. It measures the degree of dispersion between 

predicted and actual values, and the smaller the better. Root mean square error (RMSE), which is the square 

root of MSE, ensures that the unit of error is consistent with the original data, making it easy to interpret. Mean 

absolute error (MAE) refers to the average absolute difference between predicted and actual values, without 

considering the direction of the error, only focusing on its magnitude. The mean absolute percentage error 

(MAPE), which is the percentage average of the absolute error between the predicted value and the actual 
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value, represents the relative magnitude of the error, facilitating comparison between data of different 

dimensions. 

Classification problem 

Classification problems involve predicting discrete category labels, with common tasks in traffic accident 

prediction including determining the likelihood of an accident occurring and forecasting the type of accident. 

Evaluation metrics for these classification tasks typically encompass accuracy, precision, recall, F1 score, 

receiver operating characteristic (ROC) curve and area under the curve (AUC). Accuracy measures the ratio 

of correctly predicted samples to the total number of samples, reflecting the overall classification effectiveness 

of the model. Precision indicates the proportion of true positive cases among samples predicted as positive, 

focusing on the reliability of positive predictions. Recall assesses the proportion of actual positive cases that 

are accurately identified. The F1 score, which is the harmonic mean of precision and recall, ranges from 0 to 

1, with values closer to 1 denoting superior model performance. The ROC curve plots the true positive rate 

(TPR) against the false positive rate (FPR) at various threshold levels, while AUC quantifies the area under 

the ROC curve, with values approaching 1 indicating enhanced model performance. 

3. RESEARCH OF PREVIOUS STUDIES AND DISCUSSION 

3.1  Results of previous studies 

1) Detailed traffic accident data can significantly enhance the accuracy and generalisation ability of predictive 

models. This paper reviews various data sources, including government and open datasets, sensor data, 

social media data, geospatial data, private sector and crowdsourcing data. First, government and open 

datasets provide comprehensive and reliable records of traffic accidents, road conditions and 

environmental data. However, due to differences in data collection and management methods across 

regions and institutions, data quality and storage structures are often inconsistent, requiring rigorous 

preprocessing to ensure uniformity. Second, while sensor data are costly and have limited coverage, their 

high precision and real-time nature are crucial for real-time accident prediction. Social media data, in the 

form of text, images and other media, offer a low-cost source of traffic-related information. Despite the 

presence of false, redundant or irrelevant content, effective filtering can make these data a valuable 

supplement to predictive models. Additionally, geospatial data, obtained through GIS and GPS 

technologies, reveal the spatial distribution of traffic accidents, aiding in the identification of accident 

hotspots and hazardous road segments. However, their acquisition and processing can be expensive and 

require specialised analytical skills. Finally, private sector and crowdsourced data are collected through 

various traffic applications and platforms, yielding a wealth of real-time traffic information and user 

feedback. These data sources are diverse and have broad coverage, providing fine-grained traffic flow and 

road condition information. However, due to the varied methods of data collection, their quality and 

accuracy may be inconsistent, necessitating effective data cleaning and integration to ensure their 

effectiveness in predictive models. 

2) Analysis of the data sources in the reviewed literature reveals that a substantial portion of research data 

originate from developed countries such as those in Europe and North America. This trend can be 

attributed to several factors. Firstly, these countries have well-established traffic management systems and 

data collection mechanisms, characterised by high-quality data recording and management systems, and 

are supported by substantial funding and resources for large-scale data collection. Additionally, research 

institutions and universities in these countries have extensive experience and influence in the field of traffic 

accident research, resulting in traffic accident data with high reliability and consistency. Particularly in 

countries like the United Kingdom and the United States, regulations such as the Freedom of Information 

Act and the Public Records Act mandate the public availability and access to government data, thereby 

promoting data transparency and facilitating the availability of traffic accident-related datasets to the 

public. Consequently, these datasets are frequently used as primary sources by researchers. In contrast, 

other regions face limitations in data accessibility and sharing due to stringent data privacy regulations, 

lower standardisation and issues related to data privacy and sharing. 

3) Existing research indicates that data preprocessing is crucial for enhancing the quality and usability of 

traffic accident data. Specific methods include data cleaning, feature extraction, standardisation or 

normalisation and data balancing. Data cleaning aims to improve data integrity and consistency by 
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removing missing values, eliminating noise and redundancy, and correcting anomalies and errors. Feature 

extraction identifies key factors influencing accident occurrence and severity through various statistical, 

geometric and image processing techniques. Standardisation and normalisation eliminate scale differences 

between features, making the data more comparable. Addressing class imbalance issues through 

resampling techniques such as oversampling, undersampling and hybrid sampling, as well as data 

generation techniques like SMOTE, enhances the model’s predictive capability for minority class samples. 

Additionally, to tackle the fragmentation of traffic accident data, existing research proposes establishing 

unified data collection standards and utilising methods such as VANET and IoV to achieve data collection, 

sharing and interoperability, thereby improving data completeness and consistency. 

4) Traffic accident prediction is a critical challenge in the field of traffic safety, and researchers have 

developed various prediction models, mainly categorised into statistical learning methods, traditional 

machine learning methods and deep learning methods. Statistical learning methods such as linear 

regression, negative binomial regression, logistic regression and ordered probit models rely on historical 

data to identify key factors and their impacts on accident occurrence. However, they may be limited in 

handling complex nonlinear relationships. Machine learning methods such as DT, RF, SVM, NB, K-means, 

fuzzy C-means and DBSCAN classifiers leverage large datasets for training, enabling them to learn 

complex associations and nonlinear relationships within data. These methods adaptively adjust model 

parameters and are suitable for classifying or clustering traffic accident data. Deep learning methods such 

as CNN, GCN and LSTM employ multi-layer nonlinear transformations to autonomously learn complex 

patterns in traffic accident data. They excel particularly in handling graph data and time series data. 

Combining approaches from different deep learning models integrates their respective strengths, 

enhancing prediction accuracy and comprehensiveness. Therefore, different models exhibit their 

advantages and limitations in utilising multi-source data for traffic accident prediction. The choice of 

appropriate models should depend on specific application scenarios and data characteristics. 

3.2 Discussion 

Current research on predicting road traffic accidents based on multi-source data faces several challenges. 

1) Despite the increasing richness of sources for traffic accident data, individual researchers still face 

significant information barriers. They typically rely on government datasets or open data to obtain 

information, while access to highly private and sensitive data remains challenging. Additionally, individual 

researchers find it difficult to obtain more detailed data from private enterprises (such as public 

transportation companies, insurance firms, bike-sharing or car-sharing companies) due to a lack of relevant 

support and resources. Therefore, acquiring multi-source data related to traffic accidents remains a 

significant challenge for individual researchers. 

2) When predicting accidents based on multi-source data, model development typically requires integrating 

various types of datasets, such as historical accident data, weather data, road data, points of interest (POI) 

data and traffic flow information. This diversity in data sources presents challenges related to high-

dimensional features and feature selection. Each dataset contains multiple features, which requires greater 

computational resources for feature processing. Additionally, there may be high correlations or redundant 

information among some features, which can reduce the efficiency of model training and even impact 

prediction performance. To address these issues, appropriate feature selection methods need to be 

employed. However, feature selection relies not only on effective algorithms but also on domain-specific 

knowledge. A lack of relevant domain knowledge may result in feature selection outcomes that do not 

accurately reflect the actual research context. Therefore, in feature selection, it is essential to use suitable 

methods in conjunction with the domain expertise to ensure the scientific rigour and effectiveness of the 

process. 

3) In machine learning and deep learning, underfitting and overfitting are common challenges that affect 

model performance, especially in complex traffic patterns. Underfitting occurs when a model lacks 

complexity, failing to capture underlying patterns, leading to high bias and low accuracy [154]. Conversely, 

overfitting arises when the model is too complex and thus learns the patterns in the training data 

excessively, resulting in high variance and poor generalisation [155]. To address these issues, various 

techniques can be applied, including regularisation, ensemble learning, data augmentation, early stopping, 

cross-validation and dropout. 
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Regularisation, such as L1 (Lasso) and L2 (Ridge), penalises large weights to reduce model complexity 

and improve generalisation [156]. Ensemble learning combines multiple base learners to enhance overall 

model accuracy and generalisation, integrating weaker models into a stronger one [157]. In neural networks, 

large models can be built by combining smaller ones, acting as base learners [158]. Given the imbalance in 

traffic accident data, particularly the prevalence of zero inflation [156], data augmentation expands the training 

set by generating new samples through random transformations (such as rotation, scaling and flipping) [159], 

thus improving robustness and reducing overfitting. The early stopping mechanism is an effective method to 

prevent model overfitting by monitoring the performance of the model on the validation set (such as loss and 

accuracy) during the training process. When the performance no longer improves, the training is stopped in 

advance [160]. Cross-validation effectively reduces the risk of overfitting by dividing the dataset into multiple 

subsets and alternating training and testing on each subset. [161]. Dropout is a simple and effective technique 

that randomly disables neural network nodes during training, allowing the remaining nodes to compute forward 

and backward propagation, thereby improving generalisation [162]. 

4. CONCLUSION 

4.1 Conclusion 

This paper presents a systematic review of research on traffic accident prediction based on multi-source 

data. Through detailed analysis of data sources, data processing methods and predictive models, the following 

key conclusions are summarised: 

1) The importance of multi-source data: Detailed traffic accident data significantly enhance the prediction 

accuracy and generalisation capability of models. Government data, sensor data, social media data, 

geospatial data, private sector and crowdsourcing data each have their advantages and limitations. 

Integrating these data sources can provide comprehensive and rich information support for models. 

2) The necessity of data preprocessing: Effective data preprocessing is crucial to ensuring high-quality data 

input. Through data cleaning, feature extraction, standardisation or normalisation and data balancing, the 

quality and usability of the data can be significantly improved, thereby enhancing the performance and 

interpretability of predictive models. 

3) Diversity of prediction methods: Traffic accident prediction methods include statistical learning methods, 

traditional machine learning methods and deep learning methods. Statistical learning methods are suitable 

for analysing the main factors contributing to accidents, traditional machine learning methods can handle 

complex nonlinear relationships, and deep learning methods perform exceptionally well on large-scale 

datasets. The appropriate prediction method should be chosen based on the specific application scenario 

and characteristics. 

4.2 Future works 

Predicting traffic accidents based on multi-source data involves specific research questions, innovative 

methods and potential directions for interdisciplinary collaboration, which will be introduced in the following 

sections. 

Establishing a unified vehicular networking data-sharing platform for predicting hazardous driving behaviour 

The IoV holds significant potential for traffic accident prediction by providing real-time, high-precision 

data on vehicle operations, such as location, speed and acceleration [163]. IoV data also capture driving 

behaviours like rapid acceleration, hard braking and sharp turns, which can be analysed to predict potential 

accident risks. Furthermore, IoV enables real-time information sharing between vehicles, alerting drivers to 

traffic incidents and road conditions, and facilitating timely assistance for accident victims. However, IoV data 

are underutilised in traffic accident prediction due to limited data-sharing mechanisms, with vehicle 

manufacturers and service providers maintaining tight control over the data and the absence of comprehensive, 

open data-sharing platforms. 

To address these challenges, several measures can be implemented. (1) Develop standardised V2X data-

sharing protocols to ensure interoperability between manufacturers and service providers, enabling secure data 

exchange. (2) Utilise cloud and edge computing for real-time analysis of large-scale V2X data, enabling timely 

accident predictions and warnings. (3) Design algorithms to recognise risky driving behaviours and issue alerts. 
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(4) Employ privacy-preserving techniques like differential privacy and federated learning to protect data during 

sharing and analysis. Achieving these solutions requires interdisciplinary collaboration with traffic authorities, 

vehicle manufacturers and cybersecurity experts to establish policies, acquire data, and ensure security and 

privacy, thus driving the advancement of connected vehicle technology. 

Integrating and processing real-time information from various data sources to enhance traffic accident 

prediction accuracy 

Real-time traffic accident prediction can identify hazards and anomalies in traffic flow, enabling preventive 

measures such as adjusting traffic signals and alerting drivers, thereby reducing accidents [164]. This capability 

also assists emergency responders in quickly understanding the location, severity and potential impact of 

accidents, facilitating more effective rescue operations and traffic management. Currently, the excellent 

performance of deep learning plays a significant role in real-time traffic accident prediction. 

To improve accuracy, several measures can be implemented. (1) Develop multi-source data fusion 

techniques to integrate data from social media, V2X, weather and road conditions for comprehensive 

monitoring. (2) Optimise deep learning models for real-time traffic accident prediction. (3) Build intelligent 

traffic systems to dynamically adjust signals and provide hazard alerts. (4) Establish emergency response 

systems to efficiently allocate resources based on prediction outputs. Achieving these requires collaboration 

with social media platforms, connected vehicle providers and emergency response departments to enhance 

data acquisition, predictive accuracy and rescue efficiency. 

Constructing graph-structured data suitable for traffic accident prediction and enhancing GCN model 

performance 

GCN models exhibit significant advantages in handling non-structured data, particularly in analysing traffic 

accident risks across an entire road network using graph-structured data. However, the application of GCN 

models in the field of traffic accident prediction is currently limited. 

To enhance the performance of GCN models in traffic accident prediction, several strategies can be 

implemented. (1) Design effective methods to transform traffic networks, traffic flow and accident data into 

graph-structured formats suitable for GCN models. (2) Improve GCN models by incorporating techniques like 

attention mechanisms and graph generative adversarial networks (GAN) to better capture complex traffic 

patterns. (3) Apply multi-task learning by integrating related tasks such as traffic flow prediction and 

congestion detection to improve model generalisation and accuracy. Achieving these advancements requires 

interdisciplinary collaboration with traffic planning experts to optimise graph data construction and model 

design, and with computer scientists to refine GCN algorithms, ensuring practical application and improved 

model performance. 
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何美玲, 孟光荣, 武晓晖, 韩珣, 范江洋 

基于多源数据的道路交通事故预测：系统综述 

摘要： 

随着城市化进程的加快和道路交通量的快速增长，准确的交通事故预测已成为提高

道路安全和交通效率的关键。然而，交通事故预测是一个复杂而多方面的问题，需

要综合考虑人、车辆、道路和环境等多种因素。本文基于多源数据对交通事故预测

进行了详细分析，通过综合考虑数据来源、数据处理和预测方法，从多角度全面的

介绍了交通事故预测的相关内容，帮助读者了解不同数据和方法之间的特点，了解

事故预测的流程，理解其中的关键技术和方法。文章最后总结了目前交通事故预测

研究中的主要挑战与展望，例如，不同部门和领域之间缺乏有效的数据共享，对多

源数据的整合构成了重大挑战。未来，将深度学习模型与社交媒体和车辆网络数据

等时间敏感数据相结合，可以有效提高实时事故预测的准确性。 
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