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ABSTRACT 

The growing ownership of electric vehicles in urban areas leads to increasing demand for 

public charging spaces. With existing charging facilities failing to match the constantly 

increasing demand for charging, it is necessary to plan for new charging infrastructure. A 

two-stage approach is proposed for public charging infrastructure planning from both macro 

and micro perspectives. Firstly, a linear regression model with an exponential elasticity 

function is used to estimate charging demand, considering comprehensive charging demand 

factors. Secondly, effective served charging demand (ESCD) is proposed to accurately 

calculate the charging demand of effective service areas, considering the distance impact 

factor and competition among neighbouring charging stations. A capacitated maximal 

service location model (CMSLM) is proposed to optimise the spatial layout of public 

charging stations by maximizing their ESCD while considering investment budget and 

charging station capacity limits. CMSLM is solved using sparrow search algorithm from both 

macro and micro perspectives. The proposed approach is applied to Guangzhou, China, as a 

case study. Results show that when the investment budget is increased to 5 million CNY, the 

ESCD of all districts under the macro and micro optimisation perspectives increases by an 

average of 41.0% and 34.1%, respectively. Optimised charging stations can remedy the 

spatial imbalance between charging demand and existing charging station distribution, laying 

the foundation for further construction implementation. 

KEYWORDS 

electric vehicle; charging demand estimation; charging infrastructure planning; location 

selection. 

 

Abbreviation Full name 

EV Electric vehicle 

POI Points of interest 

ESCD Effective served charging demand 

CMSLM Capacitated maximal service location model 

SCLM Set covered location model 

MCLM Maximum cover location model 

SSA Sparrow search algorithm 
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1. INTRODUCTION 

With the growing threat of climate change due to greenhouse gas emissions [1], the transportation sector 

employs vehicle electrification as a primary method to decrease tailpipe emissions and achieve 

environmentally friendly transportation [2]. The sales of electric vehicles (EVs) are increasing globally. In 

2023, more than one in three new car registrations in China was electric, over one in five in Europe, and one 

in ten in the United States [3]. The rapid growth in EV adoption has led to a surge in charging demand, and 

the public charging infrastructure plays a key role in enabling more widespread adoption of EVs [4]. Two 

major barriers to expanding public charging infrastructure are the underutilisation of inconveniently located 

charging stations and the insufficient coverage of charging networks in certain regions [5]. Therefore, it is 

essential to effectively improve coverage and maximise utilisation by optimally locating public charging 

infrastructure. 

In regions where EVs are developing rapidly, considerable charging demand is generated, which is 

challenging to fulfil. A sufficient and well-distributed public charging infrastructure can be an effective 

solution to this problem. For instance, Guangzhou, a major automobile production centre in China, is a leading 

city in vehicle electrification globally. By 2022, Guangzhou’s EV fleet ownership reached 540,000 units, 

representing 4.11% of the country’s total. However, the existing charging infrastructure in Guangzhou is 

unable to meet the current charging demand. Some charging stations are irrationally located, leading to 

significant practical issues. For example, during peak hours, EV users often face difficulty finding an available 

charging pile in high-demand areas such as city centres. Conversely, in low-demand areas, there is a surplus 

of idle piles, resulting in low station utilisation [6]. Difficulty in charging for EV users and low utilisation of 

charging piles have become significant challenges for the EV industry. The state has enacted policies to 

facilitate the construction of a high-quality, scientifically optimised and technologically advanced charging 

infrastructure system [7]. Therefore, a well-founded and practical charging infrastructure planning and 

construction method is required to solve the aforementioned problems. 

The process of public EV charging station planning is typically divided into two main parts: demand 

estimation and planning methods [5]. One common method for estimating demand is to simulate the energy 

consumption of EVs in various traffic scenarios by modelling EV battery usage [8]. However, this method can 

be challenging to scale up for use in large urban environments. To address this issue, several recent studies 

have utilised data-driven methods to estimate charging demand based on socio-economics (e.g. population 

density) [5], points of interest (POI) [9] and land use [10]. Charging station planning methods include travel-

based, path-based and point-based approaches [11]. The travel-based approach has high data requirements and 

typically necessitates detailed travel and stay data to ensure model practicality. However, obtaining detailed 

trip data is challenging due to privacy concerns. The path-based approach considers traffic flow as a dynamic 

feature, such as flow-capture location model [12] and flow-refuelling location model [13]. This approach 

assumes that the user completes charging quickly before traveling to the destination, making it feasible only 

at fast charging stations, where a full charge usually takes only a dozen minutes. However, it is not applicable 

at slow charging stations where a full charge may take several hours. In contrast, the point-based approach 

requires less data, such as population density, making it easier to estimate charging station locations and 

applicable to various regions or countries. 

Existing studies on estimating EV charging demand and charging station planning have identified three 

major gaps that need to be addressed. First, the ability of a charging station to serve the charging demand of 

the surrounding area is related to the distance between the two, as well as competition from neighbouring 

charging stations. Existing studies tend to consider only the charging demand that is simply covered by 

charging stations, which is not sufficiently accurate [5, 14]. Second, some proposed models lack real charging 

data to verify their validity. These models often use charging event identification to infer the possible charging 

behaviour of taxis [15, 16], but this data lacks authenticity, and significant differences exist between the 
behaviour of taxis and private cars. Third, there is a lack of corresponding location optimisation strategies from 

both macro and micro perspectives. Previous studies have focused on optimizing for minimum cost or 

maximum benefit, without considering the specific objectives of different stakeholders. The main contributions 

of this study are as follows: 

⎯ Effective Served Charging Demand (ESCD) is proposed to accurately calculate the charging demand 

within effective service areas. Considering the competition between charging stations, the Voronoi and 

radial boundary are used to delineate these effective service areas. Additionally, the charging demand 

within these areas is calculated by accounting for the influence of the distance to the charging stations. 
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⎯ A two-stage approach is proposed for public EV charging station planning, which consists of a regression 

model for charging demand estimation and a capacitated maximal service location model (CMSLM) for 

charging station planning optimisation by maximizing their ESCD, taking into account the constraints of 

investment budget and charging station capacity from both macro and micro perspectives. 

⎯ An optimisation strategy for charging station planning based on sparrow search algorithm (SSA) is 

proposed. From a macro perspective, the optimisation goal is to maximise ESCD of all charging stations 

across the region, while from a micro perspective to maximise ESCD of an individual charging station. 

The remainder of this article is organised as follows. The next section reviews existing EV charging station 

demand estimation and planning approaches. Section 3 describes data and variables. Section 4 presents the 

proposed regression model and location optimisation strategy. Section 5 illustrates the obtained results and 

analyses differences in optimisation perspectives among different districts. Section 6 presents the conclusions. 

2. LITERATURE REVIEW 

2.1 Charging demand estimation 

One common method for estimating charging demand is to model and simulate the charging demand of 

individuals and groups of EVs [8]. NetLogo is used to accurately model human behaviour and its impact on 

load demand resulting from EV charging, using an agent-based approach that considers technical, social and 

economic parameters. However, these methods are often only applicable to EVs in small areas and difficult to 

implement in large-scale urban cities. Another category of methods is based on socio-demographic and 

trajectory data, such as expert recommendations [17, 18], user surveys [19] and taxi trajectories [10, 16]. 

However, these methods lack real charging usage data for validation, and their reliability is debatable. For 

instance, EV users may conceal or have biased perceptions of their preferences and habits, meaning that only 

approximate estimates of user behaviour can be made. Identifying charging events through taxi distance from 

charging stations and dwell time may differ significantly from actual charging behaviour. 

To address the limitations of the aforementioned methods, there has been growing interest in data-driven 

approaches that identify correlations between charging usage data and external features. While dynamic 

features may not directly impact the location of new charging stations, they can be valuable in managing peak 

demand and grid load. The most typical example is the time of day. Charging events at public charging stations 

usually occur during the day, while private charging station charging tends to happen at night. However, the 

distribution of charging demand during the day does not affect location optimisation. Static features can reflect 

long-term stable characteristics near a point or an area and are suitable for planning new charging stations, as 

the location of charging stations does not change over a short period. These features typically include POI 

density and type, population density and other factors. A linear regression model was used to relate charging 

station usage data to POI type and create a heat map of charging demand for the study area [9]. Analysis 

indicates that POI has a significant impact on charging demand in urban areas. The random forest model was 

used to model spatial features, including pick-up and pick-down density, population density, land use entropy 

and road network density [10]. And the Shapley value method showed that all of these features have an impact 

on the charging demand. A weighted linear integrated model was used to score the demand in the area and 

identify the areas where gas stations should be built. The scoring criteria included area population, the distance 

from the fire station, the fault, and so on, and the criteria weights were determined using the analytical 

hierarchy process and the expert choice app [20]. 

Previous research investigated the effect of real-time pricing adjustments on charging demand. While real-

time data is critical for controlling peak demand and dynamic pricing, it only captures short-term changes and 

creates privacy concerns, particularly when dealing with location-based data [21]. Long-term historical data, 

on the other hand, is more suited for charging station planning since station sites do not change over a short 

period and require insights that represent stable, long-term features [14]. As a result, long-term stable pricing 

qualities are preferable for charging station planning to short-term price changes, because planning focuses on 

revenue creation over several years rather than hourly or daily profits. 

2.2 Optimisation of charging station planning 

The point-based approach is a commonly used method for locating charging stations and has been widely 

studied. According to [22], this problem is classified as NP-hard, meaning that an exact solution cannot be 

obtained within a finite amount of time due to the exponential growth of execution time about the problem 
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dimension. Therefore, heuristics are commonly employed to provide approximate solutions within a 

reasonable computation time. Representative algorithms include genetic algorithm [23] and greedy algorithm 

[24]. The two main point-based methods for facility location are the Set Covered Location Model (SCLM) [25] 

and the Maximum Cover Location Model (MCLM) [26]. SCLM aims to minimise the number of facilities 

while satisfying all customer needs [25]. MCLM aims to maximise demand satisfaction by locating a specific 

number of facilities. MCLM is a method that sets a distance threshold, similar to SCLM but with the added 

benefit of allowing for the exclusion of certain demand points when there are insufficient resources to cover 

all nodes. This feature makes MCLM more realistic. In [27], MCLM is used to locate slow charging stations 

and compete with fast charging stations located using a traffic capture location model. A two-step approach is 

proposed for optimally deploying charging points, integrating spatial statistics and MCLM [28]. Additionally, 

MCLM is employed to quantify the value of locating charging stations at POI, such as schools or stores [9]. 

In the MCLM, charging station coverage regions typically overlap, neglecting the impact of competition 

among surrounding charging stations. To more correctly evaluate charging demand for effective service, this 

study introduces the ESCD, which uses Voronoi and radial boundaries to outline effective service regions 

while taking into account competition between charging stations. Additionally, this paper proposes an 

optimisation strategy within the CMSLM to address the needs of various stakeholders with different planning 

objectives, providing valuable references for the configuration of charging infrastructure. 

3. DATA PREPARATION 

3.1 Data 

Guangzhou was chosen as the research area due to its crucial position as a primary vehicle production 

centre in China. Multiple datasets from Guangzhou are utilised to extract various variables. A comprehensive 

description of the data sets is given in Table 1. 

Table 1 – Description of the data sets 

Data set Data source Key information Variable 

Charging station data [29] 
ID, longitude, latitude, time, 

status, power, charging price 

charging demand, weighted 

average charging price 

POI data Amap 
POI ID, longitude, latitude, 

POI type 
POI density 

Population data LandScan Global[30] 
grid ID, longitude, latitude, 

population density 
population density 

Road network data OpenStreetMap 
road ID, longitude, latitude, 

road type 
road network density 

Land use data EULUC-China[31] 
area ID, longitude, latitude, 

land use type 
land use entropy 

Charging station data is collected from [29]. The data analysed is from 19 June to 18 July 2022. It provides 

details on 647 commercial charging stations in operation, which collectively have over 7,000 charging piles. 

POI data is collected from the Amap website. The dataset comprises 246,494 POIs sorted into nine categories, 

including restaurant, hotel, business, education, health, service, finance, transportation and entertainment. To 

minimise potential noise, health and service POIs are excluded from further analysis [5], as they do not appear 

to have any direct association with charging behaviours. Population data is collected from LandScan Global 

[30] and recorded as square grid data at a one kilometre resolution. Road network data is gathered from 

OpenStreetMap, encompassing primary road, secondary road, tertiary road, trunk road, motorway and minor 

road. There are approximately 13,720 road segments in Guangzhou. Land use data is gathered from EULUC-

China [31]. It is categorised into five classes, including residential, commercial, industrial, transportation and 

public management and service. 
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3.2 Buffer-based variables 

Establishing geographical buffers allows for improved summarisation of the features present near the 

charging stations, including POI and population data. The Voronoi diagram is a prevalent tool for establishing 

edges between adjacent buffers, preventing any overlapping occurrences [10, 32]. However, applying Voronoi 

diagrams directly can result in significant variations in the buffer area due to the uneven distribution of 

charging stations in the area. Nonetheless, it is improbable for distant locations in the region to be impacted 

by the presence of this charging station. So first, all charging stations are grouped into clusters with a threshold, 

and the centre of the cluster is the average of the station locations within that cluster. The threshold is 

determined by hierarchical clustering [10]. Most stations are less than 500 metres away from the closest station 

and a 500-metre parameter produces a relatively low Gini coefficient (keeping different buffers evenly 

distributed) while also providing a sufficient number of buffers, therefore 500 metres is chosen as the threshold 

for clustering. Next, radial boundaries of up to one kilometre were overlaid onto the buffer area of the Voronoi 

diagram, which is widely regarded as the most acceptable walking distance for most people [33] and is 

typically used to represent walkable regions when evaluating charging station accessibility [5]. 

Charging demand. The charging demand of each station is used as the dependent variable and defined as 

total charging energy consumed in one month. Figure 1a exhibits the spatial distribution of the charging stations 

according to their capacities. The buffers generated with charging demand are illustrated in Figure 1b. It is 

evident that there is an imbalance between the supply and demand for charging infrastructure in Guangzhou. 

 
(a) Capacities of charging stations 

 
(b) Charging demand with buffers 

Figure 1 – The supply and demand for charging infrastructure in Guangzhou 

Weighted average charging price (WACP). Previous research has analysed the effect of dynamic pricing 

on charging station usage, which mainly concentrates on short-term changes. However, when addressing the 

planning problem, it is crucial to consider the impact of charging pricing on charging station usage over 

extended periods. Let 𝒯 = {𝐻, 𝑀, 𝐿} denote the set of periods, which are peak, flat and valley. The WACP of 

the 𝑖th charging station 𝑃𝑖 is defined as follows: 

𝑃𝑖 =
∑ 𝛼𝜏 ∑ 𝑝𝑖

𝜏,𝑡𝑡𝑡𝜏𝜖𝒯

∑ 𝛼𝜏𝜏𝜖𝒯 𝑇𝜏
 (1) 

where 𝛼𝜏  is the relative significance coefficient of the charging price, 𝑝𝑖
𝜏,𝑡

 is the charging price of the 𝑖 th 

charging station at time 𝑡 during the period 𝜏, and 𝑇𝜏 is the time during the period 𝜏.  

POI density. POIs are locations of interest to the public and represent destinations frequently visited by 

drivers, which have a significant effect on the usage of charging stations [5, 9]. Areas with high demand for 

charging often coincide with high POI density. The POI density of the 𝑖 th charging station 𝑋𝑖
𝑃𝑂𝐼  can be 

calculated as follows: 

𝑋𝑖
𝑃𝑂𝐼 =

∑ 𝐶𝑖,𝑘
𝐾
𝑘=1

𝐴𝑖
 (2) 
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where 𝐶𝑖,𝑘  is the count of the 𝑘th POI type in the buffer of the 𝑖th charging station, 𝐾 is the number of POI 

categories and 𝐴𝑖 is buffer area of the 𝑖th charging station. 

Population density. Population density is highly correlated with the drivers’ parking behaviour, which could 

impact the charging demand [5]. In cases where grids overlap with the buffer, the population is determined by 

applying the ratio of the overlapping area to the grid area. The population density of the 𝑖th charging station 

𝑋𝑖
𝑝𝑜𝑝

 can be expressed as follows: 

𝑋𝑖
𝑝𝑜𝑝

=
∑ 𝐴𝑖,𝑚 ∙ 𝑑𝑚

𝑀
𝑚=1

𝐴𝑖
 (3) 

where 𝑑𝑚 is the population density of the 𝑚 th population grid, 𝐴𝑖,𝑚  is the overlapping area of the 𝑚 th 

population grid and the buffer of the 𝑖th charging station and 𝑀 is the number of grids. 

Road network density. Road network density represents the accessibility and connectivity of the road 

network [10]. The more accessible the charging station is, the more likely it is to attract more EV owners to 

the station. The road network density of the 𝑖th charging station 𝑋𝑖
𝑟𝑜𝑎𝑑 is calculated as follows: 

𝑋𝑖
𝑟𝑜𝑎𝑑 =

∑ 𝑙𝑖,𝑐
𝐶
𝑐=1

𝐴𝑖
 (4) 

where 𝑙𝑖,𝑐  is the length of the 𝑐th road type in the buffer of the 𝑖th charging station, and 𝐶 is the number of road 

categories. 

Land use entropy. Land use entropy is a widely accepted measure of the average diversity of destinations 

within a metropolitan area at neighbourhood level [34]. Areas with higher land use entropy may provide drivers 

with more opportunities for lunch or breaks during charging [10]. The land use entropy of the 𝑖th charging 

station 𝑋𝑖
𝑙𝑎𝑛𝑑 is defined as follows: 

𝑋𝑖
𝑙𝑎𝑛𝑑 = −[∑ 𝜂𝑖,𝑛 ∙ 𝑙𝑛(𝜂𝑖,𝑛)

𝑁

𝑛=1

]/𝑙𝑛 (𝑁) (5) 

where 𝜂𝑖,𝑛 is the percentage of the 𝑛th land use type in the buffer of the 𝑖th charging station, and 𝑁 is the number 

of land use categories. The value of land use entropy is between 0 and 1, and a value closer to 1 indicates a 

more extensive land use.  

Guangzhou is chosen as the research area. 𝒯 = {𝐻, 𝑀, 𝐿} is determined based on the period division and 

electricity price standard in Guangzhou [35], as shown in Table 2. Since the charging demand varies greatly 

across periods, electricity price partially reflects the magnitude of charging demand within the period. During 

p0eriods of high electricity prices, there is a high demand for charging. The relative significance of charging 

price can be expressed by the ratio of electricity price over time; the resulting values for 𝛼𝐻, 𝛼𝑀 and 𝛼𝐿 are 

0.56, 0.32 and 0.12, respectively. This outcome is in line with [36], which indicates that, for EVs in China, the 

proportion of charging time is, respectively, 53%, 32%, and 15% during peak, flat and valley periods. 

Table 2 – Period division and electricity prices 

Period Time range Electricity prices (𝐂𝐍𝐘/𝐤𝐖𝐡) 

Peak [10ℎ, 12ℎ) ∪ [14ℎ, 19ℎ) 0.9863 

Flat [8ℎ, 10ℎ) ∪ [12ℎ, 14ℎ) ∪ [19ℎ, 0ℎ) 0.5802 

Valley [0ℎ, 8ℎ) 0.2205 

The analysis employed five factors that reflect variations in charging price, POI, land use, population and 

road networks. Due to data constraints, it was not feasible to include further features in the analysis. All of the 

variables are tested for outliers, and their results are given in Table 3. As shown in the table, charging demand, 

POI density, population density, land use entropy and road network density all vary widely, with extreme high 

values concentrated in some large business districts and extreme low values found in parks, scenic areas and 

remote suburbs. 
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Table 3 – Values of the variables 

Variables Symbol Units Min 15% 50% 85% Max 

Dependent variable        

Charging demand 𝐷𝑖 103kWh 0.072 5.689 48.640 330.514 2160.239 

Independent variables        

WACP 𝑃𝑖 CNY/kWh 0.45 0.80 1.02 1.28 1.80 

POI density 𝑋𝑖
𝑃𝑂𝐼 /km2 0.31 3.25 125.21 411.29 1021.30 

Land use entropy 𝑋𝑖
𝑙𝑎𝑛𝑑  - 0 0.140 0.441 0.677 0.904 

Population density 𝑋𝑖
𝑝𝑜𝑝

 103/km2 0.230 1.847 3.393 5.987 43.638 

Road network density 𝑋𝑖
𝑟𝑜𝑎𝑑 km/km2 0.272 1.869 3.954 6.687 11.270 

4. METHODS 

4.1 Charging demand estimation 

A linear regression with an exponential elasticity function [23] is employed to examine the relationship 

between charging demand and various independent variables. The exponential elasticity function is used to 

describe how changes in charge price effect demand, assuming demand reacts exponentially to price 

fluctuations. The charging demand of the 𝑖th charging station 𝐷𝑖 is defined as follows: 

𝐷𝑖 = exp [𝜉(𝑃𝑖 − 𝑃0)ℎ](𝜷𝑿𝑖 + 𝑏) (6) 

where 𝜉 is the price elasticity, 𝑃𝑖 is the WACP of the 𝑖th charging station, 𝑃0 is an acceptable price for most 

EV owners, ℎ is the amount of power consumed for a full charge, 𝜷 = [𝛽1, 𝛽2, 𝛽3, 𝛽4]𝑇 is the coefficient vector 

for the four independent variables, 𝑿𝑖 = [𝑋𝑖
𝑃𝑂𝐼 , 𝑋𝑖

𝑝𝑜𝑝
, 𝑋𝑖

𝑙𝑎𝑛𝑑, 𝑋𝑖
𝑟𝑜𝑎𝑑]𝑇  is the vector for the standardised 

independent variables and 𝑏 is an intercept term. China’s charging price generally exhibits low elasticity, 

typically ranging from -0.15 to -0.1 [37]. Therefore, it is reasonable to use -0.15 for 𝜉 . 𝑃𝑖  above 𝑃0  will 

influence the decision of a few EV owners that they may not charge in the 𝑖th charging station [23]. According 

to [36], the price sensitivity low point is the 15% quantile of the charging price at the charging station; it is 

reasonable to assume 𝑃0 as the 15% quantile of the WACP, 0.8. In general, the power of L2 commercial 

charging pile is 7.2 kW, which can fully recharge most long-range battery EVs during an eight-hour charge 

[38], so that ℎ is 7.2*8 kWh. 

The coefficient vector is determined using the least-squares regression method and is illustrated in Table 4. 

Table 4 – Results of the regression analysis (𝑅2=0.225) 

 Coefficients t-value Significance 

Constant -0.0226 -0.760 0.448 

POI density 0.1768 2.133 0.034** 

Land use entropy 0.0754 1.796 0.074* 

Population density 0.1801 2.113 0.036** 

Road network density 0.1109 1.307 0.193 

*Significant at 0.1 level. **Significant at 0.05 level. 

Charging demand throughout the study area is generated using the regression model as outlined in Equation 

6. Factors such as WACP, population, road network and POI are taken into account. To achieve this, a given 

area is segmented into several subareas, the shape and dimensions of which can be customised according to 
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the planner’s specifications. A dense grid with a uniform size of 1km ×1km is implemented. The design vector 

�̂�𝑠 = [�̂�𝑠
𝑃𝑂𝐼 , �̂�𝑠

𝑝𝑜𝑝
, �̂�𝑠

𝑙𝑎𝑛𝑑, �̂�𝑠
𝑟𝑜𝑎𝑑]𝑇  for the 𝑠 th grid is calculated and inserted into Equation 7, the potential 

charging demand in grid 𝑠 �̂�𝑠 is obtained.  

�̂�𝑠 = {
exp[𝜉(�̂�𝑠,𝑖 − 𝑃0)ℎ] (𝜷�̂�𝑠 + 𝑏)     if 𝑦𝑠 = 1

𝜷�̂�𝑠 + 𝑏                                                      else
 (7) 

�̂�𝑠,𝑖 =
∑ 𝛼𝜏 ∑ 𝑝𝑖

𝜏,𝑡𝑡𝑡𝜏𝜖𝒯

∑ 𝛼𝜏𝜏𝜖𝒯 𝑇𝜏
 (7a) 

�̂�𝑠
𝑃𝑂𝐼 =

∑ 𝐶𝑠,𝑘
𝐾
𝑘=1

𝐴𝑠
 (7b) 

�̂�𝑠
𝑝𝑜𝑝

=
∑ 𝐴𝑠,𝑚 ∙ 𝑑𝑚

𝑀
𝑚=1

𝐴𝑠
 (7c) 

�̂�𝑠
𝑟𝑜𝑎𝑑 =

∑ 𝑙𝑠,𝑐
𝐶
𝑐=1

𝐴𝑠
 (7d) 

�̂�𝑠
𝑙𝑎𝑛𝑑 = −[∑ 𝜂𝑠,𝑛 ∙ ln(𝜂𝑠,𝑛)

𝑁

𝑛=1

]/ln(𝑁) (7e) 

𝑦𝑠 = {0,1} (7f) 

�̂�𝑠,𝑖 is the WACP of charging station 𝑖 in grid 𝑠, �̂�𝑠
𝑃𝑂𝐼, �̂�𝑠

𝑝𝑜𝑝
, �̂�𝑠

𝑟𝑜𝑎𝑑, �̂�𝑠
𝑙𝑎𝑛𝑑 is the POI density, population 

density, road network density and land use entropy of the 𝑠th grid, respectively. For grid 𝑠, 𝐶𝑠,𝑘  is the count of 

the 𝑘th POI type, 𝐴𝑠 is the area, 𝐴𝑠,𝑚 is its overlapping area with the 𝑚th population grid, 𝑙𝑠,𝑐  is the length of 

the 𝑐th road type and 𝜂𝑠,𝑛 is the percentage of the 𝑛th land use type. 𝑦𝑠 = 1 means that there is a charging station 

in grid 𝑠 and 𝑦𝑠 = 0 means that there is none. 

4.2 Charging infrastructure planning optimisation 

This section employs the previously generated potential charging demand and a Voronoi diagram created 

from existing charging stations to determine optimal location selection. First, Voronoi diagram is obtained 

after adding new charging stations. Next, the ESCD is calculated within the intersection area between the 

Voronoi region and radial boundary of up to 1 kilometre. Finally, the ESCD by new charging stations is 

optimised by the SSA. 

Effective served charging demand 

The boundaries of the areas served by the charging station are illustrated in Figure 2. To streamline the 

computation of these areas, they have been divided into three subregions. This categorisation is based on the 

location of vertices and the edge opposite the charging station. For the pink region, both vertices are situated 

at the intersection of the Voronoi boundary and the radial boundary, while the edge opposite the charging 

station is limited by the Voronoi boundary. The yellow region is similar, but its boundary is defined by the 

radial limit. In the blue area, the Voronoi boundaries are more restrictive, with one vertex at the intersection 

of the Voronoi boundary and radial boundary and another at the Voronoi boundary. With this, the effective 

served charging demand (ESCD) �̂�𝑎 of a charging station is calculated by summing the charging demand of 

each subregion using Equations 8 and 9. When charging station 𝑎 is closer to the adjacent charging stations, its 

Voronoi border becomes more restricted, reducing the area that the charging station 𝑎 may service and thus 

decreasing the computed ESCD.  

�̂�𝑎 = ∑ 𝑓𝑎(𝑠)

𝑠∈𝛺𝑎

∙ �̂�𝑠 (8) 

𝑓𝑎(𝑠) = {[1 −
dist((𝜇𝑎, 𝜈𝑎), (𝜇𝑠 , 𝜈𝑠))

𝑅
]𝛽         if  𝑅 − dist((𝜇𝑎, 𝜈𝑎), (𝜇𝑠 , 𝜈𝑠)) ≥ 0

                          0                                  else                                                       

 (9) 
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𝛺𝑎 represents the area served by charging station 𝑎, �̂�𝑠 represents the potential charging demand in grid 𝑠 

and 𝑓𝑎(𝑠) represents the distance impact factor for grid 𝑠, which ranges from 0 to 1. The geographic distance 

dist() between charging station 𝑎 and grid 𝑠 is determined using the haversine formula. 𝜇𝑎, 𝜈𝑎, 𝜇𝑠 and 𝜈𝑠 are 

the latitude and longitude coordinates of charging station 𝑎 and grid 𝑠, respectively. 𝛽 is a hyperparameter and 

𝑅 is the service radius. The distance impact factor decreases as the distance between the charging station and 

the region it serves increases. If the distance is greater than 𝑅, the charging station can no longer provide 

service, and the impact factor is set to 0. At distances greater than 3,000 feet (0.91 km), the willingness of 

people to walk from a parking location to an event location is significantly reduced [33]. Thus, 𝑅 is roughly 

estimated as 1 kilometre. 𝛽 is typically set to 2 based on empirical evidence. 

 
Figure 2 – The limits of the charging station served areas 

Regional and individual optimisation 

Once ESCD is obtained, the optimal public charging station allocation problem can be addressed by 

CMSLM. Given the total investment budget, CMSLM optimises the location of charging stations and 

associated charging piles under the constraint of charging power capacity. Optimisation strategy is presented 

from both macro and micro perspectives: “regional optimisation” and “individual optimisation”. In regional 

optimisation, the aim is to maximise ESCD across the entire region by summing the charging demand served 

by all charging stations in the region. This can be interpreted as the government filling gaps in areas with 

insufficient charging infrastructure while also identifying areas with high potential charging demand and 

laying out charging infrastructure in advance. The optimisation objective function for region optimisation is 

represented by Equation 10, with the geographic coordinates of the new charging station used as optimisation 

inputs. 

max
𝜇𝑤,𝜈𝑤

∑ �̂�𝑒

𝑒∈𝐸

+ ∑ �̂�𝑤

𝑤∈𝑊

 (10) 

s. t.  �̂�𝑎 = ∑ 𝑓𝑎(𝑠)

𝑠∈𝛺𝑎

∙ �̂�𝑠       𝑎 ∈ {𝐸, 𝑊} (10a) 

        𝑐 ∙ 𝑁𝑎 ≥ �̂�𝑎       𝑎 ∈ 𝑊 (10b) 

        𝑁𝑚𝑖𝑛 ≤ 𝑁𝑎 ≤ 𝑁𝑚𝑎𝑥        𝑎 ∈ 𝑊 (10c) 

        ∑ 𝐶1

𝑎∈𝑊

+ 𝐶2 ∙ 𝑁𝑎 ≤ 𝑄 (10d) 

        𝑁𝑎 ∈ ℕ       𝑎 ∈ 𝑊 (10e) 

�̂�𝑒 represents the existing charging station’s ESCD following the position of the new charging station, and 

�̂�𝑤 is the new charging station’s ESCD. It is important to note that the ESCD for the existing charging station 

will change as the location of the new charging station changes. 𝐸 and 𝑊 are the sets of existing and new 

charging stations, respectively. 𝑐  is the capacity of each charging pile for a month. 𝑁𝑎  is the number of 

charging piles for 𝑎th station. 𝑁𝑚𝑖𝑛 and 𝑁𝑚𝑎𝑥 are the upper and lower limits of the number of charging piles 

for each new charging station, respectively. 𝐶1 and 𝐶2 are the cost of installing a charging station and the 

equipment cost of a charging pile, respectively. 𝑄 is the total investment budget. 
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Equation 10a is used to update ESCD for both existing and new charging stations. Equation 10b guarantees new 

charging station’s charging capacity meets the charging demand. Equation 10c ensures the number of charging 

piles is appropriate for the charging station. Equation 10d determines the total budget limit for constructing 

charging stations and charging piles. Equation 10e ensures the number of charging piles is a positive integer. 

In individual optimisation, the objective function solely includes the ESCD of the new charging station, 

which can be interpreted as charging facility construction operators accurately identifying high-demand areas 

while minimizing competition with surrounding charging facilities and maintaining the attractiveness of their 

facilities to ensure high revenues. The form of the objective function for individual optimisation is represented 

in Equation 11. The distinction between the two lies in the fact that individual optimisation tends to position new 

charging stations nearer to existing ones, particularly those with high ESCD, since they are not limited by the 

constraint of drawing charging demand from existing ones. This is not typically applicable to regional 

optimisation, as only added service areas can increase the overall charging demand served in the region. 

max
𝜇𝑤,𝜈𝑤

�̂�𝑤 (11) 

The optimisation problem is non-convex and non-monotonic due to the possibility of multiple global 

maxima. SSA is a suitable heuristic algorithm for solving these complex optimisation problems, drawing 

inspiration from the foraging and anti-predation behaviours observed in sparrow populations. The algorithm 

divides the search group into two distinct parts: the discoverer and the joiner, which divide each other's work 

to find the optimal value, and at the same time, mimic the real predatory scenarios, and increase the sparrow’s 

danger warning mechanism. Therefore, SSA is advantageous in terms of the searching accuracy, convergence 

speed, stability and avoidance of local optima. 

5. RESULTS AND DISCUSSION 

5.1 Regression and heatmap of charging demand 

Table 4 displays the results of the regression analysis. The regression followed a linear pattern since the 

parameters of the exponential term corresponding to the WACP are fixed. All correlations are positive, 

indicating that POI density, road density, land use entropy and population density have a positive impact on 

charging demand. The potential charging demand is linearly interpolated to generate more continuous 

heatmaps. Figure 3 shows the charging demand heatmap and spatial distribution of POI, road, land use and 

population density in Huadu district. According to Figure 3a, it is clear that the charging stations are primarily 

concentrated in the central area, where there is a high demand for charging (indicated by the colour red). The 

surrounding areas also have charging stations, but they are more sparsely distributed and have a relatively 

lower demand for charging (indicated by the colour yellow). Remote areas are largely devoid of charging 

stations, corresponding to minimal charging demand (indicated by the colour blue). By examining the spatial 

distributions of population density, POI density, road network density and land use entropy, we can see that 

these factors are highly correlated with the distribution of charging demand. Areas with high population density 

tend to have higher charging demand, as they likely host more electric vehicle users. Similarly, areas with a 

dense distribution of POIs, such as commercial centres and services, exhibit higher charging demand due to 

the higher concentration of activities and potential electric vehicle usage. The developed road network in 

central areas facilitates easy access to charging stations, further increasing the demand. High land use entropy 

indicates a diverse mix of land uses, which typically attracts more people and, consequently, more electric 

vehicle charging demand. By combining Figures 3a–3d, it becomes evident that charging stations are primarily 

located in central areas with dense POI distribution, developed road networks, high comprehensive land use, 

and high population density. In peripheral areas with low POI distribution, low comprehensive land use and 

low population density, charging stations are distributed along the highway line. This distribution pattern is 

consistent with the regression results, as all estimated values in the regression are positive. The alignment of 

these spatial distributions with the regression analysis highlights the importance of these factors in influencing 

the location and demand for electric vehicle charging stations. 
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(a) Charging demand heatmap 

 
(b) Population density 

 
(c) Road network and POI 

 
(d) Land use 

Figure 3 – Charging demand heatmap and spatial distribution of population density, POI, road network and land use in 

Huadu district. d) is overlaid on 10-m global land cover map (FROM-GLC10) [39]. 

5.2 Optimisation of new charging station planning 

Depending on the charging demand heatmap, the positioning of new stations was optimised from two 

expansion perspectives, as outlined in Section 4.2. Assuming that all public charging stations are freely 

accessible 24/7, the power of L2 commercial charging pile is generally 7.2 kW [38], and the monthly capacity 

𝑐 is set as 7.2*24*30 kWh. According to the actual deployment of charging stations in Guangzhou, over 95% 

of existing charging stations have charging piles in the 8–35 range, thus 𝑁𝑚𝑖𝑛 is set to 8 and 𝑁𝑚𝑎𝑥 is set to 35. 

The cost of constructing a charging station 𝐶1, including labor and materials, is approximately 40,000 CNY, 

and the installation cost of a charging pile 𝐶2 is around 18,000 CNY [5]. Figure 4 illustrates the results of two 

optimisation perspectives in Huadu district with an investment budget of 3 million CNY. Both optimisation 

perspectives aim to fill the gaps in highly desirable areas of the city centre, specifically two stations resulting 

from regional optimisation and four from individual optimisation. The number of charging piles at these four 

charging stations is similar, suggesting clear competition to divide up the area with the highest charging 

demand. Another option is to focus on small areas outside the central region with relatively high charging 

demand, resulting in four stations from regional optimisation and two from individual optimisation. It is 

evident that newly built stations have a more significant impact on nearby stations under individual 

optimisation, as it is not limited by the constraint of drawing charging demand from other stations and focuses 

only on maximizing the ESCD of the additional charging stations. In contrast, the decrease in ESCD of all 

existing stations due to new stations under regional optimisation is smaller, because its optimisation targets 

the ESCD of all charging stations in the region, and reducing the ESCD of existing charging stations has no 

benefit in increasing the overall ESCD level. This behaviour aligns with the previously established 

optimisation goals, indicating that the earlier objective function is reliable. 

Figure 5 displays the changes in the ESCD at each charging station before and after optimisation in Huadu 

district. The ESCD of all charging stations is more balanced under individual optimisation, resulting in a 

smaller difference between the highest and lowest ESCD compared to regional optimisation. Combined with 

Figure 4, it can be seen that under individual optimisation, the four charging stations are concentrated in the 

region with the highest charging demand. This competitive relationship balances them so that the highest 

ESCD is smaller than under regional optimisation. However, under regional optimisation, the two charging 
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stations adequately satisfy the charging demand in the region with the highest charging demand, so the other 

charging stations are constructed in regions lacking charging stations. Secondly, the ESCDs of new charging 

stations under individual optimisation are mostly at the top of the list, while a few ESCDs of new charging 

stations that are under regional optimisation are in the middle of the range. This suggests that new charging 

stations under individual optimisation try to locate in high demand areas, while regional optimisation goes 

more to supplement charging station blank areas, a result that is consistent with both optimisation objectives. 

 
(a) Regional optimisation 

 
(b) Individual optimisation 

Figure 4 – Existing and new stations in Huadu district as decided by the a) regional and b) individual optimisation. The number on 

each dot indicates the number of charging piles in the station. The shaded area surrounding each station shows the area in which 

each station can serve for the charging demand. 

 
(a) Regional optimisation 

 
(b) Individual optimisation 

Figure 5 – Changes in the ESCD at each charging station before and after optimisation 
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5.3 City scope 

By aggregating the ESCD of the district encompassed by charging stations in each region, the outcomes at 

the citywide level can be comprehended. Figure 6 presents the consequences of the changes in ESCD by adding 

new stations. The results indicate a positive correlation between the ESCD and the total investment budget, 

though the rate of increase appears to be gradually slowing down. This deceleration suggests that while 

additional charging stations are still necessary to meet demand, the effectiveness of each new station 

diminishes as the network expands. The regional optimisation results in a higher improvement level of the 

ESCD compared to the individual optimisation. On average, after increasing the investment budget to 5 million 
CNY, the ESCD of all districts under macro and micro optimisation perspectives increases by 41.0% and 34.1%, 

respectively. This suggests that there is some competition among the charging stations, but it is not too intense. 

As shown in Figure 4, in contrast to regional optimisation, which tends to favour locations situated at a 

considerable distance from the centre and devoid of charging stations, individual optimisation is more inclined 

to prioritise competing for the highest-demand areas within the central region. These findings apply to the 

other 10 administrative districts as well. Additionally, under the same budget conditions, economically 

underdeveloped administrative districts (e.g. Zengcheng district) tend to exhibit a higher level of ESCD 

enhancement than their economically developed counterparts (e.g. Tianhe district). This is because the latter 

have a high level of pre-existing ESCD, and the percentage that can be enhanced with the same budget is 

relatively low. 

 
(a) Regional optimisation 

 
(b) Individual optimisation 

Figure 6 – Increased ESCD by adding new stations to existing infrastructure using a) regional and b) individual optimisation 

The results of the regional optimisation were found to be higher than those of the individual optimisation 

in improving the ESCD in the study area. Therefore, the former was used to subtract the latter’s results, and 

differences in the ESCD are shown in Figure 7. Tianhe and Huangpu districts, which are economically 

developed, have a high demand for charging infrastructure. However, there is a severe lack of charging stations 

in these high-demand areas. The individual optimisation has resulted in new charging stations being 

concentrated in these areas, which does not effectively enhance the ESCD of the entire administrative district 

when compared to the regional optimisation. Haizhu, Baiyun and Panyu districts, which have a moderate 

economic level, show little difference between the two optimisation perspectives. This is likely due to the even 

distribution of charging demand within the district, resulting in less competition between charging 

infrastructure. As a result, the outcomes of both optimisation perspectives are similar. Economically 

underdeveloped districts like Conghua and Liwan, have limited charging infrastructure due to insufficient 

construction in the district. The new stations under individual optimisation are concentrated in the centre, 

neglecting peripheral areas with high charging demand. Regional optimisation, however, addresses these 

neglected areas, leading to a more balanced enhancement of ESCD across the district. These findings 

underscore the importance of considering both economic context and spatial distribution when planning 

charging station networks to achieve the most effective outcomes. 
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Figure 7 – Differences in the ESCD by regional and individual optimisation. The administrative districts are ranked in descending 

order based on their GDP in 2022 [40]. 

6. CONCLUSION 

This study presents a two-stage approach for charging demand estimation and new charging station 

planning optimisation. First, WACP is proposed to measure the long-term stable price attribute of charging 

stations, and a linear regression with an exponential elasticity function is established to examine the 

relationship between charging demand and various independent variables. Secondly, an ESCD is proposed to 

accurately calculate the charging demand of effective service areas, which considers the distance impact factor 

and competition between neighbouring charging stations. A CMSLM is proposed to optimise the spatial layout 

of public charging stations by maximizing their ESCD, taking into account the constraints of investment budget 

and charging station capacity. Then the proposed optimisation strategy based on the SSA provides a reliable 

solution from both macro and micro perspectives. From a macro perspective, the optimisation goal is to 

maximise the ESCD of all charging stations across the region, while from a micro perspective to maximise the 

ESCD of an individual charging station. 

The real-world charging data in Guangzhou is used as the case study. A heatmap visualizing the predicted 

charging demand shows that charging stations are concentrated in central areas with high charging demand, 

which corresponds to dense POI distribution, developed road networks, high comprehensive land use and high 

population density. The remaining charging stations are distributed along highways. This distribution is 

consistent with the regression results and verifies the validity of the regression model. On average, after the 

investment budget is increased to 5 million CNY, the ESCD of all districts under macro and micro optimisation 

perspectives increases by 41.0% and 34.1%, respectively. And macro optimisation produces better results than 

micro optimisation, with a difference in the level of the ESCD increase between the two optimisation 

perspectives of economically developed Tianhe and Huangpu districts and economically underdeveloped 

Conghua and Liwan districts ranging from 8.1% to 11.5%. The difference in the ESCD improvement levels at 

the medium economic level between Haizhu, Baiyun and Panyu districts is 1.6%–4.2%. The obtained results 

for the placement of new stations, while based on simplified assumptions, can still provide decision-makers 

with preliminary reference charging station locations. 

The proposed charging demand estimation model faces limitations due to the lack of dynamic data such as 

real-time traffic, weather conditions and grid connection information, which are crucial for accurately 

forecasting charging demand. For example, real-time traffic data might disclose peak hours and congestion 

patterns, directly impacting charging station utilisation, whereas weather data could highlight seasonal or daily 

fluctuations in EV charging behaviour. Additionally, the regression model employed is relatively simple, 

making it insufficient to fully explain the complex relationships between charging demand and various 

influencing factors, and some model parameter assumptions can also affect the results. As a result, while new 

charging stations may be built near the optimal locations suggested by the model, they are unlikely to match 

these locations exactly. Future research should address these limitations by incorporating the omitted factors 

and employing more sophisticated models to investigate the deeper correlations between charging demand and 

influencing factors, which would improve the model’s accuracy and reliability. 
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王秋璇，邓坤祥，颜江楠，李军 

基于宏观和微观视角的电动汽车充电站规划优化 

摘要 

随着城市地区电动汽车保有量的不断增长，对公共充电空间的需求也日益增加。由

于现有充电设施无法满足不断增长的充电需求，因此有必要规划新的充电基础设施。
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本文从宏观和微观角度出发，提出了公共充电基础设施规划的两阶段方法。首先，

综合考虑充电需求因素，采用指数弹性函数线性回归模型估算充电需求。其次，考

虑到距离影响因素和相邻充电站之间的竞争，提出了有效服务充电需求（ESCD），

以精确计算有效服务区域的充电需求。在考虑投资预算和充电站容量限制的情况下，

提出了一种容量最大服务位置模型（CMSLM），通过最大化充电站的 ESCD 来优化

公共充电站的空间布局。CMSLM 采用麻雀搜索算法，从宏观和微观两个角度进行求

解。以中国广州为例，应用了所提出的方法。结果表明，当投资预算增加到 500 万

人民币时，在宏观和微观优化视角下，各区的 ESCD 平均分别增加了 41.0% 和 34.1%。

优化后的充电站可以弥补充电需求与现有充电站分布之间的空间失衡，为进一步的

建设实施奠定基础。 
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