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ABSTRACT 

Traffic flow prediction is an important part of urban intelligent transportation systems. 

However, due to strong nonlinear characteristics and spatiotemporal correlations of the traffic 

within the network, traffic flow prediction has been a challenging task. In order to capture 

the spatiotemporal correlation, and improve the traditional methods of using predefined 

adjacency matrices that cannot effectively characterise the dynamic correlation of traffic 

flow, a GE-GRU-KNN model for predicting the road traffic flow is proposed. Specifically, 

the spatial representation of the road network learned by GE is used to automatically extract 

the spatial features of the network; GRU is used to learn the nonlinear characteristics of the 

time series to capture the temporal correlation of the traffic flow; finally, the KNN algorithm 

is introduced to combine real-time traffic flow and historical data and adaptively update the 

fusion weights of predicted values for different road sections. The method enables the model 

to effectively characterise the dynamic correlation of traffic flow. An experiment using traffic 

flow data from 22 detectors on California freeways is conducted. The results show that 

compared with traditional methods, the prediction error of this method is reduced by 1.08%–

14.71%, indicating that the hybrid GE-GRU-KNN model exhibits good performance. 

KEYWORDS 

traffic flow prediction; dynamic spatiotemporal correlation; graph embedding; gated 

recurrent unit; k-nearest neighbour. 

1. INTRODUCTION 

Traffic flow prediction is an important part of urban intelligent transportation systems. Accurate traffic flow 

plays an important role in alleviating traffic congestion, providing more reasonable travel routes for travellers, 

and improving road operation efficiency [1–2]. It refers to the prediction of the future traffic state of an urban 

road network by considering the spatiotemporal correlation of traffic flow, and based on the predicted results, 

corresponding traffic management and control can be carried out [3]. However, due to the complex temporal 

and spatial correlations of traffic flow in road networks, the prediction has been a challenging task. 

Traditionally, linear regression models and autoregressive integrated moving average models (ARIMA) 

[4–6] have been widely used for traffic flow prediction. But these methods are more suitable for handling 

stable and linearly varying time series [7]. When used for the prediction of traffic flow with complex nonlinear 

spatiotemporal characteristics, the accuracy is relatively low. Machine learning methods have gradually been 

introduced into the field of traffic flow prediction due to their flexibility in handling nonlinear problems. For 

example, models such as Random Forest (RF), Support Vector Regression (SVR) [8–10], KNN [11] and 

Neural Network (NN) [12–13] can effectively capture the changing trends of traffic flow by learning from a 
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large amount of historical data. However, most of them do not effectively extract the spatial correlation of 

traffic flow in the road networks. 

 In order to better characterise the spatiotemporal characteristics of traffic flow, deep learning methods have 

been widely applied in recent years. Recurrent Neural Network (RNN) and its variants long short-term memory 

neural network (LSTM) and GRU models [14–18] are utilised to process traffic time series data and mine the 

temporal dependencies among these data [19]; Convolutional Neural Network (CNN) [20–24] is utilised to 

extract the spatial correlation of traffic flow within the road network. As research deepens, scholars have also 

developed hybrid models [25–26] that comprehensively consider spatial and temporal dimensions to model 

data. Due to its combination of the advantages of two or more models, these models have better modelling 

capabilities of traffic data than a single model [27]. In early studies, researchers used prior knowledge to 

construct pre-defined graph structures representing spatial correlations. Spatiotemporal Graph Convolutional 

Networks (STGCN) [28] and Attention Based Spatiotemporal Graph Convolutional Networks (ASTGCN) [29] 

are representative models in recent years, which use the road connectivity and distance to characterise node 

similarity, thereby constructing an adjacency matrix representing a pre-defined graph structure. However, the 

adjacency matrix constructed from this type of prior knowledge is not directly related to the prediction task, 

resulting in limited spatial representation ability of the adjacency matrix. To address this issue, the Adaptive 

Graph Convolutional Recurrent Network (AGCRN) [30] uses an adaptive adjacency matrix to better extract 

spatial features. However, both pre-defined matrices and adaptive matrices have the disadvantage that the 

weights they use are static, meaning that the correlations between different road segments are fixed and 

invariant. The formation of traffic flow is a dynamic process, and the spatial correlations of traffic flow within 

the network may constantly change. Thus, establishing spatial relationships between different road segments 

through adjacency matrices cannot effectively represent spatial correlations dynamically. 

In response to the above issues, this paper proposes a real-time adaptive traffic flow prediction model that 

combines the GE, GRU and KNN algorithms, aiming to more effectively characterise the dynamic changes of 

spatiotemporal characteristics in road networks. GE is used to automatically extract spatial features in the road 

network, overcoming the limitations of relying on pre-defined adjacency matrices. Then, GRU models for the 

target road segment and other road segments are trained and the temporal correlations are constructed. Finally, 

the KNN algorithm is introduced to combine real-time traffic flow with historical traffic data, adaptively 

updating the fusion weights of the predicted values of different road segments for the target road segment. The 

proposed method no longer relies on fixed adjacency matrices, but dynamically adjusts the correlations 

between road segments through the GE and KNN algorithms, better reflecting the dynamic spatiotemporal 

characteristics of traffic flow. The contributions of this paper can be summarised in the following three aspects: 

1) This model integrates the methods of the GE and GRU, where the GE is used to learn the spatial 

representation information of the network, avoiding the limitation of pre-defined adjacency matrices and 

allowing the model to dynamically adapt to the changing spatial relationship in the road network. GRU is 

used to model time series data of traffic flow and extract temporal correlations. Independent GRU models 

are trained for the target road section and other road sections to capture the complex correlations. 

2) The model specifically introduces the KNN algorithm, which adaptively adjusts the weight allocation 

during the prediction process by combining real-time traffic data and historical data, thereby improving 

the model’s ability to handle dynamic traffic flow changes. 

3) The study uses the real-world dataset to evaluate the model. Compared with other models, the proposed 

hybrid model exhibits good performance, indicating that incorporating dynamic spatiotemporal 

correlations of traffic flow will have a positive effect on improving the accuracy of traffic flow prediction. 

The rest of the paper is organised as follows. The literature review section summarises previous research. 

The methodology section provides an overview of the modelling approach proposed in this paper. In the 

experiment section, an experiment is conducted to analyse the advantages and disadvantages of the model 

compared to other models. Conclusions are made in the conclusion section. 

2. LITERATURE REVIEW 

There are many literature on traffic flow prediction, and the prediction methods can be divided into two 

categories: parametric methods and non-parametric methods. Parametric methods include time series models, 

linear regression models, Kalman filter models, etc. ARIMA has been widely used for modelling traffic data 

in the past [31], but it is more suitable for handling stable time series data and is less accurate for capturing 

extreme values, making it unsuitable for processing nonlinear traffic flows [32]. The Kalman filter establishes 



Promet – Traffic&Transportation. 2025;37(3):754-772.  Intelligent Transport Systems (ITS)  

756 

the state space model of the sampled signal, and can model traffic data reasonably [33]. However, it utilises 

predefined states and error values of measurement noise, which limits its application in the real world. The 

key issue with these traditional parametric models lies in parameter calibration, and their algorithms are 

relatively simple. When there are abrupt changes in traffic flow, these models cannot respond well to the 

nonlinear characteristics and instability of traffic flow data.  

With the acquisition of massive traffic data, it is possible to apply non-parametric models. These models 

can extract useful information from a large amount of historical data and learn the patterns. Many non-

parametric methods based on machine learning have been proposed to model traffic data, including KNN, RF, 

SVR, NN, etc. Zhang et al. proposed a hybrid prediction model, which combines the RF, Genetic Algorithm 

(GA) and SVR to provide better performance compared to other methods [34]. Liu et al. applied the GA and 

Particle Swarm Optimisation (PSO) for the optimisation of parameters of the Back Propagation (BP) Neural 

Network, and proposed a GA-PSO-BP neural network model for traffic state estimation based on multi-source 

sensor data fusion [35]. Considering the varying accuracy of different models under different traffic conditions, 

Guo et al. applied three fusion strategies, including the average, weighted and KNN methods to three different 

machine learning models: NN, SVR and RF [36]. 

In recent years, deep learning has been applied in fields such as computer vision, speech recognition, etc. 

and has achieved great success. Compared with traditional machine learning models, deep learning models use 

a multiple-layer architectures to automatically extract inherent features from a large amount of raw data [37]. 

Many studies have also applied deep learning models to traffic data modelling and achieved good results. Mou 

et al. proposed a temporal information enhancing LSTM (T-LSTM) model for predicting traffic flow on 

individual road sections [38]. Cui et al. proposed a stacked bidirectional and unidirectional LSTM network 

architecture (SBU-LSTM) for traffic state prediction by utilising bidirectional LSTM (BDLSM) to capture 

forward and backward temporal dependencies in spatiotemporal data [39]. Mondal et al. proposed a short-term 

traffic flow prediction model based on the LSTM model by considering the spatiotemporal correlation of traffic 

flow and using the current as well as historical data of the target road and adjacent roads as input variables 

[40]. Chauhan et al. proposed a BiGRU-BiGRU model with two modules, which can distinctly capture the 

periodic and temporal characteristics of the traffic data. The proposed model is evaluated on the publicly 

available real-world dataset and achieved good performance [41]. 

The above models mainly consider the temporal correlation of traffic flow by exploring the characteristics 

of time series data, but most of them ignore the spatial correlation of traffic flow in the road network. Therefore, 

many hybrid prediction models have been developed to model the spatiotemporal correlations of traffic flow 

in road networks. Luo et al. proposed combining the KNN and the LSTM. The spatial stations were screened 

by the KNN model, and the screened station data were then used as input to the LSTM model for prediction. 

The experimental results show that the accuracy of the proposed traffic flow prediction model is better than 

other traditional methods [42]. Zhao et al. proposed a new temporal graph convolutional network (T-GCN) 

model that combines the GCN and the GRU for traffic state prediction to capture both spatial and temporal 

dependencies [43]. Zhou et al. raised a traffic flow prediction method based upon the k-order neighbour 

algorithm and gated recurrent unit, which obtains the temporal dependency of traffic flow by using the 

Euclidean distance to figure the spatial correlation between traffic networks and the gated recurrent neural 

network [44]. Zhuang et al. proposed a method to predict the spatio-temporal characteristics of short-term 

traffic flow by combining the k-nearest neighbour algorithm and the bidirectional long short term memory 

network model. This method can capture the spatial and temporal characteristics of traffic data. At the same 

time, the performance of this fusion method on real data sets is better than other methods [45]. The above 

research shows that the hybrid model has an excellent performance in traffic flow prediction. However, traffic 

flow in road networks has strong nonlinear characteristics and dynamic uncertainty. The traffic situation is a 

dynamic process and its spatial correlation is constantly changing. Therefore, it is necessary to adopt 

corresponding methods to identify the characteristics of dynamic changes in traffic flow. 

In summary, most existing traffic flow prediction models are based on the temporal and/or spatial 

correlations of the traffic flow. When considering the spatial correlation, one approach is to manually select 

upstream/downstream roadway data, which does not fully take into account the complex spatial and temporal 

correlation of traffic flow data in the road network. Another way of modelling the spatial information of the 

roadway network is to use predefined adjacency matrices. However, this approach also has some limitations 

and cannot effectively characterise the dynamic correlation of traffic flow data. Therefore, this paper proposes 

a hybrid traffic flow prediction model that can automatically extract spatial features in the road network and 

combine historical data and real-time traffic flow to characterise the dynamic correlation of traffic flow. 
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3. METHODOLOGY 

3.1 GE 

Due to the fact that road networks can essentially be modelled as graphs as well, graph analysis has attracted 

increasing attention from researchers in the field of transportation. Graph Embedding (GE) allocates nodes in 

a network to a low dimensional representation and effectively preserves the network structure and properties, 

enabling functions such as node classification, node clustering and link prediction. Use a graph 𝐺 = (𝑉, 𝐸, 𝐴) 

to represent the structure of the road network, where 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑁} is the set of nodes in the network, 𝑁 

is the number of the nodes; 𝐸 is the set of edges connecting nodes in the network; The adjacency matrix 𝐴 ∈
𝑅𝑁×𝑁 is used to represent the connectivity between nodes, which contains only elements of 0 and 1. If two 

nodes 𝑖 and 𝑗 in the network are adjacent, 𝑎𝑖𝑗 = 1; otherwise, 𝑎𝑖𝑗 = 0; The traffic flow observed in the road 

network 𝐺 at time 𝑡 is denoted by 𝑋𝑡 ∈ 𝑅𝑁×𝑀, where 𝑀 is the dimensionality of the features of each node. 

GE based on Deep-Walk is one of the typical graph embedding algorithms. It mainly consists of two parts: 

random walk and node representation learning. Firstly, a random walk sequence corresponding to each node 

is generated through a walk strategy to obtain local and global features in the graph. Then the Skip-Gram 

algorithm [46] is used to train the random walk sequence to obtain the corresponding representation vector for 

each node in the graph. Based on this method, the relationship among the nodes can be learned. The structure 

of graph embedding algorithm is shown in Figure 1.  

In this study, the road network graph is extracted through the actual road network and then a series of 

random walk sequences are generated with each node as the root. 𝑅𝑣𝑖
= {𝑅𝑣𝑖

1 , 𝑅𝑣𝑖
2 , … , 𝑅𝑣𝑖

𝑙 } denotes the random 

walk with node 𝑣𝑖 as the root. It is a stochastic process and the length of the random walk is specified as 𝑙. The 

random walk sequence is then trained using the Skip-Gram algorithm, the core idea of which is to maximise 

the probability of nodes in the walk sequence that are close to the target node. The optimisation objective is 

shown in Equation 1. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝛷

 
𝑃𝑟({𝑣𝑖−𝑠 , … , 𝑣𝑖−1, 𝑣𝑖+1, … , 𝑣𝑖+𝑠}|𝛷(𝑣𝑖)) (1) 

where 𝑠 is the size of the selected window; 𝛷(𝑣𝑖) is a mapping function that maps node 𝑣𝑖 to an embedding 

vector. 

Using the independence assumption, it can be rewritten as Equation 2. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒  − ∑ 𝑙𝑜𝑔𝑃𝑟 (𝑣𝑗|𝛷(𝑣𝑖))

𝑖+𝑠

𝑗=𝑖−𝑠,𝑗≠𝑖

 
(2) 

Firstly, each node is represented by a one-hot vector with elements of 0 and 1. Due to the fact that one-hot 

vectors cannot be used for vector similarity calculation, and a large number of nodes require a very large 

memory space and resources, a weight matrix to extract a new vector representation is designed. The matrix 

𝑊 ∈ 𝑅𝑁×𝐷  represents the embedding vector matrices of the central node and adjacent node; and 𝐷 is the 

dimension of the node embedding vector 𝛷(𝑣). Multiplying the one-hot vectors with the embedding vector 

matrices 𝑊 realises the mapping of node 𝑣𝑖 to the low-dimensional embedding vector 𝛷(𝑣𝑖). Then, multiply 

the embedding vector 𝛷(𝑣𝑖) with the matrix 𝛷(𝑣𝑗)
𝑇
 and input the result into the Softmax function to obtain 

the probability of node 𝑣𝑗. The calculation is shown in Equation 3. 

 𝑃𝑟 (𝑣𝑗|𝛷(𝑣𝑖)) =

𝑒𝑥𝑝 (𝛷(𝑣𝑗)
𝑇

. 𝛷(𝑣𝑖))

∑ 𝑒𝑥𝑝(𝛷(𝑣). 𝛷(𝑣𝑖))𝑣∈𝑉

 
(3) 

where 𝑉 is the nodes in the graph; 𝛷(𝑣𝑖) is the embedding vector of the center node 𝑣𝑖; and 𝛷(𝑣𝑗) is the 

embedding vector of the adjacent node 𝑣𝑗. 

Next, construct the loss function, as shown in Equation 4, and update the embedding vector 𝛷(𝑣𝑖) of the 

centre node using the gradient descent algorithm, as defined in Equation 5. 
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 𝑙𝑜𝑔𝑃𝑟 (𝑣𝑗|𝛷(𝑣𝑖)) = 𝛷(𝑣𝑗). 𝛷(𝑣𝑖) − 𝑙𝑜𝑔 (∑ 𝑒𝑥𝑝(𝛷(𝑣). 𝛷(𝑣𝑖))
𝑣∈𝑉

) 
(4) 

𝛷(𝑣𝑖)𝑛𝑒𝑤 = 𝛷(𝑣𝑖)𝑜𝑙𝑑 − 𝜂𝛻𝑙𝑜𝑔𝑃𝑟 (𝑣𝑗|𝛷(𝑣𝑖)) (5) 

where 𝛷(𝑣𝑖)𝑜𝑙𝑑 and 𝛷(𝑣𝑖)𝑛𝑒𝑤 are the embedding vectors of node 𝑣𝑖 before and after training; 𝜂 is the learning 

rate; and ∇ is the gradient. 

After model training is completed, the embedding matrix 𝑊𝑁×𝐷 corresponding to the road network nodes 

can be obtained. The embedding matrix 𝑊𝑁×𝐷 is shown in Equation 6. 

𝑊𝑁×𝐷 = (

𝑤11 𝑤12 … 𝑤1𝐷

𝑤21 𝑤22 … 𝑤2𝐷

… … … …
𝑤𝑁1 𝑤𝑁2 … 𝑤𝑁𝐷

) = (

𝑒1

𝑒2

…
𝑒𝑁

) 
(6) 

where 𝑒𝑖 is the embedding vector of the node 𝑖 after training, with dimension D. 

Then, the spatial features of the road network can be automatically obtained based on the similarity of the 

node embedding vectors 𝑒𝑖. Using the inner product of vectors to calculate similarity. The calculation is shown 

in Equation 7. 

𝜕𝑖𝑗 = 𝑒𝑖𝑒𝑗
𝑇 

(7) 

where 𝜕𝑖𝑗 is the similarity between node 𝑖 and node 𝑗. 

After obtaining the similarity between nodes, automatically select the most relevant road section to the 

target road section based on the similarity. Use historical traffic flow data of each selected road section as input 

data for the GRU model. 

 
Figure 1 – Structure of the graph embedding algorithm based on the Deep-Walk 

3.2 GRU 

GRU is an improvement of the RNN [47] and is able to learn both long-term and short-term dependencies 

of time series data. Compared to the LSTM, the GRU has a simpler structure and is easier to train. The basic 

unit of the GRU model is shown in Figure 2. There are two gates in the unit, namely the reset gate and the 

update gate [48]. Through these defined gates, it is possible to retain and discard state information and mine 

the patterns of the time series data. Considering the dynamic instability and long-term dependence of traffic 

flow in the road network, this paper uses the GRU to extract the temporal pattern information of the traffic 

flow features. 
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Figure 2 – Structure of the memory unit in the GRU model 

In the GRU model, the reset gate 𝑟𝑡 is used to determine how to combine new input with the previous 

memory by Equation 8: 

𝑟𝑡 = 𝜎(𝑊𝑟[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟) 
(8) 

where 𝑟𝑡  is a value between 0 and 1, with 0 representing complete discard and 1 representing complete 

retention; 𝜎(∙) is the activation function sigmoid; 𝑊𝑟 is the weight of the reset gate; 𝑏𝑟 is the bias of the reset 

gate; ℎ𝑡−1 is the output of the memory cell at moment 𝑡 − 1; and 𝑥𝑡 is the input to the memory cell at moment 

𝑡. 

Then, a new candidate value vector ℎ̃𝑡 is created through the 𝑡𝑎𝑛ℎ function, as shown in Equation 9: 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ̃𝑡
[𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ) (9) 

where 𝑊ℎ̃𝑡
 is the weight of the candidate value vector; 𝑏ℎ  is the bias of the candidate value vector; ⊙ 

represents the scalar product of two matrices. 

The update gate 𝑧𝑡  determines the degree to which the previous state information is transmitted to the 

current state by Equation 10: 

𝑧𝑡 = 𝜎(𝑊𝑧[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧) 
(10) 

where 𝑧𝑡  is a value between 0 and 1, with 0 representing complete discard and 1 representing complete 

retention; 𝑊𝑧 is the weight of the update gate; 𝑏𝑧 is the bias of the update gate. 

After obtaining the candidate hidden state information and the previous state information, update the unit 

state by Equation 11: 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡 
(11) 

According to the calculation formula above, the GRU stores and filters information through two gates, 

preserves important features through gate functions, captures dependencies through learning and obtains the 

optimal output value. 

3.3 KNN 

The traffic flow in the road network shows complex nonlinear characteristics and strong spatiotemporal 

correlations. Considering that the predefined adjacency matrices cannot effectively represent the dynamic 

correlation of traffic flow in the road network, this paper trains separate prediction models for different road 

sections, and then introduces the KNN algorithm to achieve adaptive weight updates based on real-time traffic 

flow and historical data. The basic idea is search for 𝑘 nearest neighbours in the history database of each road 

section, calculate the prediction errors of the 𝑘 neighbours, and determine the weights based on the error. The 

final output is obtained by weighting the results of different road sections. Specific steps are as follows. 

Step 1: Neighbour search process. Given the current traffic flow state vector 𝑞𝑐 , search for 𝑘  nearest 

neighbours in the historical database of each adjacent road section based on the Euclidean distance. Here, 𝑞𝑐is 

a time series data of the traffic flow, which can be written as 𝑞𝑐 = [𝑥𝑡−𝑝+1, … , 𝑥𝑡]. The 𝑘 state vectors that are 
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closest to the current state vector 𝑞𝑐 found in the adjacent road section can be written as 𝑄𝑞𝑐
∈ 𝑅𝑛×𝑘×𝑝, where 

𝑛 is the number of adjacent road sections, 𝑘 is the number of neighbours searched from each adjacent road 

section, 𝑝 is the size of the sliding window, i.e. the dimension of the selected traffic flow time series. 

Step 2: Weight Determination. For each traffic flow feature vector 𝑞𝑖, input it into the trained model to 

obtain the predicted value �̂�𝑖
𝑗
 and then calculate the average absolute percentage error 𝑀𝐴𝑃𝐸𝑗  of 𝑘  state 

vectors of the 𝑗th road section by Equation 12. 

𝑀𝐴𝑃𝐸𝑗 =
1

𝑘
∑ |

�̂�𝑖
𝑗

− 𝑦𝑖

𝑦𝑖
|

𝑘

𝑖=1

, 𝑗 = 1,2, … , 𝑛 
(12) 

where 𝑦𝑖 is the actual value of the traffic flow of the target road section. 

The weight coefficient for the 𝑗th adjacent road section is determined by 𝑤𝑡𝑗 = 1/𝑀𝐴𝑃𝐸𝑗. Through the 

KNN, weights can be dynamically adjusted based on real-time traffic flow state, which effectively 

characterises the dynamic correlation of traffic flow data. 

3.4 GE-GRU-KNN 

This paper proposes a hybrid traffic flow prediction model that combines the GE, the GRU and the KNN. 

Through the GE model, nodes in the graph can be represented as low-dimensional vectors, representing the 

spatial characteristics of each node in the road network. The GRU model shows good performance in mining 

the short-term and long-term dependence of time series data, and different GRU models are trained to 

characterised the temporal correlation of traffic flow for different road sections. The KNN is used to measure 

the contribution of relevant road sections to the target road section prediction based on real-time traffic flow 

state, achieving adaptive weight updates. The hybrid model combines the advantages of different models and 

can effectively capture the dynamic spatiotemporal correlation of traffic flow in the road network. The 

framework of the algorithm is shown in Figure 3. The specific steps of the GE-GRU-KNN model are shown 

below. 

Step 1: Parameter Setting. Initialise various parameters in the GE, the GRU and the KNN models, including 

the size of sliding window 𝑝, the number of hidden units, the number of neighbours searched in each adjacent 

road section 𝑘 and the number of epochs. 

Step 2: Extract spatial features of the network. Utilise the GE algorithm to learn the spatial structure features 

of the network, the abstract expression of the process is shown in Equation 13. Then calculate the similarity 

between nodes based on Equation 7 and select adjacent road sections {1, 2, … , 𝑛} based on the similarity, 𝑛 is 

the number of adjacent road sections (including the target road section itself), which is also the number of 

GRU models that need to be trained.  

𝑊𝑁×𝐷 = 𝐺𝐸(𝐴) 
(13) 

where GE is the graph embedding algorithm. 

Then, obtain raw traffic flow data for each selected road section. The raw traffic flow data is shown in 
Equation 14. 

𝑥𝑠𝑖𝑚_1
𝑡−𝑝+1

, 𝑥𝑠𝑖𝑚_1
𝑡−𝑝+2

, … , 𝑥𝑠𝑖𝑚_1
𝑡  

𝑥𝑠𝑖𝑚_2
𝑡−𝑝+1

, 𝑥𝑠𝑖𝑚_2
𝑡−𝑝+2

, … , 𝑥𝑠𝑖𝑚_2
𝑡  

… 

𝑥𝑡𝑎𝑟
𝑡−𝑝+1

, 𝑥𝑡𝑎𝑟
𝑡−𝑝+2

, … , 𝑥𝑡𝑎𝑟
𝑡  

(14) 

where [𝑥𝑖
𝑡−𝑝+1

, 𝑥𝑖
𝑡−𝑝+2

, … , 𝑥𝑖
𝑡] is the historical traffic flow data of the 𝑖th road section. 

Step 3: Extract temporal correlation of traffic flow. Process the traffic flow data of selected different road 

sections separately and train 𝑛 different GRU models to establish nonlinear relationships between different 

road sections and target road traffic flow. These road sections include neighbouring road sections and target 

road sections themselves. The abstract expression of the process is shown in Equation 15. 

𝑦𝑡𝑎𝑟 = 𝐺𝑅𝑈(𝑦𝑖), 𝑖 = 1, 2, … , 𝑛 
(15) 
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where 𝑦𝑡𝑎𝑟 is the traffic flow of the target road section, 𝑦𝑖 is the traffic flow of the 𝑖th road section and GRU is 

the gated recurrent unit. 

Step 4: Real-time prediction. In the prediction task, the traffic flow of the target road section at the moment 

𝑡 + 𝑇 is predicted based on the traffic flow of the target road section and neighbouring road sections in the 

time period [𝑡 − 𝑝 + 1，𝑡], where 𝑇  is the prediction time step and 𝑝 is the size of the sliding window. 

Substitute the real-time data of the target road section into GRU models of target road section and neighbouring 

road sections to obtain the predicted values. The process is shown in Equation 16. 

𝑦𝑡𝑎𝑟
𝑖 = 𝐺𝑅𝑈(𝑥𝑖

𝑡−𝑝+1
, 𝑥𝑖

𝑡−𝑝+2
, … , 𝑥𝑖

𝑡), 𝑖 = 1, 2, … , 𝑛 
(16) 

where 𝑦𝑡𝑎𝑟
𝑖  is the predicted value of traffic flow for the target section of road 𝑖. 

Step 5: Determine the degree of dynamic correlation. The spatiotemporal correlation of traffic flow in the 

network may change over time. To improve the accuracy, the degrees of correlation between the target road 

section and neighbouring road sections are measured and dynamically adjusted at different times. Use the 

KNN algorithm to find the k nearest neighbours from the historical database of different road sections based 

on real-time data of the target road section and determine the weight coefficients based on the MAPE values 

of the predictions. The method is described in Section 3.3. 

Step 6: Fusion of predicted values. The final result is obtained by weighting the prediction values of 

different road sections on the target road section, as shown in Equation 17.The fusion result takes into account 

the complex spatial and temporal correlation of traffic flow in the road network, and at the same time 

dynamically adjusts the fusion weights according to the real-time traffic flow condition to improve the 

accuracy of the model. 

�̂�𝑡𝑎𝑟 = ∑ 𝑤𝑡𝑖 ∗ 𝑦𝑡𝑎𝑟
𝑖

𝑛

𝑖=1

 
(17) 

where �̂�𝑡𝑎𝑟  is the predicted value of traffic flow on the target road section and 𝑤𝑡𝑖 is the fusion weight of road 

section 𝑖. The formula for weights is shown in Equation 10. 

 
Figure 3 – The framework of the GE-GRU-KNN 
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4. EXPERIMENT 

4.1 Data 

The Caltrans Performance Measurement System (PeMS) provides a unified database of traffic data 

collected on freeways in California [49]. This study used weekend traffic data collected every 30 seconds from 

22 freeway sections collected by detectors between 1 May and 30 June 2014. Figure 4 shows the distribution of 

the traffic detectors along the freeway. After data cleaning, the data is aggregated into 5-minute traffic flow 

data. 

 
Figure 4 – The distribution of detectors along the freeway 

Figure 5 displays traffic flow data for a week obtained by a randomly selected detector. There are periodic 

changes in traffic flow on the road, and the trend between weekdays and weekends shows significant 

differences. There are also temporal correlations of current traffic flow with traffic flow in the previous time 

periods. 

 

(a) 

 

(b) 

Figure 5 – a) Traffic volume on weekdays; b) Traffic volume on weekends 

In terms of spatial correlation, there is mutual influence between the traffic flow of upstream and 

downstream road sections. The traffic conditions of the upstream section will be transmitted to downstream 

sections, while the traffic conditions of the downstream section will influence the upstream section through a 

feedback effect. Figure 6 shows the traffic flow data measured by two consecutive detectors 1–2, representing 

the upstream and downstream detectors, respectively. It can be seen that the traffic flow data collected by two 

detectors shows similar trends. To observe in more detail, the figure is enlarged and the traffic flow data 

between 20:00 to 22:00 are shown in Figure 6b. Observing detectors 1 and 2, where detector 1 is the upstream 

detector and detector 2 is the downstream detector, it can be seen that in state , as the upstream traffic flow 

increases, the downstream traffic flow will increase in the later time period; In state , downstream road 

sections may experience congestion, resulting in a decrease in vehicles passing through detector 2 and a 
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decrease in traffic flow. This congestion phenomenon is transmitted to upstream road sections and will have a 

certain impact on upstream traffic flow. 

 

(a) 

 

(b) 

Figure 6 – a) Traffic volume measured by two adjacent detectors; b) Traffic volume from 20:00 to 22:00 

4.2 Model settings 

Evaluation indicators 

Three commonly used performance indicators are used to evaluate the performance of the model, namely 

mean absolute error (MAE), mean absolute percentage error (MAPE) and root mean square error (RMSE). 

𝑀𝐴𝐸 =
1

𝑁
∑|�̂�𝑖 − 𝑦𝑖|

𝑁

𝑖=1

 
(18) 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

�̂�𝑖 − 𝑦𝑖

𝑦𝑖
| × 100%

𝑁

𝑖=1

 
(19) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(�̂�𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (20) 

where 𝑁  is the number of samples; 𝑦𝑖  and �̂�𝑖  is the actual value and predicted value, respectively, 

corresponding to the 𝑖th sample. 

Model parameters 

Model parameters have certain impacts on the performance of the model. Figures 7–10 show the effect of 

parameters, including the size of sliding window 𝑝, the number of neighbours searched in each adjacent road 

section 𝑘, the number of epochs, the number of hidden units on the model performance. The performance of 

the model corresponding to different sizes of sliding windows is shown in Figure 7. It can be seen that the three 

curves have similar trends. As the size of sliding window increases, the error decreases at first. However, as 

the size of sliding window continues to increase, the error shows a certain upward trend, and from a 

comprehensive view of the three performance indicators, this paper finally determines the size of sliding 

window to be 13. Figure 8 shows the model performance corresponding to different values of 𝑘. It can be seen 

that with the increase of the 𝑘 value, there is a decreasing tendency in the errors. When the 𝑘 value does not 
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exceed 50, the magnitude of error reduction is significant. After that, as the value of 𝑘 increases, the curve 

tends to flatten, indicating that increasing the value of k further does not have a significant impact on error 

reduction. Therefore, this paper sets the value of 𝑘 in the model to 50 to achieve optimal performance while 

reducing computational complexity. According to Figures 9–10, this paper finally determines that the number of 

epochs of the model is 700 and the number of hidden units in GRU is 64. Considering the different impacts of 

traffic flows on adjacent road sections during the long and short-term prediction process, the number of 

adjacent road sections 𝑛 in GE is set to 3 when predicting traffic flow for 5, 15 and 30 minutes, and 5 when 

predicting traffic flow for 60 minutes. For training, use 80% of the data for model training and the remaining 

data for testing. 

  

(a) 
 

(b) 

 

(c) 

Figure 7 – Model performance under different sizes of sliding window 

 

(a) 
 

(b) 
 

(c) 

Figure 8 – Model performance under different 𝑘 values 

 

(a) 
 

(b) 
 

(c) 

Figure 9 – Model performance under different epochs 

 

(a) 
 

(b) 

 

(c) 

Figure 10 – Model performance under different numbers of hidden units 
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4.3 Experimental results 

Baseline models 

To assess the performance of the proposed GE-GRU-KNN model, it is compared with the following 

baseline models. 

 SVR: SVR is based on the theory of Kernel Function (KF), which maps high-dimensional samples to the 

feature space and then performs regression, which can effectively handle high-dimensional linear 

problems and improve prediction accuracy.  

 RF: RF consists of multiple decision trees and is an integrated algorithm. The basic idea is to combine 

many weak classifiers into one strong classifier to improve the recognition accuracy. 

 LSTM: LSTM is a variant of the RNN, which can learn long-term dependency information and overcome 

the shortcomings of the traditional RNN and has been widely used in the field of traffic flow prediction.  

 GRU: GRU is also a variant of the RNN. Compared to the LSTM, it has a simple structure and is easy to 

train.  

 T-GCN: The Temporal Graph Convolutional Network (T-GCN) model combines the GCN and the GRU. 

The GCN is used to learn complex topological structures and capture spatial dependencies, while the 

GRU is used to learn dynamic changes of traffic data and capture temporal dependencies. 

 A3TGCN[50]: The Attention Temporal Graph Convolutional Network (A3TGCN) model introduces an 

attention mechanism based on the T-GCN to adjust the importance of different time points and integrate 

global temporal information. 

 KNN-GRU[44]: The K-Nearest Neighbour-Gated Recurrent Unit (KNN-GRU) combines the KNN and the 

GRU, uses the Euclidean distance to figure out the spatial correlation between traffic networks, and the 

gated recurrent neural network obtains the temporal dependency of traffic flow. 

Prediction results 

To verify the accuracy and robustness of the proposed model, the prediction results of different models on 

different road sections are shown in the Tables 1–2. Due to space limitations, only the MAPE results of prediction 

time steps of 5 minutes and 60 minutes are shown in details. From the table, it can be observed that the GE-

GRU-KNN model overall performs better in both short-term and long-term traffic flow prediction. The RMSE 

and the MAE of the model are also superior to other baseline models. 

(1) When the prediction horizon is 5 minutes, the MAPE of the GE-GRU-KNN model for flow prediction 

is 8.096%. Compared to other models, it has the smallest error and the highest accuracy. Comparing the GE-

GRU-KNN with SVR and RF models, it can be found that the MAPE of the GE-GRU-KNN model is reduced 

by 5.08% and 8.59%, respectively. This indicates that capturing the spatial features of the network is effective 

in improving the accuracy of the model, verifying the rationality of the proposed method in this paper. 

Comparing the GE-GRU-KNN with the LSTM and the GRU models, the MAPE of the proposed model is 

decreased by 2.6% and 2.34%, respectively. This shows that the hybrid model, in comparison to a single deep 

learning model that only captures temporal correlation, has better performance after considering the spatial 

correlation of the road network. Comparing the GE-GRU-KNN with the T-GCN, the A3T-GCN and the KNN-

GRU models, the MAPE of the proposed model is decreased by 1.24%, 1.08%, and 1.89%, respectively. This 

paper separately processes data from different road sections to train different GRU models, and introduces the 

KNN to dynamically adjust fusion weights based on real-time traffic flow state. The results indicate that the 

model can effectively capture the dynamic spatiotemporal correlation of traffic flow. 

(2) When the prediction horizon is 60 minutes, the MAPE of the GE-GRU-KNN model for traffic prediction 

is 10.725%. Compared to other models, it also has the highest accuracy, which indicates that the model can 

ensure the accuracy in the long-term traffic flow prediction. Compared to the T-GCN, the A3T-GCN and the 

KNN-GRU models, the MAPE of the GE-GRU-KNN model decreased by 14.71%, 3.43% and 2.59%, 

respectively. It can be observed that the deep learning models LSTM, GRU, and the hybrid models T-GCN, 

A3T-GCN, KNN-GRU perform well in short-term traffic flow prediction, but when conducting long-term 

traffic flow prediction, they exhibit certain instability and the performance decreases. 

With further examination of the prediction for each road section, it can be found that the GE-GRU-KNN 

model shows better performance than baseline models in both short-term and long-term traffic flow 

predictions. In most road sections, the prediction errors using the GE-GRU-KNN model are lower. Meanwhile, 

it can be found that although the hybrid models T-GCN and A3T-GCN generally perform better in short-term 
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traffic flow prediction compared to the LSTM, the GRU, the RF and the SVR, on some road sections, they 

perform worse than the LSTM and the GRU. This may be due to the fact that the adjacency matrices cannot 

extract the dynamic characteristics of the traffic flow. Observing the predictive performance of the KNN-GRU 

model, it can be found that although it selects 𝑛 road sections based on the Euclidean distance between 

different traffic flows, its overall predictive performance is not as good as the model proposed in this paper 

due to the dynamic changes in traffic flow correlation in the road network over time. 

Table 1 – Model performance for each road section with the prediction horizon of 5 minutes 

Road 

section 

MAPE (%) 

SVR RF LSTM GRU T-GCN A3T-GCN KNN-GRU GE-GRU-KNN 

1 10.548 10.757 10.152 10.502 10.598 10.486 10.776 10.086 

2 10.375 10.220 10.297 10.287 10.582 9.740 9.848 9.280 

3 9.563 10.507 9.027 9.773 9.998 9.583 9.595 9.067 

4 12.787 12.996 13.405 12.551 12.642 12.681 12.724 12.747 

5 6.721 8.410 6.648 6.577 6.581 6.575 6.743 6.553 

6 8.073 7.728 7.197 7.143 6.966 7.234 7.582 6.839 

7 6.295 7.572 6.952 6.861 6.959 6.283 6.682 6.272 

8 6.919 7.370 6.788 6.887 6.676 6.367 6.573 6.361 

9 6.714 7.865 6.538 6.567 6.382 6.488 6.393 6.493 

10 7.257 8.440 7.126 7.219 7.057 7.449 7.342 7.541 

11 8.845 9.792 8.745 8.677 8.550 8.064 8.588 9.186 

12 8.905 9.155 8.764 8.728 8.673 10.085 8.750 9.287 

13 10.773 9.969 10.488 10.048 10.498 10.289 10.844 9.956 

14 7.987 7.103 7.965 7.995 7.510 7.556 7.694 8.573 

15 7.395 7.403 7.440 7.438 7.523 7.442 7.440 7.384 

16 7.692 8.804 7.600 8.114 7.620 7.602 7.981 7.585 

17 9.751 10.046 7.930 7.877 7.780 7.791 7.724 7.696 

18 6.094 6.385 6.385 6.248 6.268 6.299 6.258 6.078 

19 8.561 8.467 8.937 8.478 7.981 8.275 8.024 8.246 

20 7.801 7.868 7.617 7.919 7.805 7.789 7.852 7.607 

21 7.889 7.983 7.489 7.326 7.071 7.490 7.475 7.048 

22 10.724 10.033 9.398 9.165 8.651 8.503 8.661 8.235 

Mean 8.530 8.857 8.313 8.290 8.198 8.185 8.252 8.096 

Table 2 – Model performance for each road section with the prediction horizon of 60 minutes 

Road 

section 

MAPE (%) 

SVR RF LSTM GRU T-GCN A3T-GCN KNN-GRU GE-GRU-KNN 

1 15.368 14.617 13.948 12.711 16.309 12.345 12.956 12.250 

2 14.763 14.202 14.597 12.548 13.900 12.416 12.583 11.669 

3 14.826 14.409 14.595 13.739 12.811 11.956 13.213 10.925 

4 19.528 18.710 17.435 18.343 16.394 16.455 16.374 18.981 
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Road 

section 

MAPE (%) 

SVR RF LSTM GRU T-GCN A3T-GCN KNN-GRU GE-GRU-KNN 

5 11.075 9.761 12.517 14.075 10.490 9.924 9.932 9.401 

6 11.632 10.240 11.876 11.840 11.991 10.194 10.288 8.777 

7 10.524 9.637 8.459 9.862 10.812 8.339 8.831 8.117 

8 11.116 9.609 8.342 8.332 10.825 8.725 9.061 8.292 

9 10.929 9.554 8.233 8.255 10.427 9.100 8.878 8.199 

10 11.521 10.773 9.321 8.581 11.310 9.876 9.848 9.728 

11 14.904 13.636 10.443 10.782 14.410 10.895 10.434 10.237 

12 13.379 11.890 12.166 10.772 13.311 12.936 12.218 11.364 

13 13.766 12.349 11.139 10.524 14.425 10.982 10.398 11.567 

14 9.594 9.036 8.215 7.880 9.014 7.411 7.663 10.006 

15 12.194 11.228 11.373 9.860 10.905 10.392 10.299 9.797 

16 13.371 12.621 11.256 10.493 12.248 10.815 10.400 10.301 

17 14.536 14.323 12.814 13.182 12.632 12.642 12.610 12.578 

18 12.424 12.417 9.862 10.258 11.421 10.435 9.282 8.747 

19 15.412 14.389 11.636 11.760 13.411 11.806 12.046 11.567 

20 14.498 13.206 12.258 11.328 12.862 11.907 11.912 11.038 

21 14.273 12.783 12.941 11.830 12.141 12.147 11.723 11.363 

22 14.328 13.351 11.083 11.137 14.604 12.659 11.288 11.060 

Mean 13.361 12.397 11.568 11.276 12.575 11.107 11.011 10.725 

Figure 11 shows the prediction results of different models visually on the test set. It can be seen that the GE-

GRU-KNN model proposed in this paper can fit the changing trends of real-world datasets due to the fact that 

the model is able to effectively capture dynamic correlations of traffic flow in the road network. 

 

(a) 

 

(b) 

Figure 11 – Visualisation results of different models 
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Analysis of prediction horizons 

Table 3 shows the performance of the GE-GRU-KNN model and the baseline models under different 

prediction horizons for a randomly selected road section. It can be seen that as the prediction horizon increases, 

the accuracy of the models gradually decreases. Meanwhile, the GE-GRU-KNN model proposed in this paper 

always achieves optimal performance regardless of the change of predicted horizons. Compared to the GE-

GRU-KNN model, the traditional machine-learning methods SVR and RF perform weaker with the complex 

and unstable time series data. The GRU model only considers the temporal characteristics of traffic flow, while 

ignoring its spatial correlation characteristics. Furthermore, the reason for the lower accuracy of the T-GCN 

and A3T-GCN models is probably because the predefined adjacency matrix cannot effectively characterise the 

dynamic correlation of traffic flow which fluctuates over time and space. Although the KNN-GRU captures 

the spatial correlation between road sections in the road network based on the Euclidean distance of traffic 

flow, its correlation is constantly changing due to the dynamic nature of traffic flow, resulting in lower 

predictive performance of the model. 

Table 3 – Prediction results of different prediction horizons 

Time Metric 
Value 

SVR RF LSTM GRU T-GCN A3T-GCN KNN-GRU GE-GRU-KNN 

5 min 

RMSE 27.759 28.631 26.692 26.704 26.672 26.612 26.624 26.574 

MAPE (%) 9.751 10.046 7.930 7.877 7.780 7.791 7.724 7.696 

MAE 22.317 21.976 20.055 19.855 19.570 19.565 19.641 19.520 

15 min 

RMSE 32.406 32.705 29.640 30.589 29.948 30.064 30.351 29.940 

MAPE (%) 9.989 9.510 8.867 9.426 8.625 8.602 8.726 8.566 

MAE 23.581 22.996 21.566 22.290 21.482 21.593 22.068 21.471 

30 min 

RMSE 37.459 37.661 34.149 33.573 36.220 34.369 33.763 32.977 

MAPE (%) 11.704 10.863 9.910 10.055 10.024 9.931 9.596 9.488 

MAE 27.622 27.060 24.044 23.781 26.399 24.983 24.064 23.545 

60 min 

RMSE 45.459 46.525 38.782 40.869 42.946 38.701 38.938 38.501 

MAPE (%) 14.536 14.323 12.814 13.182 12.632 12.642 12.610 12.578 

MAE 33.737 33.592 28.290 28.249 31.004 28.456 28.520 28.228 
 

 
(a) 

 

(b) 
 

(c) 

Figure 12 – RMSE, MAPE and MAE of different models 

Analysis of time periods 

Traffic flow changes regularly over time. At specific times of the day, traffic flow may experience sudden 

changes. From the visualisation of the data presented earlier, it can be seen that the traffic flow on the freeway 

section is lower from 01:00 to 03:00, the traffic flow changes significantly from 10:00 to 12:00 and the traffic 

flow is higher from 20:00 to 22:00, representing three typical traffic flow states. 

To better demonstrate the prediction performance of the GE-GRU-KNN model in different time periods, 

the predicted traffic flow of a randomly selected road section for different time periods of the day is shown in 
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Figure 13. From the figure, it can be seen that the model proposed in this paper always performs well at different 

time periods. When there are significant fluctuations in traffic flow, it can capture the sudden changes in traffic 

flow, making the predicted results of traffic flow closer to the real traffic flow state. 

 

(a) 

 
        (b) 

 
      (c) 

 
      (d) 

Figure 13 – Visualisation results of typical time periods with the prediction horizon of 5 minutes 

The prediction accuracy of the selected road section in three time periods is shown in Figure 14. It can be 

seen that the model has relatively high accuracy in predicting traffic flow during the three typical periods. It 

indicates that the model can effectively characterise the dynamic correlation of traffic flow by combining real-

time traffic flow and historical traffic flow data, thereby improving the prediction accuracy of the model. 

 

(a) 
 

(b) 

 

(c) 

 

 

Figure 14 – Model performance of typical time periods with the prediction horizon of 5 minutes 
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5. CONCLUSIONS 

Traffic flow prediction is an important component of urban intelligent transportation systems. This paper 

proposes a real-time adaptive traffic flow prediction model that combines the GE, the GRU and the KNN to 

address the issues of insufficient consideration of spatiotemporal correlation in road networks and the inability 

of predefined adjacency matrices to effectively represent the dynamic correlation of traffic flow. The model 

utilises the GE to automatically extract spatial features of the network and combines the advantages of the 

GRU in mining temporal patterns in time series data to capture the temporal correlation of traffic flow. In order 

to effectively characterise the dynamic correlation of traffic flow and adjust the fusion weights of predicted 

values for each relevant road section based on real-time traffic flow states, this paper introduces the KNN to 

mine information from historical data. The experimental results show that the proposed model provides more 

accurate predictions that match the actual traffic flow. Compared with the model that does not model the spatial 

characteristics of the network, and the model that does not characterise the dynamic correlation of the traffic 

flow by mining the historical data based on real-time traffic flow states, the accuracy of the proposed model 

has been improved, verifying the rationality of the proposed method. 

In this study, the parameters used to predict traffic flow are relatively single. In future research, more 

parameters that characterise traffic conditions can be considered to obtain more accurate traffic conditions. 

The model can also consider more factors such as weather and special events to improve the accuracy of 

predicting traffic flow on road sections. Meanwhile, when the prediction time is 60 minutes, the performance 

of the model deteriorates faster, so improving the long-term prediction ability of the model is also a major task 

in the future. 
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易翔宇，周红媚（通讯作者），钟绍鹏 

基于 GE-GRU-KNN 模型的实时自适应交通流预测 

摘要： 

交通流预测是城市智能交通系统的重要组成部分。然而，由于道路网络内交通流的

强非线性特征和时空相关性，交通流量预测一直是一项具有挑战性的任务。为了捕

捉时空相关性，并改进使用预定义邻接矩阵无法有效地表征交通流的动态相关性的

传统方法，提出了一种用于预测道路交通流的 GE-GRU-KNN 模型。具体来说，GE

学习到的道路网络的空间表示用于自动提取网络的空间特征；GRU 用于学习时间序

列的非线性特征，以捕捉交通流的时间相关性；最后，引入 KNN 算法，将实时交通

流状况和历史数据相结合，自适应地更新不同路段预测值的融合权重。该方法使模

型能够有效地表征交通流的动态相关性。利用加利福尼亚州高速公路上 22 个检测器

的交通流量数据进行实验。结果表明，与传统方法相比，该方法的预测误差降低了

1.08%-14.71%，表明 GE-GRU-KNN 模型具有良好的性能。 
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