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ABSTRACT 

To accurately prevent and warn of traffic accidents, this article proposes a method for 

predicting urban road traffic safety risks based on vehicle driving behaviour data and 

information entropy theory. This method uses data from radar video-integrated sensors to 

calibrate the thresholds for identifying unsafe driving behaviour, introduces recognition 

principles and algorithms, and analyses spatiotemporal distribution patterns. By 

incorporating entropy theory, an evaluation system with traffic safety entropy as the primary 

indicator and the unsafe driving behaviour rate as the secondary indicator is established. 

Clustering algorithms determine the classification number and threshold of traffic safety 

entropy, constructing a tunnel traffic safety risk assessment model, which is validated with 

road accident data. Using 13 days of data from the left lane of Qingdao Jiaozhou Bay Tunnel, 

the model divides traffic operation risk into high and low categories based on K-means 

clustering results of accident and safety entropy data. The study finds that when the safety 

entropy classification threshold is 0.0507, the classification accuracy is the highest at 92%. 

These results provide technical support for identifying road traffic safety risk points and 

preventing accidents. 

KEYWORDS 

traffic engineering; risk estimate; information entropy; unsafe driving behaviour; entropy 

weight method. 

1. INTRODUCTION 

Road traffic safety has always been the focus of attention in various countries, but scholars in urban 

transport have always been the hot spot of research. In the 1970s, western nations began to realise the 

significant impact of traffic safety on the national economy and social life. They carried out relevant research 

on people, vehicles, roads, the environment and so on. In the past few decades, China has completed the road 

construction goal of developed countries for half a century. Along with the high-speed development of the 

automobile industry, the problems of traffic congestion and pedestrian-vehicle mixing have brought about an 

extremely high risk to road safety, and the government and related organisations have been paying more and 

closer attention to the road safety problem. 

In 1973, the Institute of Highway Science of the Ministry of Transport established the first all-round 

consulting service type unit in the field of road traffic safety in China, including research, design, standard 

specification development, safety evaluation and other work. Over the decades, China has formed a more 

mature system of road traffic evaluation [1], and the evaluation of road traffic safety has gradually changed 

from passive evaluation based on accident data to active evaluation based on driving behaviour data. Driving 
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behaviour data is a record of vehicle driving under the interaction of human-vehicle-road-legal-environment 

and other factors, which is of great significance in the study of road traffic safety evaluation. 

Currently, data sources for studying driving behaviour include in-vehicle OBD data, intelligent device 

sensors, floating vehicle GPS data, roadside video data, millimetre-wave radar and lidar. Each of these data 

sources has limitations. For example, OBD data, intelligent device sensors and GPS data often suffer from 

delayed transmission, making them less suitable for detailed micro-level driving behaviour studies. Roadside 

video data, while useful for extracting vehicle licence plates, speed and position, relies heavily on computer 

software for object detection and tracking, and its accuracy is influenced by factors such as camera placement, 

lens angle, traffic flow conditions and weather. Millimetre-wave radar and lidar provide high-precision 

trajectory data for large traffic areas but do not capture vehicle image information, limiting their application. 

Despite advancements in characterising unsafe driving behaviour, existing data sources generally suffer 

from low precision and high latency, hindering the accurate identification of driving behaviours. Therefore, 

there is a need for high-precision vehicle trajectory data to study bad driving behaviours and assess potential 

road traffic safety risks from a micro perspective. This study addresses these needs by processing radar-video 

integrated sensor data to focus on the micro-level identification of unsafe driving behaviours and the 

assessment of road traffic safety risks based on these behaviours. Utilising high-precision vehicle trajectory 

data for traffic safety risk evaluation holds both theoretical and practical significance. 

1) Theoretical Significance 

⎯ By extracting driving behaviour information from high-precision trajectories, it is possible to identify 

the characteristics of unsafe driving behaviours from a micro perspective, achieving accurate 

recognition of typical unsafe driving behaviours and understanding their spatiotemporal distribution 

patterns. 

⎯ Introducing entropy theory for the micro-level identification of unsafe driving behaviours and 

constructing an indicator system for traffic safety risks can enrich the road traffic safety assessment 

methodologies. 

2) Practical Significance 

⎯ Understanding the occurrence patterns of unsafe driving behaviours can enhance the efficiency of road 

traffic management and ensure the smooth operation of road traffic. 

⎯ Feedback from unsafe driving behaviour data on road safety conditions helps in perceiving traffic 

safety risks, providing theoretical support for traffic control measures and ensuring safe travel for road 

users. 

This paper is structured as follows. Section 2 reviews and summarises existing research related to unsafe 

driving behaviours and road traffic safety risk assessment. Section 3 focuses on the identification of unsafe 

driving behaviours. Section 4 explains the evaluation of road safety based on unsafe driving behaviours. 

Section 5 validates the proposed model and algorithms using real-world scenarios. Section 6 presents the 

conclusions of the study, discusses its limitations and outlines future research directions. 

2. LITERATURE REVIEW 

At present, there is much research on driving behaviour. This paper reviews the current research from two 

aspects: identification of unsafe driving behaviour and road traffic risk assessment. 

2.1 Identification of unsafe driving behaviour 

There exist many works about unsafe driving behaviour recognition, which can be divided into threshold 

rules and machine learning or deep learning algorithms.  

For the research method of detecting unsafe driving behaviour based on threshold rules, empirical formulas 

or analytical derivations are used to specify the threshold of vehicle kinematic parameters, to identify and 

analyse driving behaviour. Common parameters include speed [2], acceleration and travel time [3], yaw rate 

[4], etc. Lu et al. [5] used a large-sample statistical distribution method to determine the characteristic value 

thresholds for unsafe driving behaviours. The unsafe driving behaviour spectrum was established. Ma et al. [6] 

set judgment thresholds for abnormal behaviour in speed, acceleration, and braking settings, achieving real-

time detection of aggressive driving behaviour by balancing driving safety and driver/passenger comfort. In 

addition, researchers also prefer to use thresholds such as lateral acceleration change amount, GPS direction 

change amount and driving distance for unsafe driving behaviour recognition. Although these threshold 
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methods have interpretability and computational efficiency, these rules are too simple to produce satisfactory 

detection results. 

Another category of research methods for detecting unsafe driving behaviour is based on machine learning 

or deep learning algorithms to construct more complex rules. Liu et al. [7] proposed an unsafe driving 

behaviour recognition method based on the covariance manifold and binary classification idea of the multi-

class LogitBoost classifier. Shahverdy et al. [8] learned a two-dimensional convolutional neural network (CNN) 

based on the recursive graph technique, which is constructed on images constructed from driving signals using 

the recursive graph technique. The experimental results show that the proposed method can efficiently detect 

driver behaviour. Hu et al. [9] characterised and simulated three typical unsafe driving behaviours: 

fatigue/drunkenness, recklessness and using mobile phones while driving, proposed abnormal indicators and 

applied them to quantitatively evaluate abnormalities. Hu et al. [10] established a novel abnormal driving 

detection model based on deep learning, using autoencoders as building blocks to represent the driving features 

of abnormal driving detection. Huang et al. [11] propose a long short-term memory (LSTM) neural networks 

(NN) based car-following (CF) model to capture realistic traffic flow characteristics by incorporating the 

driving memory. The results indicate that the LSTM-NN model can effectively capture asymmetric driving 

behaviour. 

Liu et al. [12] proposed a one-dimensional convolutional neural network model for ADBD, and 

experimental results showed that the proposed one-dimensional CNN model efficiently achieved multi-

classification of unsafe driving behaviour, with an average accuracy of 97%, significantly better than 

traditional k-nearest neighbour and support vector machine algorithms. Chen et al. [13] proposed an effective 

method for identifying unsafe driving behaviour based on convolutional neural networks (CNN) and transfer 

learning. The results show that transfer learning can effectively increase the convergence speed and recognition 

accuracy Xiao et al. [14] proposed the fuzzy deep attention network (FDAN) method to improve driver 

behaviour recognition ability. FDAN integrates fuzzy logic and attention mechanisms into deep neural 

networks, enhancing the model’s representational power and reducing data uncertainty. Darsono et al. [15] 

proposed a deep learning model based on LSTM, which uses OBD-II data to classify driving behaviour. The 

results indicate that the proposed model exhibits a natural ability to preserve and utilise temporal information 

in input data, surpassing traditional machine learning methods. 

2.2 Road traffic risk assessment based on driving behaviour data 

Many studies have established road safety evaluation models by considering various factors of unsafe 

driving behaviour. Considering that the current traffic safety evaluation index system is relatively weak in 

terms of driver behaviour characteristics and vehicle operation characteristics, Eren et al. [16] analysed drivers’ 

safety and unsafe behaviour through optimal path detection algorithms and Bayesian classification statistics. 

Chen et al. [17] conducted a road safety risk assessment process from a holistic perspective using an improved 

entropy TOPSIS-RSR method based on the comprehensive road safety risk index (RSRI). Yan et al. [18] 

constructed a data-driven driving safety assessment method based on actual driving behaviour data in tunnels, 

providing an effective and generally acceptable method for identifying driving risk criteria that can also be 

applied to traffic management and safety countermeasures with a view to possible implementation in 

continuous tunnels. Chen et al. [19] constructed a new nonnegative constraint focus loss classifier for 

predicting driving behaviour under different safety risk levels. The results showed that this method can 

effectively find the optimal window size, reduce data volume and reconstruction errors, and extract more 

significant features. Cai et al. [20] applied information entropy theory to traffic safety evaluation based on 

vehicle OBD data, and constructed a road traffic safety risk evaluation system using driving behaviour data as 

the evaluation index, achieving the discrimination of potential road traffic safety risks. Wang et al. [21] 

proposed a risk assessment method based on driver improper driving behaviour and abnormal vehicle status 

warning data, which uses entropy weight method to determine the risk responsibility weight of each warning 

type, and then determines the risk classification threshold based on Gaussian mixture model algorithm. Yang 

et al. [22] innovatively developed an indicator called “Traffic Dynamic Operational Risk (TDOR)” based on 

aggressive driving behaviours (ADBs) and traffic flow data for traffic safety assessment. 
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2.3 Research gap 

Research on identifying unsafe driving behaviour has become relatively mature, and data-driven traffic 

safety risk assessment based on driving behaviour has gradually become a research hotspot. However, further 

research is still needed in the following two aspects: 

1) Coordination between existing methods and new traffic data. The reference of new data can further 

optimise the parameter judgment threshold for unsafe driving behaviour, which is conducive to mining 

more microscopic unsafe driving behaviour. Compared with traditional abnormal driving recognition data, 

the data of radar-video integrated sensors has higher accuracy (centimetre level) and faster return speed 

(millisecond level). In addition, based on the existing methods for identifying unsafe driving behaviour, 

more microscopic constraint rules are expected to be incorporated. 

2) Exploration of new data-driven traffic safety risk assessment methods. Introducing new data can transform 

passive driving, mainly based on accident data in existing road traffic safety assessment research, into 

active measurement guided by driving behaviour data. With the advent of the digital era of transportation, 

high-precision and low-latency driving behaviour data are becoming increasingly easy to obtain. Active 

assessment of traffic safety risks will be the future development trend of intelligent transportation. 

Therefore, further exploration of road traffic safety risk assessment methods driven by new data is 

necessary. 

This article presents an objective evaluation approach that utilises data from radar-video integrated sensors 

and entropy theory to address safety risk assessment challenges in complex urban road traffic systems. It 

focuses on recognising and analysing unsafe driving behaviour using Thunder Vision all-in-one machine data, 

calibrating its characteristic indicator thresholds, and proposing a recognition principle and algorithm process. 

The method introduces an entropy theory-based evaluation system with traffic safety entropy as the primary 

indicator and unsafe driving behaviour rate as the secondary indicator. A clustering algorithm determines the 

classification number and threshold of traffic safety entropy, leading to a tunnel traffic safety risk assessment 

model. The feasibility of the evaluation results is verified using road accident data. 

3. IDENTIFICATION OF UNSAFE DRIVING BEHAVIOUR 

Unsafe driving behaviour specifically refers to speeding, abnormally low speed, unstable speed, rapid 

acceleration, rapid deceleration and abnormal car-following. When a driver engages in unsafe driving 

behaviour, it is difficult for them to make the correct response in a short period in the event of an emergency, 

especially when driving on urban roads with complex driving environments and relatively saturated traffic 

flow. The safety hazards are extremely high and can easily trigger traffic accidents. 

3.1 Data analysis and preprocessing 

Data preprocessing is the first work of data analysis and mining, abnormal data is a common situation in 

the process of data analysis. To accurately extract vehicle trajectory information, data should be screened and 

processed at the beginning of the study. 

Data introduction 

Radar video integrated sensors are multimodal intelligent traffic sensors based on millimetre wave radar 

and video detection. They can accurately detect and identify parameters such as the position, speed, direction 

and type of traffic participants in complex road environments. At the same time, deep learning algorithms are 

used to achieve detection and early warning of various traffic events. The data in this article is sourced from 

the Jiaozhou Bay Tunnel Video Traffic Flow Detection and Application System, which collects high-precision 

traffic trajectory data in real-time by deploying radar video integrated sensors in the field.  

The data collection frequency of the Thunder Vision equipment is 10Hz, which means that data are 

transmitted back every 100 ms. For example, the data from the radar video integrated sensors in the Jiaozhou 

Bay Tunnel in Qingdao reached 2.69 million in one day. Figure 1 shows the parsed raw data returned from the 

server, and Table 1 shows the data fields and their meanings. 
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Figure 1 – The parsed raw data of the radar video integrated sensors 

Table 1 – Data fields and their meanings for radar video integrated sensors 

Number Field name Field meaning 

1 devc_id Camera device IP 

2 vhc_id Vehicle ID 

3 vhc_no Licence plate number 

4 vhc_plate Licence plate colour 

5 vhc_color Vehicle colour 

6 lane_id Lane number 

7 vhc_type Object type detected: vehicle, person 

8 vhc_speed Target speed – longitudinal speed unit, km/h 

9 vhc_x The x-coordinate of the vehicle relative to the equipment 

10 vhc_y The y-coordinate of the vehicle relative to the equipment 

11 lng Longitude 

12 lat Latitude 

13 radar_vhc_id Vehicle identification number for coordinate detection 

14 gmt_create Vehicle coordinate detection time, 100 ms level 

15 rec_time Receiving time, in seconds 

16 gps_time Detection time, converted from gmt_create 

17 devc_type 3 radar data, 2 video data, 5 fused data 

 

The original data contains irrelevant data, as well as issues like data duplication, redundancy, and errors. 

Therefore, it is necessary to perform data extraction, cleaning, and association on the original data. 
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Data preprocessing 

1) Single-device data extraction 

The raw data records millisecond-level data of 17 fields, including camera IP, vehicle ID, licence plate 

number, vehicle colour, licence plate colour, lane number, longitude and latitude, etc. In identifying abnormal 

driving behaviour, field data such as vehicle colour and licence plate colour are of no value to this study. To 

improve the efficiency of big data processing in the later stage and efficiently carry out data analysis and 

mining work, it is necessary to extract field data related to the research content from the original data and 

remove irrelevant data. 

2) Multi-device data association 

Data association is the process of integrating data from different sources or databases into one database 

through shared fields or variables to achieve data usage, analysis and cross-database queries between different 

databases. At present, the mainstream brands of Leishi all-in-one machines in the market are Dahua and 

Hikvision, and the effective detection range of their products’ vehicle coordinates is around 150 m. To obtain 

long-distance vehicle driving data, matching and associating the extracted single-device data with feature fields 

is necessary. 

3) Data processing of equipment splicing section 

When adjacent devices collect vehicle information, there may be duplicate vehicle information detection 

due to overlapping collection ranges, as shown in Figure 2. To address this issue, the data collection interval of 

adjacent devices is divided to eliminate duplicate data in the splicing segment and achieve vehicle coordinate 

splicing of neighbouring devices.  

 
Figure 2 – Schematic diagram of vehicle coordinate stitching between adjacent devices 

Abnormal data analysis and processing 

Abnormal data is a common situation in data analysis, and abnormal data detection is a prerequisite for 

analysing the causes of data anomalies. Currently, there are many methods for detecting data anomalies, such 

as simple descriptive statistics and 3σ Principles, quartile tests, density-based clustering, etc. [27], these 

methods mainly target numerical data, and their main principle is to strip out abnormal data by analysing the 

overall characteristics of the data. Based on the Qingdao Jiaozhou Bay Tunnel Digital Twin Application 

Project, considering the data characteristics of the original data, the detection of abnormal data can be achieved 

by using the Numpy module in Python and rough retrieval of duplicate and NAN values using the duplicated 

function and is null function. On the other hand, since the data of radar-video integrated sensors meet the 

accuracy requirements for digital twinning, it can be combined with digital platforms to use the original 

trajectory data for twinning, thereby intuitively observing anomalies in the original data. 

3.2 Determination of indicators for unsafe driving behaviour 

By analysing the indicators of unsafe driving behaviour in traditional data, combined with the 

characteristics and content of the data, the indicators of unsafe driving behaviour and its characterisation were 

determined. This study identified and determined the threshold values of each characterisation indicator for 

various unsafe driving behaviours through an extensive literature review and research experience. The results 

are shown in Table 2. 
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Table 2 – Threshold of characterisation indicators of unsafe driving behaviour 

Unsafe driving behaviour Characterisation indicator Threshold 

Speeding 

Speed ≥80km/h- 

Duration ≥3s 

Abnormal low speed 

Speed ≥80km/h 

Following Distance ≥150m 

Duration ≥2s 

Unstable speed Speed standard deviation ≥10.684119 

Rapid acceleration 

Acceleration ≥3m/s2 

Duration ≥2s 

Rapid deceleration 

Acceleration ≥-3m/s2 

Duration ≥2s 

Abnormal car-following 

TTC ≥3s 

Following distance ≥150m 

Duration ≥2s 

TTC: It is an abbreviation for Time to Collision, representing collision time. 

3.3 Identification of unsafe driving behaviour 

Based on the threshold of each unsafe driving behaviour characterisation indicator, it can reduce the 

difficulty of identifying unsafe driving behaviour and improve the accuracy of model recognition. This study 

determined the threshold values of each characterisation indicator through extensive literature review and 

research experience and identified four types of unsafe driving behaviours: speeding, abnormal low speed, 

unstable speed and abnormal car-following. The specific process will be elaborated on elsewhere. This article 

designs a recognition process for the two behaviours of rapid acceleration and deceleration and writes 

recognition code suitable for massive data in Python. Due to space limitations, this article only introduces the 

identification of rapid acceleration behaviour. 

Rapid acceleration 

There are two indicators of rapid acceleration behaviour: acceleration and duration. Due to the lack of 

acceleration data provided by radar video integrated sensors, the acceleration of the vehicle needs to be 

calculated before identifying rapid acceleration and deceleration, as shown in Equation 2: 

𝑎(𝑖+1) =
𝑉(𝑖+1) − 𝑉(𝑖)

(𝑡(𝑖+1) − 𝑡(𝑖)) · 3.6
 (1) 

where 𝑉(𝑖) is the speed at time i; 𝑉(𝑖+1) is the speed at time i + 1. 

To determine whether the vehicle has undergone rapid acceleration behaviour, the acceleration threshold 

A for rapid acceleration behaviour is introduced, and combined with previous research and industry experience, 

a value of 3 m/s2 is taken. 

According to relevant research, there is currently no unified standard for the duration of rapid acceleration 

behaviour. This study selected data from the Jiaozhou Bay Tunnel from 20 October 2022 to 24 October 2022, 

for five days. To ensure the accuracy of calibration parameters, the entire day was divided into four time 

periods based on the traffic flow characteristics of the Jiaozhou Bay Tunnel, and two hours of data were 

selected as representative data for each period. Among them, 0–2 refers to the period from 00:00 to 02:00 in 

the morning, representing the nighttime peak data of the Jiaozhou Bay Tunnel. Therefore, this article analyses 

the recognition results with durations of 2 s and 3 s through sample data, as shown in Table 3. 
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Table 3 – Recognition results of rapid acceleration behaviour under different durations 

Time period Date Data count 

Duration≥2s Duration≥3s 

Behaviour 

count 

Behaviour 

rate 

Behaviour 

count 
Behaviour rate 

0-2 

10/20 377 43 11.41% 1 0.27% 

10/21 418 58 13.88% 1 0.24% 

10/22 523 55 10.52% 0 0.00% 

10/23 411 59 14.36% 1 0.24% 

10/24 357 51 14.29% 2 0.56% 

7-9 

10/20 6871 1341 19.52% 41 0.60% 

10/21 6699 1309 19.54% 61 0.91% 

10/22 5150 909 17.65% 22 0.43% 

10/23 4375 717 16.39% 17 0.39% 

10/24 6871 1314 19.12% 39 0.57% 

10-11 

13-14 

10/20 4564 794 17.40% 13 0.28% 

10/21 4682 855 18.26% 19 0.41% 

10/22 5274 1028 19.49% 28 0.53% 

10/23 5251 900 17.14% 17 0.32% 

10/24 4564 723 15.84% 49 1.07% 

16-18 

10/20 6595 1460 22.14% 47 0.71% 

10/21 7272 1631 22.43% 92 1.27% 

10/22 6867 1524 22.19% 57 0.83% 

10/23 7076 1394 19.70% 45 0.64% 

10/24 6595 1119 16.97% 34 0.52% 

Average behaviour 

rate 
- - 17.58% - 0.55%  

 

From the table, it can be seen that the behaviour rate at a duration threshold of 3 seconds for rapid 

acceleration behaviour is much lower than that at a duration threshold of 2 seconds. In the case of a duration 

threshold of 3 seconds, there were 0 rapid acceleration behaviours during the 0–2 period, and 55 were identified 

with the same duration threshold of 2 seconds. Setting the duration to 2 seconds is more reasonable, so this 

article sets the duration threshold for rapid acceleration behaviour to 2 seconds. 

Recognition algorithm for rapid acceleration behaviour 

The detailed steps of the algorithm for identifying rapid acceleration behaviour are as follows: 

Step I: Analyse and read the raw data of radar video integrated sensors, and use PyCharm programming 

software to convert the raw data item by item into a list for easy traversal and indexing in the 

future. 
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Step II: Group the converted data based on licence plate numbers, convert the timestamp format to time 

format, and sort the grouped data according to the time rules from small to large and latitude from 

small to large. 

Step III: Starting from the second data point in each group, calculate the vehicle acceleration α at each 

moment according to Equation 1 and set the initial duration T to 0. 

Step IV: Determine if the acceleration exceeds the set acceleration threshold. If it does, retain the time 

information of the data and proceed to step 6. If not satisfied, proceed to step 5. 

Step V: Determine whether it is the last data entry. If the result is yes, then there is no rapid acceleration 

behaviour, and the process is over. If the result is negative, reset the duration T to 0, read the data 

for the next time step, and proceed to step 4. 

Step VI: Determine whether the duration T of the behaviour that meets the acceleration threshold for rapid 

acceleration is greater than or equal to 2 seconds. If the judgment result is yes, it indicates that 

rapid acceleration behaviour has occurred. If the judgment result is negative, it indicates that there 

has been no rapid acceleration behaviour. Go to step 7. 

Step VII: Determine whether the current data are the last data of the vehicle. If so, the algorithm ends. If 

not, read the data for the next time step and proceed to step 4. 

 
Figure 3 – Process diagram for rapid acceleration behaviour recognition 

4. ROAD TRAFFIC SAFETY RISK ASSESSMENT 

The entropy method can determine the index weight objectively by analysing the variation degree of each 

index value, avoiding the deviation caused by human factors, and has a strong mathematical theoretical basis. 

However, the traditional entropy method tends to produce a large deviation in the treatment of extreme values 

in this study, so it is improved in this paper to effectively ensure the description of objective facts. 
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4.1 Evaluation indicator system 

This article takes the entropy value of road traffic operation under the influence of unsafe driving behaviour 

as the primary indicator for estimating road traffic safety risks and selects the six indicators shown in Table 4 

as the secondary indicators for road traffic safety risk assessment. 

Table 4 – Evaluation indicators system 

First level indicator Second level indicators 

Road traffic safety entropy 

Speeding rate, Abnormal low-speed rate, 

Unstable speed rate, Rapid acceleration rate, 

Rapid deceleration rate, Abnormal car-following rate 

4.2 Road traffic safety risk assessment based on improved entropy method 

The calculation steps for the road traffic safety risk assessment based on the improved entropy method are 

as follows: 

Step I: Based on the results of identifying unsafe driving behaviours, calculate the probability of each unsafe 

driving behaviour occurring during time period m on road segment i. 

𝑃𝑖𝑗
𝑚 =

𝑁𝑖𝑗
𝑚

𝑄𝑖
𝑚  

(2) 

where i represents the number of road sections, i = 1, 2,..., q; j is the number of indicators, j = 1, 2,..., k; m is 

the time period, m = 1, 2,..., p. The number of vehicles that engaged in the jth type of unsafe driving behaviour 

during time period m on section i;  𝑄𝑖
𝑚 is the total number of vehicles detected in time period m for section i; 

𝑃𝑖𝑗
𝑚 is the incidence rate of the jth type of unsafe driving behaviour in section i during period m. 

Step II: Use the MAX-MIN method to standardise data and unify data dimensions. 

𝑥𝑖𝑗
𝑚 =

𝑝𝑖𝑗
𝑚 − 𝑝𝑖𝑗

𝑚𝑖𝑛

𝑝𝑖𝑗
𝑚𝑎𝑥 − 𝑝𝑖𝑗

𝑚𝑖𝑛
 (3) 

𝑥𝑖𝑗
𝑚 =

𝑝𝑖𝑗
𝑚𝑎𝑥 − 𝑝𝑖𝑗

𝑚

𝑝𝑖𝑗
𝑚𝑎𝑥 − 𝑝𝑖𝑗

𝑚𝑖𝑛
 (4) 

where 𝑥𝑖𝑗
𝑚 is the jth indicator value of section i during time period m; 𝑝𝑖𝑗

𝑚𝑖𝑛 is the minimum occurrence rate of 

the jth type of unsafe driving behaviour on section i; 𝑝𝑖𝑗
𝑚𝑎𝑥 is the maximum occurrence rate of the jth type of 

unsafe driving behaviour on section i. 

Step III: Calculate the proportion of the jth indicator under each indicator value in the ith section. 

𝜆𝑖𝑗
𝑚 =

𝑥𝑖𝑗
𝑚

∑ 𝑥𝑖𝑗
𝑚𝑞

𝑖=1

 
(5) 

where q represents the total number of road sections; 𝜆𝑖𝑗
𝑚 represents the proportion of the jth indicator under 

each indicator value in the ith section during time period m. 

Step IV: Calculate the entropy value of each indicator. 

𝐸𝑗 =
1

𝑙𝑛𝑞
∑ ∑ 𝜆𝑖𝑗

𝑚

𝑝

𝑚=1

𝑞

𝑖=1

· 𝑙𝑛𝜆𝑖𝑗
𝑚 

(6) 

where 𝐸𝑗  is the entropy value of the jth indicator, 𝐸𝑗 ≥ 0 ; If it exists 𝜆𝑖𝑗
𝑚 = 0 , let it be 𝜆𝑖𝑗

𝑚 = 𝜆𝑖𝑗
𝑚 + 0.00001. 

Step V: Calculate the weight of each indicator. 

{
𝑤𝑗_2 = (1 − �̅�35.35) · 𝑤𝑗_0 + �̅�35.35𝑤𝑗_1             𝐸𝑗＜1

                                       0                                           𝐸𝑗 = 1
 

(7) 

𝑤𝑗_0 =
1 − 𝐸𝑗

∑ (1 − 𝐸𝑗)𝑘
𝑗=1

 (8) 
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𝑤𝑗_1 =
1 + �̅� − 𝐸𝑗

∑ (1 + �̅� − 𝐸𝑗)
𝑘
𝑗=1

 (9) 

where 𝑤𝑗_2 is the entropy value of the jth indicator, �̅� is the average entropy value for all indicators with entropy 

values not equal to 1. 

Step-Ⅵ：Calculate the safety entropy value of the ith segment unit of the road during the mth time period. 

𝑆𝑖
𝑚 = ∑ 𝑤𝑗

𝑘

𝑗=1

· (−𝑝𝑖𝑗
𝑚) · 𝑙𝑛𝑝𝑖𝑗

𝑚 (10) 

𝑆𝑖
𝑚 is the safety entropy value of the jth indicator within time period m. 

4.3 Classification of traffic safety levels 

When classifying road traffic safety levels based on correlated accident data, the abnormal data are first 

stripped off. Then the accident data and road safety entropy data are divided using clustering thinking. The 

group with the highest contour coefficient is selected as the basis for dividing road safety levels. 

K-means clustering is a typical unsupervised classification algorithm that aims to automatically classify 

similar samples by maximising the similarity between categories and minimising the similarity between 

different categories. Its principle is simple, and the clustering effect is good. The algorithm flow of K-means 

clustering is as follows: 

Step I: Enter the K value of the number of data categories to be divided. 

Step II: Randomly select K points as the initial cluster centres for each category, then calculate the 

distance from each point to the cluster centre and assign the point to the nearest cluster centre, 

thus forming K clusters. 

Step III: Recalculate the centroid of each cluster. 

Step IV: Repeat Steps II and III until the centroid position of each cluster no longer changes or reaches the 

set number of iterations. 

Step V: Clustering ends, generating the final category of each data and the distance from that data to the 

cluster centre of the category. 

4.4 Determination of the optimal grading threshold 

The optimal classification threshold can ensure the accuracy of dividing safety entropy values. To find the 

optimal classification threshold for each level, the concept of classification accuracy is introduced, and the 

calculation method for classification accuracy is as follows: 

𝐴 = 1 −
𝑛1 + 𝑛2

𝑁
· 100% (11) 

where A represents the classification accuracy; N is the total number of data in adjacent clusters; 𝑛1is the 

number of K-means clustering results in the first category, and the classification threshold is divided into the 

second category of data; 𝑛2 is the K-means clustering result, and the classification threshold is divided into the 

number of data in the first category. 

5. VERIFICATION AND RESULT ANALYSIS 

5.1 Data source and processing 

Data sources 

The data used for the instance verification are the digital twin data of the Qingdao Jiaozhou Bay Smart 

Tunnel Digital Twin Traffic Operation and Control System, and Qingdao Guoxin Jiaozhou Bay Transportation 

Co., Ltd, which provides the accident data. To ensure the scientific and objective verification of the example, 

13 days of data were selected from the long downhill section of the Jiaozhou Bay Tunnel from Huangdao to 

Qingdao direction to identify unsafe driving behaviour and calculate road traffic safety entropy. The data 

period was from 25 November 2022 to 7 December 2022, with pile numbers ZK6+900 to ZK8+300. To 

accurately characterise the traffic safety risks of each section unit of the Jiaozhou Bay Tunnel, the road was 
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divided into 50/m as a section unit for road traffic safety risk calculation. Figure 4 shows the basic road 

conditions of the selected data. 

 

Figure 4 – Basic conditions of the selected road 

Data sample size analysis 

1)  Introduction to data types 

The raw data of Leishi stores all data in a “CSV” document at intervals of every 100 ms. The accident data 

records detailed information such as the station number, lane, cause and type of accident based on the date of 

the accident. 

2)  Data sample size analysis 

Perform lane-by-lane statistics on traffic flow using 13-day data at 1-hour intervals and draw a time-varying 

line graph of traffic flow, as shown in Figures 5–7. By observing the time-varying patterns of traffic flow in each 

lane of the 13-day data, it can be found that the trend of traffic flow over time is relatively stable. The traffic 

flow is highest during the morning and evening peak hours, followed by the daytime off-peak period, and the 

nighttime off-peak period has the lowest traffic flow. The changes in data can reflect the travel demand 

characteristics during the morning and evening rush hour in cities. In addition, the traffic flow in the left and 

middle lanes is relatively close at different times, while the traffic flow in the right lane is lower. During peak 

hours, the hourly traffic flow in the left middle lane can reach over 1,800 vehicles, and the maximum traffic 

flow in the right lane is 989 vehicles. 

 
Figure 5 – Time-varying diagram of 

hourly traffic flow in the left lane 

 
Figure 6 – Time-varying diagram of 

hourly traffic flow in the middle lane 

 
Figure 7 – Hourly traffic variation 

diagram of the right lane 
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To ensure the accuracy of road safety entropy classification results, accident data from 2018 to 2021 were 

statistically analysed, and the statistical results are shown in Figure 8. According to the statistical results, the 

middle lane has the highest number of traffic accidents, the left lane has slightly lower traffic accidents than 

the middle lane, and the right lane has the lowest number of traffic accidents. There are over 400 accident data 

points over the past four years, providing assurance for the accuracy of the entropy classification results of 

road traffic safety. 

 
Figure 8 – Number of lane separation accidents from 2018 to 2021 

In summary, the data used for example verification in this article have the characteristics of rich content, 

sufficient data volume and reliable data, which can effectively support the identification of unsafe driving 

behaviour and the estimation of road traffic safety risks based on unsafe driving behaviour data in this article. 

5.2 Identification of unsafe driving behaviour 

Identifying unsafe driving behaviour is preliminary work for road traffic safety risk assessment, and the 

implementation of the identification program is mainly based on four modules: NumPy, pandas, collections 

and data time. After the original data is processed by code, a new table will be generated, which includes the 

acceleration data, speed standard deviation, TTC data, front licence plate data, front distance and identification 

result data of unsafe driving behaviour of the vehicle at each moment. The identified data results are shown in 

Figure 9. 

 
Figure 9 – Identification results 

Based on the previously determined characterisation index threshold and recognition algorithm process, the 

recognition results of two types of unsafe driving behaviour rates, namely rapid acceleration and rapid 

deceleration, on the long downhill section from Huangdao to Qingdao in Jiaozhou Bay Tunnel from 25 

November 2022 to 27 November 2022, are shown in Figure 10 and Figures 11. 



Promet – Traffic&Transportation. 2025;37(2):523-545.  Safety and Security  

536 

 
(a) 

 
(b) 

 
(c) 

Figure 10 – Rate of rapid acceleration behaviour in lane division: a) Rapid acceleration behaviour rate-11.25;  

b) Rapid acceleration behaviour rate-11.26; c) Rapid acceleration behaviour rate-11.27 

Analysing the recognition results of rapid acceleration behaviour in each lane in Figure 10, from the lane 

dimension, the rate of rapid acceleration behaviour in the right lane is the highest and the difference between 

it and the other two lanes is more obvious. From a temporal perspective, the peak of the rapid acceleration 

behaviour rate of the three lanes appears more frequently during periods of low traffic volume, and the overall 

rapid acceleration behaviour rate of the three lanes shows the same trend over time. The analysis of its causes 

may be related to the occurrence rate of rapid acceleration behaviour and road traffic flow. The larger the 

traffic flow, the closer the distance between vehicles and vehicles, and thus the lower the occurrence rate of 

rapid acceleration behaviour. 

 
(a) 

 
(b) 

 
(c) 

Figure 11 – Rate of rapid deceleration behaviour in lane division: a) Rapid deceleration behaviour rate-11.25;  

b) Rapid deceleration behaviour rate-11.26; c) Rapid deceleration behaviour rate-11.27 

Analysing the recognition results of sudden deceleration behaviour in each lane in Figure 11, from the lane 

dimension, the sudden deceleration behaviour rate of the left lane is slightly higher than the other two lanes 

most of the time, while the sudden deceleration behaviour rate of the right lane is the lowest. From a temporal 

perspective, the peak of rapid deceleration behaviour rate in the right lane occurs during periods of low traffic 

volume, while the peak of rapid deceleration behaviour rate in the left and middle lanes both occur during 

periods of high traffic volume. The overall rapid acceleration behaviour rate of the three lanes shows the same 

trend over time. From this, it can be seen that both rapid acceleration behaviour and rapid deceleration 

behaviour are influenced by traffic flow. The smaller the traffic flow, the higher the probability of rapid 

acceleration behaviour occurring, and the larger the traffic flow, the higher the probability of rapid deceleration 

behaviour occurring. 

These observations underscore the correlation between lane-specific traffic conditions and driving 

behaviours. The data indicate that rapid acceleration is more likely in low-traffic density environments, 

facilitating higher speeds, while rapid deceleration occurs more frequently under high-traffic conditions, 

necessitating more frequent braking. This understanding is crucial for analysing traffic dynamics and 

developing targeted road safety interventions. 

Based on the analysis of the above recognition results, there are significant differences in the rates of various 

unsafe driving behaviours on different lanes in the spatial dimension. Taking rapid acceleration as an example, 
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the right lane has the highest rate of rapid acceleration behaviour and a significant difference compared to the 

other two lanes. The difference in rapid acceleration behaviour rates between the left and middle lanes is 

relatively small, while the rapid acceleration behaviour rate in the middle lane is the lowest. In terms of the 

time dimension, the peak values of the rapid acceleration behaviour rate of the three lanes are more frequent 

during low traffic volume periods, and the overall trend of the rapid acceleration behaviour rate over time is 

the same. The traffic flow in the right lane of the Jiaozhou Bay Tunnel is much smaller than that in other lanes, 

while the traffic flow in the left middle lane is relatively close. Therefore, the drivers in the right lane have a 

higher rate of rapid acceleration behaviour, while the rates in the left and middle lanes are similar. 

Road traffic safety evaluation needs to consider the traffic characteristics of different lanes. If the data of 

three lanes are mixed, the differences between indicators will be weakened, thereby affecting the accuracy of 

indicator weights. In addition, after analysing and studying the accident data of each lane on the road section 

in recent years, it was found that there has been a sudden change in the accident data of the right lane. The 

number of accidents in the middle lane is significantly higher than that in the left lane, and the annual accident 

data for the left lane is relatively stable. The sudden change in tunnel accident data may be related to traffic 

control measures. The data segment selected in this article has not changed the road driving environment in 

the past two years. Therefore, considering the stability of unsafe driving behaviour in each lane and the natural 

environment, this article chooses the left lane as the object to carry out the example verification work of this 

article. Statistical analysis was conducted on the rates of six types of unsafe driving behaviours on the left lane 

of the long downhill section of the Jiaozhou Bay Tunnel from Huangdao to Qingdao using the Pandas module, 

covering a period of 13 days from 25 November 2022 to 7 December 2022. The results are shown in Figure 12. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 12 – Rate of unsafe driving behaviour in the left lane: a) rapid acceleration rate; b) rapid deceleration rate; c) speeding rate; 

d) unstable speed rate; e) abnormal low-speed rate; f) abnormal car-following rate 
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5.3 Calculation and analysis of entropy value for road traffic safety 

The road traffic safety entropy is determined by the index value of each unsafe driving behaviour. Based 

on the data on unsafe driving behaviour rate obtained above, this part uses the improved entropy method to 

calculate and analyse the traffic safety entropy of each section. 

Indicator weight calculation 

To verify the stability of entropy method weighting, the weight data of each behaviour was calculated using 

13 days of data, and the average weight of each behaviour for 13 days was used as the weight result for each 

unsafe driving behaviour. The calculation results are shown in Table 5. 

Table 5 – Recognition results of rapid acceleration behaviour under different durations 

Date 

Indicator weight 

Rapid 

acceleration 

Rapid 

deceleration 
Speeding Unstable speed 

Abnormal low 

speed 

Abnormal car-

following 

day-1 0.23 0.15 0.18 0.10 0.12 0.22 

day-2 0.14 0.09 0.34 0.15 0.12 0.16 

day-3 0.17 0.13 0.21 0.11 0.13 0.25 

day-4 0.08 0.09 0.33 0.20 0.10 0.19 

day-5 0.21 0.25 0.14 0.11 0.10 0.19 

day-6 0.10 0.29 0.15 0.19 0.11 0.16 

day-7 0.12 0.26 0.20 0.12 0.11 0.19 

day-8 0.21 0.24 0.16 0.11 0.11 0.17 

day-9 0.13 0.18 0.08 0.27 0.13 0.22 

day-10 0.13 0.20 0.13 0.19 0.08 0.26 

day-11 0.14 0.16 0.19 0.16 0.10 0.25 

day-12 0.13 0.19 0.19 0.13 0.11 0.25 

day-13 0.13 0.08 0.29 0.16 0.07 0.27 

Mean value 0.15 0.17 0.20 0.15 0.11 0.22 

Standard 

deviation 
0.04 0.07 0.07 0.04 0.02 0.04 

Calculation of entropy value for road traffic safety 

Based on the weights of unsafe driving behaviour given in Table 5, the road traffic safety risk entropy values 

have been calculated. Additionally, the number of accidents for each section of the road in 2020 and 2021 has 

been compiled. The results are summarised in Table 6. 
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Table 6 – Number of unit accidents on various road sections in 2020 and 2021 

The number of accidents near the bottom of the slope (section unit numbers 2–11) was much higher than 

that in the non-slope bottom section (section unit numbers 19–28). Based on this, a comparative analysis is 

conducted on the safety entropy value and accident number between the slope bottom section and the non-

slope bottom section, the results are shown in Figures 13 and 14. 

 
Figure 13 – Safety entropy of slope and non-slope sections 

 
Figure 14 – Accident number of slope and non-slope sections 

From these figures, it can be seen that both in terms of mean and median, the number of accidents in the 

bottom section of the slope is higher than that in the non-bottom section, and the safety entropy value of the 

bottom section is also higher than that of the non-bottom section. Although there is a significant difference in 

the number of accidents between the slope bottom section and the non-slope bottom section, and the difference 

in safety entropy values is relatively small, both reflect the overall trend of higher safety risks in the slope 

Road 

section 

number 

Safety  

entropy  

value 

Number of accidents 
Road 

section 

number 

Safety  

entropy  

value 

Number of accidents 

2020 2021 
Mean 

value 
2020 2021 

Mean 

value 

1 0.028568 0 0 0 15 0.049589 0 0 0 

2 0.070766 12 20 16 16 0.018179 3 1 2 

3 0.050339 0 2 1 17 0.04499 0 0 0 

4 0.051534 15 14 14.5 18 0.051299 4 4 4 

5 0.048705 1 0 0.5 19 0.042482 0 0 0 

6 0.051198 12 20 16 20 0.049342 3 3 3 

7 0.046557 0 0 0 21 0.054853 3 3 3 

8 0.05178 1 0 6.5 22 0.047582 0 0 0 

9 0.050669 4 9 0.5 23 0.060679 7 2 4.5 

10 0.056232 5 5 5 24 0.043897 0 1 0.5 

11 0.054137 7 8 7.5 25 0.048713 0 0 0 

12 0.052077 1 0 0.5 26 0.046506 0 0 0 

13 0.047701 0 0 0 27 0.041949 2 0 1 

14 0.054327 6 6 6 28 0.044581 0 0 0 
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bottom section than in the non-slope bottom section, indicating that road traffic safety entropy can effectively 

characterise road traffic safety risks. 

5.4 Classification of road traffic safety risk states 

The reasonable division of road traffic safety entropy is the guarantee to perceive the potential risk of traffic 

operation. In previous studies, accident data are often used to evaluate road traffic safety. Therefore, this paper 

classifies road traffic safety entropy based on accident data. 

Remove abnormal data 

Select the traffic safety entropy values of 28 road sections and accident data from 2020 to 2021 to classify 

the risk levels of road traffic safety. Draw a two-dimensional scatter plot of the number of safety entropy 

accidents to eliminate the interference of abnormal data on the classification results, as shown in Figure 15. 

 
Figure 15 – Scatterplot of traffic accident-safety entropy 

As shown in the above figure, the three sets of data on the right side of the scatter plot are far away from 

other data. These three data sets have a more significant number of accidents, and the difference in safety 

entropy values with different data is slight. Therefore, it can be considered that these three sets of data are 

isolated data. Therefore, it has been decided to remove these three sets of isolated points and use the data after 

removing the isolated points as input data for K-means clustering to classify road traffic safety. 

Determination of optimal grading results 

To determine the optimal safety entropy classification number, the K-means method was used to cluster 

the data after removing outliers, with clustering numbers of 2, 3 and 4 respectively. The optimal clustering 

effect was determined by calculating the contour coefficient of each class, thus determining the classification 

number of traffic safety entropy. The clustering results are shown in Figures 16–18. The contour coefficient 

calculation results corresponding to the number of clusters in each category are shown in Table 7. 

 

Figure 16 – Traffic accident count - safety 

entropy value K-means clustering into two 

categories 

 

Figure 17 – Traffic accident count - safety 

entropy value K-means clustering into 

three categories 

 

Figure 18 – Traffic accident count - safety 

entropy value K-means clustering into four 

categories 
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Table 7 – Profile coefficient table 

Clustering numbers Profile coefficient 

2 0.757 

3 0.717 

4 0.732 

 

According to the contour coefficient, it can be concluded that the effect of clustering 2 is the best. Figure 16 

shows that when clustering into two categories, there are more data samples between each category and a 

significant difference in cluster centres. In the results of clustering three and four categories, some categories 

have small sample sizes, and the clustering centres transmit unequal information to different categories in the 

dimensions of accident number and safety entropy. When the number of clusters is 4, the cluster centre of the 

number of accidents in Cluster-II is higher than that in Cluster-I, but the cluster centre of the safety entropy 

value is smaller than that in Cluster-I. So, the best classification results are selected into two categories: high 

risk and low risk. 

Determination of the optimal grading threshold 

Take the safety entropy data of each category with a clustering number of 2, sort the safety entropy values 

from small to large, and draw a scatter plot, as shown in Figure 19. The graph shows that the safety entropy 

values of different categories are not entirely separated, so it is necessary to define the optimal threshold for 

safety entropy values. 

The safety entropy values of the two types of clustering centres with a clustering number of 2 are the upper 

and lower limits of the optimal classification threshold. In increments of 0.001, the K-means method classifies 

the sample data as Cluster-I under different classification thresholds. The classification threshold is defined as 

the number of false positive samples n1 for Cluster-II, and the clustering result of the K-means method is 

Cluster-II. The classification threshold is the number of false positive samples n2 for Cluster-I. Then, the 

classification accuracy under different thresholds is calculated according to Equation 11, and the calculation 

results are plotted as a line graph shown in Figure 20. 

 
Figure 19 – Sorted scatterplot of security entropy 

 
Figure 20 – Accuracy of different classification thresholds 

The above figure shows that when the classification threshold for selecting the safety entropy value is 

0.0507, the accuracy of defining high and low risks reaches 92%. Therefore, the optimal classification 

threshold is determined to be 0.0507. 

5.5 Result analysis 

According to the calibration results of the optimal classification threshold, the risk levels of 28 road segment 

units were divided, and the division results are shown in Table 8. According to the division results, 11 out of 28 

road segment units are high-risk, while 17 are low-risk. 
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Table 8 – Results of risk classification of each road section unit 

Road segment units Safe entropy Risk levels Road segment units Safe entropy Risk levels 

1 0.028568 low 15 0.049589 low 

2 0.070766 high 16 0.018179 low 

3 0.050339 low 17 0.04499 low 

4 0.051534 high 18 0.051299 high 

5 0.048705 low 19 0.042482 low 

6 0.051198 high 20 0.049342 low 

7 0.046557 low 21 0.054853 high 

8 0.05178 high 22 0.047582 low 

9 0.050669 low 23 0.060679 high 

10 0.056232 high 24 0.043897 low 

11 0.054137 high 25 0.048713 low 

12 0.052077 high 26 0.046506 low 

13 0.047701 low 27 0.041949 low 

14 0.054327 high 28 0.044581 low 

 

Statistics were collected on the number of accidents in high and low-risk road sections, as shown in Figure 

21. 

 
Figure 21 – Number of road section unit accidents with different risk levels 

From the above figure, it can be seen that there is a significant difference between the mean and median 

number of accidents in the high and low-risk sections, with the number of accidents in the low-risk section 

being much lower than that in the high-risk section. The maximum number of accidents occurring on low-risk 

road sections is 3, and the minimum number of accidents occurring on high-risk road sections is also 3. The 

classification threshold for road traffic safety risks has a good effect on the dimension of accidents, and the 

determination of the dimension of accidents and determining risk levels is generally feasible. However, due to 

the incomplete equivalence between traffic safety risks and accidents and the model’s limitations, there are 

also situations where the number of accidents on certain high-risk sections is relatively low, and the number 

of accidents on low-risk sections is relatively high. 
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6. CONCLUSIONS 

This article uses data from the radar video integrated sensors for identifying unsafe driving behaviour, 

analyses the correlation between unsafe driving behaviour and traffic accidents, and establishes a road traffic 

safety risk estimation method based on an improved entropy method. 

1) Based on high-precision and low latency data from the radar video integrated sensors, the characterisation 

parameters and thresholds of seven types of unsafe driving behaviours (speeding, abnormal low speed, 

unstable vehicle speed, rapid acceleration, rapid deceleration, abnormal car following and sudden lane 

changes) were measured and calibrated. A specific recognition algorithm process was constructed to 

achieve accurate recognition of unsafe driving behaviours, providing an important data foundation for road 

traffic safety risk assessment. 

2) Taking the left lane of the Jiaozhou Bay Tunnel in Qingdao as an example, the model was validated using 

13 days of measured data. Based on actual accident data and K-means clustering results of safety entropy 

values, traffic operation risks were classified into high risk and low risk, and the optimal classification 

threshold of safety entropy values was studied with the goal of model recognition accuracy. The results 

show that when the safety entropy classification threshold is 0.0507, the risk level judgement of the 

research section is most accurate, with an accuracy rate of 92%. This has practical reference significance 

for safety warning and control in the Jiaozhou Bay Tunnel in Qingdao. 

3) Research has shown that the road traffic safety risk estimation method based on driving behaviour data 

can effectively estimate road traffic safety risks. The unsafe driving behaviour recognition method 

constructed in this paper can effectively identify road risk points and achieve road risk estimation through 

the constructed road traffic safety assessment model, thereby realising the prevention and early warning 

of road traffic risks. 

The driving behaviour data records the interaction results between the driver and other factors in the “human 

vehicle road law environment” system. Mining driving behaviour data can help evaluate driving risks and 

improve traffic safety and efficiency. There are still some shortcomings and areas that need further research in 

this study, mainly reflected in the following aspects: 

1) The sudden lane change behaviour is typical unsafe driving behaviour. Although this article has identified 

this behaviour, due to the complexity of the methods for determining the start and end times of lane change 

behaviour, manual verification can only be used on small sample data. With the development of future 

vehicle road collaboration and autonomous driving, it is imperative to develop recognition algorithms for 

massive data. Therefore, further research is needed on the recognition algorithms for this behaviour. 

2) This article mainly focuses on the study of longitudinal unsafe driving behaviour. However, on urban roads, 

lateral unsafe driving behaviours such as sticking and riding on lines also pose significant safety hazards. 

With the continuous development of data collection technology, further exploration is needed on how to 

accurately characterise these behaviours based on trajectory data. 

3) The ultimate goal of using driving behaviour data to assess road traffic safety risks is to scientifically 

improve and optimise the road driving environment. How to effectively combine security risks with 

operational control measures is a topic that needs further research. 
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蔡晓禹，李子木，乔午锋，程茜伶，彭博，张东  

基于雷视一体机数据的道路交通安全风险评估研究  

摘要  

为了准确预防和预警交通事故，本文提出了一种基于车辆驾驶行为数据和

信息熵理论的城市道路交通安全风险预测方法。本方法使用雷视一体机的

数据来校准识别不安全驾驶行为的阈值，介绍了识别原理和算法，并分析

了安全驾驶行为的时空分布模式。通过引入熵理论，建立了以交通安全熵

为主要指标、以不安全驾驶行为率为次要指标的评价体系。采用聚类算法

确定交通安全熵的分类数和阈值，构建隧道交通安全风险评估模型，并用

道路事故数据进行验证。最后，该模型利用青岛胶州湾隧道左车道上的 1

3天驾驶行为数据进行案例分析，根据事故和安全熵数据的K - m e a n s  

聚类结果，将交通运行风险分为高、低两类。研究发现，当安全熵分类阈

值为 0 . 0 5 0 7时，分类准确率最高，为 9 2 %。这些结果为识别道路交通安

全风险点和预防事故提供了技术支持。  
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