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ABSTRACT 

This paper attempts to determine the role of street lighting in the spatial clustering of night-

time crashes involving pedestrians in the Republic of Croatia. Five-year (2018–2022) night-

time pedestrian crash data were used in conditions with and without street lighting. First, 

distance-based statistical methods were used to assess the spatial clustering and deviations 

from complete spatial randomness (CRS) of the crash patterns. Second, the global Moran’s I 

analysis was conducted to investigate a degree of spatial autocorrelation of the annual crash 

counts aggregated in 21 counties of Croatia. Finally, the local indicators of spatial association 

(LISA) were used to identify the locations of the crash count hotspots. The results of the 

ANND analysis confirm a significant clustering of crashes for both street lighting conditions. 

However, different global Moran’s I values for both conditions were obtained with a high 

and statistically significant positive value for the crash counts without street lighting. Local 

Moran's I analysis reveals that the High-High (H-H) county clusters are located in coastal 

regions of Croatia, while the Low-Low (L-L) county clusters appear in the East continental 

part, next to Slavonia. The results suggest that inadequate lighting conditions have an impact 

on the clustering of pedestrian crashes at night. 
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1. INTRODUCTION 

Road crashes constitute a substantial part of the global socio-economic burden, particularly in low- and 

middle-income countries [1]. Compared to other types of road crashes, pedestrian crashes create almost 20% 

[2] of all types of crashes in the European Union (EU). Essentially, pedestrians are unprotected traffic 

participants who interact with other, more protected road users of higher speed and mass and a better protective 

structure from whom they can hardly protect themselves. Therefore, when a crash occurs, they often suffer 

fatal or severe injuries [3]. 

Among others, the low lighting level of the road environment is one of the main factors that contributes 

significantly to the increase in the risk of severe or fatal crashes [4, 5]. Low visibility conditions reduce the 

visual function, affecting the visual acuity and perception of drivers, and therefore negatively impacting their 

visual performance [6]. Furthermore, these conditions contribute to more severe crashes involving pedestrians 

and cyclists [7-10]. Ferenchak et al. [11] found that the presence of street lighting evinces a positive correlation 

with better safety outcomes. They used linear regression to investigate the relationships between the per cent 
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change in pedestrians killed (or injured) as the dependent variable and the year as the independent variable. 

This analysis was divided into dark and daylight categories to account for lighting conditions. The results 

revealed that the death and injury rates increased more significantly in the dark conditions compared to the 

daylight conditions with an increase of 43.3%. Kemnitzer et al. [12] used generalised estimating equations 

with a logit link to estimate the odds of pedestrian injury. They found that in dark conditions without road 

lighting, the odds of injury in pedestrian strikes increase by 49%. Furthermore, Kim et al. [13] investigated 

three-year pedestrian-vehicle crash data using a mixed logit model and found that darkness without street 

lighting significantly increases the probability of fatal injuries and very serious injuries from 137% to 325% 

and from 12% to 19%, respectively. 

The role of street lighting in pedestrian crashes at night has so far been at the margins of scholarly interest. 

Although some authors reported that street lighting was one of the major contributing factors [14, 15], others 

reported it as a factor that had a minor influence [16, 17]. However, the interpretation of these findings can 

vary between countries for various reasons, including pedestrian and traffic volume at night, pedestrian 

infrastructure [18], road network, speed limits [18, 19], land use [20], extent of education on the importance 

of the pedestrian conspicuity problem [18] in addition to the spatial socio-economic and socio-demographic 

characteristics [21]. Ćosić et al. [22] analysed the relationships between the external factors and pedestrian 

crash blackspots in the city of Zagreb based on a sample of 1,333 pedestrian road crashes. To identify the black 

spots of the crash, they used the KDE method which revealed that the highest density was observed in the city 

centre and on the main roads. Further analysis of the possible impacts of external factors at the identified black 

spots revealed only a minor increase in the probability of pedestrian crashes at night [22]. However, this study 

was aimed at the capital city of Croatia, where street lighting installations are supposed to be of a better quality 

compared to the locations on the outskirts. Kučinić et al. [23] investigated pedestrian crashes in the Republic 

of Croatia during an observation period of 5 years and reported no correlations between injured and fatally 

injured pedestrians and lighting conditions. However, this study did not consider any technique for exploratory 

spatial analysis to discover patterns of spatial clusters of road crashes. Moreover, none of these studies were 

focused primarily on pedestrian crashes at night under lighted and unlighted conditions. Therefore, it is not yet 

clear where more crashes are likely to be concentrated under these conditions. To overcome the limitations 

mentioned above, the authors investigated the clustering of night-time pedestrian crashes with respect to 

different street lighting conditions at the county spatial scale, giving valuable information on the distribution 

of spatial clusters of the crashes. 

Therefore, the objective of this paper is to assess the spatial pattern and degree of spatial clustering of night-

time pedestrian crashes in the Republic of Croatia with respect to different street lighting conditions in order 

to identify areas where the crashes concentrate. To examine the spatial clustering tendency of crashes, ANND 

analysis and nearest neighbour distance function G were used. Second, the univariate global Moran’s I analysis 

was conducted to investigate statistically significant spatial autocorrelation of pedestrian crash counts under 

conditions with and without street lighting. Finally, LISA was employed to detect localised clustering. To 

perform these analyses, the night-time pedestrian crashes with and without street lighting from 2018 to 2022 

in Croatia were gathered and analysed. This paper consists of five sections, which are structured as follows. 

Section two explains our methodology, comprising two subsections, namely, the data filtering and 

preprocessing, and exploratory spatial analysis. Additionally, this section also covers the description of the 

case study area and data utilised for the purpose of the analysis. In the third section, the results of the 

exploratory spatial analysis are summarised. The fourth section addresses and discusses the findings from the 

analysis. The last section presents the main conclusions of this paper. 

2. DATA AND METHODOLOGY 

In this section, we describe the utilised data, and our research methodology, which comprises two main 

methodological steps: (1) data filtering and preprocessing; (2) exploratory spatial data analysis. Detailed 

description of these steps will be given in the following sub-sections. 

2.1 Study area and GIS data 

The Republic of Croatia was selected as the case study area for this paper. It is located at the crossroads of 

Central and Southeastern Europe, covering an area of 56,594 km with a population of 4,000,000. Furthermore, 

only three cities in Croatia have more than 100,000 inhabitants, but about half of the population lives in urban 
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settlements. It is fair to mention the seasonal tourist characteristics of Croatia since, during the warm period of 

the year, a significant number of tourists visit Croatia, especially the coastal counties. 

The Republic of Croatia is administratively divided into 21 counties interconnected by motorways (primary 

roads; approximately 1,480 km) and, dominantly, by state roads (secondary roads; approximately 7,390 km). 

The spatial data of administrative boundaries, specifically county boundaries, were obtained from the 

Geoportal of the State Geodetic Administration of the Republic of Croatia and are shown in Figure 1. 

Croatia faces severe road safety challenges, as the number of people killed in crashes has stagnated in recent 

years. The latter is especially emphasised when it comes to vulnerable road users. That is, a total of 244 

pedestrians died on Croatian roads during the 2018–2022 period, of which 127 were over 65 years of age. 

Although before 2020, the number of pedestrian deaths was descending, that number grew from 38 in 2020 to 

43 pedestrians in 2022. Another challenge is the maintenance and renewal of the road infrastructure in a way 

that would be safer for road users, especially considering the rising volume of motorised traffic. Reconstruction 

and maintenance of roads and road equipment, in a responsible manner, remains a challenge from a variety of 

perspectives, such as terrain obstacles, financial sources, property-legal relations, etc. 

The authors used GIS data on road crashes and spatial borders of the study area counties for spatial 

aggregation of pedestrian crashes. The crash data were collected from the Ministry of Interior of Croatia. These 

data covered the period from 2018 to 2022, including 1,624 night-time crashes, of which 1,449 (89%) occurred 

with the presence of street lighting and 175 (11%) occurred without street lighting. The geo-referenced raw 

data were imported in used GIS software, and the next chapter will explain detailed data filtering and a 

preprocessing protocol to utilise the data in further analysis. 

 

Figure 1 – Case study area (Republic of Croatia) including 21 counties 

2.2 Data filtering and preprocessing 

In this paper, we used geo-referenced crash data covering the period from 2018 to 2022 and geo-referenced 

boundary data including 21 counties of the Republic of Croatia. These data were further filtered and pre-

processed in order to obtain relevant data sets for the purpose of exploratory spatial data analysis. The steps of 

the filtering and preprocessing are given in the following sub-sections. 

Road crashes filtering 

The crash data include several attributes for each crash record such as the unique identification crash 

number, crash occurrence date and time, geographic coordinates (WGS84), type of crash, crash consequences, 
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as well as other attributes regarding the crash record. In this paper, only relevant attributes were considered for 

filtering. Two input crash data sets that we dealt with were prepared by applying a three-step filtering criterion 

performed in Quantum GIS (QGIS) environment with the algorithms “Extract by attribute” and “Extract by 

expression” [24]. As mentioned above, we filtered the records from the input original crash database according 

to our filter criterion to determine only the pedestrian crashes at night under the different street lighting 

conditions. The original crash database contains information on the visibility conditions (2 = night), type of 

crash (10 = pedestrian collision), and street lighting conditions (1 = functional, 2 = non-functional, 3 = not 

present) according to which the researchers obtained the two data sets of pedestrian crashes at night for two 

different street lighting conditions as shown in Figure 2. It is important to note here that the values of 2 and 3 of 

the attribute determining the street lighting condition were considered the condition without street lighting. 

 

 

 

 
Figure 2 – Distribution of the night-time pedestrian crashes 

(a) pedestrian crashes under the NSL condition; b) pedestrian crashes under the SL condition 

Table 1 summarises the number of pedestrians involved in crashes with respect to the severity of the injury. 

For simplicity, we refer to the condition without street lighting as “No Street Lighting (NSL)” and the condition 

with street lighting as “Street Lighting (SL)”. 

Spatial level of crashes aggregation 

Spatial aggregation is prone to the effects of the modifiable areal unit problem (MAUP), which has been 

thoroughly investigated and described by many researchers [25, 26]. According to Openshaw [29] and 

Fotheringham and Wong [30], the MAUP effect can be decomposed into two effects, namely the scale effect 

and the zoning effect. Both effects affect the statistical results in the analysis of the same data set in different 

ways. The scale effect occurs when the size of the spatial unit changes. On the contrary, the zoning effect 

comes into play when there is a change in the boundaries of spatial elements. The outcomes depend on the 

spatial aggregation through the scale and the shape of a spatial unit. Various published studies have used 

different scales and shapes of spatial aggregating units for geographical road crashes and road safety studies. 

These units range from different administrative units, such as the country unit [31, 32], the city unit [33] or the 

settlement unit [34], to traffic analysis zones (TAZs), such as census blocks [35] or census tracts [36]. Due to 

the fact that there is no analytical solution to the MAUP [37], the effect of the MAUP on statistical results can 

only be investigated by simulations of many different spatial units [38 p. 139]. In this paper, we considered 

the county spatial scale, as we believe that the use of this administrative-based spatial unit provides a valuable 
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comparison of the crash clusters and allows for a better comparison with other demographic and economic 

characteristics. 

Table 1 – Numbers of pedestrians involved in the night-time crashes under different street lighting conditions with respect to the 

severity of the injury 

Injury severity SL condition NSL condition Total 

Fatality 83 (72%) 32 (28%) 115 

Severe injury 466 (88%) 63 (12%) 529 

Mild injury 907 (92%) 78 (8%) 985 

No injury 157 (86%) 25 (14%) 182 

Not determined 27 (90%) 3 (10%) 30 

Night-time crashes aggregation 

Subsequent exploratory spatial data analysis utilised the aggregates of filtered night-time pedestrian crashes 

based on the spatial unit and selected crash characteristics. First, we imported filtered crashes from comma-

separated values files as the point layers into QGIS and saved them as point ESRI shapefiles. Second, the crash 

aggregation was carried out using the algorithm “Count points in polygon” within the QGIS environment [24], 

where the point layers of the crashes were laid over the polygon layer of the county and the total number of 

crashes was calculated for each county in the polygon. This method aggregated the points to the counties in 

the study region. In total, two aggregates per county level of night-time pedestrian crash counts for two street 

lighting conditions were generated and exported as polygon ESRI shapefiles. 

2.3 Exploratory spatial analysis 

In this paper, exploratory spatial analysis employs four spatial statistics to investigate spatial clustering and 

autocorrelation of night-time pedestrian crashes under two different street lighting conditions. Firstly, an 

ANND analysis of the spatial distribution of the crashes was performed to test whether the crashes were 

randomly distributed or not. Then the nearest neighbour distance function 𝐺  was used to measure the 

distribution of the nearest neighbour distances. If randomness is present, the exploratory spatial analysis 

process will stop. In contrast, if there is no randomness, the univariate global Moran’s I statistic was calculated 

to measure the overall degree of spatial clustering of the crashes. Finally, if the crashes show statistically 

significant global spatial autocorrelation, the LISA was performed as the univariate local indicator for the 

detection of clustering at the local level. CrimeStat 4.02 was used for ANND analysis, the spatstat package in 

R was used to perform nearest neighbour distance function 𝐺, and the Python Spatial Analysis Library (PySAL) 

was used to carry out both the global and local Moran’s I analyses. 

Average nearest neighbour analysis 

Several studies have been published using different methods to examine the clustering of road crashes. 

Amiri et al. [39] compared 5 different techniques for mapping clusters of road crashes and detecting high-risk 

locations, including the average nearest neighbour, Getis-Ord Gi*, global Moran’s I, kernel density estimation 

(KDE) and mean centre. He found that the average nearest neighbour technique is one of the techniques 

showing the best performance after the Moran’s I in terms of accuracy. Anderson [40] used KDE to study the 

spatial patterns of injury-related crashes in London. However, he pointed out that the main drawback of the 

KDE is related to determining the statistical significance of the resulting clusters. Additionally, the density 

patterns generated by KDE are influenced by the choice of bandwidth. Furthermore, Nicholson [41] found that 

the nearest neighbour distance approach is a powerful and robust technique for detecting crash patterns and is 

still popular for use in exploratory spatial analyses of crashes [42, 43, 44]. Therefore, this paper considered the 

ANND technique in the analysis of the distribution of the point patterns of the crashes. 

This method is based on the nearest neighbour index (NNI) calculation obtained as the division of the 

observed mean distance and random mean distance. The observed mean distance represents the minimum 

average distance between each data point and its nearest neighbour data point. In contrast, the random mean 
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distance is the minimum average distance between neighbours in a randomly spatially generated point pattern. 

Based on the outcome value of the NNI it could be determined if a given point pattern tends to be clustered, 

dispersed or randomly distributed over a delimited space. If the observed mean distance is less than the random 

mean distance, the NNI is less than 1 indicating spatial clustering of the given point pattern. On the other hand, 

if the observed mean distance is greater than 1, then the pattern tends to be spatially dispersed. The index value 

of 1 represents the example of a randomly distributed point pattern. 

To explore the significance of the calculated value of NNI, the measure of p-values and z-scores is used to 

indicate whether the null hypothesis can be rejected or not. The null hypothesis is that all points in the given 

pattern are randomly distributed. In other words, whether the given point pattern is statistically clustered or 

not. The nearest neighbour index is calculated according to the following formula: 

𝑁𝑁𝐼 =
𝐷𝑂

𝐷𝐸
 

(1) 

where 𝐷𝑂 is the mean distance between each point and its nearest neighbour calculated from the input data set 

and 𝐷𝐸 is the expected mean distance for the points generated within a random pattern process. The observed 

mean distance 𝐷𝑂 represents the average of minimum distances of each data point to its nearest data point and 

is calculated as follows: 

𝐷𝑂 =
∑ ∑ 𝑀𝑖𝑛(𝐷𝑖𝑗)𝑛−1

𝑖≠𝑗=1
𝑛
𝑖=1

𝑛
 

(2) 

where 𝐷𝑖𝑗 represents the minimum distance of a given data point to its nearest neighbour, and 𝑛 is the number 

of points in the input data set. 

The expected random mean 𝐷𝐸, calculated from the completely spatially random point pattern, is calculated 

by: 

𝐷𝐸 = 0.5 ∙ √
𝐴

𝑛
 

(3) 

where 𝐴 is the area of the study region. This area can be represented as a minimum rectangle enclosing all 

features, or it can be defined as a user-specified area [45]. The average nearest neighbour z-score to test the 

significance of the 𝑁𝑁𝐼 is given by [46]: 

𝑧 =
𝐷𝑂 − 𝐷𝐸

𝑆𝐸
 

(4) 

where 𝑆𝐸 is the standard error of the mean random distance which is approximately given by: 

𝑆𝐸 =
0.26136

√𝑛2

𝐴

 (5) 

The results of the ANND analysis of the pedestrian night-time crashes for two street lighting conditions are 

summarised in Table 2. 

Nearest neighbour distance function G 

The nearest neighbour distance function 𝐺 is a cumulative distribution function that was used for describing 

the distribution of the nearest neighbour distances within two crash patterns and as the distance-based summary 

function to test if these patterns departure from the null hypothesis. This distance-based statistical method is 

based on the comparison of empirical and theoretical functions. The empirical function �̂�(𝑑) expresses the 

proportions of distances that are less than a particular distance and is estimated from the observed pattern [47]: 

�̂�(𝑑) =
∑ 𝟏(𝑑𝑖 ≤ 𝑑)𝑛

𝑖=1

𝑛
 

(6) 
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where 𝑛 is the number of points in the pattern, 𝟏 is the indicator function, 𝑑𝑖 is the nearest neighbour distance 

and 𝑑 is the distance variable (inter-point distance). The indicator function takes a value:  

𝟏(𝑑𝑖) = {
1

0

𝑑𝑖 ≤ 𝑑

otherwise
 

(7) 

where 𝑑𝑖 is defined as: 

𝑑𝑖 = 𝑚𝑖𝑛𝑗≠𝑖{𝑑𝑖𝑗}. (8) 

The theoretical function 𝐺(𝑑) expresses the proportions of the distances under the assumption of the null 

hypothesis [47]: 

𝐺(𝑑) = 1 − 𝑒−𝜆𝜋𝑑2
 

(9) 

where 𝜆 represents the mean number of events per unit area. To explore the crash patterns over different 

distances between points, the respective empirical and theoretical functions were calculated and compared. 

Additionally, to assess the departure of the observed crash patterns from the null hypothesis, the two-sided 

Monte Carlo tests based on global envelopes were performed. First, the empirical functions for the observed 

patterns and the theoretical functions were calculated under the assumption of the null hypothesis. Then 2 sets 

of 39 random simulated point patterns were generated for both lighting conditions using the estimated 

parameters from the observed patterns. Consequently, we obtained estimates for these random patterns. 

Finally, we calculated the test statistics 𝑇 as the absolute maximum deviation over the range of distances 𝑑 as 

follows [48]: 

𝑇 = 𝑚𝑎𝑥𝑑|𝐺�̂�(𝑑) − 𝐺𝑡ℎ𝑒𝑜(𝑑)| 
(10) 

where �̂�𝑗(𝑑) represents estimated function of the 𝑗-th simulation in a set and 𝐺𝑡ℎ𝑒𝑜(𝑑) represents theoretical 

function. In total, we calculated two statistics 𝑇𝑁𝑆𝐿 and 𝑇𝑆𝐿  for the crashes under NSL and SL conditions, 

respectively. Then, the upper limit 𝑈𝐿 and lower limit 𝐿𝐿 of the envelopes were obtained as: 

𝐿𝐿 = 𝐺𝑡ℎ𝑒𝑜(𝑑) − 𝑇, (11) 

𝑈𝐿 = 𝐺𝑡ℎ𝑒𝑜(𝑑) + 𝑇 
(12) 

From these limits, the global envelopes for the crashes under NSL and SL conditions were plotted. 

If the empirical function �̂�(𝑑) lies outside the envelope, the test rejects the null hypothesis. Otherwise, 

one can conclude that the crashes are randomly distributed. This test was performed with the 

significance level 𝛼 of 0.05. Simulations and calculations were performed using the function “envelope” 

of the spatstat package [49]. 

Global spatial autocorrelation 

Global measures of spatial autocorrelation are based on a single statistic that provides a general measure of 

the similarity between neighbours throughout the study region. In our case, these neighbours are represented 

by county spatial units of the Republic of Croatia. The most common statistic for global measures of spatial 

autocorrelation is the global Moran’s I statistic [50]. This statistic can assess a spatial relationship with the 

combination of spatial proximity captured by spatial weights and the attribute similarity captured by variable 

covariance. This statistic can be calculated for a given variable according to the following formula [51]: 

𝐼 =
𝑛

𝑊𝑜
=

∑ ∑ 𝑊𝑖𝑗 ∙ (𝑧𝑖 − 𝑧̅) ∙ (𝑧𝑗 − 𝑧̅)𝑛
𝑗=1

𝑛
𝑖=1

∑ (𝑧𝑖 − 𝑧̅)2𝑛
𝑖=1

 
(13) 

where 𝑛 is the number of observations, 𝑊𝑜 is the normalising factor, 𝑊𝑖𝑗 is the element in the spatial weights 

matrix that corresponds to the observation pair 𝑖 and 𝑗, 𝑧𝑖 and 𝑧𝑗 are the observations for the areas 𝑖 and 𝑗 with 

the mean value 𝑧̅. For the normalising factor we can write the following formula [51]: 
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𝑊𝑜 = ∑ ∑ 𝑊𝑖𝑗

𝑛

𝑗≠𝑖

𝑛

𝑖=1
 

(14) 

The spatial weights matrix was used in the row-standardised form, thus the 𝑊𝑜 = 𝑛, and therefore Equation 13 

can be simplified to the following formula: 

𝐼 =
∑ ∑ 𝑊𝑖𝑗 ∙ (𝑧𝑖 − 𝑧̅) ∙ (𝑧𝑗 − 𝑧̅)𝑛

𝑗=1
𝑛
𝑖=1

∑ (𝑧𝑖 − 𝑧̅)2𝑛
𝑖=1

 
(15) 

The value of global Moran’s I ranges between -1 and +1, indicating spatial clustering of similar 

values and spatial spreading of dissimilar values, respectively. Values close to 0 suggest a random 

spatial pattern, thus removing spatial autocorrelation. It is important to note that the resulting value of 

global Moran’s I is highly dependent on the chosen spatial weight matrix [52]. There are various 

methods to represent spatial relationships between features, namely distance-based, contiguity-based, 

K-nearest neighbour, kernel and Delaunay triangulation methods [53]. Gedamu et al. [54] reported that 

the distance-based weight matrix is very sensitive to the choice of distance and produces too many 

neighbours in the case of road crashes. Moreover, Saeed et al. [55] found that the fixed distance-based 

spatial weights matrix was statistically outperformed by the contiguity-based matrix. In this paper, we 

considered both types of spatial weights, the queen contiguity weight matrices based on first- and 

second-order neighbour, and the distance-based weights matrix. 

For distance-based spatial weights, as Gedamu et al. [54] stated, the choice of distance has a great 

impact on the degree of spatial autocorrelation due to the different number of neighbours included in 

the calculation. To find the distance most appropriate for this situation, we performed a sensitivity 

analysis of several distances from which the distance value  that maximises the degree of clustering 

phenomenon was chosen [56, 57]. First, we calculated the initial distance of 98,366.526522 m, at which 

any point has at least one neighbour. Then we determined the maximum band distance as the average 

of maximum distances from each data point to its farthest neighbour, which was 339 ,943.002017 m. 

Finally, we chose the distance increment of 10 m to obtain more accurate values. In total, 48,316 global 

Moran’s I values for 24,158 various distances for both street lighting conditions were computed.  

Inferencing was based on a random permutation procedure, which recalculates the statistic many 

times to generate a reference distribution. The obtained statistic is then compared to this reference 

distribution, and the pseudo-significance level of the p-value is computed. The permutation procedure 

was carried out with the default value of 999 permutations, as the effect of a higher number of 

permutations is marginal to this default value [52]. 

Local spatial autocorrelation 

LISA was used as the univariate local indicator of spatial clusters and outliers in the night -time 

pedestrian crashes for both street lighting conditions. This statistic can represent two types of spatial 

clusters and also outliers (High-High, Low-Low, Low-High, High-Low) [58, 59]. The local Moran’s I 

statistic for an area unit sample 𝑖 in a given study area can be calculated according to the following 

formula [50]: 

𝐼𝑖 = (𝑧𝑖 − 𝑧̅) ∙ ∑ 𝑊𝑖𝑗 ∙ (𝑧𝑗 − 𝑧̅)2
𝑛

𝑗𝜖𝐽𝑖

 (16) 

where 𝐽𝑖 denotes the neighbourhood set of area 𝑖, and the summation in 𝑗 runs only over those areas belonging 

to 𝐽𝑖, 𝑧̅ denotes the average of these neighbouring observations [59]. The inference from this statistic was based 

on a conditional random permutation test, which was used to produce the so-called pseudo-significance levels. 

In that case, we used 999 permutations. 
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Figure 3 – Flow chart of the methodology 

3. RESULTS 

In this section, we present the results from four employed spatial statistics, such as the ANND, nearest 

neighbour distance function 𝐺, univariate global Moran’s I and univariate local Moran’s I. First, we present 

the results from the distance-based spatial statistics, and then the results from the global and local Moran’s I 

are provided. 

3.1 Average nearest neighbour analysis 

Two NNIs of pedestrian night-time crashes under two different street lighting conditions were calculated. 

The results of the ANND analysis are summarised in Table 2. According to the NNI values in Table 2 and their 

respective z-scores and p-values, it is evident that the point patterns of the crashes show statistically significant 

spatial clustering under both conditions. However, the NNI for the SL condition is by more than a half lower 
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than for the NSL condition, indicating that the crashes in the SL condition tend to be more concentrated. 

Furthermore, the z-score (-55.8171) is almost five times higher in the SL condition compared to the NSL 

condition (-12.9703), demonstrating the higher magnitude of clustering. However, the ANND analysis does 

not prove the existence of hotspots. Therefore, it is essential to perform further investigation concerning the 

potential presence of spatial clusters. 

Table 2 – Results of the ANND analysis of the crashes for both street lighting conditions during the study period  

(NSL - No Street Lighting, SL - Street Lighting) 

Lighting 

condition 
𝑫𝑶 (m) 𝑫𝑬 (m) 𝑵𝑵𝑰 𝑺𝑬 (m) z-score p-value 

NSL 8072.94 16560.19 0.4875 654.36 -12.9703 0.0001 

SL 1380.55 5911.97 0.2335 81.18 -55.8171 0.0001 

3.2 Nearest neighbour distance function G 

As can be seen in Figure 4, both empirical functions �̂�(𝑑) are mainly greater than their theoretical functions 

𝐺(𝑑), suggesting that the crashes for both conditions (NSL and SL) tend to be much closer to each other 

compared to the null landscape (CRS). This proximity is most apparent for the crashes under the SL condition, 

where the very steep positive slope of the empirical function reveals that about 60% of the crashes appear to 

be the most clustered at distances less than approximately 1,000 m. This is consistent with the fact that there 

is a high concentration of crashes in the city centre. After that, the function decreases and reaches the theoretical 

function at distances greater than approximately 12,500 m, indicating that the crashes tend to be randomly 

located. The empirical function for crashes under the SL condition also indicates clustering. However, for 

distances less than 1,250 m, the crashes are slightly dispersed. For distances greater than this distance, the 

clusters appeared to be separated and scattered over larger distances, as the waveform of the empirical function 

resembles the staircase waveform. This behaviour is especially noticeable between distances of 1,250 and 

7,500 m. Maximum clustering occurs at a distance of about 20,000 m. Additionally, both envelopes represented 

by the grey areas allow one to assess whether the point patterns depart from the null hypothesis. Because the 

empirical functions are above the envelopes, the crashes are more clustered than would be expected at random. 

 

Figure 4 – The global envelopes from Monte Carlo simulations and respective empirical and theoretical functions; 

the grey areas represent the envelopes which enclose the 𝐺 functions of 39 simulations of random point patterns (a) – NSL, (b) – SL 
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3.3 Global Moran’s I analysis 

Univariate global Moran’s I analysis and statistical test were used to identify statistically significant spatial 

clustering of pedestrian night-time crashes under two different street lighting conditions. Table 3 and Table 4 

summarise the results of global Moran’s I analysis of the crashes for considered spatial weights and for both 

street lighting conditions. 

The values of Moran’s I for the crash counts under the NSL condition are almost positive for all the types 

of spatial weights indicating positive spatial clustering, except for the 1st order queen contiguity matrix. In that 

case, the Moran’s I negative value reaches zero (-0.033236), suggesting a weak negative spatial 

autocorrelation. However, its very low z-score value (0.099520) and high pseudo-p-value (0.455) classify this 

result as statistically non-significant. For the 2nd order queen contiguity matrix, the Moran’s I value is positive 

and noticeably higher, with a z-score value of 1.542897 reaching the threshold of 1.96 at a 95% confidence 

interval. However, the pseudo-p-value (0.077) is still above the value of 0.05, and thus this result cannot be 

classified as statistically significant.  

On the other hand, the use of a distance-based spatial weights matrix yields a statistically significant positive 

autocorrelation with the Moran’s I value of 0.181927, accompanied by the highest z-score (2.091764) and the 

lowest pseudo-p-value (0.032). This result indicates a high degree of spatial clustering. The bandwidth at which 

the maximum magnitude of clustering was found according to the distance sensitivity analysis is 124,687 km. 

In contrast, the values of Moran’s I for the crash counts under the SL condition are negative for all spatial 

weight matrices. Their values hover above zero accompanied by low z-score values and high pseudo p-values. 

This result suggests a weak and non-statistically significant negative spatial autocorrelation. However, it is 

interesting to note that the trend of the values of Moran’s I for both conditions is increasing as the spatial 

weight matrices change. 

 

Table 3 – Summary of the results of the global Moran’s I analysis for night-time pedestrian crash counts under the NSL condition 

(*124,687 km) 

Spatial weight Moran’s I Expected index Variance z-score pseudo-p-value 

Queen-1 -0.033236 -0.050463 0.029965 0.099520 0.455 

Queen-2 0.110977 -0.047951 0.010610 1.542897 0.077 

Fixed distance* 0.181927 -0.060779 0.013463 2.091764 0.032 

Table 4 – Summary of global Moran’s I analysis results for night-time pedestrian crash counts under the SL condition (†286,752 km) 

Spatial weight Moran’s I Expected index Variance z-score pseudo-p-value 

Queen-1 -0.072226 -0.048209 0.017173 -0.183263 0.452 

Queen-2 -0.064434 -0.050549 0.005858 -0.181423 0.475 

Fixed distance† -0.029332 -0.051325 0.000368 1.146721 0.110 

3.4 Univariate local Moran’s I 

Since crash counts under the SL condition showed significant spatial autocorrelation, these counts were not 

considered in the subsequent analysis of local clustering. The authors focused only on crash counts under the 

NSL condition with the distance-based spatial weights matrix, where the clustering phenomenon was 

maximised. 

Global Moran’s I analysis might not detect localised clusters; therefore, we employed LISA using the 

univariate local Moran’s I index to calculate the values of local Moran’s I and generate cluster maps and their 

respective significance maps. LISA represents the indicator of local spatial autocorrelation, providing 

additional information on local clustering [59] and can identify the locations of these local patterns within the 

study area. 
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Results from the examination of the local spatial autocorrelation of the crash counts using LISA are 

summarised in the form of the cluster map and significance map in Figure 5. The cluster map (Figure 5a) shows 

the spatial distribution of the local indicators of High-High (H-H), Low-Low (L-L), Low-High (L-H) and 

High-Low (H-L) county clusters with crash count values. The significance map (Figure 5b) shows the statistical 

significance of each county cluster in the cluster map at three different levels of significance pseudo-p-value. 

Significant H-H indicators are represented as dark-red counties where the high crash count value is surrounded 

by another high crash count value.  

On the contrary, significant L-L indicators are represented by dark-blue counties that show the locations 

where the low crash count value is surrounded by another low crash count value. The significant indicators H-

L and L-H represent the locations where a high crash count value is surrounded by a low crash count value 

and vice versa, respectively. Significant H-H and L-L indicators are dominant over the H-L and L-H clusters 

and are separated by the statistically non-significant counties. Clusters of significant H-H indicators were found 

in the coastal regions of Croatia. On the other hand, significant L-L indicators are dominant in the Slavonia 

region, in the East close to the border with Serbia, and the West close to the centre of Croatia. 

 
Figure 5 – Cluster and significance maps for night-time pedestrian crash counts under the NSL condition 

(a) cluster map; b) significance map 

Additionally, Table 5 summarises the descriptive characteristics of the county clusters by calculating the 

average values of the number of pedestrians who are fatally, seriously and mildly injured. The average values 

in the H-H clusters typically stand out in all injury severities relative to the average values of the L-L, H-L and 

L-H clusters or of the non-significant clusters. The average value of pedestrian fatalities in the H-H clusters is 

almost three times higher than in the L-L clusters. Furthermore, the average value of severely injured 

pedestrians in the H-H clusters is four times higher than in the L-L clusters. Although the L-L clustered 

counties have a significantly lower average value of severely injured pedestrians than the H-H clustered 

counties, the H-L clustered counties have the same average value as the H-H clusters. On the other hand, the 

average values of pedestrian fatalities and severe injuries are the lowest in the L-L clusters. 

Table 5 – Descriptive characteristics of clustered and non-clustered counties with respect to average values of fatally, severely and 

mildly injured pedestrians (H-H: High-High clusters, L-L: Low-Low clusters, H-L: High-Low clusters, L-H: Low-High clusters, 

NS: Non-Significant clusters) 

Injury severity H-H L-L H-L L-H NS All 

Fatally injured 

(average value) 
2.00 0.75 1.00 1.00 1.90 1.52 

Severely injured 

(average count) 
5.00 1.25 5.00 2.00 2.90 3.00 

Mildly injured 

(average count) 
5.33 1.00 4.00 2.00 4.60 3.71 
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4. DISCUSSION 

The results from the ANND analysis suggest that pedestrian nigh-time crashes with the presence of street 

lighting tend to be more clustered than crashes without street lighting. This finding was confirmed by using 

the nearest neighbour distance function 𝐺  and Monte Carlo tests based on global envelopes, where the 

clustering was most apparent at distances less than 1,000 m. One potential explanation for this result may lie 

in the different number of crashes since the calculation of the NNI is dependent on the total number of points 

and the selected area. However, in both conditions, the NNIs are significantly less than one, implying that the 

point patterns of pedestrian crashes can be described as statistically clustered, as other studies have shown [41, 

61]. 

Global Moran’s I analysis revealed the differences between the observed values of the global Moran’s I of 

the investigated crash counts for two street lighting conditions. The observed values for the crash counts under 

the SL condition were all negative (ranges between -0.072 to -0.029) and statistically non-significant with the 

pseudo-p-values above the threshold of 0.05 for all considered spatial weights matrices. In contrast, for the 

crashes under the NSL condition noticeably higher values of global Moran’s I were observed with one 

statistically significant global Moran’s I value of 0.182. This observation indicates the presence of a high 

degree of positive spatial autocorrelation for crashes under the NSL condition. The authors suggested that the 

greatest difference in the observed values of global Moran’s I, which can be seen in the case of distance-based 

spatial weights, could be attributed to the number of neighbours incorporated into the calculation of global 

Moran’s I, as stated by Lee and Khattak [62]. 

The LISA analysis provides interesting results on localised clustering, where the spatially segregated H-H 

clusters are located in the coastal regions of Croatia, while the concentrated L-L clusters are mainly situated 

in Slavonia, close to the centre of Croatia. One possible explanation could be attributed to the factors associated 

with the roadways and the behaviour of drivers and pedestrians that differ between the identified locations of 

the H-H and L-L clusters. Higher design speed and speed limits, long-distance travel, fewer unprotected 

pedestrian access and pedestrian crossing facilities accompanied by impaired surrounding lighting conditions 

could contribute to the higher concentration of night-time pedestrian crashes at the locations of the H-H 

indicators. 

The H-L and L-H clusters are spatially segregated by the L-L clusters and the H-H clusters, respectively, 

situated in Croatia proper, Dalmatia and Slavonia. While the statistically significant H-H clusters, evincing a 

high number of fatally or severely injured pedestrians, are located in the outskirts of Croatia, the L-L clusters 

with a lower number of severely injured pedestrians are more likely to occur closer to the centre of Croatia. 

This finding is in agreement with what was found by Gademu et al. [54] and Lee and Khattak [62] and could 

be attributed to the different characteristics of the road, pedestrian and driver, as reported by Siddiqui et al. 

[63]. Previous research by Khatun et al. [64] reported that areas with a higher concentration of serious crashes 

located on highways are often characterised by a lack of streetlights. Furthermore, Hossain et al. [14] studied 

the patterns of pedestrian crashes at night on roads and intersections and found that most pedestrian crashes at 

night are associated with roads without physical separation and streetlights.  

Additionally, driver and pedestrian conditions such as drug or alcohol involvement were reported as factors 

that contribute to the higher risk of pedestrian involvement in crashes at night [14, 65]. The results showed 

that the used approach effectively reveals spatial dependence between night-time pedestrian crashes without 

street lighting. Furthermore, the method identified counties where the higher counts of crashes were 

concentrated during the study period. The integration of the distance-based spatial statistics with the global 

and local spatial autocorrelation overcame the drawbacks of the KDE method. 

However, this study is limited only to one spatial unit, which cannot reflect the influence of the scale and 

zoning effects on the observed results from a broader perspective; thus, the different units may produce 

different cluster patterns. Additionally, the coarser level of spatial aggregation cannot yield more details about 

additional potential clusters around the identified significant clusters at the county spatial scale. Therefore, it 

is recommended to further investigate the robustness of the presented findings across different spatial units. 

Secondly, errors may arise from the input crash database, as some records are not clear about their locations. 

Moreover, some crashes can be reported with incorrect information on street lighting and visibility conditions. 

Thirdly, the quality of the present street lighting (for instance, the luminance level) is not considered in this 

paper, since the data on the current quality of lighting are not collected by the police. Furthermore, the 

information about road lighting was determined only as the presence or absence of street lighting without 

considering the distance from a street lighting point to the accident location.  
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Future work could be improved by considering different spatial units to assess the replicability of the 

presented findings regarding the crash clustering, as well as incorporating other spatial data providing more 

detailed information regarding the street lighting, such as the night-time satellite images. In addition to that, 

the present paper is aimed only at investigating the presence of spatial autocorrelation with respect to different 

street lighting conditions. Therefore, another analysis of factors associated with the spatial clusters of crashes 

and their variations in space is needed. 

5. CONCLUSION 

This paper aims to investigate the spatial autocorrelation of night-time pedestrian crashes in the Republic 

of Croatia under two different street lighting conditions using global and local Moran’s I statistics. The results 

showed that the spatial statistics employed can provide further information on the clustering of crashes in the 

study area with respect to different street lighting conditions. 

ANND analysis confirmed that the spatial patterns of the crashes for both street lighting conditions exhibit 

statistically significant spatial clustering, with a more pronounced clustering for crashes with the presence of 

street lighting. In addition to that, the 𝐺  function was applied to measure the distribution of the nearest 

neighbour distances for both patterns, which confirmed the clustering of the crashes. The function also revealed 

that the clustering of the crashes under the condition SL occurs at small distances compared to crashes under 

the NSL condition where the clustering is somewhat scattered across the larger distances. Two-sided Monte 

Carlo tests confirmed that both crash patterns deviate from the CRS. Global Moran’s I analysis revealed high 

and statistically significant positive spatial autocorrelation of the crash counts without street lighting for the 

distance-based spatial weights matrix. Moreover, the crash counts with street lighting evince weak and 

statistically non-significant negative spatial autocorrelation for both the contiguity-based and distance-based 

spatial weights. According to the results from the global Moran’s I analysis, the analysis of LISA was applied 

only to crashes without the presence of street lighting, since values of global Moran’s I for crashes with street 

lighting indicated no or sporadic spatial autocorrelation. The local Moran’s I analysis revealed that Istra 

County, Primorje-Gorski Kotar County and Zadar County stand out as the counties with the highest number 

of pedestrian crashes. Furthermore, these locations were identified as the most serious locations with respect 

to the levels of severity of the injury. On the other hand, the locations with the lowest number of pedestrian 

crashes were identified in the counties in the Slavonia region. 

Despite the limitations of this paper, it can be stated that night-time pedestrian crashes without street 

lighting evince some spatial dependence on both the global and local scales compared to crashes with street 

lighting. At the global scale, the dependence is significantly positive for the distance-based weight matrix, 

which reflects the wider interactions between neighbouring counties as people’s mobility can cross the borders 

of neighbouring counties. At the local level, spatial dependence was found in several distinct clusters of 

counties. This clustering appears in counties located in the coastal regions of Croatia, where the lack of street 

lighting could be considered an important factor contributing to a higher concentration of night-time pedestrian 

crashes. These findings can attract more attention from road authorities to the area of road lighting design, 

which can improve road safety at certain locations. Concrete steps leading to a reduction in crashes caused by 

insufficient street lighting vary from case to case and each case must be assessed individually. Generally 

speaking, the lighting design process is carried out with the aid of lighting-calculation software, which 

calculates lighting parameters for considered lighting installation, road surface and road geometry. However, 

the authors suggest that further inspections that account for lighting conditions and pedestrian activity are 

conducted. 
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František Kekula, Bernard Kosovec, Darko Babić, Pavel Hrubeš 

Zkoumání a porovnávání prostorových shluků nočních dopravních nehod s chodci 

na základě různých stavů veřejného osvětlení na úrovni prostorové jednotky 

okresu 

Abstrakt 

Článek se snaží stanovit roli veřejného osvětlení v prostorovém shlukování nočních 

dopravních nehod s účastí chodců v Chorvatské republice. Zahrnuta byla pětiletá (2018-

2022) data o noční dopravní nehodovosti s chodci za uvažovaných podmínek bez přítomnosti 

veřejného osvětlení a s přítomností veřejného osvětlení. Nejprve byly použity statistické 

metody založené na vzdálenostech pro posouzení míry prostorového shlukování vzorů nehod 

a jejich odchylek od úplné prostorové náhodnosti. Za druhé byla provedena globální analýza 

pomocí Moranova I za účelem vyšetření míry prostorové autokorelace ročních počtů nehod 

agregovaných do 21 správních jednotek Chorvatské republiky. Nakonec byly použity 

Lokální indikátory prostorové asociace (LISA) k identifikaci hotspotů. Výsledky ANND 

analýzy potvrzují významné shlukování nehod pro obě uvažované podmínky veřejného 

osvětlení. Byly získány odlišné hodnoty globálního Moranova I pro obě podmínky s vysokou 

a statisticky významnou pozitivní hodnotou pro počty nehod bez přítomnosti osvětlení. 

Analýza lokálního Moranova I odhaluje, že hodnoty Vysoká – Vysoká jsou lokalizovány ve 

správních jednotkách na pobřeží Chorvatska, zatímco hodnoty Nízká – Nízká se objevují ve 
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východní části Chorvatska, vedle Slavonie. Výsledky naznačují, že neadekvátní světelné 

podmínky mají vliv na shlukování nočních dopravních nehod s účastí chodců. 
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noční dopravní nehody s chodci; veřejné osvětlení; statistické metody založené na 

vzdálenostech; prostorová autokorelace; globální Moranovo I; lokální Moranovo I. 


