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ABSTRACT 

Maintaining freight wagons is an essential operational process and a significant cost factor 

for rail transport companies. Analysing detected irregularities in the freight wagons offers 

distinctive and valuable insights for planned maintenance. The primary purpose of this study 

is to provide various techniques to shed light on the characteristics of these irregularities and 

identify any interrelations between them. This study also reveals the general characteristics 

of Turkey’s freight wagon fleets and maintenance depots in relation to the detected 

irregularities. New-generation visualisation tools, such as heat maps and chord diagrams, 

were utilised in this study. To determine the relationships between pairs of irregularities 

based on wagon type, irregularities with a high co-occurrence rate were identified and 

tetrachoric correlation analyses were conducted. In the final stage, Stepwise Poisson 

Regression Models were tested to explain the irregularities for each wagon type. The analysis 

techniques exemplified in this study were proven to reveal many interrelations between 

irregularities. The methods proposed in this study have the potential to provide crucial 

information for maintenance planning, parts supply and wagon repair processes. However, 

their practical application requires careful interpretation and detailed consideration by expert 

railway managers and engineers. 
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1. INTRODUCTION 

Reducing operational costs is critical to an organisation’s success in the current climate of demanding 

competition in the global economy. Maintenance and repair costs are among the most significant variables 

determining a company’s operational expenses, accounting for 18% to 30% [1]. Maintenance and repair 

encompass all activities undertaken to maintain and repair equipment in compliance with standardisation and 

at an acceptable cost [2]. Maintenance and repair consist of a series of technical and administrative tasks to 

ensure the equipment properly performs its intended role [3]. Perils of poor practices of maintenance are 

significant, leading to high levels of unexpected financial losses. These failures include internal costs due to 

production loss, rework, scrap machines, depleted human resources, spare part shortages and delays or 

customer loss due to dissatisfaction [4]. Maintenance and repair costs directly impact the organisation’s budget 

and profitability. Furthermore, the lack of proper maintenance and repair planning shortens the lifespan of the 

equipment [5, 6]. For expert railway managers and engineers, managing these costs and ensuring effective 

maintenance planning is paramount. 

The maintenance of the rolling stock plays a crucial role in providing safe, reliable and competitive 

transportation services. Regular inspection and maintenance are essential to ensure network availability, 
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reliability and operational efficiency. Maintenance activities include repairing or replacing specific 

components at predetermined time intervals or tonnage levels measured in millions of gross tons [7]. The 

rolling stock also undergoes preventive maintenance programs involving inspection, testing, adjustment, 

lubrication and cleaning of critical components at regular time or mileage intervals. 

For a railway company, maintaining freight wagons is a significant cost factor [8]. Considering the entire 

lifecycle of railway freight wagons, repair and maintenance expenditures account for 25% to 50% of the 

investments [9]. A survey among private wagon owners revealed that annual regular maintenance and repair 

costs per wagon range from $800 to $10,000 [10, 11]. This cost variance is primarily influenced by factors 

such as the type of wagon, its age and the annual mileage covered. One emerging issue in managing 

maintenance and repair costs is the focus on short-term periods rather than the long-term impact of planning 

these operations. This short-term focus can hinder the optimal utilisation of the wagon fleet. Delays in 

maintenance and repair or the cancellation of operations due to these activities can result in additional costs 

for the company. 

Wagons spend a significant portion of their downtime undergoing maintenance and repair activities in 

workshops, leading to overhead costs (e.g. rental costs) and variable costs (e.g. storage costs). Railway vehicles 

remain idle in the marshalling yard for about 70% of the time. Idle time incurs additional storage costs and 

implies that the theoretical capacity of the wagon fleet is underutilised. Furthermore, as the fleet size increases, 

the designed maintenance operations may lead to exponential inefficiencies due to the need to service and 

inspect many idle wagons [12]. 

Studies indicate that the maintenance of various components of railway freight wagons remains a significant 

issue for railway decision-makers [12, 13, 14, 15]. Freight wagons are a crucial part of the rail transport system, 

and their maintenance policies affect practical capacity, operational cost, freight rate and safety. The most 

commonly used maintenance policies are part replacement upon failure or periodic part replacement. Issues 

related to part replacement upon failure are associated with higher operational costs, failure costs and safety 

concerns. Determining the correct design life for component replacement is challenging regarding periodic 

part replacement. The same parts in different types of wagons may have different design lives due to varying 

patterns of functioning. Replacing a component under scheduled maintenance before its lifetime can lead to 

higher lifecycle costs due to unnecessary maintenance. Conversely, if the replacement period exceeds the 

component’s lifetime, many components will fail before being replaced. 

The increase in the use of rail transport has led to the establishment of more maintenance depots on the 

network and less time allocated for wagon maintenance to prevent operational disruptions [16]. An essential 

problem in rolling stock repair and maintenance planning is the allocation of appropriate maintenance 

depots/locations. Depending on the wagon type, each maintenance unit’s varying competence and adequacy 

pose significant limitations. The type of irregularity is a critical factor that necessitates considering the 

competence of the maintenance unit. Providing service to a wide variety of wagons and failure types in each 

maintenance unit requires extra fixed asset investments and a workforce with diverse competencies. 

Based on our research on the extant literature, wagon types, irregularity types and maintenance units have 

not been investigated in combination so far. In addition, how to analyse such integrated data with various 

techniques is yet to be exemplified. Determining the interrelated irregularities and depicting the most frequent 

irregularity/wagon types associated with maintenance units or scanning the wagon types and some specific 

irregularities in relation can be synergically beneficial for a rail transport company. The primary aim of this 

study is to provide multidisciplinary techniques to investigate these and, thus, to explore the relationships 

between wagon and irregularity types and maintenance units. This study also characterises the general outlook 

of Turkey’s freight wagon fleets and maintenance depots in relation to the detected irregularities. The potential 

contributions of the study can be summarised as follows: 

 The interrelationships between irregularity types will be identified. This will enable an understanding of 

which irregularities trigger each other. During maintenance, parts causing related failures can be 

inspected, thereby reducing maintenance and downtime. 

 The most frequent irregularities for each wagon type will be determined. This will ensure that 

appropriately skilled maintenance personnel and repair equipment are readily available, contributing to 

the optimal utilisation of labour and material resources. 

 Which wagon types and irregularities maintenance depots frequently encounter will be depicted. This will 

provide insights to facilitate the direction of freight wagons to the most suitable workshops for 

maintenance. 
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The next section of the study defines the data set and research methodology. The results are presented in 

the next section. The last section includes a conclusion and suggestions for future studies. 

2. METHODOLOGY 

This section presents information about the characteristics of the data set and the analysis in distinct sub-

sections. 

2.1 Dataset characteristic 

This study analyses four years of freight wagon maintenance data of the Republic of Turkey State Railways 

Transportation from 2019 to 2022. The data set was obtained from the Vehicle Maintenance Management 

System module of the company’s SAP SE Enterprise Resource Planning software. In this module, irregularities 

are stored according to the classification in Appendix 9: Conditions for the technical transfer inspection of 

wagons from the General Contract of Use for Wagons [17]. Appendix 9 classifies irregularities based on 

components into eight groups: 1. Running gear, 2. Suspension, 3. Brake, 4. Wagon under-frame and bogie 

frame, 5. Buffer and draw gear, 6. Wagon body, 7. Loads and containers, 8. Special items. The relevant 

appendix of this document defines roughly one thousand irregularity codes. 

The data set consists of 80,057 irregularity logs of the freight wagons over four years. Before conducting 

the analysis, the data was refined to avoid outliers that have the potential to distort statistical inference. 

Total data loss after all the refinements, enabling research objectives effectively, is approximately 6%. The 

refinement procedure and its effect on the data is given below: 

 Data on wagon types with fewer than 500 irregularity reports were removed from the data set. Thus, the 

number of failures decreased to 77,955, and the number of wagon types decreased from 48 to 29. This 

enables an analysis focused on the most frequently used wagon types. 

 Four-digit irregularity codes with fewer than 100 reports were transferred to higher-degree three-digit 

codes. Subsequently, the minimum number of reports of a particular irregularity was limited to 100 in the 

dataset. The number of irregularities decreased to 75,343, and the number of irregularity types decreased 

from 324 to 98. This enables an analysis focused on the most frequently encountered failure types. 

 Records related to maintenance workshops with fewer than 100 repairs were removed from the data set. 

Thus, the number of irregularity reports decreased to 75,112, and the number of maintenance depots 

decreased from 46 to 36 in the dataset. This enables an analysis focused on the most active maintenance 

workshops. 

2.2 Data analysis 

Statistical analyses are mainly designed to test pre-hypothesised relationships, while data visualisation tools 

can effectively be used to understand the nature of big data better. This study utilises data visualisation tools 

to gain insights before conducting any statistical analysis. Considering the characteristics of the data, particular 

aspects were visualised using bar charts, chord diagrams, and heat maps to exhibit the potential information. 

Visualisation tools are a powerful first step in data analysis. Their findings only provide meaningful insight 

when they are validated and supported by statistical analysis. In this study, the findings of visualisation tools 

were examined in depth on a comprehensive data set with advanced statistical techniques. 

A chord diagram is a circular visualisation of interconnected data, with connections represented along arcs 

and flows between them depicted as chords [18]. This fruitful visualisation technique has been used in various 

fields [19, 20, 21, 22]. In this study, chord diagrams provide insight into the relationships between pairs of 

irregularities, indicating which types of irregularities are related to each other. 

Heat maps have become increasingly popular for visualising data-rich information in two and three 

dimensions, thanks to advances in fast data processing and visualisation software [23]. This rewarding 

visualisation technique has seen widespread use in studies across various scientific disciplines [24, 25, 26, 27]. 

This study used heat maps to visualise the irregularity reporting frequencies by the maintenance depots and 
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wagon types. Additionally, bar charts were used to display irregularity frequencies by wagon type. All the 

visualisations were created using Microsoft Power BI. 

The analysis data indicate which maintenance workshop repaired the identified irregularity types on freight 

wagons, categorised by wagon type. The data set variables include the frequency of irregularity types, repair 

frequency of maintenance workshops and repair frequency of wagon types. In order to discover relationships 

between variables, appropriate statistical analyses were designed based on the characteristics of the data set. 

The statistical data type is count data, precluding the use of popular statistical analyses. Accordingly, the most 

frequently reported irregularities during the analysis period were identified, with a count defined as reporting 

a specific irregularity at least once. Therefore, repeated reports of the same irregularity for the same wagon 

have no impact. 

After these determinations, tetrachoric correlations were conducted to identify relationships between 

irregularities by wagon type. Tetrachoric correlation is a maximum likelihood technique for estimating the 

correlation between count or binary variables [28]. This method, a particular case of polychoric correlation, is 

typically used when both associated variables are not continuous [29]. This correlation method is especially 

suitable for analysing count or binary data (e.g. presence/absence of irregularities as in the current study) as it 

estimates the correlation of an underlying average latent vector [30]. Additionally, the method’s effectiveness 

depends on the quality of the data, with higher sample sizes required to achieve accurate results [31]. Given 

the characteristics of our variables, this method is entirely suitable for identifying correlations between 

irregularities. Tetrachoric correlation is calculated as follows to estimate the correlation between two variables 

[32]. This formula estimates the relationship between the data based on distribution assumptions [33]. 

𝜌 =  COS(𝜋/(1 + √(𝑎𝑑/𝑏/𝑐)) (1) 

In this formula, COS represents the cosine function where a, b, c and d represent numerical values of a 2x2 

matrix for combinations of possible pairs of binary variables. To exemplify, d is the frequency of the instance 

that is irregularity -1 and 2 occurring simultaneously, a is the reverse, and variable b is the frequency of the 

instance that is irregularity -1 occurring while irregularity -2 is not, and c is vice versa. 

Subsequently, regression models were developed to explain the irregularities encountered by each wagon 

type. Since the analysis of the data followed a Poisson distribution, irregularities were analysed using Poisson 

regression to prevent information loss. Poisson regression is preferred over logistic regression in data sets of 

this nature due to its more robust variance error for obtaining incidence rate ratios (IRR) [34]. This 

methodology is used when the dependent variable is count data and is suitable for estimating the number of 

events occurring per unit of time or within a certain interval. The general form of a Poisson regression model 

is expressed as a logarithmic function of the independent variables [35]. Poisson regression is also used for 

rate data, such as the number of events per capita over a given time period, and is generally more sensitive 

than linear regression methods [36]. In the general form of the Poisson regression, log-rate is modelled as a 

linear function of the explanatory variables as given below: 

log(λi)= β0 + β1xi1 + β2xi2 + β3xi3 + … + βkxik (2) 

λi represents the expected rate of events for the ith observation (e.g. the number of irregularities in a wagon 

type for the analysis period). β0 is the constant term of the model. β1 β2 β3 ... βk are the coefficients of the 

independent variables in the model. xi1 xi2 xi3 ... xik represents the independent variables in the model (e.g. type 

of wagon, types of irregularities). 

At this stage, stepwise regression was employed as an exploratory analysis technique to help identify 

significant relationships through a regression model form. Stepwise regression is a technique used to determine 

the most significant independent variables in the model. This method selects the variables that provide the 

strongest relationship between the variables in the model and excludes unnecessary variables. In this context, 

the analyses conducted in this step are defined as stepwise Poisson regression. This approach allows us to 

determine the strongest relationships between types of irregularities. 
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Previous analyses treated count data as binary variables, as the count was defined as whether or not an 

irregularity was reported for each wagon, regardless of how many times it was reported. Poisson regression 

analyses substitute dense relationships caused by frequency with transparent relationships. In the stepwise 

regression model, each explanatory variable is a significant predictor of the response variable count, and the 

likelihood ratio chi-square tests demonstrate that the model as a whole is significant. 

The IRR is an essential indicator between response and explanatory variables in regression models. The 

incidence rate ratio for a binary predictor variable is the ratio of events in one category to the number of events 

in the other. The IRR coefficient is interpreted relative to 1. An IRR>1 indicates that the explanatory variable 

increases the likelihood of higher counts. An IRR<1 indicates that the explanatory variable increases the 

likelihood of lower counts. An IRR=1 indicates that the explanatory variable has no effect. 

3. RESULTS 

The data for the analysis is statistically characterised as count data. The data set comprises three variables 

and exhibits large-scale data attributes. These variables are the type of irregularity, the type of wagon and the 

maintenance workshop. The analyses were designed to uncover correlations and regression relationships 

among the types of irregularity. Before proceeding to statistical analyses, the relationships among the three 

variables in the data set were visualised using chord diagrams and heat maps. The insights provided by the 

data visualisation tools reveal the most frequently encountered types of irregularity, the most commonly used 

types of wagons and the locations where the maintenance and repairs of freight wagons were conducted during 

the analysis period in Turkey. 

The visual depicted in Figure 1 illustrates the wagon types that experience the most frequent irregularities. 

In the figure, wagon types are arranged from left to right based on the magnitude of irregularity frequency. 

Additionally, the length of each wagon type on the X-axis is proportional to the number of wagons in the 

respective wagon type. Accordingly, the wagon type that experiences the highest average number of 

malfunctions per wagon is FALS (665 0 331/2708). The three most commonly used wagon types in freight 

transportation in Turkey are as follows: FALS (665 0 331/2708), KS (330 1 001/2650), and SGSS (456 8 

923/9772). 

 
Figure 1 – Frequency bar chart for the irregularities by the wagon type 

In Figure 2, the number of irregularities associated with freight wagon types and maintenance depots is 

visualised using a heat map. The X-axis of the heat map represents wagon types, while the Y-axis represents 
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the locations where the freight wagons are repaired (maintenance depots). Each box where a row and column 

intersect is shaded according to the number of irregularities repaired for a particular freight wagon type at a 

specific location. The shading was applied based on the scale of repair counts provided next to the heat map. 

 
Figure 2 – Heat map for maintenance depots, wagon types and number of irregularities 

The heat map visualises the distribution of 75,112 malfunctions across 29 types of freight wagons and 36 

maintenance depots. The figure provides information on all irregularities concerning every freight wagon type 

and maintenance depots on the X and Y axes. For instance, FALS (665 0 331/2708) type freight wagons were 

most frequently repaired at workshops in Kayseri, Eskişehir, Malatya, Soma and Van. Conversely, workshops 

in Yakacık, Konya, Denizli, Kütahya and Derince had the lowest or zero repair frequencies for these freight 

wagons. Heat maps contribute to the identification of complex information that may be challenging to explore 

through traditional analyses with large data sets. For example, Iskenderun was identified as the most frequent 

location for repairing SGGMRS (TSI) (495 2 001/200) and SGNS (TSI) (454 3 001/200) type freight wagons. 

Visualisation tools can be utilised to understand if there is any relationship between the types of 

irregularities identified in a particular type of freight wagon. To achieve this goal, chord diagrams showing 

whether there are statistical relationships between the identified types of malfunctions for each wagon type 

have been drawn. These diagrams subsequently guide the statistical analyses conducted. Diagrams were 

examined for each of the 29 freight wagons in the data set. For example, the chord diagram for FALS (665 0 

331/2708) type freight wagons, which had the highest number of reported irregularities (attributed to the active 

number of wagons in use), is presented in Figure 3. 
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Figure 3 – Chord diagram of conjunct irregularities (paired irregularities) 

Upon examining the chord diagram in Figure 3, it is evident that there are numerous relationships among 

irregularity types in FALS (665 0 331/2708) type freight wagons. Two pairs of irregularities appear to have 

relatively strong associations among these relationships. The first pair is between the irregularities ‘6.3.1.2 

Side walls or end flaps damaged with the risk of losing load’ and ‘1.4.2 Flange thickness < 22 mm on wheel 

Ø > 840 mm or < 27.5 mm on wheel Ø 630 (330) – 840 mm or worn flange’. The second pair is between the 

irregularities ‘1.4.2 Flange thickness < 22 mm on wheel Ø > 840 mm or < 27.5 mm on wheel Ø 630 (330) – 

840 mm or worn flange’ and ‘3.2.2 Composite brake block: missing, radial crack from friction surface through 

to plate edge (except at the designated expansion joint); the visible crumbling of the friction material over 

more than one-quarter of the block length, or metal inclusions – detached from back plate by more than 25 

mm, cracked over more than 25mm in direction of wheel circumference, lowest thickness less than 10m.’ 

After examining the analysis data with visualisation tools, the most frequently reported irregularity pairs 

during the analysis period were identified without seeking causal relationships. Attention was focused on 

irregularity pairs with an observed conjunct reporting frequency of over 50. These examinations showed that 

numerous irregularity pairs were conjunctively reported in many types of freight wagons. Due to the size of 

the analysis data and the abundance of identified conjunct reporting numbers, the findings were presented with 

certain limitations in mind. Accordingly, irregularity pairs observed in each freight wagon type with a conjunct 

reporting rate exceeding 80% (which is very high) are presented in Table 1. 
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Table 1 – Irregularities with a high conjunct reporting rate 

Freight Wagon Type Irregularity I Code Irregularity II Code 
Obs. 

Count 

Rate 

(%) 

Fals 665 0 331 2708  1.4.2 Flange thickness < 22 mm … 2.3.1 Helical spring broken 257 90.18 

Fals 665 0 331 2708  1.4.2 Flange thickness < 22 mm … 2.5.4 Spring cap(s) in contact with bogie frame 66 88.00 

Fals 665 0 331 2708  1.4.2 Flange thickness < 22 mm… 3.5.1 Hand brake clearly unfit for use 106 87.60 

Fals 665 0 331 2708  6.3.1.2 Side walls or end flaps damaged  4.6.2 Earthing strap 223 86.10 

Fals 665 0 331 2708  1.4.2 Flange thickness < 22 mm… 4.8.1.1 Side bearer broken with no parts missing 79 84.95 

Fals 665 0 331 2708  1.4.2 Flange thickness < 22 mm… 2.5.5 Lifting T (safety catch) loose or missing 157 84.41 

Fals 665 0 331 2708  1.4.2 Flange thickness < 22 mm… 2.5.3 Damper ring(s) missing or broken… 71 82.56 

Fals 665 0 331 2708  1.4.2 Flange thickness < 22 mm… 3.3.5.1 Stopcock unusable, leaking, warped… 268 80.48 

Falns 644 664 1 001 531 1.3.3 Wheel flat 1.3.3.1 Wheel flat longer than 60 mm… 58 98.31 

Falns 644 664 1 001 531 1.3.3 Wheel flat 1.3.2 Tread crushed in places of tire… 88 82.24 

Falns 644 664 1 001 531 1.3.3 Wheel flat 6.3.1.2 Side walls or end flaps damaged… 76 80.85 

Talns TSI 066 5 001 300 1.4.2 Flange thickness < 22 mm… 6.2.2 Control gear, shutter retaining bracket… 53 96.36 

Talns TSI 066 5 001 300 1.4.2 Flange thickness < 22 mm… 3.2.2 Composite brake block… 73 94.81 

Talns TSI 066 5 001 300 1.4.2 Flange thickness < 22 mm… 6.3.1.2 Side walls or end flaps damaged… 146 90.68 

Talns TSI 066 5 001 300 1.4.2 Flange thickness < 22 mm… 3.3.2 Brake coupling 63 90.00 

Talns TSI 066 5 001 300 1.4.2 Flange thickness < 22 mm… 6.2.1 Ventilation flaps missing, damaged 158 89.77 

Talns TSI 066 5 001 300 1.4.2 Flange thickness < 22 mm… 6.1.5.2 Floor damaged with risk of loss of load 73 89.02 

Rilnss 354 6 001 476  6.6.1 Wagons with mechanical sheeting 4.6.2 Earthing strap 56 96.55 

Rilnss 354 6 001 476  6.6.1 Wagons with mechanical sheeting 3.5.1 Hand brake clearly unfit for use 61 82.43 

Rgns TSI 381 6 001 500 3.2.2 Composite brake block… 1.4.2 Flange thickness < 22 mm… 230 84.87 

Ks 330 1 001 2650  6.4.3 Stanchion  6.4.4 Bolsters 306 94.15 

Ks 330 1 001 2650  6.4.3 Stanchions 5.5.1 Buffer so slack… 64 90.14 

Ks 330 1 001 2650  6.4.3 Stanchions 6.4.1 Drop sides 485 87.55 

Ks 330 1 001 2650  6.4.1 Drop sides 6.4.4 Bolsters 274 84.31 

Ks 330 1 001 2650  6.4.1 Drop sides 5.5.1 Buffer so slack… 58 81.69 

Ks 330 1 001 2650  6.4.3 Stanchions 6.4.2 Hinges, pins, securing bolts missing… 156 81.68 

Ks 330 2 652 3252  6.4.3 Stanchions 6.4.4 Bolsters 85 92.39 

Ks 330 2 652 3252  6.4.3 Stanchions 6.04.2001 Drop sides 205 84.36 

 



Promet – Traffic&Transportation. 2025;37(3):632-647.  Engineering and Infrastructure  

640 

The findings presented in Table 1 imply, for example, the following interpretation for row 1: For 

irregularities with code 1.4.2 reported in freight wagon type Fals 665 0 331 2708, the reporting rate of 

irregularities with code 2.3.1 is 90.18%, and the count of the conjunction is 257. Maintenance schedules for 

freight wagons can be planned based on the detected conjunct reporting rates of irregularity types. 

Additionally, maintenance or inspection procedures can be carried out for a freight wagon brought to a 

maintenance depot due to one of the irregularity pairs having high reporting rates. 

After identifying irregularity pairs with high reporting rates, correlation relationships among irregularity 

types within the analysis data were investigated. Relationships above a certain correlation level were reported, 

considering the size of the analysis data. Specifically, correlation coefficients and levels were presented in 

Table 2 within the context of tetrachoric correlation. In this context, moderate correlation corresponding to a 

0.50 correlation coefficient and above and very high levels for tetrachoric correlations were deemed 

appropriate as the reporting threshold between irregularity pairs. 

Table 2 – Correlation coefficients inferences 

Correlation coefficients (Rho) lower limit Correlation levels (Rho) upper limit Correlation level inferences 

0,90 1,00 very high 

0,70 0,90 high 

0,50 0,70 moderate 

0,30 0,50 low 

0,00 0,30 negligible 

 

The entire data set was analysed to identify tetrachoric correlations between reported irregularities for each 

freight wagon. All correlation relationships above the level determined in Table 3 (Rho>0.50) are reported. 

Table 3 – Tetrachoric correlations between irregularities 

Freight wagon type Irregularity I code Irregularity II code 
Cor. 

coeff. 

Sig. 

(p-) 

Obs. 

count 

Fals 665 0 331 2708  2.5.3 Damper ring(s) missing… 2.5.4 Spring cap(s) in contact… 0.693 0,000 29 

Fals 665 0 331 2708  4.8.1.1 Side bearer broken… 4.8.2 Side bearer spring broken 0.552 0,000 67 

Fals 665 0 331 2708  2.3.1 Helical spring broken 4.8.1.1 Side bearer broken… 0.525 0,000 47 

Falns 644 664 1 001 531 1.3.3 Wheel flat 4.6.2 Earthing strap 0.634 0,000 42 

Falns 644 664 1 001 531 1.3.2 Tread crushed in places… 1.3.3 Wheel flat 0.519 0,000 93 

Falns 644 664 1 001 531 3.2.5 Disc brake linings missing… 6.1.6.3 Door frame, hinges… 0.508 0,000 33 

Rilnss 354 6 001 476  4.6.2 Earthing strap 6.6.1 Wagons with mechanical… 0.614 0,000 56 

Rgns TSI 381 6 001 500 1.4.2 Flange thickness < 22 mm… 3.2.2 Composite brake block… 0.515 0,000 230 

Ks 330 1 001 2650  6.4.3 Stanchions… 6.4.4 Bolsters 0.681 0,000 306 

Ks 330 1 001 2650  6.4.1 Drop sides 6.4.3 Stanchions… 0.660 0,000 485 

Ks 330 1 001 2650  6.4.1 Drop sides 6.4.4 Bolsters 0.659 0,000 274 

Ks 330 2 652 3252  6.4.1 Drop sides 6.4.3 Stanchions… 0.625 0,000 205 

Ks 330 2 652 3252  6.4.3 Stanchions… 6.4.4 Bolsters 0.584 0,000 85 

Hbbillnss 246 1 001 999  5.5.1 Buffer so slack… 6.1.6 Doors and sliding walls 0.578 0,000 23 
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When examining Table 3, it can be observed that moderate Tetrachoric Correlations were identified in seven 

freight wagon types across the entire analysis data set. The findings presented in the table imply the following 

interpretation, for instance, for row 1: The Tetrachoric Correlation Coefficient between ‘2.5.3 Damper ring(s) 

missing or broken, contact marks’ and ‘2.5.4 Spring cap(s) in contact with bogie frame’ is 0.6929 with a 

statistical significance level of 0.0000, and the count of the conjunction is 29. The identified correlations 

indicate statistically significant relationships between irregularity pairs. These findings can be utilised for 

maintenance and inspection purposes for a freight wagon brought to a repair workshop. Maintenance planning 

can be conducted based on these findings before any irregularities occur. 

Significant relationships in tetrachoric correlation analysis may be attributed to a latent factor. In contrast 

to previous analyses, Poisson regression can explain causal relationships. These analyses trade-off 

concentrated relationships caused by frequency for crisp relationships. In this phase, stepwise regression is 

used as an exploratory analysis technique, which helps to define significant relationships through a regression 

model form. The R^2 value in regression analysis indicates the explanatory power of the model. The portion 

of the change in the response variable not explained by the model (1-R^2) is theoretically attributed to latent 

factors not included in the model. Numerous regression outputs were obtained from the analysis data. 

Regression models with high explanatory power were divided into two categories in the reporting phase. 

Regression models with an explanatory power of over 20% (R^2 > 0.20) and an observed count of response 

variables over 50 are reported in Table 4. In comparison, regression models with an explanatory power of over 

17% (R^2 > 0.17) and an observed count of response variables over 45 are reported in Table 5. 

The analysis data consists of a wide variety of random irregularities distributed across different wagon 

types. Many types of irregularities have been identified in the data set, classified according to the General 

Contract of Use for Wagons document. As previously mentioned, irregularities were analysed for all the 

irregularity combinations, and thus many regression analyses were conducted for these. Therefore, many of 

these are not presented in this study due to the threshold we set on R^2 for reporting. Considering the nature 

and characteristics of the analysis data, the R^2 thresholds established for the discovered regression models 

were deemed sufficient. R^2 values of Poisson regression models can often be relatively low due to the 

complexity and characteristics of the data, but this does not preclude the meaningful insights provided by the 

models [37]. Although the models resulting from Poisson regression analyses in the present study have 

relatively low R^2 values, they still provide significant insights.



Promet – Traffic&Transportation. 2025;37(3):632-647.  Engineering and Infrastructure  

642 

Table 4 – Stepwise Poisson regression models (R2 > 0.2) 

(a) Model 1 wagon type: Fals 665 0 331 2708  Obs. count: 57 R2: 0.217  (d) Model 4 wagon type: Falns 664 1 532 891 Obs. count: 504 R2: 0.214 

Response variable: 1.3.4.1 Metal build up over a length of > 60 mm…  Response variable: 1.3.3 Wheel flat 

Explanatory variables (predictors) IRR coefficient Sig.(p-)  Explanatory variables (predictors) IRR coefficient Sig.(p-) 

1.3.2 Tread crushed in places… 2.028 0.000  3.2.5 Disc brake linings missing or cracked 1.395 0.000 

1.3.4 Build-up of metal 3.093 0.000  6.1.7 Various parts... 1.828 0.000 

1.3.4.2 Metal build up over a length… 5.557 0.000  3.1.5 Brake release pull broken or missing 2.927 0.009 

3.2.2 Composite brake block… 2.098 0.000  1.3.1 Deviant width 0.219 0.000 

1.2.2 Thermal overload due to braking… 3.281 0.003  6.1.6.1 Doors and sliding walls not fully closed 0.820 0.010 

4.8.1.1 Side bearer broken with no parts missing 2.282 0.004  3.5.1 Hand brake clearly unfit for use 2.217 0.000 

Constant term 0.009 0.000  1.3.3.2 Wheel flat longer than 40 mm… 1.808 0.000 

    1.3.4 Build-up of metal 1.944 0.000 

    4.7.3 Bogie frame assembly, screw fastening… 0.307 0.000 

(b) Model 2 wagon type: Falns 644 664 1 001 531 Obs. count: 139 R2: 0.251  6.1.6 Doors and sliding walls 2.754 0.000 

Response variable: 1.4.2 Flange thickness < 22 mm on wheel Ø > 840 mm…  3.3.1.1 Main brake pipe inoperative 3.728 0.000 

Explanatory variables (predictors) IRR coefficient Sig.(p-)  2.5.5 Lifting T (safety catch) loose or missing 3.053 0.000 

6.1.7.1 Ladders, gangways, guard rails… 1.972 0.001  1.4.2 Flange thickness < 22 mm… 0.720 0.000 

3.5.1 Hand brake clearly unfit for use 2.164 0.000  4.6.2 Earthing strap 1.817 0.000 

3.3.2 Brake coupling 1.758 0.000  6.1.1 Markings missing, illegible or incomplete 2.801 0.001 

1.2.2 Thermal overload due to braking 3.846 0.000  5.5.1 Buffer so slack that it can be de- pressed… 85.370 0.000 

6.1.4 Walls 2.989 0.000  Constant term 1.379 0.000 

2.5.5 Lifting T (safety catch) loose or missing 2.951 0.000     

3.3.5.1 Stopcock unusable, leaking, warped… 4.933 0.000     

2.4.2 Shackle, links displaced, missing, broken… 4.928 0.002  (e) Model 5 wagon type: Ks 330 1 001 2650  Obs. count: 1026 R2: 0.233 

6.2.4.3 Opening roof control mechanism… 6.160 0.000  Response variable: 6.4.1 Drop sides 

7.2.5 Direct or indirect fastenings… 21.413 0.000  Explanatory variables (predictors) IRR coefficient Sig. (p-) 

1.3.8 Formation of grooves, hollows/furrows… 6.679 0.000  6.4.3 Stanchions (detachable, pivoting, retractable) 1.300 0.000 

Constant term 0.159 0.000  6.4.3.1 Stanchions missing and necessary… 1.455 0.001 

    6.4.4 Bolsters 1.315 0.003 

    4.1.2 Solebar, headstock stressed by coupler… 1.363 0.000 

(c) Model 3 wagon type: Falns 644 664 1 001 531 Obs. count: 53 R2: 0.221  3.3.1.1 Main brake pipe inoperative 2.795 0.001 

Response variable: 3.1.2 Safety strap ineffective  Constant term 0.376 0.000 

Explanatory variables (predictors) IRR coefficient Sig. (p-)     

4.6.2 Earthing strap 3.655 0.000     

2.5.5 Lifting T (safety catch) loose or missing 3.347 0.001  (f) Model 6 wagon type: Ks 330 1 001 2650  Obs. count: 1639 R2: 0.231 

6.3.1.2 Side walls or end flaps damaged… 1.891 0.000  Response variable: 6.4.3 Stanchions (detachable, pivoting, retractable) 

6.3.1 Side walls or end flaps damaged 2.077 0.005  Explanatory variables (predictors) IRR coefficient Sig. (p-) 

3.3.5 Stopcock 3.102 0.005  6.4.3.1 Stanchions missing and necessary… 0.640 0.001 

Constant term 0.049 0.000  6.4.4 Bolsters 1.245 0.006 

    7.1.1 Load visibly displaced… 0.258 0.001 

    5.6.1 Screw coupler non-operative 1.570 0.001 

    6.3.1 Side walls or end flaps damaged 1.436 0.001 

    6.4.1 Drop sides 1.470 0.000 

    Constant term 0.820 0.009 
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Table 5 – Stepwise Poisson regression models (0.20 > R2 > 0.17) 

(a) Model 7 wagon type: Fals 665 0 331 2708  Obs. count: 129  R2: 0.174  (d) Model 4 wagon type: Falns 664 1 532 891 Obs. count: 78  R2: 0.178 

Response variable: 3.5.1 Hand brake clearly unfit for use …  Response variable: 3.3.4 Air brakes unfit for use but not labelled as such 

Explanatory variables (predictors) IRR coefficient Sig.(p-)  Explanatory variables (predictors) IRR coefficient Sig.(p-) 

6.1.4.2 Risk of damage to load due to humidity… 1.416 0.002  1.3.2 Tread crushed in places of tyre… 1.943 0.000 

6.1.6.1 Doors and sliding walls not fully closed… 1.374 0.007  5.7.1 Draw hook inoperative or in poor condition 3.658 0.006 

1.4.2 Flange thickness < 22 mm on wheel… 1.458 0.000  3.1.1 Parts of brake rigging hanging down or broken 1.822 0.004 

3.1.5 Brake release pull broken or missing 2.208 0.002  5.6.2 Hook for hanging screw coupler damaged… 3.699 0.001 

3.2.2 Composite brake block… 1.332 0.006  3.3.1 Main brake pipe 3.047 0.000 

6.6.1 Wagons with mechanical sheeting… 1.974 0.003  6.4.4 Bolsters 3.622 0.000 

6.1.5 Floor damaged 2.435 0.006  4.6.2.1 One or more earthing straps ineffective… 6.501 0.010 

Constant term 0.015 0.000  Constant term 0.105 0.000 

       

       

(b) Model 8 wagon type: Falns 644 664 1 001 531 Obs. count: 69 R2: 0.197  (e) Model 11 wagon type: Falns 664 1 532 891  Obs. count: 47 R2: 0.245 

Response variable: 1.3.3.1 Wheel flat longer than 60 mm (wheel Ø > 840 mm)  Response variable: 3.1.2 Safety strap ineffective 

Explanatory variables (predictors) IRR coefficient Sig.(p-)  Explanatory variables (predictors) IRR coefficient Sig.(p-) 

2.3.1 Helical spring broken 1.962 0.000  4.7.3 Bogie frame assembly, screw fastening… 3.885 0.000 

1.3.3.2 Wheel flat longer than 40 mm… 3.261 0.000  1.2.2 Thermal overload due to braking… 7.382 0.001 

6.1.7.1 Ladders, gangways, guard rails in poor… 2.063 0.010  1.3.3 Wheel flat 1.188 0.005 

1.3.2 Tread crushed in places… 1.510 0.000  5.7.1 Draw hook inoperative or in poor condition 5.259 0.009 

6.1.6.2 Doors and sliding walls missing or derailed 1.639 0.008  6.3.1.2 Side walls or end flaps damaged with risk… 1.404 0.010 

Constant term 0.072 0.000  6.3.1 Side walls or end flaps damaged 2.293 0.004 

    Constant term 0.032 0.000 

       

(c) Model 9 wagon type: Falns 644 664 1 001 531 Obs. count: 45 R2: 0.261     

Response variable: 2.3.1 Helical spring broken  (f) Model 12 wagon type: Hbbillnss 246 1 001 999 Obs. count: 45 R2: 0.195 

Explanatory variables (predictors) IRR coefficient Sig.(p-)  Response variable: 3.3.5 Stopcock 

1.3.3.1 Wheel flat longer than 60 mm… 3.721 0.000  Explanatory variables (predictors) IRR coefficient Sig. (p-) 

1.3.4.2 Metal build up over a length of > 10 mm… 3.370 0.000  6.2.2 Control gear, shutter retaining bracket… 5.023 0.000 

6.1.5.2 Floor damaged with risk of loss of load 5.859 0.000  3.3.1 Main brake pipe 5.286 0.006 

6.1.4.1 Side plank missing, broken, split… 1.592 0.007  1.8.3 Hot box 24.582 0.003 

6.6.1 Wagons with mechanical sheeting… 26.843 0.001  6.2.4.2 Opening roof derailed 7.546 0.001 

Constant term 0.037 0.000  Constant term 0.020 0.000 
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Table 4 presents the six regression models with the highest explanatory thresholds that are statistically 

significant. These models include explanatory variables that explain the response variable. The significance 

extracted from the regression model is the predictor of the portion of the change in the response variable 

explained by the model. For example, in Model 1, the explanatory variables explain 21.7% of the response 

variable (R^2: 0.217). Each explanatory variable is interpreted based on its IRR coefficient. For instance, the 

first explanatory variable in Model 1 is interpreted as follows: “The stepwise Poisson regression model 

explains ‘1.3.4.1 Metal build up over a length of > 60 mm...’ with ‘1.3.2 Tread crushed in places...’ and every 

reporting of ‘1.3.2 Tread crushed in places...’ changes the incidence rate (in this case, the number of 

irregularities) by 102.8% (IRR coefficient: 2.028).” 

The models presented in Table 5 in the second category also provide essential information about the causes 

of irregularities. The interpretation of these models is similar to those presented in the previous table. For 

example, in Model 7, the explanatory variables explain 17.4% of the response variable (R^2: 0.174). Each 

explanatory variable is interpreted based on its IRR coefficient. For instance, the first explanatory variable in 

Model 1 is interpreted as follows: “The stepwise Poisson regression model explains ‘3.5.1 Hand brake unfit 

for use’ with ‘6.1.4.2 Risk of damage to load due to humidity, risk of loss of load’ and every reporting of 

‘6.1.4.2 Risk of damage to load due to humidity, risk of loss of load’ changes the incidence rate (in this case, 

the number of irregularities) by 41.6% (IRR coefficient: 1.416).” The explanatory variables in the model 

should be interpreted similarly. Other regression models presented in the tables should also be interpreted 

similarly when making maintenance plans. 

4. CONCLUSION 

This study conducted visualisation and statistical analyses of freight wagons actively used in Turkey. Visual 

tools provide information on which freight wagons encounter more irregularities and which maintenance 

workshops repair these irregularities. Additionally, with their statistical background, chord diagrams are 

powerful visual tools to show which irregularities are related to each other based on the type of freight wagons. 

Following the data visualisation phase, statistical analyses were conducted to identify the relationships between 

irregularities and to understand their causes. The high conjunct reporting rate irregularities and correlation 

relationships offer unique insights that can be utilised in freight wagons' maintenance and parts supply. In the 

final phase of the analysis, stepwise Poisson regression was employed to uncover causal relationships between 

irregularities. Numerous regression models were derived to explain the various irregularities encountered in 

freight wagons in Turkey. The reported regression outputs provide information on the most common faults in 

Turkish freight wagons. The models identify variables that explain the response variables. However, it should 

be noted that the models are limited by the R^2 value, which indicates how much of the variation in the 

response variable is explained by the model. The outcomes of this study, derived from a robust analytical 

framework, offer valuable insights for planning maintenance, parts supply and repair processes for freight 

wagons. Expert railway managers and engineers should carefully interpret and consider the results when 

developing these processes. 

This study analysed irregularities according to the classification in the General Contract of Use for Wagons 

document. Standard codes allow for international comparisons and similar inferences for the same type of 

freight wagons in different countries. Similar correlation and regression relationships among irregularities in 

different data sets can be expected. Our study is geographically limited to Turkey, which might limit the 

generalisability of its findings. Additionally, the analysis does not account for operational variations between 

different railway companies or regions. Future studies can analyse irregularities encountered in freight wagons 

in different countries using this methodology. This study aims to explore a niche research area in the relevant 

literature. The causal and non-causal relationships between irregularities have been examined in the context of 

the characteristics of the analysis data. The research area opened by this study holds significant potential for 

future studies. Specifically, obtaining data sets containing information on the age of freight wagons or the 

kilometres travelled can help reduce the unexplained portion defined as latent factors in this study. 

Although this study presents findings that can be considered a valuable input of information for long-term 

fleet optimisation, its primary focus is on demonstrating the positive impacts of short-term maintenance 

planning on the rapid and effective resolution of current irregularities. However, a short-term focus may have 

potential negative effects on long-term fleet optimisation. In order to optimise fleet performance in the long 

term, it is necessary to strategically plan maintenance processes and consider factors such as fleet aging, 

component wear and future cost monitoring. Future research should focus on better understanding these long-
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term factors and establishing a balance between short-term maintenance strategies and long-term fleet 

optimisation. 
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Ömür Akbayır, Serdar Benligiray, Ahmet Onay 

Demiryolu Araçlarındaki Arıza Verilerinin Görsel ve İstatistiksel Analiz Yöntemleri: 

Türkiye'deki Yük Vagonları Üzerinde Bir Uygulama 

Özet 

Yük vagonlarının bakımı, demiryolu taşımacılığı şirketleri için önemli bir operasyonel süreç 

ve önemli bir maliyet faktörüdür. Yük vagonlarında tespit edilen arızaları analiz etmek, planlı 

bakım için farklı ve değerli içgörüler sunar. Bu çalışmanın temel amacı, bu arızaların 

özelliklerine ışık tutmak ve aralarındaki ilişkileri belirlemek için çeşitli teknikler sağlamaktır. 

Bu çalışma ayrıca, tespit edilen arızalarla ilgili olarak Türkiye'deki yük vagonlarının ve 

bakım depolarının genel özelliklerini ortaya koymaktadır. Bu çalışmada ısı haritaları ve akor 

diyagramları gibi yeni nesil görselleştirme araçları kullanılmıştır. Vagon tipine göre arıza 

çiftleri arasındaki ilişkileri belirlemek için, yüksek oranda birlikte görülme oranına sahip 

arızalar belirlenmiş ve tetrakorik korelasyon analizleri yapılmıştır. Son aşamada, her vagon 

tipi için arızaları açıklamak üzere Adımsal Poisson Regresyon Modelleri test edilmiştir. Bu 

çalışmada örneklenen analiz tekniklerinin, arızalar arasında birçok karşılıklı ilişkiyi ortaya 

çıkardığı kanıtlanmıştır. Bu çalışmada önerilen yöntemler, bakım planlaması, parça temini 

ve vagon onarım süreçleri için önemli bilgiler sağlama potansiyeline sahiptir. Ancak bunların 

pratikte uygulanabilmesi, uzman demir yolu yöneticileri ve mühendisleri tarafından dikkatli 

bir şekilde yorumlanmayı ve detaylı bir şekilde değerlendirilmeyi gerektirmektedir. 

Anahtar Kelimeler  

yük vagonları, arıza, bakım, bilgi görselleştirme, tetrachoric korelasyon, Poisson regresyon 


