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ABSTRACT 

With the rapid development of artificial intelligence, the application prospects of global 

perception systems that can cover large-scale smart tunnel scenes are becoming increasingly 

widespread. Using multi-modal data from different sensors, the global perception system 

attempts to locate and track traffic targets. Due to the presence of detection blind spots at a 

considerable distance between two stations, which increases the difficulty of detection, the 

conventional global stitching method based on result-level stitching easily leads to problems 

such as lost vehicles and discontinuous trajectories in the blind area, and the low detection 

accuracy of sparse point cloud detection at the single station. To address these issues, this 

paper optimised the point cloud detection algorithm by improving the network structure and 

loss function to enhance the perception capability of the single station. Additionally, it 

proposed a data-level global point cloud stitching algorithm and a method for sampling from 

a difficult database, replacing the traditional global result-level stitching method and ensuring 

the fusion effect of global trajectories. Overall, this provides a more reliable and 

comprehensive perception fusion result for platform twinning. Finally, to validate the 

effectiveness of our method, we introduced the publicly available VANJEE-PointCloud 

dataset collected in the real world. The experiments show that our algorithm not only 

enhances perception capability but also improves the success rate of global trajectory fusion. 
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1. INTRODUCTION 

In recent years, with the advancement of deep learning and sensor technology, significant progress has been 

made in roadside global perception algorithms [1, 2], in which point cloud-based global perception is a vital 

technology. The point cloud-based global perception task takes multi-lidar data as input and outputs locations 

and trajectories of objects. To meet the global perception needs in various scenarios, global perception systems 

have been proposed. These systems typically consist of multiple independent intelligent base stations, which 

transmit their respective perception results to the global perception system through networks. The global 

perception system can intelligently process and analyse perception data, automatically identify and classify 

targets, and extract valuable information to meet practical requirements. However, there are challenges in data 
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connection and sharing between multiple base stations. Due to factors such as time synchronisation between 

multiple base stations and high-precision positioning of detection frames, existing algorithms suffer from 

matching deviations and discontinuities in trajectories at the intersections of base stations. This paper mainly 

focuses on issues related to global perception systems in multi-base station deployment scenarios based on 

lidar point clouds. 

In global perception systems, commonly used sensors include cameras, millimetre-wave radars and lidars. 

Lidars have the advantages of high precision and high resolution, which can accurately locate the position and 

height information of target objects with a precision of up to centimetres. Therefore, they are widely used in 

the field of target perception. This paper focuses on global perception systems based on lidars. Point cloud 

target perception algorithms have evolved from early geometric feature-based clustering algorithms to widely 

researched deep learning-based object detection algorithms. However, the scanning principle of mechanical 

lidars leads to sparse point clouds in the distance, and targets often occlude each other, making it difficult to 

perform effective detection. 

To address the aforementioned challenges, we have proposed a global perception solution based on a point 

cloud object detection algorithm. Firstly, to address the data connection issues between multiple base stations, 

we have employed a data-level optimisation strategy, namely data-level point cloud stitching (DLS). This 

strategy is also applicable to other sensor-based object detection tasks, and during training, we have introduced 

a “hard database” sampling data augmentation method. Secondly, in order to extract richer, deeper features 

and effectively combine these features, we have designed a deep and attention feature aggregation (DAFA) 

module for two-dimensional feature extraction. Finally, to better regress the size and orientation of target boxes, 

we have introduced a new loss function called comprehensive distance-IOU(CDIoU) loss. We have conducted 

comparative experiments with other similar algorithms under the same experimental settings on a public 

dataset that we are about to release. Our point cloud perception algorithm has shown improvements in recall 

rate, recognition accuracy and global trajectory perception rate. Additionally, we have conducted ablation 

experiments to demonstrate the effectiveness of each optimisation module. The contributions of our work can 

be summarised as follows: 

1) Data-level: We have enriched the point cloud features of distant targets and improved the fusion rate of 

global trajectories. We have proposed a data-level global point cloud stitching algorithm and “hard target 

database” sampling. 

2) Network structure: In order to extract richer, deeper two-dimensional features, we have proposed the 

DAFA module. 

3) Loss function: For better regression of target size and orientation, we have introduced the CDIoU loss. 

2. RELATED WORKS 

Below, we briefly review existing works on 3D object detection based on global perception algorithms and 

point cloud perception algorithms. These works motivate us to focus on developing a global perception method 

based on point cloud. 

2.1 Global perception algorithm 

The global perception algorithm is based on artificial intelligence and communication technology. Usually, 

a set of global perception systems can be composed of multiple intelligent base stations. Through the 

collaboration and information sharing between base stations, real-time perception and monitoring algorithms 

for all traffic participants within the coverage area of the base station are realised. Its accuracy mainly depends 

on the output of its upstream single base station. Firstly, the global algorithm requires the detection result data 

of different base stations to be mosaic. This step requires high-precision positioning of the base station to avoid 

stitch errors. At the same time, this stitching method also requires a good network environment to achieve real-

time acquisition of detection results from all base stations. Although the application of multi-base station and 

global perception algorithms can increase the perception range, the detection result-level stitch will ignore the 

long-tail distribution and data complementarity problems of lidar. Finally, from the perspective of algorithm 
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complexity, data-level stitching only requires joint data, while the result-level mosaic method needs to pay 

attention to the position, heading angle and category, and its complexity is significantly higher than that of 

data-level stitching. 

2.2 Point cloud perception algorithm 

Unlike image data, due to the hardware features of lidar, its data have strong sparsity and disorder. For 

object detection based on point clouds, the advantage is that it can use three-dimensional spatial information, 

but the disadvantage is that the increase in spatial dimensions often leads to point cloud data that is too sparse, 

resulting in poor model fitting [3]. 

An early common approach is to convert 3D point cloud data into 2D image form for input. Using this 

approach, researchers can directly apply traditional 2D object detection algorithms to 3D point cloud data 

detection tasks. For example, the MVF (multi-view fusion) [4] algorithm is an effective end-to-end multi-view 

fusion (MVF) algorithm that converts 3D point cloud data into multiple views through dynamic voxelisation 

and utilises the features of multiple views for object detection. The front view representation in the deep 

learning direction includes projections such as depth images and spherical projections. However, this method 

loses the 3D features of the point cloud. 

Later, algorithms directly based on 3D point clouds were proposed. PointNet [5] is a neural network-based 

end-to-end point cloud classification and segmentation method proposed by Charles R. Qi et al. in 2017. 

PointNet directly takes point clouds as input and captures local and global feature information in point cloud 

data through high-dimensional mapping and maximum pooling operations. This method can better express the 

3D information of point clouds. However, PointNet has a major problem: it can accommodate a small number 

of point clouds, so it is more often applied in semantic segmentation or object detection of small targets and is 

not suitable for large-scale point cloud applications such as intelligent transportation. Bird’s eye view (BEV) 

represents point cloud data better than deep maps. It represents point clouds from a top-down perspective 

without losing any scale and scope information and is widely used in lidar detection [6-10], which has also 

been recently used for task segmentation [11]. PointPillars [12] is improved by adding a PointNet model to the 

BEV representation. PointNet is used to convert the point cloud in each column grid into a fixed-length vector, 

forming a pseudo image. Then, a 2D convolutional neural network is used for feature extraction and object 

detection operations. PIXOR [13] discretises the point cloud into a BEV representation and encodes the 

features of each cell as occupancy and normalised reflectance. Next, a neural network with 2D convolutional 

layers is used for 3D object detection. 

In addition to directly processing 3D point cloud data, some researchers have also converted 3D point cloud 

data into voxel form for input. VoxelNet [14] is a network structure that converts 3D point cloud data into 

voxel form for input. It uses 3D convolution to process voxelised point cloud data to achieve object detection. 

A similar idea is also adopted, such as Frustum PointNet [15] and PointNetVLAD [16]. SECOND algorithm 

is a target detection algorithm based on 3D point cloud voxels, with the full name of sparsely embedded 

convolutional detection. The design idea of this algorithm is almost identical to that of VoxelNet, with the 

main difference being that the convolutional middle layer (CML) in VoxelNet is replaced by 3D sparse 

convolution for feature extraction. By using submanifold convolution, the “inflation” problem that occurs 

when processing data in dense convolution is solved. Based on neural network-based point cloud perception 

algorithms, this article mainly focuses on optimising SECOND as a benchmark. 

In general, although point cloud object detection algorithms have been widely applied in many fields, there 

are still many challenging problems that need to be addressed. For example, how to effectively process large-

scale 3D point cloud data and accurately detect various shapes and sizes of target objects. We will study and 

optimise these problems in this paper. 

3. APPROACH  

In this section, we describe the overall structure of the proposed global perception algorithm. We further 

introduce the main innovations in detail, including “point cloud stitching”, “hard database”, “DAFA module” 

and “CDIoU loss”. 
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3.1 Overall framework 

The innovation of this work mainly lies in three aspects: data stitching and database sampling, the DAFA 

module and loss function. The network structure is as follows. Firstly, the high-precision position information 

of base stations is utilised to stitch the data from multiple base stations, forming a point cloud dataset covering 

the detection ranges of multiple base stations, with data augmentation through “hard database” sampling during 

training. Next, the point cloud data are fed into a point cloud voxel feature extraction network, which encodes 

the discrete and unordered 3D point cloud into a sparse 4D tensor. Sparse convolution is used in the 3D feature 

extraction module. Finally, we propose the DAFA module for two-dimensional feature extraction. For target 

box regression, we introduce a new loss function called comprehensive distance-IOU, which mainly includes 

IoU loss, distance loss, aspect ratio loss and angle loss. The overall network structure is shown in Figure 1. In 

the following sections, we will provide detailed explanations of the work we have done in model optimisation.  

 
Figure 1 – The structure of our proposed algorithm. The detector takes a raw point cloud as input, converts it to voxel features, and 

applies two VFE (voxel feature encoding) layers following a linear layer. Then, a sparse CNN is applied. Finally, the DAFA module 

and detection head generate the detection. 

3.2 Data-level point cloud stitching and sample ground truth from the “hard database” 

The traditional global stitching methods are based on the result-level backend stitching where perception 

results of multi base stations are sent to the global perception system to be fused and stitched, which is limited 

with the performance of single base station. In contrast, we present the data-level point cloud stitching strategy, 

with which the network is able to directly consume fused point clouds and sufficiently dig out the 

complementarity of multi-lidar data. This strategy contains two procedures, multi-lidar pose calibration and 

multi-lidar data stitching. 

Pose calibration. Let {𝐿𝑖: 𝑖 = 1, … , 𝑁} be the lidar set in a tunnel scene, 𝑁 is the number of lidars, 𝐿𝑖 

represents the 𝑖-th lidar. Timestamps of point clouds from these lidars have been synchronised. While 𝐿1 is 

chosen as the primary lidar, the others are regarded as deputy lidars. The relative pose between each deputy 

lidar and primary lidar needs to be calculated so that all of the point clouds can be projected to the primary 

lidar’s coordinate correctly. 

For a pair of adjacent lidars 𝐿𝑘  and 𝐿𝑘+1 , the points in their overlapped scanning area are used for 

calibration. As illustrated in Figure 2, in our “LidarCalibration” software, we could manually adjust the 

translation parameters [translation x, translation y, translation z] and the rotation parameters [roll, pitch, yaw] 

of the 𝐿𝑘 lidar’s coordinate. In the overlapped area, each object’s shape is always described by two-point sets 

in different directions. When the two point sets of each reference object are aligned correctly, the calibration 

between the two lidars is completed. At the same time, the pose transformation 𝑇𝐿𝑘𝐿𝑘+1
∈ 𝑅4×4 which indicates 

how 𝐿𝑘 coordinate moves to 𝐿𝑘+1 coordinate, is naturally calculated base on the translation parameters and 

rotation parameters. Let {𝑇𝐿𝑘𝐿𝑘+1
: 𝑘 = 1, … , 𝑁 − 1} be the pose transformation set, we further transform it to 

{𝑇𝐿1𝐿𝑘+1
: 𝑘 = 1, … , 𝑁 − 1} which is applied for converting point clouds to primary coordinate (e.g. 𝑇𝐿1𝐿𝑝

=

𝑇𝐿1𝐿2
· 𝑇𝐿2𝐿3

· … · 𝑇𝐿𝑝−1𝐿𝑝
 represents the transformation from the primary lidar 𝐿1 to the deputy lidar 𝐿𝑝). 
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Figure 2 – Manual pose calibration 

Point cloud stitching. A point cloud captured by lidar 𝐿𝑘 in initial coordinate system is noted as 𝑃𝐿𝑘

𝑘 =

{𝑝𝑖 = (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖 , 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖): 𝑖 = 1, … , 𝑀}, 𝑀 is the number of points. It will be converted to 𝑃𝐿1

𝑘  which in the 

primary lidar  𝐿1 coordinate system by: 

𝑃𝐿1

𝑘 =  𝑇𝐿1𝐿𝑘
× 𝑃𝐿𝑘

𝑘  
(1) 

where ×  means matrix multiplication. During calculation, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖  is replaced with the value 1 for a 

homogeneous coordinate representation. After that, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖 is remapped into 𝑝𝑖. 

We concatenate all of the transformed point clouds directly to obtain a global point cloud, which is fed to 

the object detection network to predict 3D bounding boxes. Benefited from the complementarity of multi-lidar 

data, the shapes of objects in a global point cloud are more detailed than those in a single point cloud, which 

significantly improves the detection accuracy. Especially for blind detection areas. In a single lidar’s point 

cloud, a blind detection area means a region where observed points are rare and objects are unable to be 

detected successfully. Specifically, as illustrated in Figure 3, point cloud stitching effectively increases the 

number of points in the blind detection area and complements the shapes of objects so that the network can do 

detection more easily. 



Promet – Traffic&Transportation. 2025;37(5):1204-1219.  Application of Artificial Intelligence  

1209 

 
(a) A blind area in a point cloud 

 
(b) The same area in a stitching point cloud 

Figure 3 – Data-level stitching increases the number of points in the blind area 

At the same time, using the method of multi-lidar data stitching, the point cloud detection algorithm can 

process multiple lidar data simultaneously, sending multiple lidar detection results to the global perception 

system at once. Therefore, the number of perception result stitches in the global perception system is reduced, 

and the reliability of the trajectory is increased. Figure 4 shows the traditional data processing method and the 

new processing method proposed in this article. 
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(a) The traditional global perception system 

 
(b) The proposed global perception system based on data-level stitching 

Figure 4 – The above image depicts the traditional global perception system, while the below image illustrates the new global 

perception system proposed in this article 

In addition, we establish a “hard database” for data augmentation during the training. Firstly, the detection 

network was trained on the training set of VANJEE PointCloud, there is an existing “regular database”, as 

mentioned in SECOND [8]. Then, we let the trained network do inferences on the training data, and we 

generate the “hard database” containing the labels of all undetected targets and their associated point cloud 

data. We further train the trained network on the training set again for fine-tuning. During the fine-tuning, 

“regular database” is replaced with “hard database”, and several ground truths from “hard database” are 

sampled to be introduced into the current training point cloud via concatenation. Using this method, the 

network could counter more hard-level objects and learn to recognise them. 

3.3 Deep-and-attention feature aggregation module 

One of the important innovations in this paper is the proposal of the DAFA module. The DAFA module 

helps extract more robust features with rich spatial and semantic information for more accurate predictions of 

bounding boxes and classification confidence, as shown in Figure 5. 
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Figure 5 – Overview of the proposed DAFA module, which consumes the feature map outputted by the region proposal network 

(RPN). First, we use dilated convolutions with different dilation rates and spatial pyramid pooling for further feature extraction. 

Then, we fuse the features to generate the final feature map, incorporating an attention mechanism during the fusion process. 

To achieve a larger receptive field without significantly sacrificing resolution, one can utilise larger 

convolutional kernels or employ larger strides in pooling operations. However, the former approach leads to 

increased computational complexity, while the latter results in resolution loss. Balancing the desire for a larger 

receptive field in feature extraction while maintaining relatively high resolution poses a challenge due to this 

inherent trade-off. Dilated convolutions, also known as atrous convolutions, offer a solution to this dilemma. 

They allow for an expanded receptive field without substantial resolution loss. 

In this context, employing three successive dilated convolutions with 3x3 kernels and dilation rates of 1, 2 

and 3, respectively, enables the extraction of multi-scale information. The resulting receptive fields are 3, 5 

and 7, respectively. This approach facilitates the preservation of feature map dimensions while leveraging 

multi-scale information, thereby avoiding the information loss associated with down-sampling operations. The 

calculation of the receptive field is as follows: 

𝐹 = (𝑘 − 1) · 𝑟 + 1 
(2) 

where 𝐹 denotes the receptive field, 𝑘 represents the kernel size, and 𝑟 stands for the dilation rate. 

Besides the dilated convolutions, DAFA utilises spatial pyramid pooling with different receptive field sizes 

applied to the input feature map to obtain multi-scale feature representations. These feature representations 

capture object information at different scales, thus improving the model’s detection performance for objects 

of various sizes. By integrating information from multiple scales, this module further enhances detection 

performance and robustness. 

To adaptively fuse the enriched spatial feature and the upsampled semantic feature, we adopt the attentional 

fusion module. Let {𝐹𝑖 ∈ 𝑅𝐻×𝑊×𝐶 : 𝑖 = 1, … ,6} represent the six feature maps from the atrous convolution 

module and spatial pyramid pooling module, where 𝐶  is the number of channels. First, we compress the 

channels of each feature map to one and concatenate them along the channel axis as 𝐹𝑖 ∈ 𝑅𝐻×𝑊×6. Then we 

use 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 function to normalise the six concatenated channels and split them into six weight maps as 

follows: 

𝐹𝑠𝑜𝑓𝑡𝑚𝑎𝑥 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝑐𝑎𝑡) ∈ 𝑅𝐻×𝑊×6 (3) 

𝑊𝑖 = ⌊𝐹𝑠𝑜𝑓𝑡𝑚𝑎𝑥⌋𝑖 (4) 

where the operator ⌊·⌋𝑖 means extracting the 𝑖-th dimension data along the 𝐶 axis. 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 function builds 

the dependence between the six features for adaptive feature fusion. The final fused feature map 𝐹𝑓𝑢𝑠𝑒 can be 

calculated by: 
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𝐹𝑓𝑢𝑠𝑒 = (𝐹1 · 𝑊1) ⊕ … ⊕ (𝐹6 · 𝑊6) 
(5) 

where · is element-wise product with broadcast and ⊕ is element-wise addition. The fused feature 𝐹𝑓𝑢𝑠𝑒 is 

finally sent to a detection head. 

3.4 Comprehensive distance-IOU 

When using labels for supervised training, the smooth-L1 loss is commonly used to constrain the regression 

of target boxes. However, due to long distances and occlusions in outdoor scenes, it is difficult to obtain 

sufficient information from sparse points to accurately predict the size of target boxes. In order to more 

accurately predict the position and orientation of target boxes, researchers have designed the orientation-aware 

distance-IoU loss (ODIoU) [17], which focuses more on the alignment of the centre point and orientation 

between the predicted box and the ground truth. The formula of the loss function is shown in Equation 6 

𝐿𝑏𝑜𝑥 = 1 − 𝐼𝑜𝑈(𝐵𝑝, 𝐵𝑔) +
𝑐2

𝑑2
+ 𝛾(1 − |cos (𝛥𝜃)|) 

(6) 

where 𝐵𝑝 and 𝐵𝑔 denote the predicted and ground-truth bounding boxes, respectively, 𝑐 denotes the distance 

between the 3D centres of the two bounding boxes (see in Figure 6), 𝑑 denotes the diagonal length |𝐴𝐶| of the 

minimum cuboid that encloses both bounding boxes; 𝛥𝜃 denotes the BEV orientation difference between 𝐵𝑝 

and 𝐵𝑔; and  𝛾 is a hyper-parameter weight. 

 
Figure 6 – Illustration of the disparity between predicted bounding boxes and ground truth in terms of intersection over union (IoU). 

Yellow boxes represent ground truth, blue boxes represent predicted bounding boxes. |𝑂1𝑂2| denotes the distance between centre 

points, 𝛥𝜃 is the orientation difference in BEV. 

However, it is noted that the ODIoU loss function still has drawbacks. Firstly, this function does not take 

into account the differences in length and width between the predicted box and the ground truth. As shown in 

Figure 7, when the predicted box has different length and width but the same area and angle, the loss function 

values are the same. Secondly, this loss function cannot distinguish the angle differences between 0 and 180. 

As shown in Figure 8, when the angle is 0 or 180, the angle loss value is always 0. 

 
Figure 7 – Illustration of targets with different aspect ratios (yellow bounding boxes represent ground truth, blue bounding boxes 

represent predicted results 
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Figure 8 – Graph of the (1 − |𝑐𝑜𝑠 (𝛥𝜃)|), 𝛥𝜃 denotes the BEV orientation difference between 𝐵𝑝 and 𝐵𝑔, when the angle is 0 or 180, 

the angle loss value is always 0 

To address the above two issues, we propose the comprehensive distance-IOU loss (CDIoU). This loss 

function retains the original IoU loss and distance loss of ODIoU, adds length and width losses, and optimises 

the angle loss. The formula is shown in Equation 7 as follows: 

𝐿𝑏𝑜𝑥 = 1 − 𝐼𝑜𝑈(𝐵𝑝, 𝐵𝑔) +
𝑐2

𝑑2
+

(𝑙𝑝 − 𝑙𝑔)2

𝑙2
+

(𝑤𝑝 − 𝑤𝑔)2

𝑤2
+ 𝛾(1 − |cos (

𝛥𝜃

2
)|) 

(7) 

where the difference from ODIoU is that our loss values gradually increase within the range of 0 to 180, as 

shown in Figure 9, allowing for better differentiation in cases involving 0 and 180 angles. 𝐵𝑝 and 𝐵𝑔 denote the 

predicted and ground-truth bounding boxes, respectively, 𝑐 denotes the distance between the 3D centres of the 

two bounding boxes (see in Figure 6), 𝑑 denotes the diagonal length |𝐴𝐶| of the minimum cuboid that encloses 

both bounding boxes; 𝑙𝑝 denotes the length of the predicted bounding box; 𝑙𝑔 denotes the length of the ground-

truth bounding box; 𝑙 denotes the length |𝐵𝐶| of the minimum cuboid that encloses both bounding boxes; 𝑤𝑝 

denotes the width of the predicted bounding box; 𝑤𝑔 denotes the width of the ground-truth bounding box; 𝑤 

denotes the width |𝐴𝐵| of the minimum cuboid that encloses both bounding boxes; 𝛥𝜃 denotes the BEV 

orientation difference between 𝐵𝑝 and 𝐵𝑔; and 𝛾 is a hyper-parameter weight. 

 

Figure 9 – Graph of the (1 − |𝑐𝑜𝑠 (
𝛥𝜃

2
)|), 𝛥𝜃 denotes the BEV orientation difference between 𝐵𝑝 and 𝐵𝑔, the gradient gradually 

increases as the angle ranges from 0 to 180 
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Besides, we use the Focal loss and cross-entropy loss for the bounding box classification (𝐿𝑐𝑙𝑠) and direction 

classification (𝐿𝑑𝑖𝑟), respectively. The classification task is optimised by Focal loss, i.e 

𝐿𝑐𝑙𝑠 = −𝛼(1 − 𝑠)𝛾 log(𝑠) 
(8) 

where 

𝑠 = {
𝑠𝑝

1 − 𝑠𝑝
   

𝑖𝑓 𝑠𝑔 = 1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(9) 

𝑠𝑔  is a binary label to indicate whether an anchor box is a positive sample. 𝑠𝑝  is the positive probability 

predicted by the network. 𝛼 and 𝛾 are the hyper-parameters and are set to 0.25 and 2, respectively. For the 

direction classification task, we use the following method to generate the direction classifier target: if the yaw 

rotation around the z-axis of the ground truth is higher than zero, the result is positive; otherwise, it is negative. 

Hence, the overall loss to train is: 

𝐿 = 𝛽1 ∗ 𝐿𝑐𝑙𝑠 + 𝛽2 ∗ 𝐿𝑏𝑜𝑥 + 𝛽3 ∗ 𝐿𝑑𝑖𝑟 
(10) 

where 𝛽1 = 1.0, 𝛽2 = 2.0, 𝛽3 = 0.2 are constant coefficients of the loss formula. 

4. EXPERIMENTS 

In this section, we use the upcoming public dataset to validate our innovative method. We will describe the 

experimental background and experimental methods in detail. We further demonstrate the effectiveness of our 

innovative points through ablation experiments and compare them with the latest algorithm models. 

4.1 Dataset 

In order to obtain a reasonable and effective method for evaluating results, we collected point cloud data 

from real tunnel environments as VANJEE PointCloud, which contains 12 unique scenes. VANJEE 

PointCloud includes 12 exclusive scenes, where the point cloud data have been carefully annotated in 6 classes, 

including car, bicycle, bus, tricycle, person and truck. Figure 10 visually presents the point cloud data sample 

from two stations. Point clouds were captured by multi 32-line lidars, points from different lines have different 

colours. 

For point cloud detection tasks, we use the VANJEE PointCloud dataset to evaluate our method. Regarding 

all of the collected point clouds in a tunnel at the same time as a unit, we randomly split the VANJEE 

PointCloud into the training set and testing set. The training set includes 30,000-point clouds and the testing 

set includes 4000-point clouds. VANJEE PointCloud contains 6 classes, with varying numbers of object counts 

per class ranging from 2,000 to 110,000. This data distribution reflects the long-tail effect observed in real-

world scenarios. We use a portable point cloud annotation platform system [18] to obtain ground truths. The 

dataset annotation is based on the Kitti format. Each line in the annotation file represents the label information 

of the object, including the category of the object, the occlusion level, the direction angle, the 3D centroid 

coordinates and the dimensions of the 2D and 3D bounding boxes. For detailed reference, please refer to the 

Kitti dataset format [19]. 



Promet – Traffic&Transportation. 2025;37(5):1204-1219.  Application of Artificial Intelligence  

1215 

 
(a) The point cloud of station A 

 
(b) The point cloud of station B 

(c) The stitched point cloud of station A and station B 

Figure 10 – The point cloud data sample from two stations. Figure (a) and figure (b) represent point clouds from two stations. 

Figure (c) shows the stitching result. 

4.2 Experimental setting 

During model training, we adopted a batch training method with a batch size of 8. The initial learning rate 

was set to 0.005, and an exponential decay learning strategy with a decay factor (gamma) of 0.95 was adopted. 

The training period was set to 200 epochs. We use the matching IoU thresholds for the positive and negative 

anchors of 0.6 and 0.45, respectively. The matching IoU between the bounding boxes and anchors is calculated 

by their nearest horizontal rectangles in BEV. Considering the actual size of the object, different anchor sizes 

were assigned to each object class, excluding all anchors corresponding to empty voxel points. In the testing 

stage, a threshold of 0.2 was used to filter out prediction boxes with low confidence scores, and non-maximum 

suppression (NMS) with a threshold of 0.3 was applied. In order to alleviate the detection performance problem 

caused by long-tail effects in the data, we additionally sample several ground truths of rare categories and 

apply random rotation and translation operations to them, then we add them into the “regular database”. 

Due to the fact that the point cloud algorithm research in this article is based on mechanical lidar, it can be 

inferred from the characteristics of lidar that an object has detailed differences in the direction of lidar arrival 

and departure. Therefore, the original features of the object at the single radar and where multiple radars 

intersect are different. However, we can address this issue by concatenating and enhancing the training data as 

well. In terms of data augmentation, this article chooses strategies such as randomly increasing the number of 

samples at the splicing point within the lidar detection range and cropping the angle of the target part. 
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4.3 Comparison with state-of-the-art 

In order to validate the effectiveness of the proposed object detection model in this paper, we conducted 

comparative experiments between the current mainstream lidar point cloud models and the model proposed in 

this paper. The dataset used in the experiments is the public dataset mentioned in Section 4.1. We use public 

implementations of those existing state-of-the-art methods, mostly available in a 3D object detection 

framework named OpenPCDet [20], to obtain their performance on the VANJEE PointCloud dataset. In a 

tunnel scene, for each of those methods, final detection results are generated utilising a result-level backend 

stitching strategy. 

From Table 1, it can be observed that our algorithm outperforms others in terms of precision and recall 

metrics for various classes of objects. Our model outperforms SECOND by 3.0 percentage points in the person 

category, 4.6 percentage points in the bicycle category, 2.4 percentage points in the bus category, 3.2 

percentage points in the car category and 3.1 percentage points in the truck category. Additionally, it remains 

competitive with two-stage algorithms. As shown in Figure 11, the prediction results based on the fusion of dual 

lidar data demonstrate that the algorithm proposed in this paper can improve the point cloud density and 

detection performance of distant objects in lidar. 

Table 1 – 3D detection average precision (AP in %) on VANJEE PointCloud dataset 

Algorithms mAP Car3 Bicycle Bus Tricycle Person Truck 

PointPillars [12] 76.8 90.8 74.9 88.5 71.7 72.4 89.3 

SECOND [10] 76.5 89.9 77.7 92.7 70.4 74.6 91.4 

CenterPoint [21] 78.3 90.9 78.5 91.5 72.6 74.2 90.3 

Voxel R-CNN [22] 81.6 91.7 78.9 92.8 77.2 75.8 89.2 

SE-SSD [17] 82.5 91.2 79.5 93.3 78.2 76.8 92.2 

PV-RCNN++ [23] 82.1 90.7 79.8 93.2 77.6 75.9 91.3 

CenterFormer [24] 83.2 92.3 80.9 94.3 78.5 77.1 93.8 

Ours 83.5 93.1 81.7 95.1 78.6 77.6 94.5 

 
Figure 11 – Display of lidar detection results 

4.4 Ablation study 

We present ablation studies to analyse the effectiveness of our proposed modules. Table 2 summarises the 

ablation results on our data-level point cloud stitch (DLS), “hard database” sampling (HDS), DAFA module 

(DAFA) and CD-IoU loss (ODIoU). For CD-IoU loss, we replace it with the smooth-L1 loss in this ablation 

study. All reported APs have 40 recall points. We choose SECOND as the baseline for training. 

Effect of data-level point cloud stitching. Using 3,000 frames of tunnel data as the test dataset, the same 

point cloud detection model is used to perform target detection on the data before and after data fusion. 

According to Table 2, compared with the baseline model, it can be observed that after data fusion that the 
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average precision (AP) for car, bus and truck categories has significantly improved, with increases of 0.8 

percentage points, 1.1 percentage points and 1.4 percentage points, respectively. However, there was no 

improvement in the AP for the person and bicycle categories, as their small target detection ranges are close, 

and the fusion of distant data has no effect on them. 

We also conducted separate tests on the trajectory fusion rates before and after data fusion using different 

algorithms, as shown in Table 3. 

It can be seen that compared to the global result stitch used before, no matter what kind of point cloud target 

detection algorithm is used, the use of data-level global point cloud stitch can effectively improve the global 

trajectory fusion rate. As shown in Table 3, the greater the number of lidar mosaics, the higher the global 

trajectory fusion rate, demonstrating the effectiveness of the data-level stitching used in the global perception 

system. 

Table 2 – 3D detection average precision (AP in %) of proposed method with different configurations 

DLS HDS DFAF CD-IoU Car Bicycle Bus Tricycle Person Truck 

    89.9 78.1 92.1 75.4 74.6 91.4 

   √ 90.5 79.3 92.6 76.9 76.1 91.9 

  √  91.7 80.3 93.8 77.2 76.2 93.1 

 √   91.2 79.9 93.3 77.5 77.4 92.7 

√    90.7 78.1 93.2 75.8 74.6 92.8 

√ √   92.1 80.8 94.2 77.7 76.7 93.5 

√ √ √  92.6 81.2 94.7 78.1 77.1 94.0 

√ √ √ √ 93.1 81.7 95.1 78.6 77.6 94.5 

Table 3 – Global trajectory fusion rate experiment (in %) 

Method PointPillars [12] SECOND [10] CenterPoint [21] Voxel R-CNN [22] Ours 

Before stitching 89.6 89.3 91.3 91.5 91.7 

2 lidar stitching 89.9 90.4 91.6 92.9 92.5 

3 lidar stitching 91.6 92.1 92.8 94.5 94.8 

4 lidar stitching 92.7 92.4 94.7 95.5 95.6 

 

Effect of “hard database” sampling. To demonstrate the effectiveness of “hard database” sampling, we 

compared the results before and after sampling. We trained for 100 epochs and then conducted 20 epochs of 

fine-tuning on the results. During this process, we employed two methods: using “hard database” sampling 

and not using “hard database” sampling. According to Table 2, compared with the baseline model, it can be 

observed that sampling from the hard database improves the accuracy of target detection, especially for small 

targets. The AP for the tricycle category increases by 2.1 percentage points, and for the person category, it 

increases by 2.8 percentage points. 

Effect of DAFA module. In this paper, we propose the DAFA module, which adequately represents target 

information by extracting features at different scales, and its attention mechanism selectively integrates 

information from various sources. As shown in Table 2, compared with the baseline model, this module 

significantly improves the AP of all categories. For instance, the AP of the car category increased by 1.8 

percentage points, the bicycle category by 2.2 percentage points, and the person category by 1.6 percentage 

points. 

Effect of CD-IoU. To better regress the size and orientation of target boxes, we propose the CD-IoU loss. 

According to Table 2, compared with the baseline model, it can be observed that using this loss function 

effectively enhances the AP of targets, especially for small ones. This is because the sparse point cloud on 



Promet – Traffic&Transportation. 2025;37(5):1204-1219.  Application of Artificial Intelligence  

1218 

small targets struggles to provide sufficient information for regressing their size and orientation. Specifically, 

the APs of the bicycle category, tricycle category and person category increased by 1.2 percentage points, 1.5 

percentage points and 1.5 percentage points, respectively. 

5. CONCLUSIONS 

This paper proposes a novel point cloud object detection method, with key innovations including: global 

data fusion and challenging target sampling strategies to improve the detection rate of targets and the global 

trajectory fusion rate; the introduction of the DAFA module for extracting more abundant two-dimensional 

features and selectively fusing feature information through an attention mechanism; and the proposal of the 

CD-IoU loss function to better regress the size and angle of targets. Experimental results demonstrate that our 

method significantly outperforms baseline algorithms, highlighting its potential to enhance the accuracy of 

target perception and trajectory tracking rates in global perception systems. In our research, to conduct the 

VANJEE PointCloud dataset, manual pose calibration takes too much time and effort. In the future, we plan 

to utilise automatic point cloud registration methods, including traditional and deep-learning-based methods, 

to improve efficiency. Additionally, future research directions include further algorithm optimisation to 

improve performance, as well as the application of this method to broader domains such as autonomous driving 

and intelligent traffic management. We believe that this research outcome will have a positive impact on the 

development and practical application of global perception systems, driving progress and innovation in the 

field of intelligent transportation. 
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