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ABSTRACT 

This study investigates the impacts of feature engineering techniques, including Clustering, 

Target Encoding and Anomaly Detection, in conjunction with data balancing methods, on 

the efficacy of machine learning models for predicting road accident severity. Automated 

Machine Learning (AutoML), Distributed Random Forest (DRF), Boosted Regression Trees 

(BRT) and Deep Learning models were evaluated on datasets that were balanced using the 

SMOTE (Synthetic Minority Over-Sampling Technique) and ADASYN (Adaptive Synthetic 

Sampling) techniques. Evaluation metrics such as Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), Log Loss, Area under the Curve (AUC), and Area under the 

Precision-Recall Curve (AUCPR) are employed. Results reveal that the AutoML consistently 

outperforms other models, achieving an 85% accuracy in predicting fatal accidents and 94% 

accuracy in predicting injuries. Deep Learning excels in injury accident prediction, with a 

95% accuracy, but faces challenges with fatalities, achieving a 60% accuracy. The study 

underscores the critical role of feature engineering techniques and data balancing methods in 

enhancing predictive accuracy for accident severity classification. Specifically, the 

incorporation of Clustering, Target Encoding and Anomaly Detection techniques alongside 

SMOTE and ADASYN balancing methods significantly improves the model performance. 

Further refinement and validation are crucial for optimising model performance in real-world 

traffic safety management applications. 
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1. INTRODUCTION 

Road traffic injuries (RTIs) pose a significant health issue globally, causing 1.35 million deaths annually 

and imposing a substantial burden on healthcare systems and economies worldwide with estimated costs of 

US$1.8 trillion from 2015 to 2030 [1–3]. Road traffic injuries (RTIs) are a major challenge for low and middle-

income countries (LMICs), which now bear the brunt of this global issue. Despite having far fewer vehicles, 

these countries account for a staggering 90% of worldwide road deaths [3]. The Gulf Cooperation Council 

(GCC) countries, including Saudi Arabia, face road safety challenges, exhibiting higher accident rates 

compared to western nations like USA and the UK [4–9]. In response, the Saudi government has committed 

to substantial infrastructure investments, exemplified by the SR500 billion investment goal by 2030, aimed at 

bolstering economic growth through enhanced transportation networks [10]. The development of extensive 

highways and road infrastructure underscores Saudi Arabia’s dedication to fostering economic prosperity and 

social connectivity. 

The Eastern Province of Saudi Arabia, vital to the nation’s transportation and logistics sector, boasts an 

extensive road network crucial for economic development [11, 12]. However, this development coincides with 

increased road accidents of varying severity levels, raising concerns about road safety and its economic and 
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social ramifications. The economic toll of road traffic injuries (RTIs) in Saudi Arabia is substantial, equivalent 

to 4.3% of the country’s GDP, with treatment costs surpassing average earnings [13, 14]. Poor driving 

standards, characterised by reckless behaviours such as mobile phone usage, speeding and red light violations, 

contribute to the high accident rates [14–16]. Inadequate enforcement of traffic regulations exacerbates the 

situation, necessitating a shift from reactive to proactive road safety approaches. Traditional reactive 

approaches to road safety, focused on post-accident interventions, have limitations in addressing the escalating 

rate of road traffic accidents (RTAs) [17, 18]. Proactive prevention strategies are imperative to mitigate 

accidents and their repercussions effectively.  

This study proposes a data-driven approach, leveraging machine learning techniques, to predict road 

accident severity pre-emptively. The primary objective of this study is to evaluate the impacts of data balancing 

and feature engineering techniques on the performance of machine learning models in predicting road accident 

severity. Specifically, the study aims to investigate the effectiveness of the Synthetic Minority Over-Sampling 

Technique (SMOTE) and Adaptive Synthetic Sampling (ADASYN) in addressing class imbalance within the 

accident dataset, determining which balancing technique yields superior results for different machine learning 

models. Additionally, it explores advanced feature engineering methods, such as clustering, target encoding, 

and anomaly detection, to enhance model accuracy and identify the most effective features for improving 

predictive performance. The study also compares the predictive performance of various machine learning 

models, including AutoML, Deep Learning, Distributed Random Forest (DRF) and Gradient Boosting 

Machine (GBM), using multiple evaluation metrics. The core idea is to analyse past accident data, 

incorporating data balancing and feature engineering, to build models that predict potential accident severity. 

These models can then guide targeted interventions and policy decisions for accident prevention and mitigating 

their severity. This would empower authorities to strategically allocate resources and prioritise safety measures 

in high-risk areas. Furthermore, by integrating real-time data with the models and continuously updating them, 

proactive measures can be taken to reduce both the likelihood and impact of accidents. 

The subsequent sections of this paper delineate the methodology and findings of the study. Section II 

reviews pertinent literature on road safety, focusing on the Eastern Province of Saudi Arabia, and critiques 

traditional reactive approaches. Section III outlines the data collection and pre-processing methods, including 

sources and cleaning techniques. Section IV elucidates the data balancing techniques utilised to mitigate class 

imbalance in the dataset. Section V expounds on the feature engineering methods employed to augment the 

predictive prowess of machine learning models. Section VI introduces the machine learning models utilised 

for accident severity prediction, encompassing deep learning, distributed Random Forest, GBM and AutoML. 

Section VII evaluates the performance of these models and furnishes actionable insights and recommendations 

for road safety enhancement. Finally, Section VIII concludes the paper, discussing its implications for future 

research and road safety strategies in the Eastern Province and Saudi Arabia.  

2. LITERATURE REVIEW 

With a more powerful prediction tool, law enforcement and transportation authorities may take preventative 

action to increase road safety and lower the likelihood of serious accidents. As technology advances, the 

development of more complex machine learning algorithms and artificial intelligence solutions is anticipated 

to significantly improve transportation safety [19]. AI-powered vehicle inspection systems, intelligent traffic 

management systems, assisted driving technologies, anomaly and intrusion detection, and crash prediction 

models are just a few examples of how AI is being leveraged to enhance safety across different modes of 

transportation [20, 21]. Machine learning algorithms have become instrumental in enhancing transportation 

safety by enabling authorities to analyse vast amounts of traffic data to identify patterns and trends that may 

not be immediately apparent. Transportation authorities can now leverage machine learning algorithms, such 

as tree-based methods (e.g. decision trees and random forests), support vector machines (SVM) [22] and neural 

networks, to analyse large volumes of traffic safety data. These algorithms excel in classifying crash data, 

predicting crash severity and identifying risky driving behaviours based on historical and real-time data, 

enabling the detection of patterns and trends that may not be immediately apparent [23, 24]. These insights 

inform proactive and targeted interventions, such as implementing traffic signal adjustments, enhancing road 

signage and deploying targeted enforcement measures in high-risk areas. Research indicates that the placement 

of speed cameras based on thorough data analysis can lead to significant reductions in traffic collisions. For 

instance, Tilahun [25] highlights the effectiveness of automated speed cameras in decreasing injury crashes, 

emphasising the importance of using accident data to inform camera locations. Similarly, Kalambay and 
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Pulugurtha, [26] discuss how traffic speed patterns can be analysed to identify suitable sites for implementing 

variable speed limit signs, which may include speed cameras. Furthermore, Li, Zhang and Ren [27] provide 

evidence that the safety impacts of speed cameras are enhanced when their placement is guided by accident 

data, underscoring the necessity of a data-driven approach in traffic management. Furthermore, machine 

learning can facilitate the development of mobile applications that alert drivers to hazardous conditions or 

risky behaviours, ultimately creating a safer driving environment for all road users [28]. 

Road safety prediction is a critical area of research that has drawn substantial interests in recent years due 

to the potential of machine learning techniques to improve the accuracy of predictions and inform proactive 

interventions [29]. Several studies have shown significant advancements in using machine learning predictive 

modelling to address road safety concerns [30–35]. These studies have analysed various factors such as driver 

behaviour, road conditions and weather patterns, and have been able to develop robust predictive models that 

provide important insights into mitigating the risks of severe road accidents [36–38]. 

A machine learning model was developed recently by Christofa et al. [39] to predict high-risk crash 

locations based on road characteristics. The study identified design speed, pavement markings, signage and 

road condition as key factors in determining crash risk. These findings can inform targeted interventions to 

enhance road safety. In a comprehensive evaluation of the literature, Silva et al. [37] investigated three distinct 

methods for employing machine learning techniques to predict accidents, emphasising the application of neural 

networks as a promising crash prediction strategy and highlighting the advantages of machine learning models. 

Artificial neural networks offer an advantage by learning from data without requiring any assumptions. They 

can capture complex patterns in data more effectively than traditional statistical methods [40]. Similarly, a 

study by Zhang et al. [41] improved the effectiveness of speed camera placement using the generalised random 

forest. This method estimated heterogeneous treatment effects in traffic safety studies which provides 

authorities with a more comprehensive information.  

Several researchers have used statistical techniques [42], reinforcement learning approaches [43], hybrid 

models [44] and deep learning models [45] to predict traffic accident severity. Although, statistical models are 

limited by their reliance on assumptions about data distribution and predefined relationships between variables 

[46], they offer significant advantages in terms of interpretability and the ability to reveal heterogeneity caused 

by unobserved factors [47, 48]. These strengths make statistical models valuable tools in understanding the 

underlying causes of crashes and can complement machine learning techniques in hybrid approaches for crash 

prediction [49–51]. 

In Saudi Arabia and surrounding regions, research studies on road safety prediction using machine learning 

have yielded promising results. For example, machine learning models for predicting accident causes and 

injury severity have been developed using various machine learning algorithms. These models have been 

applied to analyse crash data and identify key risk factors related to road accident [41, 52]. Aldhari et al. [53] 

explored accident severity prediction, demonstrating the effectiveness of machine learning for this purpose. 

However, most of these research studies have limitations which include limited scope, lack of real-time data, 

restricted exploration of deep learning techniques and insufficient explanation of black box models. For 

instance, studies often focus on specific regions or datasets, which may not be representative of broader trends 

[54]. Additionally, many models rely on historical data without integrating real-time information, which can 

hinder their predictive accuracy [55]. While some research has ventured into deep learning methods, the 

exploration remains limited compared to the potential of these techniques [53]. Finally, the complexity of 

machine learning models often leads to a lack of transparency, making it difficult for stakeholders to 

understand the decision-making processes involved [56]. 

Despite the potential of machine learning techniques, there are limitations to their application in road safety 

prediction. According to a study by Wang et al. [57], the choice of proper methodology determines the quality 

of research; for example, machine learning approaches need the right data analysis techniques in order to 

identify the causes of accidents in certain study regions or zones [58]. Additionally, the use of a single machine-

learning algorithm may not be sufficient to achieve the intended outcomes, with multiple analytical techniques 

often combined to enhance the analysis of results. Other issues include data imbalance, feature engineering 

and model interpretability [57, 59, 60]. Recent studies have focused on improving road accident severity 

machine learning based models through data balancing and feature engineering (Fiorentini & Losa, 2020; 

Mohammad pour et al., 2023; Ogungbire & Pulugurtha, 2024; Sarkar et al., 2020). These research studies have 

shown encouraging outcomes in terms of prediction model optimization for precisely determining the risk 

variables linked to serious accidents.  
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The accuracy of machine learning based accident severity models is largely dependent on treatment of issue 

the imbalance of data [58, 65]. This means that there may be significantly more instances of minor accidents 

than severe or fatal ones, resulting in a skewed dataset [61, 66, 67]. For instance, it may be challenging for the 

machine learning model to predict the severity of future accidents in a dataset of road accidents when 90% of 

the incidents result in injuries and just 10% in fatalities [68]. This imbalance may cause projections to be 

skewed or erroneous, which would reduce the efficacy of preventive and focused efforts meant to increase 

road safety [61, 69]. However, by employing techniques like oversampling or undersampling to increase the 

representation of minority class instances, transportation departments can mitigate the impact of data 

imbalance, leading to more accurate predictions and targeted interventions for accident prevention [67, 70, 

71].  

Different approaches to data balancing in enhancing the efficacy of machine learning models exist, hence 

the need for selecting appropriate methods for crash severity prediction models. Some methods of data 

balancing include oversampling minority classes [72, 73] and undersampling majority classes [74–76] to create 

a more even distribution of data. These methods can aid in correcting dataset imbalances and enhance the 

ability of the machine learning algorithms to predict traffic accidents severity [77]. The strength of generating 

synthetic samples using techniques such as SMOTE [72] or ADASYN [78] is that it can correct dataset 

imbalances and enhance the ability of the machine learning algorithms to forecast the severity of traffic 

accidents. The drawback of these methods is that undersampling might cause significant information to be lost, 

while oversampling could result in overfitting [79]. Other balancing methods that can be considered for 

enhancing road safety prediction models include ensemble learning techniques like Random Forest [80], which 

can handle imbalanced datasets by aggregating the predictions of multiple classifiers. Additionally, cost-

sensitive learning approaches [81] assign different costs to misclassifications based on class distribution, 

thereby placing more emphasis on minority class samples. Clustering-based methods such as Cluster-Based 

Over Sampling (CbOS) [82] can also be used to generate new samples by clustering similar datapoints together 

and oversampling from these clusters.  

In addition to data balance, feature engineering is also essential for enhancing machine learning model 

performance [39, 60, 83]. Feature engineering involves extraction of pertinent features from raw data, such as 

temporal variables, road conditions, geometric attributes and other parameters that can be readily available in 

real time or historic, before the accident or immediately after an accident [84]. These engineered features are 

then utilised to train machine learning based accident severity prediction models. However, the selection and 

engineering of these features in road safety context can be challenging. To address this challenge, our paper 

proposes the use of advanced feature engineering techniques, including clustering algorithms [85], target 

encoding [86] and anomaly detection [87], to improve the capacity of our machine learning models for accident 

severity prediction. Ultimately, by combining road safety prediction models with data balancing and feature 

engineering techniques, we can create a more robust and accurate system for predicting and preventing 

accidents. By leveraging technology and data-driven approaches, we can move towards a future where road 

safety is maximised and accidents are minimised. This collective effort will not only save lives but also build 

a more connected and secure transportation infrastructure for everyone.  

3. METHODOLOGY 

3.1 Crash data for the modelling  

The dataset for this study was acquired from the Saudi Arabian Oil Group, ARAMCO (Arabian-American 

Oil Company), from 2018 to 2022, covering the Eastern Province of Saudi Arabia (see Figure 1). It contains 

information on 9548 road accidents that occurred in Saudi Arabia during this period. The dataset includes 

various attributes related to each accident, such as the number of vehicles involved, the severity of the accident, 

the type of accident, the reason for the accident, the number of fatalities and injuries, the number of vehicles 

involved, the location of the accident, whether it occurred in or out of the city and the coordinates of the 

accident location. The severity of the accidents ranges from injury to fatal, with a total of 2527 fatalities and 

7021 injuries recorded. The accidents were caused by various factors, including swerve accidents, overturn 

accidents, run-over accidents, stationary object accidents and utility pole accidents. 
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Figure 1 – Eastern Province of Saudi Arabia (Study area) 

The study followed a structured research methodology as shown in Figure 2. The key stages involved in a 

data-driven project. It begins with data collection, where relevant data is gathered from ARAMCO. This is 

followed by data pre-processing, which involves cleaning and preparing the data for analysis. Next, the data 

balancing stage ensures that the dataset is representative and free from biases. Then, feature engineering is 

performed to create new variables that enhance the predictive power of the models. This is succeeded by 

feature selection, where the most relevant features are identified to improve model performance. The process 

then transitions to model selection and training, where different algorithms are evaluated to determine the best 

fit for the data and select the best model for the dataset. Finally, the methodology culminates in model 

evaluation, assessing the model’s performance and generating insights and recommendations based on the 

findings. 

 

 
Figure 2 – Study framework 
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3.2 Data pre-processing  

In the data pre-processing phase, various techniques were employed to ensure the quality and readiness of 

the dataset for machine learning analysis.  

Data imputation 

A comprehensive cleaning procedure that addressed missing values, discrepancies and outliers was carried 

out to guarantee the dataset’s integrity and completeness. In particular, the missForest R package was used to 

restore 765 missing coordinates. This imputation technique was developed based on the random forest 

algorithm suggested by Stekhoven and Buhlmann [88]. One key advantage is its capacity to simultaneously 

handle multiple data types – numeric and categorical variables, which are commonly found in road safety 

datasets [88]. This flexibility sets it apart from methods like KNN-Impute that struggle with categorical 

variables. MissForest also excels in capturing the distribution of the data and can effectively capture complex 

interactions and non-linear relationships [89]. This is particularly important when modelling the intricate 

factors involved in road crashes. Comparative studies across various domains have shown that MissForest 

outperforms other common imputation methods, such as k-nearest neighbours (KNN) and multivariate 

imputation by chained equations (MICE), in terms of providing more accurate imputed values [90]. 

Additionally, MissForest provides integrated out-of-bag error estimates so that it is possible to evaluate the 

imputation quality without provision for test data. This is a useful feature since it enables the evaluation of 

imputation accuracy for every variable. MissForest is also computationally efficient and capable of handling 

high-dimensional data with many variables, which is a frequent feature of datasets related to road safety that 

include a large number of possible risk factors [88]. The availability of the missForest R package, which is 

freely available and easy to use, further enhances its accessibility for road safety researchers.  

Using variables with missing values as the target variable and full observations as training data, the 

approach iteratively trains Random Forest models, predicting missing values for observations with incomplete 

data. This iterative procedure keeps going until certain convergence requirements are satisfied, including a cap 

on the number of iterations or a minimal shift in the imputed values in between rounds. The quality of the 

dataset was also preserved by identifying and addressing outliers and inconsistencies using data validation and 

visualization tools. 

Target encoding for efficient categorical variable encoding based on accident severity 

Categorical variables can be challenging to encode for machine learning models, as they often require one-

hot encoding, which can lead to a high-dimensional feature space [91]. Target encoding is a versatile method 

for encoding categorical variables in machine learning modelling. It efficiently handles high cardinality 

variables, providing a more meaningful representation of the data [92]. It supports both continuous and binary 

target variables, making it suitable for various tasks. In order to provide a more comprehensive knowledge of 

the elements impacting the outcomes of traffic crashes, target encoding captures complicated interactions 

between categorical variables and the target variable. Model correctness and computing efficiency are 

improved over techniques such as ordinal encoding and one-hot encoding [93]. Its user-friendly R package, 

H2O, makes it a convenient choice for researchers [86]. 

In order to convert categorical characteristics in the crash dataset into a format that machine learning 

algorithms could use, they were encoded for this study. By capturing the link between category factors and the 

target variable, this encoding approach contributes to the prediction of accident severity. The mathematical 

expression for target encoding is shown in Equation 1: 

Target encoding(ci) =  
∑ 𝑦𝑖

𝑁
𝑗=𝑖 𝐼(𝑥𝑗=𝑐𝑖)

∑ 𝐼𝑁
𝑗=𝑖 (𝑥𝑗=𝑐𝑖)

 (1) 

where target encoding(ci) represents the target-encoded value for category ci; yj is the target variable (e.g. 

response variable) for the ℎjth observation; xj is the categorical variable for the ℎj
th observation; (xj=ci) is an 

indicator function that equals 1 if xj is equal to category ci, and 0 otherwise; N is the total number of 

observations. 
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In this expression, the numerator calculates the sum of the target variable for all observations where the 

categorical variable x takes the value ci, while the denominator calculates the count of observations with x=ci. 

Thus, the target-encoded value for category ci is the mean of the target variable for observations with x=ci. 

3.3 Data imbalance  

Traffic accident data often exhibits class imbalance, meaning the distribution of accident severities (e.g. 

fatal, injury, minor) is uneven. Typically, there are far fewer severe accidents compared to minor ones. 

Machine learning models may have difficulties as a result of this imbalance since they often lean in favour 

of the majority class and do a poor job of anticipating the less common but possibly more serious, catastrophic 

incidents. In order to resolve class imbalance in the traffic accident dataset, this section describes the use of 

data balancing strategies using the UBL R package [94] to address class imbalance in the traffic accident 

dataset. In the UBL R package, the Synthetic Minority Over-Sampling Technique (SMOTE) [72] and the 

Adaptive Synthetic Sampling Method (ADASYN) [78] are used in the UBL R package to handle class 

imbalance by creating synthetic samples for the minority class. Comparing these techniques helps researchers 

determine the most effective approach for their specific dataset and problem domain. ADASYN, unlike 

SMOTE, focuses on densely populated regions, offering a more targeted strategy for addressing class 

imbalance [95]. This approach can potentially yield superior performance in scenarios where the minority class 

clusters in specific areas of the feature space as in the case of crash severity data. Empirical evidence shows 

that ADASYN can outperform SMOTE under certain experimental conditions, emphasising the importance of 

exploring multiple data balancing techniques when dealing with imbalanced datasets [96]. However, the 

efficacy of ADASYN may vary depending on the dataset's unique characteristics, such as class imbalance and 

data point distribution [78]. Consequently, it is necessary to test a variety of resampling strategies and evaluate 

each one’s effectiveness on an individual basis in order to determine the best method for predicting accident 

severity using various machine learning algorithms. 

SMOTE (Synthetic Minority Over-Sampling Technique) 

In order to create synthetic samples for the minority class, SMOTE (Chawla et al. 2002) interpolates 

between samples that already belong to the minority class. Using a user-defined parameter k, SMOTE picks 

the k nearest neighbours from the minority class given a minority class sample Samplei. The line segment 

connecting Samplei and one of its closest neighbours, Sampleneighbour, is then used to construct a new synthetic 

sample. To do this, multiply Sampleneighbour – Samplei by a random number λ, which ranges from 0 to 1, and 

then add the result to Samplei. Equation 2 can be used to represent the mathematical expression for SMOTE: 

Synthetic Sample = Sample_i        + λ × (〖Sample〗_(〖neighbour〗_ )  - 〖Sample〗_i ) (2) 

ADASYN (Adaptive Synthetic Sampling Method) 

Based on the distribution of instances in the feature space, ADASYN modifies the density distribution of 

synthetic samples. It focuses more on creating artificial samples for hard-to-learn areas of the minority class 

[71]. In areas with more severe class imbalances, ADASYN gives minority samples a larger weight based on 

its computation of the density distribution of minority class samples. The synthetic samples are then generated 

in proportion to these densities, similar to SMOTE. The mathematical expression for ADASYN follows the 

same formula as in SMOTE, but the value of λ is adjusted based on the local density ratio as shown in Equation 

3: 

λ = 
minexamples − examples𝑖

minexamples
                                                                                                                   (3) 

where minexamples is the number of examples in the minority class with the fewest instances; examplesi is the 

number of minority class examples in the neighborhood of Samplei. 

The artificial samples are created repeatedly in both SMOTE and ADASYN until the appropriate degree of 

class balance is attained. In this study, class balancing was performed using the SMOTE and ADASYN 

technique implemented in the UBL R package, with the class percentage (C.perc) parameter set to maintain 

the injury class at its original level (1) while oversampling the fatal class by 2.5 times its original size. This 
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approach ensured an improved representation of the minority class without enforcing a strict 1:1 balance, 

allowing for flexibility based on the dataset’s characteristics and the goals of the analysis. 

3.4 Feature Engineering 

Feature engineering is an essential stage in the machine learning process that turns unstructured input into 

meaningful and instructive features, which has a substantial influence on model performance [60]. This process 

could play a vital role in enhancing the performance of the machine learning models for accident severity 

prediction. Feature engineering bridges the gap between raw data and the model’s internal representation, 

enabling improvements in model interpretability, reduction in model complexity [83] and enhancement of 

model performance by crafting features that effectively represent relationships between variables and the target 

variable (accident severity) [97]. K-means clustering, target encoding and anomaly detection are chosen for 

feature engineering in accident severity due to their unique strengths and complementarity. K-means clustering 

helps identify similar accident groups based on various features [98], target encoding encodes categorical 

variables [99] and anomaly detection identifies outliers or unusual patterns in data [100]. By combining these 

techniques, a larger variety of patterns and correlations within the data are captured, resulting in a more 

complete and accurate collection of characteristics for forecasting accident severity. This method enhances the 

models’ capacity for generalisation while lowering the danger of overfitting. By utilising a range of techniques 

in feature engineering, predictive models become more accurate and efficient [101]. Feature selection and 

transformation creates more efficient and interpretable models that provide valuable insights for accident 

prevention strategies [102]. 

Feature K-means clustering for spatial insights and accident pattern identification 

K-means clustering is a well-known unsupervised learning method that groups together similar data points 

[85]. K-means clustering may be used to locate spatial patterns and accident clusters based on their geographic 

coordinates in relation to road safety prediction [103, 104]. By clustering accidents based on their spatial 

distribution, we can gain insights into high-risk areas and identify potential factors contributing to accidents in 

those areas. The K-means clustering technique in the H2O R package divides data into k groups according to 

their similarity. The mathematical expression for K-means clustering algorithm is as follows: 

Given a dataset with n observations and p features represented as 𝑋 =  {𝑥1, 𝑥2 , . . . , 𝑥𝑛},  where xi is a p-

dimensional feature vector, the aim of K-means clustering is to split the data into k clusters (𝐶1, 𝐶2, . . . , 𝐶𝑘) so 

that the within-cluster sum of squares (WCSS) is minimised. 

The objective function is the sum of the squared Euclidean distances between each observation (𝑥𝑖) and the 

centroid (𝜇𝑗) of the cluster (𝐶𝑗) to which it is allocated. The method iteratively minimises this function. It is 

possible to express the objective function mathematically as shown in Equation 4: 

minimise: ∑ ∑ ‖𝑥𝑖 − 𝜇𝑗‖
2

𝑥𝑖∈𝑐𝑖

𝑘
𝑗=1  (4) 

where k is the number of clusters; μj is the centroid of cluster Cj; ∣∣⋅∣∣ represents the Euclidean norm. 

The K-means algorithm proceeds through the following steps: 

1) Initialisation: Randomly initialise k centroids 𝜇1, 𝜇2, . . . , 𝜇𝑘. 

2) Assignment step: Assign each observation xi to the cluster with the nearest centroid. This can be expressed 

as in Equation 5: 

𝑎𝑟𝑔𝑚𝑖𝑛𝑗 ∣∣ 𝑥𝑖 − 𝜇𝑗 ∣∣2 (5) 

3) Update step: Update the centroids μjof each cluster as the mean of the feature vectors of the observations 

assigned to that cluster as in Equation 6.  

Mathematically: 𝜇𝑗 =
1

|𝐶𝑗|
∑𝑥𝑖 ∈ 𝐶𝑗𝑥𝑖 (6) 

Iteration: Continue steps 2 and 3 until convergence, which happens when there is no more substantial 

change in the centroids or when the allotted number of iterations is achieved. The K-means method ultimately 

yields a collection of k clusters, each of which is represented by a centroid. Each observation is allocated to a 

cluster according to how close it is to one of the centroids [105]. In the H2O R package, the K-means clustering 

algorithm is efficiently implemented to handle large-scale datasets and provides options for parallelisation and 

distributed computing to accelerate the clustering process. 
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Anomaly detection 

Anomaly detection, essential for identifying unusual or abnormal observations in a dataset, is a valuable 

technique in road safety prediction, aiding in the identification of outliers and the creation of features for 

enhanced high-severity accident prediction [87]. Implemented through various algorithms in the H2O R 

package, such as Isolation Forest [106], anomaly detection isolates anomalies by randomly selecting features 

and split values, recursively creating a binary tree structure. Anomalies, expected to have shorter paths in these 

trees, are identified by higher anomaly scores calculated based on the average path length from the root node 

to the terminal node in multiple trees. Isolation Forest provides an efficient and scalable approach to anomaly 

detection, particularly in high-dimensional datasets [107]. In this study, the H2O R package facilitated anomaly 

detection for identifying outliers and creating features to improve high-severity accident prediction.  

Isolation trees: Create t isolation trees, with each one being built as follows:  

1) Choose a portion of the data at random. 

2) Choose a feature at random from the subset. 

3) Choose a split value at random from the lowest and maximum values of the chosen feature. 

4) Divide the data recursively using the chosen feature and split value until every data point is isolated in a 

separate leaf node. 

Anomaly Score Calculation: For each data point 𝑥𝑖, compute the average path length ℎ(𝑥𝑖) from the root 

node to the terminal node across all isolation trees. The anomaly score 𝑠(𝑥𝑖) for 𝑥𝑖 is then calculated using 

Equation 7: 

𝑠(𝑥𝑖) = 2
−𝐸(ℎ(𝑥𝑖))

𝐶(𝑛)
                                                                                                             

 
(7) 

where 𝐸(ℎ(𝑥𝑖)) is the average path length of 𝑥𝑖 across all trees; 𝑐(𝑛) is the average path length of a failed 

search in a binary tree of n data points, given by Equation 8: 

2𝐻(𝑛 − 1) −
2(𝑛 − 1)

𝑛
 (8) 

where H(n) is the harmonic number. 

Anomaly detection: Anomalies are identified as data points with higher anomaly scores, exceeding a certain 

threshold. 

3.5 Feature selection 

In order to increase model performance, lower computational complexity and improve interpretability, 

feature selection is an essential stage in the machine learning process [37]. In the context of road safety 

prediction, where datasets often contain a multitude of features, feature selection becomes imperative to 

identify the key factors influencing accident severity accurately. The technique of selecting features for this 

study involves first eliminating variables from the dataset that would be challenging to find after an incident. 

The accident type, accident reason, total number of fatalities and total number of injuries are among the criteria 

that have been eliminated. To train and monitor the performance of the several machine learning models used 

for the study, new features produced from the clustering, anomaly detection and target encoding were then 

introduced one at a time. Using the four chosen machine learning methods, many models were created. For 

each algorithm, models were trained on either SMOTE or ADASYN balanced data containing the observed 

selected variables (Accident-ID, Vehicle-Count, Accident-Severity, City, In-Or-Out-City, X-Coordinate, Y-

Coordinate, Year) and any or all of the derived features. The final models were selected based on their 

performance in predicting Accident-Severity. 

3.6 Machine learning prediction models 

The selection of machine learning models – Deep Learning, Distributed Random Forest (DRF), Gradient 

Boosting Machine (GBM), and AutoML – was carefully considered based on their unique strengths and 

suitability for the task. Deep Learning, chosen for its ability to capture complex patterns, is well-suited for 

uncovering intricate relationships [108]. DRF, recognised for scalability and interpretability [109], provides 
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insights into feature importance and decision-making processes. GBM, a robust ensemble method, was 

selected for its capability to handle heterogeneous data and complex interactions ([110–112]. AutoML, 

streamlining the model selection process efficiently, proves valuable when resources or time are limited [113]. 

This ensemble aims to maximise predictive accuracy and interpretability, offering a robust framework for 

deriving actionable insights and making informed decisions from the road accident dataset [114]. 

3.7 Model selection criteria 

The selection of the best performing model among the trained machine learning models was guided by 

several criteria to ensure optimal performance and generalisation. Cross-validation techniques were employed 

to evaluate models across multiple data subsets, mitigating overfitting and providing robust performance 

estimates [115]. Models were compared based on task-specific metrics such as Mean Squared Error (MSE), 

Root Mean Squared Error (RMSE), Area under the Curve (AUC) or log loss [116–118]. A preference for 

simpler models over complex ones was adopted to improve interpretability and avoid overfitting, particularly 

crucial with limited training data or computational resources. This systematic evaluation aimed to select a 

model balancing accuracy, interpretability and computational practicality, crucial for effective road safety 

prediction.  

Deep learning 

In this study, deep learning, specifically utilising deep neural networks (DNNs) [119] was employed to 

capture intricate relationships within accident data for severity prediction. Deep neural networks (DNNs) are 

a powerful tool for tasks like image recognition and natural language processing. They can be implemented 

using the H2o R package and are skilled at learning intricate patterns from large datasets. The architecture 

includes an input layer for receiving pre-processed accident data, hidden layers for learning non-linear 

relationships, and an output layer predicting accident severity [120]. While DNNs offer high predictive power, 

they require computational resources and careful tuning to prevent overfitting [121]. Strengths of deep learning 

lie in its automatic feature extraction, scalability to large datasets and ability to handle high-dimensional data, 

making it particularly suitable for this task [122]. The training process involves forward and backward 

propagation with hyperparameters like layer depth, neuron count and learning rate determining model 

performance [123, 124]. 

Mathematical foundations: The foundation of deep learning is the use of many hidden layer artificial 

neural networks (ANNs), which allow the model to extract intricate patterns and representations from the input. 

The mathematical expression for a basic feedforward neural network can be expressed as in Equation 9: 

�̂� = 𝑓(𝑊2 ⋅ 𝑓(𝑊1 ⋅ 𝑥 + 𝑏1) + 𝑏2)                                                                                    (9) 

where  𝑥 is the input vector;  𝑊1  and 𝑊2  are weight matrices for the hidden layers;  𝑏1  and 𝑏2 are bias 

vectors; 𝑓(⋅) represents the activation function (e.g. ReLU, sigmoid). 

It assesses their accuracy and discusses the impact of feature engineering and data balancing techniques.  

Distributed random forest (DRF) 

In this study, Distributed Random Forest (DRF) from the H2O package was utilised for predicting road 

accident severity, offering scalability for large datasets and high-dimensional feature spaces [125]. DRF, an 

ensemble method of multiple decision trees, is particularly adept at handling non-linear data and providing 

feature importance rankings [80].  

The mathematical expression for a decision tree in DRF is shown in Equation 10: 

𝑦 =  𝑇(𝑥),                                                                                                                   (10) 

where y is the output of the tree, T is the tree function and x is the input vector.  

DRF’s training process involves parallel growth of trees on random subsets of features and data points, 

mitigating overfitting. Its strengths include robustness, scalability and the ability to handle missing values, 

making it suitable for classification and regression tasks on potentially large traffic accident datasets. 
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Gradient Boosting Machine (GBM) 

Gradient Boosting Machine (GBM) from the H2O package was used in this work to predict the severity of 

traffic accidents by utilising its ability to sequentially create an ensemble of decision trees. In order to capture 

complicated non-linear correlations in the data, GBM, an ensemble learning technique, iteratively adds new 

models, such as decision trees, to rectify errors produced by prior ones [126]. The mathematical expression for 

GBM involves a weighted sum of individual trees as in Equation 11:  

�̂� = ∑ ∝𝑖

𝑁

𝑖=1

ℎ𝑖(𝑥),          (11) 

where ∝𝑖 is the weight assigned to the 𝑖𝑡ℎ tree and ℎ𝑖(𝑥) is the prediction of the 𝑖𝑡ℎ tree.  

GBM’s strengths include its suitability for tasks with mixed feature types and complex interactions, 

robustness to overfitting and interpretability of feature importance. The training process for GBM entails 

sequentially adding decision trees to minimise a differentiable loss function, with hyperparameters including 

the learning rate, tree depth, number of trees and regularisation parameters [111]. 

AutoML (Automated Machine Learning) 

By using machine learning algorithms such as decision trees, gradient boosting, random forests, support 

vector machines and neural networks, the AutoML algorithm automates the process of selecting and tuning 

models [127]. AutoML empowers data scientists by providing efficient model selection and tuning processes, 

allowing them to focus on interpreting results and making informed decisions [128]. As AutoML evolves, it 

will become an indispensable tool for businesses to leverage data, drive innovation and make data-driven 

decisions [129]. The AutoML training process involves exploring a predefined search space of ML algorithms 

and hyperparameters, utilising techniques such as cross-validation and hyperparameter optimisation. 

AutoML’s strengths lie in its efficiency, scalability and adaptability to different datasets and tasks, making it 

suitable for users with limited ML expertise who seek to quickly build high-performing models [130]. Using 

established search methods and assessment criteria, the training process involves comparing the performance 

of many models through cross-validation and identifying the top-performing model. In this work, machine 

learning models for forecasting the severity of traffic accidents were automatically selected and fine-tuned by 

using the AutoML from the R H2O package. 

3.8 Machine learning model training process 

During the training phase, models were built using the training set and evaluated on the validation set, with 

data split accordingly [131]. For the Deep Learning model, hyperparameters such as the number of hidden 

layers, neurons per layer, activation functions and optimisation techniques were adjusted [132]. Grid search 

optimisation was employed for hidden layers, neurons and L1 norms, and the best model was identified using 

the AUC from 5-fold cross-validation. For ensemble models like Distributed Random Forest (DRF) and 

Gradient Boosted Machines (GBM), hyperparameters such as the number of trees, maximum tree depth and 

other relevant parameters were selected to maximise performance [133]. In Boosted Regression Trees (BRT), 

iterative testing informed the selection of hyperparameters, including n-trees (1000), max_depth (5) and 

learn_rate (0.1), based on recommendations from the literature [134]. Similarly, Random Forest models 

employed n-trees (1000) and max_depth (5), balancing accuracy and computational efficiency. Additionally, 

the H2O AutoML framework streamlined the process by automatically tuning parameters, exploring diverse 

algorithms and selecting the top-ranked model based on performance metrics within a fixed runtime of 30 

seconds. The H2O R package was instrumental in facilitating hyperparameter tuning, providing a user-friendly 

interface for iterative model optimisation. Multiple training iterations were conducted to refine 

hyperparameters and enhance model generalisation.  

3.9 Model evaluation 

Data splitting process 

To ensure reliable model assessment when using the H2O R package, the process of dividing data into 

training and validation sets follows a standard protocol. To do this, the dataset must be divided into two subsets: 
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a training set and a validation set. The machine learning models are trained on the training set, and their 

performance on unseen data is assessed using the validation set. The H2O R package provides various 

functions to facilitate the data splitting process, such as h2o.splitFrame(), which allows users to split the dataset 

based on specified proportions and/or random sampling. This ensures that both the training and validation sets 

represent the underlying data distribution adequately, minimising bias in model evaluation. In this study the 

data was split into 80% training and 20% validation [135]. 

Performance metrics 

When evaluating machine learning models trained using the H2O R package, several performance metrics 

can be utilised to assess their effectiveness in solving specific tasks. These metrics provide insights into the 

model’s predictive accuracy, generalisation capability and ability to discriminate between classes [117,136]. 

Commonly used performance metrics include: 

a. Mean Squared Error (MSE): Defined as the average of the squared differences between the predicted 

and actual values in regression tasks. Mathematically, MSE is expressed in Equation 12: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 (12) 

where 𝑦𝑖  represents the actual target value, 𝑦�̂� represents the predicted value and 𝑛  is the number of 

samples. 

b. Root Mean Squared Error (RMSE): The square root of MSE, providing a measure of the standard 

deviation of the residuals. RMSE is calculated using Equation 13: 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (13) 

c. Log Loss: A measure of the accuracy of a classification model, calculated as the negative logarithm of 

the predicted probability of the true class. Lower log loss values indicate better performance.  

Log Loss is estimated as: 
1

𝑛
∑ [𝑦𝑖 log(�̂�𝑖) + (1 − 𝑦𝑖) log(1 − �̂�𝑖)] 𝑛

𝑖=1  (14) 

where 𝑦𝑖  represents the actual binary target (0 or 1) and �̂�𝑖   represents the predicted probability of the 

positive class. 

d. Mean per Class Error: Calculates the average error rate across classes in a classification task, providing 

insights into class-specific performance. 

Mean Per Class Error = 
1

𝐾
∑

𝑃𝐹+𝐹𝑁

𝑇𝑃+𝐹𝑃+ 𝐹𝑁+𝑌𝑁
𝐾
𝑗=1                                                                           (15) 

where K is the number of classes, FP is the number of false positives, FN is the number of false negatives, 

TP is the number of true positives and TN is the number of true negatives. 

e. Area under the Curve (AUC): Measures the model’s ability to discriminate between positive and 

negative classes in binary classification tasks. AUC values close to 1 indicate excellent discrimination, 

while values close to 0.5 suggest random performance. AUC is calculated using the trapezoidal rule or 

integrating the ROC curve (see Equation 16): 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝑓𝑝𝑟)𝑑(𝑓𝑝𝑟)
1

0

 (16) 

where TPR is the true positive rate (sensitivity) and 𝑓𝑝𝑟 is the false positive rate (1 −  𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦). 

f. Area under the Precision-Recall Curve (AUCPR): Similar to AUC, but it focuses on the precision-

recall trade-off, particularly useful for imbalanced datasets (See Equation 17). 

AUCPR = ∫ Precision(𝑟𝑒𝑐𝑎𝑙𝑙)𝑑(𝑟𝑒𝑐𝑎𝑙𝑙)
1

0

 (17) 

where Precision is the positive predictive value and recall is the true positive rate (sensitivity). 
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g. Gini Coefficient: It is a metric derived from the Lorenz curve that measures the inequality in a dataset, 

commonly used as a performance metric for binary classification models. It is estimated by using Equation 

18. 

Gini =  
2×𝐴𝑈𝐶−1

2
                                                                                                                    (18) 

h. These mathematical expressions provide a quantitative measure of the model’s performance in regression 

and classification tasks, guiding the selection of the best performing model based on predefined criteria 

and business objectives. 

4. RESULTS 

This section evaluates the performance of the Deep Learning, DRF, GBM and AutoML models in 

predicting accident severity. It assesses their accuracy and discusses the impact of feature engineering and data 

balancing techniques. 

4.1 Characteristics of accidents in the Eastern Province of the KSA 

The accident data covering the period between 2018 and 2022 as shown in Table 1 in the Eastern Province 

of Saudi Arabia show that Dammam has the highest frequency of accidents, while Dhahran has the least.  

Table 1 – Summary of the accident data 

Feature Minimum 1st quartile Median Mean 3rd quartile Maximum 

Year 2018 2019 2020 2020 2021 2022 

Accident ID 1 2388 4774 4774 7161 9548 

Y-coordinate 19.26 25.56 26.39 26.41 26.89 29.39 

X-coordinate 43.89 48.6 49.64 49.11 50.04 55.53 

City (Most frequent) - - - Dammam (4995) - - 

City (Least frequent) - - - Dhahran (536) - - 

Location (In-city) 4995 - - - - - 

Location (Out-city) 4553 - - - - - 

Vehicle count 1 1 2 1.791 2 9 

Number of victims 0 1 1 1.682 2 24 

Accident severity (Fatal) 2527 - - - - - 

Accident severity (Injury) 7021 -     

 

The median year aligns with most numerical features, indicating a stable trend in the accident severity. 

Accident locations are evenly distributed between in-city and out-of-city areas. The median vehicle count per 

accident is 2, with the majority resulting in injuries (n=7021) and fatalities (n=2527). The median year shows 

a stable trend in accident severity, with accidents evenly distributed between in-city and out-of-city areas. The 

majority of accidents result in injuries and fatalities, with a large portion involving multiple vehicles. The data 

suggests improvements in road safety measures and emergency response protocols. Further analysis of the 

specific causes of accidents could help implement preventative measures. Consistent efforts are needed to 

address underlying factors contributing to accidents, with targeted interventions and accurate prediction 

models crucial. This can reduce accident numbers and save lives. Continuous evaluation and improvement of 

road safety measures and emergency response protocols are essential for ensuring road user safety. 
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Figure 3 – Distribution of accident severity by year 

Over a five-year period, injury accidents have consistently outnumbered fatal accidents, with 1150 injury 

accidents occurring in 2021 compared to 400 fatal accidents as shown in Figure 3. The pattern of accident 

severity remains consistent, with a peak in 2019 exceeding 2000 and slightly fewer accidents in 2020 and 

2021. The importance of robust machine learning models in predicting and mitigating accident severity is 

highlighted. Historical data trends can help algorithms identify patterns and factors contributing to accident 

severity, enabling researchers and policymakers to develop targeted interventions and strategies to reduce 

injury accidents and save lives. Implementing machine learning models can lead to more accurate predictions 

and proactive measures to prevent severe accidents. Continuous updates and refining of these models with 

real-time data can help stakeholders stay ahead of emerging trends and adapt their strategies. This proactive 

approach can significantly reduce the impact of accidents on society. 

 
Figure 4 – Distribution of accident severity by accident type 

The distribution of accident severity across different types of accidents shown in Figure 4 offers valuable 

insights into their prevalence and impact. Injury accidents outnumber fatal accidents, with moving vehicle 

accidents being the most common. Overturn and runover accidents are the most common, with motorcycles 



Promet – Traffic&Transportation. 2025;37(3):665-690.  Safety and Security  

679 

and stationary objects also contributing to fatalities and injuries. Overturn accidents have a higher fatality rate 

than runover accidents, indicating the need for targeted interventions. Moving vehicle accidents pose a greater 

risk to road safety than those involving parked vehicles. Implementing measures to reduce the number of 

moving vehicle accidents, overturn and runover accidents, and collisions involving motorcycles and stationary 

objects can help reduce fatalities and injuries. Targeted interventions addressing specific factors leading to 

overturn accidents can help decrease the proportion of fatalities associated with these incidents. Preventive 

measures, such as improved road design, regular maintenance and stricter enforcement of traffic laws, can 

contribute to creating a safer environment for drivers, pedestrians and cyclists. Promoting awareness 

campaigns and educating individuals on safe driving practices can further reduce accident likelihood. A 

proactive approach to road safety can lead to a significant reduction in road-related injuries and fatalities, 

creating a more secure and sustainable transportation system for all. 

 
Figure 5 – Distribution of accident severity by the reason of accident 

Figure 5 shows a correlation between accident reasons and severity in Saudi Arabia’s Eastern Province in 

the period 2018–2022. Inattentive driving, speeding, unsafe lane changes, failing to yield and improper 

stopping/turning are the leading causes of accidents. Risky behaviours like speeding and inattention have a 

higher number of fatal accidents. This underscores the need for targeted interventions like stricter enforcement, 

public awareness campaigns and advanced driver-assistance systems. Responsible driving behaviour is crucial 

in reducing accident severity and ensuring road safety for all motorists. A collective effort from authorities 

and drivers can significantly reduce accidents and save lives. Promoting awareness and educating drivers on 

reckless behaviour can pave the way for a safer road environment. Enforcing strict penalties for traffic 

violations and consistently monitoring road conditions can further deter dangerous driving habits.  

4.2 Evaluation of the performance of the machine learning models in predicting accident severity 

The performance evaluation of the machine learning models, including AutoML, GBM, DRF and Deep 

Learning, was conducted across five datasets each for either SMOTE (Smt) or ADASYN (Ads) balanced data. 

Each dataset included observed variables and new features derived from techniques such as clustering, 

anomaly detection or target encoding. Evaluation metrics used to assess model performance include the Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), Logarithmic Loss (Log Loss), Mean per Class Error, 

Area under the Curve (AUC), Area under the Precision-Recall Curve (AUCPR) and Gini index. These metrics 
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offer a detailed understanding of how accurately the models predict outcomes and classify data, providing 

valuable insights into their effectiveness across various datasets and feature engineering methods. 

Comparison of models based on modelling methods 

The evaluation of model performance across different datasets reveals varying levels of efficacy across 

feature sets. This analysis delves into the performance of various machine learning models for road accident 

severity prediction, exploring different feature engineering techniques and data balancing methods, 

specifically comparing SMOTE and ADASYN balancing. The metrics used include Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), Log Loss, Area under the Curve (AUC), Area under the Precision-

Recall Curve (AUCPR) and Gini as shown in Table 2. 

Table 2 – Machine learning models evaluation (All dataset) 

Metric Model 
ADASYN 

(Training) 

ADASYN 

(Testing) 

SMOTE 

(Training) 

SMOTE 

(Testing) 

MSE 

DeepLearning 0.42 0.43 0.44 0.57 

GBM 0.08 0.13 0.05 0.22 

DRF 0.14 0.14 0.21 0.22 

AutoML 0.07 0.12 0.02 0.21 

RMSE 

DeepLearning 0.65 0.65 0.67 0.76 

GBM 0.29 0.36 0.22 0.47 

DRF 0.37 0.37 0.46 0.46 

AutoML 0.26 0.35 0.13 0.46 

LogLoss 

DeepLearning 1.48 1.52 1.77 2.33 

GBM 0.27 0.39 0.20 0.66 

DRF 0.40 0.41 0.61 0.62 

AutoML 0.23 0.37 0.11 0.65 

Mean Per Class 

DeepLearning 0.21 0.20 0.46 0.50 

GBM 0.10 0.18 0.03 0.48 

DRF 0.18 0.19 0.36 0.49 

AutoML 0.06 0.16 0.00 0.48 

AUC 

DeepLearning 0.84 0.82 0.58 0.60 

GBM 0.96 0.88 1.00 0.62 

DRF 0.88 0.86 0.74 0.66 

AutoML 0.99 0.88 1.00 0.63 

AUCPR 

DeepLearning 0.77 0.74 0.59 0.79 

GBM 0.95 0.81 1.00 0.81 

DRF 0.82 0.79 0.74 0.83 

AutoML 0.99 0.82 1.00 0.81 

Gini 

DeepLearning 0.67 0.65 0.16 0.20 

GBM 0.92 0.75 0.99 0.25 

DRF 0.75 0.72 0.47 0.32 

AutoML 0.98 0.77 1.00 0.27 
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AutoML consistently emerges as the top performer across all datasets, showcasing its adeptness in 

leveraging feature engineering techniques and machine learning models. However, the choice between 

SMOTE and ADASYN balancing appears to influence performance to some extent. Under SMOTE balancing, 

AutoML with all dataset excels, exhibiting lower MSE (0.02), RMSE (0.13) and LogLoss (0.11) compared to 

other models as shown in Figure 6. Conversely, under ADASYN balancing, AutoML maintains its superior 

performance metrics, indicating a slight edge over SMOTE balancing, particularly evident in the AutoML with 

all the variables (MSE: 0.07, RMSE: 0.26, LogLoss: 0.23). 

 
Figure 6 – Comparison of the performance of the machine learning models (Adsall – left; Smt all – right) 

GBM demonstrates robust accuracy across datasets, with performance comparable between the SMOTE 

and ADASYN balancing methods. For instance, in the dataset with anomaly detection feature, GBM 

showcases competitive AUC (0.99) and Precision (0.98) under SMOTE balancing, similar to its performance 

under ADASYN balancing with the same dataset (AUC: 0.96, Precision: 0.89). 

DRF shows less variation in performance across datasets and seems less influenced by specific feature 

engineering techniques or balancing methods. This consistency is observed in both SMOTE and ADASYN 

balanced datasets, suggesting DRF’s resilience to the choice of the balancing method. For example, in the CL 

dataset with the clustering feature under SMOTE balancing, DRF has an AUC of 0.74 and a Precision of 

0.6624, similar to its performance under ADASYN balancing with the same dataset (AUC: 0.89, Precision: 

0.84). 

Deep Learning appears better suited for capturing broader patterns, regardless of the balancing method 

employed. While it exhibits good AUC scores, its precision for individual predictions may be comparatively 

lower, as seen in both SMOTE and ADASYN balanced datasets. For instance, in the dataset with the target 

encoding feature under SMOTE balancing, Deep Learning has an AUC of 0.57 but a higher MSE (0.44) 

compared to the AutoML (AUC: 0.99, MSE: 0.04), aligning with the observations from the ADASYN results 

with similar datasets. 

Overall, both SMOTE and ADASYN balancing techniques contribute to improved model performance, 

with advantages observed across all feature engineering techniques. AutoML demonstrates a slight preference 

for ADASYN balancing in this study, while GBM’s performance appears less impacted by the choice of the 

balancing method. DRF exhibits consistent performance, and Deep Learning maintains its focus on broader 

patterns. Future research could further explore the nuances of the balancing method selection based on the 

specific model and feature engineering combinations. 

Comparison based on accuracy in the Fatal and Injury Accident classifications 

Figure 7 presents an evaluation of various machine learning models and balancing techniques used for 

predicting the severity of road traffic accidents, focusing on the correctly classified and misclassified cases for 

both fatal and injury outcomes. For fatal accidents, AutoML with SMOTE achieved the highest accuracy, 

correctly classifying 1208 cases (89.68%) and misclassifying 139 cases (10.32%). DRF with SMOTE also 

performed well, correctly classifying 1183 cases (87.82%) but with a slightly higher misclassification rate of 

12.18%. BRT with SMOTE and AutoML with ADASYN showed good performance, correctly classifying 

 

Model performance comparison 

 

Model performance comparison 
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1152 (85.52%) and 864 (72.85%) cases, respectively, although with varying misclassification rates. On the 

other hand, Deep Learning with ADASYN and DRF with ADASYN exhibited lower accuracies, correctly 

classifying 714 (60.20%) and 793 (66.86%) cases, respectively. Deep Learning with SMOTE had the lowest 

accuracy for fatal predictions, correctly classifying only 69 cases (14.14%) and misclassifying 419 cases 

(85.86%). 

 
Figure 7 – Comparison of Fatal and Injury Accident predictions (ADASYN with all variables – left;  

SMOTE with all variables – right) 

For injury accidents, Deep Learning with ADASYN performed exceptionally well, correctly classifying 

1109 cases (98.75%) with only 14 misclassified cases (1.25%). DRF with ADASYN and AutoML with 

ADASYN also showed high accuracy, correctly classifying 1070 (95.28%) and 1065 (94.84%) cases, 

respectively. Deep Learning with SMOTE and BRT with ADASYN correctly classified 1282 (92.30%) and 

967 (86.11%) cases, respectively. BRT with SMOTE showed moderate performance, correctly classifying 221 

cases (41.70%) with a high misclassification rate of 58.30%. DRF with SMOTE and AutoML with SMOTE 

had lower accuracies, correctly classifying 204 (38.49%) and 181 (34.15%) cases, respectively. 

Overall, AutoML with SMOTE and Deep Learning with ADASYN emerged as top performers for fatal and 

injury predictions, respectively, highlighting the importance of both the model and the balancing technique. 

ADASYN generally resulted in higher accuracy across different models for injury predictions compared to 

SMOTE. The variability in performance across models and techniques highlights the importance of model 

selection and data balancing methods tailored to specific outcomes (fatal vs. injury). Notably, Deep Learning 

with SMOTE for fatal accidents and DRF with SMOTE for injury accidents showed significantly lower 

performance, indicating potential issues with these combinations for accurate classification. The table 

underscores that the choice of machine learning model and data balancing technique significantly impacts the 

classification accuracy of accident severity predictions. 

These findings underscore the significant impact of dataset characteristics and balancing techniques on the 

predictive performance of machine learning models. The observed variations in accuracy percentages highlight 

the necessity of selecting appropriate techniques tailored to the specific requirements of the prediction task. 

Such insights gleaned from comparative analyses enable informed decisions in model selection and data pre-

processing, ultimately enhancing the efficacy of accident severity prediction systems. 

Comparison with previous studies 

The findings of this study on predicting accident severity using machine learning models can be compared 

and contrasted with the results reported in several related works. Consistent with the observations made by 

Aldhari et al. [53] and Akin et al. [52], this study emphasises the importance of feature engineering and data 

pre-processing in enhancing the predictive performance of machine learning models. The incorporation of 
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advanced techniques, such as clustering, anomaly detection and target encoding, to derive new features aligns 

with the strategies employed in these previous studies. The ability of the models to leverage these engineered 

features to improve accuracy in accident severity prediction underscores the value of a comprehensive 

approach to feature selection. In terms of model performance in accident severity prediction, the superior 

results achieved by AutoML in this study echo the findings of several studies [137–139], who also reported 

the effectiveness of automated machine learning techniques. The consistent outperformance of AutoML across 

various datasets and balancing methods further validates its robustness and adaptability, as observed in their 

work. The comparative analysis of different machine learning algorithms, including GBM, DRF and Deep 

Learning, corroborates the insights from studies by Jamal et al. [140] and Alrajhi and Kamel [56]. The superior 

performance of ensemble methods, such as GBM, in predicting accident severity is in line with the results 

reported in previous works [56]. However, the challenges faced by Deep Learning models in this study, 

particularly in terms of higher error rates, differ from the findings of Alrajhi and Kamel [56], who highlighted 

the potential of deep learning for accident risk prediction in the Saudi context. Regarding data balancing 

techniques, the slight advantage of ADASYN over SMOTE observed in this study aligns with the conclusions 

drawn by Mostafa [141] and Morris and Yang [67]. Their research also emphasised the importance of nuanced 

data balancing approaches in enhancing the performance of predictive models for accident severity. The need 

to strike a balance between accurately predicting different accident severity levels underscores the complexities 

involved in developing robust predictive models for road safety applications. 

5. CONCLUSION 

The study explores the predictive performance of machine learning models for accident severity 

categorization, revealing differences in model effectiveness across datasets and balancing techniques. AutoML 

emerged as the top-performing model, achieving high predictive accuracy in both fatal and injury accidents. 

Deep Learning showed promising results in predicting injury accidents, achieving 95% accuracy, but struggled 

with fatal accident predictions, achieving only 60% accuracy. Distributed Random Forest (DRF) and Gradient 

Boosting Machine (GBM) exhibited balanced performance across both categories, with DRF achieving an 

AUC of 0.88 and GBM reaching an AUC of 0.96 under ADASYN balancing. The study emphasises the 

importance of feature engineering and data balancing techniques in enhancing model performance. ADASYN 

generally yielded better results, with AutoML achieving a Root Mean Squared Error (RMSE) of 0.26 under 

ADASYN balancing.  

Further research is required to improve the predictive accuracy and robustness of models for accident 

severity prediction, incorporating techniques like convolutional neural networks (CNNs) for spatial data and 

recurrent neural networks (RNNs) for temporal data. This study acknowledges limitations such as data quality 

dependence and low interpretability, with future work aimed at addressing these by using SHAP (Shapley 

Additive Explanations) and LIME (Local Interpretable Model-Agnostic Explanations) for greater 

transparency. Additionally, machine learning models, supported by data balancing methods like SMOTE and 

ADASYN, can facilitate continuous data-driven decision-making and infrastructure improvements, such as 

enhanced lighting, clearer signage and traffic calming measures. Policy enhancements are needed to support 

the integration of predictive analytics in traffic management. Efforts should also focus on economic and social 

equity to prevent disproportionate impacts on disadvantaged communities, and predictive models should be 

used to optimise emergency response strategies. Implementing these data-driven recommendations will 

enhance the ability of transportation authorities to prevent road accidents and reduce their severity, contributing 

to safer roads and saving lives. 
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 تأثير موازنة البيانات وهندسة الميزات على نماذج شدة الحوادث

 فايز العنزي، أمينو سليمان

 

 الملخص
تحُقق هذه الدراسة في تأثير تقنيات هندسة الميزات، بما في ذلك التجميع، والترميز المستهدف، واكتشاف 

ب أساليب موازنة البيانات، على كفاءة نماذج تعلم الآلة في التنبؤ بشدة حوادث الطرق. تم الشذوذ، إلى جان

العشوائية الموزعة، ونماذج الأشجار التكيفية المعززة تقييم النماذج باستخدام التعلم الآلي الآلي، والغابات 

للتراجع، ونماذج التعلم العميق. استخدمت مجموعات البيانات الموزونة باستخدام تقنيتي الإفراط الاصطناعي 

للأقليات والتوازن الاصطناعي التكيفي. تضمنت معايير التقييم متوسط مربع الخطأ، والجذر التربيعي 

خطأ، والخسارة اللوغاريتمية، والمساحة تحت المنحنى، والمساحة تحت منحنى الاستدعاء لمتوسط مربع ال

 .الدقيق

% في 85أظهرت النتائج أن التعلم الآلي الآلي يتفوق باستمرار على النماذج الأخرى، حيث حقق دقة بلغت 

تنبؤ بحوادث الإصابات بدقة % في التنبؤ بالإصابات. تميز التعلم العميق في ال94التنبؤ بالحوادث المميتة و

%. تؤكد الدراسة على 60%، ولكنه واجه تحديات في التنبؤ بالحوادث المميتة، حيث حقق دقة بلغت 95بلغت 

الدور الحاسم لتقنيات هندسة الميزات وأساليب موازنة البيانات في تحسين دقة التنبؤ بتصنيف شدة الحوادث. 

يع، والترميز المستهدف، واكتشاف الشذوذ مع تقنيتي الإفراط على وجه الخصوص، أدى دمج تقنيات التجم

الاصطناعي للأقليات والتوازن الاصطناعي التكيفي إلى تحسين أداء النماذج بشكل ملحوظ. تظل الحاجة إلى 

مزيد من التعديل والتحقق أمراً ضرورياً لتحسين أداء النماذج في تطبيقات إدارة السلامة المرورية في العالم 

حقيقيال . 
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 .الاصطناعي التكيفي

 

 


