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ABSTRACT 

The construction of urban expressways will significantly impact the travel of surrounding 

residents. Traffic flow assignment is a key method to address this issue. This study, therefore, 

addresses the impact of urban expressway construction on nearby residents’ travel by 

proposing an optimised traffic flow assignment method. Traditional methods rely on labour-

intensive OD (origin-destination) matrix acquisition, but this research introduces an OD 

reverse derivation model that eliminates the need for a prior matrix. Key road sections are 

identified using the stepwise point placement method, with peak-hour traffic volumes 

surveyed. An incremental assignment method generates a distribution matrix, and the 

original OD matrix is derived using a maximum entropy-based model. A stochastic user 

equilibrium assignment model incorporating a path length-corrected logit is constructed, and 

a genetic algorithm solves the objective function. Using evening peak traffic data from 

Huai’an’s road network, including an expressway construction zone, the results show that 

total travel time decreased by 14.11% after applying the method, from 4,050,327.517 seconds 

to 3,478,967.635 seconds. This demonstrates the proposed method’s effectiveness in 

reducing congestion and improving travel efficiency for surrounding residents. 

KEYWORDS 

construction zone road network; maximum entropy OD inversion; traffic flow distribution; 

path length correction. 

1. INTRODUCTION 

In recent years, the construction of urban transportation infrastructure has been accelerating, with new 

construction, renovation and expansion projects taking up limited road space. During these construction 

projects, work zones are set up around the roads, occupying driving space. The complex road conditions during 

construction can easily trigger traffic accidents and cause traffic congestion during peak hours, creating 

bottlenecks in urban roads [1, 2]. According to relevant research, construction work zones not only affect road 

traffic flow and safety but also impact the travel of nearby residents [3-5]. Therefore, using reasonable 

management methods and measures, fully leveraging the efficiency of the road network, and regulating and 

guiding traffic flow are crucial for alleviating the conflict between traffic supply and demand, and easing local 

traffic pressure. 

Urban expressways are the main structural framework of urban road traffic, providing a fast and efficient 

driving environment for motor vehicles. These expressways, free from intersecting lines, have high operational 

speed and capacity. With the acceleration of urbanisation in recent years, road networks in cities at all levels 

have been continuously improving, and many small to medium-sized cities are gradually constructing urban 

expressways. Expressways are typically built using elevated bridge structures, which can significantly impact 
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the operation of traditional urban roads during construction, leading to road blockages, traffic accidents and 

inconvenience for city residents. The construction on urban expressways will affect traffic on certain sections, 

reducing the capacity of many roads and even leading to the complete closure of some. This will cause a 

significant increase in traffic on parallel or alternative routes, especially during peak hours, leading to severe 

congestion and longer travel times across the entire road network. 

With the increase in traffic demand, transportation planners can address traffic congestion through two 

approaches [6]. (1) Expanding infrastructure: this involves extending the road network to accommodate the 

growing demand. However, the application scenario of this study focuses on the impact of urban expressway 

construction on the urban road network, which is a temporary issue. Thus, expanding infrastructure is not 

adopted as a solution. (2) Using intelligent transportation systems (ITS): many studies have explored ITS-

based attempts to mitigate congestion, with traffic flow assignment being a critical method to address these 

issues. Traffic flow assignment is the final stage of the four-step transportation planning process [7]. 

Performing traffic flow assignment requires obtaining the OD (origin-destination) matrix for the entire road 

network. Traditional OD matrix surveys are complex, requiring the division of the road network into multiple 

zones. Surveys typically involve questionnaires or postcard methods, where survey quality is significantly 

influenced by the design of the questionnaire and the surveyors. Moreover, respondents often experience a 

heavy burden, leading to low success rates and consuming considerable time and manpower [8, 9]. 

OD reverse derivation can significantly reduce the labour, financial costs and time required for large-scale 

OD surveys. Its principle is based on the assumption that the computational steps from the OD table to link 

traffic volumes can be reversed. This study attempts to use OD reverse derivation [10, 11] to obtain the OD 

matrix, which is then applied in traffic flow assignment methods for distribution. 

Traffic flow assignment is primarily categorised into two types: deterministic traffic flow assignment 

models and stochastic traffic flow assignment models [12, 13]. Deterministic models assume that travellers 

have complete knowledge of road conditions and can make entirely accurate choices. In contrast, stochastic 

models consider that travellers’ perception of travel time on routes is subject to error. Stochastic traffic flow 

assignment models better align with drivers’ actual route selection behaviour in practical applications, and this 

study attempts to use a stochastic traffic flow assignment model. 

Traditional research has relied on mathematical methods to solve OD reverse derivation models and traffic 

flow assignment models. With the rapid development of intelligent algorithms, typical algorithms with similar 

principles, such as genetic algorithms (GA) and particle swarm optimisation (PSO), have been widely used in 

optimising objective functions [14, 15]. 

The PSO algorithm converges to the optimal solution faster compared to the GA algorithm, while the GA, 

with its longer history, has developed mature optimisation techniques and offers broader applicability [16]. In 

this study, the PSO algorithm is used to solve the relatively less complex OD reverse derivation model, 

improving the convergence speed. In addition, the GA algorithm is employed to solve the more complex traffic 

flow assignment model with numerous variables, enhancing search breadth and increasing the likelihood of 

obtaining the optimal solution. 

For the reasons mentioned above, this study takes the case of the Huai'an expressway under construction, 

using the stepwise point placement method to determine the survey sections of the road network. The 

distribution matrix is obtained based on the incremental assignment method, and using this matrix along with 

traffic flow detection data for the sections, the initial Origin-Destination (OD) matrix is derived through 

maximum entropy OD estimation. Finally, an optimised stochastic user equilibrium assignment model is 

employed for the distribution study. 

2. LITERATURE REVIEW 

To reduce the investment of manpower and resources in traditional OD surveys, research on OD estimation 

can be traced back to the last century. In 1979 and 1984, Nguyen [17] and Willumsen [18] conducted research 

on finding the most accurate OD (origin-destination) matrix using the principle of maximum entropy. Cascetta 

[19] proposed a generalised least squares estimator for the original OD matrix by directly combining model 

estimation with traffic counts through an assignment model, explicitly considering measurement errors and 

temporal variability in observed flows, and validated the approach with case studies. Doblas [20] addressed 

the estimation and updating of observed OD matrices based on available link flow information using a 

nonlinear programming method corresponding to the augmented Lagrangian function, and developed an 

efficient algorithm to estimate the OD matrix while minimising the storage requirements for solving large 
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problems. In 1987, Spiess [21] and colleagues proposed a maximum likelihood model, which, by assuming 

that OD flows follow a Poisson distribution, finds the solution that maximises the joint probability of the 

likelihood function constituted by the observed flows from the OD matrix. The methods mentioned above can 

all be used to solve the OD matrix. However, most of these methods involve constructing models and using 

mathematical techniques to solve them. As the complexity of different real-world cases increases, many 

mathematical methods become difficult to apply, making it necessary to use more broadly applicable solution 

methods. 

In recent years, methods for OD matrix estimation have been evolving with new algorithms continually 

emerging, such as those using bi-level programming [22], neural networks [23, 24], heuristic algorithms [25] 

and others [26]. These studies have achieved promising estimation results. However, all of the aforementioned 

methods require a prior OD matrix. This study considers the scenario where no prior matrix is available and 

seeks to derive the OD matrix by using traffic volumes from key road sections as constraints. 

Traffic flow assignment is mainly divided into two categories: deterministic traffic flow assignment models 

and stochastic traffic flow assignment models. Deterministic traffic flow assignment models assume that 

travellers have complete knowledge of road conditions and can make perfectly accurate choices. On the other 

hand, stochastic traffic flow assignment models assume that travellers’ perceptions of travel time on different 

paths are subject to error. The deterministic traffic flow assignment model was first proposed by Wardrop [27] 

and includes Wardrop’s first and second principles, although the first principle is difficult to quantify. Fisk and 

Boyce [28] provided a variational inequality formulation for the network equilibrium route choice problem 

and extended existing results to models with irreversible travel demand functions. They further developed the 

model to account for the possibility of dispersion in route choice. 

Daganzo and Sheffi [29] were the first to propose stochastic traffic flow assignment models, which are an 

extension of traditional deterministic traffic flow assignment models. Stochastic traffic flow assignment 

models are mainly divided into two categories: if the error terms in travellers’ perceptions of road travel costs 

are assumed to be independent and follow a gamma distribution, a logit model can be derived; if the error 

terms are not independent and the joint distribution follows a multivariate normal distribution, a probit model 

can be derived. Fisk [30] was the first to propose a random equilibrium assignment model based on the logit 

model. Wang [31] and Yan [32], using cumulative prospect theory as the criterion for route choice, proposed 

a uniform distribution assignment model. 

Summarising current research findings, compared to deterministic traffic flow assignment models, 

stochastic traffic flow assignment models are more aligned with real-world conditions as they assume that 

travellers’ perceptions of travel time on paths are subject to error. This also provides an important insight for 

determining the research methods of this study. However, traditional methods using the logit model to 

determine route choice probability only consider the impact of travel time on route choice, while in reality, 

many factors influence travellers’ route choices, such as travel distance, travel cost and others. In this study, 

in addition to considering travel time, we also take into account the impact of travel distance on travellers, 

making the model more realistic. 

In summary, the main contributions of this study are as follows. 

This study proposes an OD estimation method without a prior matrix, reducing the workload of traditional 

OD surveys. The new model randomly determines an initial OD matrix and uses the unbalanced distribution 

method to obtain a distribution matrix. By using the distribution matrix and traffic volume data from road 

segments, the OD matrix is estimated through maximum entropy OD estimation, and the model is solved using 

the particle swarm optimisation (PSO) algorithm. In this new OD estimation process, the distribution matrix 

is used, eliminating the need for a prior OD matrix. At the same time, the PSO algorithm provides broader 

adaptability, higher computational accuracy and faster computation speed compared to traditional 

mathematical methods. 

This study also proposes a stochastic traffic flow distribution method based on the path length-adjusted 

logit model. Building on traditional models that only consider travel time, this new model also incorporates 

road segment length as an important criterion for route selection. Additionally, the stochastic traffic flow 

distribution model accounts for the fact that travellers’ perceptions of travel time on routes are subject to errors, 

making the new model more consistent with real-world conditions. 

The Huai’an city’s expressway construction road network is used as a case study for validation. Traditional 

studies mostly focus on normal road network distribution, while research on construction road network 

distribution is relatively innovative. Construction road networks have unique characteristics: they are 

temporary, usually tied to the construction period of road segments, and the impacts will disappear once 
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construction is completed; they are also transmissible, as construction on multiple road segments can reduce 

or eliminate capacity on these segments, leading to congestion on parallel or alternative routes and thus causing 

disruption across the entire road network. These characteristics make this study highly relevant. Finally, the 

comparison of road network parameters before and after distribution validates that this study can reduce 

network congestion. 

3. OD MATRIX ESTIMATION MODEL WITHOUT PRIOR MATRIX  

The key road sections were selected using a step-by-step approach. The peak-hour traffic volumes of the 

sections were surveyed, and an OD matrix was generated randomly. The OD matrix was then assigned to 

various road sections within the network using the incremental assignment method, resulting in an assignment 

matrix. This assignment matrix, along with the surveyed traffic volumes, was incorporated into the maximum 

entropy-based OD estimation model, which was solved using the particle swarm optimisation algorithm to 

obtain the assignment matrix. 

3.1 Basic principles of OD matrix estimation and selection of key survey sections 

Traditional OD surveys usually require a significant amount of human and material resources. To reduce 

the shortcomings of large preliminary survey efforts in traffic planning, researchers have begun using traffic 

volumes on road segments to estimate the OD matrix. Traffic flow assignment involves distributing segment 

traffic volumes based on the OD matrix; therefore, OD matrix estimation is essentially the reverse process of 

traffic flow assignment. The method of OD matrix estimation involves deriving the current travel OD matrix 

for traffic zones based on the observed traffic flows of the existing road network. The expression for OD matrix 

estimation is shown in Equation 1 [33] 

∑ ∑ 𝑇𝑖𝑗𝑗𝑖 𝑃𝑖𝑗
𝑎 = 𝑉𝑎,  𝑎 = 1,⋯ ,𝑀; 𝑖, 𝑗 = 1,⋯ ,𝑁 (1) 

where 𝑎 represents the name of a road segment, i and j are the names of zones, 𝑇𝑖𝑗 represents the traffic volume 

from zone i to zone j, which is the demand to be estimated by the OD matrix, 𝑃𝑖𝑗
𝑎  represents the proportion of 

𝑇𝑖𝑗  assigned to road segment 𝑎, which can be obtained through traffic assignment. This matrix has rows 

representing the number of road segments and columns representing the number of OD points, and 𝑉𝑎 

represents the traffic volume on road segment 𝑎, which can be obtained through actual surveys. Equation 1 

describes the relationship between OD demand and road segment traffic volumes. This equation has N(N−1) 

unknowns and M equations. When N(N−1)>M, the system of equations has infinitely many solutions. Since 

the number of OD points in a real road network, N(N−1), is usually greater than the number of road segments, 

M, additional constraints are needed to determine the optimal solution. 

3.2 Selection of survey segments based on the stepwise point placement method 

The principle of OD matrix estimation is to use observed traffic volumes on road segments to infer the OD 

matrix. Generally, the more segment information used, the more accurate the resulting OD matrix will be. 

However, this approach contradicts the original intent of keeping the OD estimation process simple and 

convenient. To address this issue, this study proposes a method for selecting survey segments based on the 

stepwise point placement method. The main steps are as follows: 

⎯ Step 1: Allocate all OD pair demands to the road network using the shortest path method. 

⎯ Step 2: Identify the road segment with the highest frequency of OD pair trips as the observation segment. 

⎯ Step 3: Remove all OD pairs that pass through the identified observation segment, and reallocate the 

remaining OD pairs to the road network using the shortest path method. 

⎯ Step 4: Repeat Steps 2 and 3 until all OD pairs have been removed. 

This method ensures that the selected key segments provide broad coverage of segment information while 

keeping the survey workload manageable. 

3.3 Multi-OD pair assignment model based on the incremental assignment method 

The incremental assignment method involves dividing the OD demand into several portions and iteratively 

assigning each portion of OD demand to the shortest path on the road network. After each assignment, the 

impedance (resistance) of each road segment is updated. The shortest path is then recalculated based on the 
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new impedance, and the process is repeated, with each portion of OD demand being assigned to the shortest 

path. This continues until all OD demand has been allocated. The assignment matrix, 𝑃𝑖𝑗
𝑎  , where rows represent 

road segments and columns represent OD pairs, is a crucial factor for OD matrix estimation. Each time an OD 

pair is assigned, the elements of each column of the assignment matrix 𝑃𝑖𝑗
𝑎  are calculated using Equation 2 

𝑝𝑗 =
𝑚𝑖

𝑇𝑗
 (2) 

where, 𝑝𝑗 represents the set of values in the jth column of the assignment matrix (where j=1, 2, …, N, with N 

being the number of OD points), 𝑚𝑖 represents the traffic volume allocated to each road segment for a given 

OD pair (where i=1, 2, …, M, with M being the number of road segments), 𝑇𝑗 is the traffic demand for the jth 

OD pair. 

The process continues until the last OD pair is assigned, at which point all the 𝑝𝑗 values are combined to 

form the assignment matrix. The detailed steps are as follows: 

⎯ Step 1: Initialise the impedance of the road segments and divide the OD demand into fixed portions. 

⎯ Step 2: Calculate the road segment impedance and assign one portion of the OD demand to the shortest 

path. 

⎯ Step 3: Check whether all demand between the given OD pair has been assigned. If not, move on to the 

next portion of demand for that OD pair and return to Step 2. If the assignment for that OD pair is 

complete, calculate the column values of the assignment matrix using the formula provided, and proceed 

to Step 4. 

⎯ Step 4: Check if all OD pairs have been fully assigned. If not, move on to the next OD pair and return to 

Step 2. If all OD pairs have been assigned, the final assignment matrix is generated. 

3.4 Maximum entropy OD inversion model based on particle swarm optimisation algorithm 

An entropy-maximising OD reverse model was established to analyse the shortcomings of the Newton 

iteration method and the advantages of solving with the particle swarm optimisation algorithm. Considering 

the presence of constraints, the Lagrange multiplier method was employed for preprocessing. Finally, the steps 

for solving the entropy-maximising OD reverse model using the particle swarm optimisation algorithm were 

determined. 

Establishment of the maximum entropy OD inversion model 

In the maximum entropy model [34], it is assumed that vehicle travel is random. If each OD pair’s travel 

on 𝑇𝑖𝑗 is considered a random event, the total number of events is, 

𝑇 =∑∑𝑇𝑖𝑗
𝑗𝑖

 (3) 

According to the principles of permutation and combination, the methods to form the matrix [𝑇𝑖𝑗] include, 

𝑊(𝑇𝑖𝑗) = 𝑇! ∏
𝑖,𝑗
⁄ 𝑇𝑖𝑗! (4) 

The idea of maximum entropy is to find the matrix that maximises 𝑊(𝑇𝑖𝑗), which is considered to have the 

highest probability of occurrence. For ease of computation, taking the logarithm on both sides of the equation 

yields: 

𝐼𝑛𝑊(𝑇𝑖𝑗) = 𝐼𝑛(𝑇!) −∑∑𝐼𝑛(𝑇𝑖𝑗!)

𝑗𝑖

 (5) 

According to Stirling’s approximation formula 𝐼𝑛(𝑥!) = 𝑥 ⋅ 𝐼𝑛(𝑥) − 𝑥, we obtain: 

𝑚𝑎𝑥 𝐸 ≈ 𝐼𝑛𝑊(𝑇𝑖𝑗) = 𝑇𝐼𝑛(𝑇) − 𝑇 −∑∑(𝑇𝑖𝑗𝐼𝑛(𝑇𝑖𝑗) − 𝑇𝑖𝑗)

𝑗𝑖

= −∑∑𝑇𝑖𝑗𝐼𝑛(𝑇𝑖𝑗 𝑇⁄ )

𝑗𝑖

 (6) 
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In this study, to maximise the matrix 𝑊(𝑇𝑖𝑗), let 𝑚𝑎𝑥 𝐸 ≈ 𝐼𝑛𝑊(𝑇𝑖𝑗). Equation 1 is used as the constraint 

for the objective function, leading to the new OD inversion model as shown in Equation 7. Equations 8 and 9 

represent the constraints. 

𝑚𝑎𝑥 𝐸 = −∑∑𝑇𝑖𝑗𝐼𝑛(𝑇𝑖𝑗 𝑇⁄ )

𝑗𝑖

 (7) 

∑ ∑ 𝑇𝑖𝑗𝑗𝑖 𝑃𝑖𝑗
𝑎 = 𝑉𝑎, 𝑎 = 1,⋯ ,𝑀; 𝑖, 𝑗 = 1,⋯ ,𝑁 (8) 

𝑇𝑖𝑗 ≥ 0,∀𝑖, 𝑗. (9) 

Directly solving the above objective function is quite difficult; it usually requires transforming the objective 

function into a different form. 

Handling based on the Lagrange multiplier method 

Using the Lagrange multiplier method to handle the above objective function, the Lagrangian function L is 

obtained as follows: 

𝐿 = −∑∑𝑇𝑖𝑗𝐼𝑛(𝑇𝑖𝑗 𝑇⁄ )

𝑛

𝑗=1

𝑛

𝑖=1

+∑𝜆𝑎

𝑚

𝑎=1

(𝑉𝑎 −∑∑𝑇𝑖𝑗𝑃𝑖𝑗
𝑎

𝑛

𝑗=1

𝑛

𝑖=1

) (10) 

In the equation, 𝜆𝑎 represents the Lagrange multiplier. Taking the partial derivative of the above equation 

with respect to 𝑇𝑖𝑗, we obtain Equation 11. 

𝜕𝐿 𝜕𝑇𝑖𝑗 =⁄ − 𝐼𝑛(𝑇𝑖𝑗 𝑇⁄ ) −∑𝜆𝑎

𝑚

𝑎=1

𝑃𝑖𝑗
𝑎 = 0 (11) 

After solving and organising, we obtain 𝑇𝑖𝑗 as below: 

𝑇𝑖𝑗 = 𝑇 𝑒𝑥𝑝 (−∑𝜆𝑎

𝑚

𝑎=1

𝑃𝑖𝑗
𝑎) (12) 

Let 𝑇 = 𝑒𝑥𝑝(−𝜆0), and substitute this into the objective function and constraints. This results in the 

following two sets of equations. 

{
 
 

 
 1 =∑∑𝑒𝑥𝑝 (−∑𝜆𝑎

𝑚

𝑎=1

𝑃𝑖𝑗
𝑎)

𝑗𝑖

∑∑𝑒𝑥𝑝(−𝜆0 −∑𝜆𝑎

𝑚

𝑎=1

𝑃𝑖𝑗
𝑎)

𝑛

𝑗=1

𝑛

𝑖=1

𝑃𝑖𝑗
𝑎 = 𝑉𝑎

𝑎 = 1,⋯ ,𝑚 (13) 

Observing that Equation 13 contains a nonlinear system of m+1 variables and m+1 equations, solving this 

system yields the unknown values 𝜆0, 𝜆1,⋯ , 𝜆𝑚. Substituting these values into Equation 12 provides the OD 

inversion matrix. 

Solving the maximum entropy OD reverse model based on particle swarm optimisation 

1) Deficiencies of the Newton iteration method for solving the maximum entropy OD reverse model 

Traditional methods use the Newton iteration method to solve the above nonlinear function, as detailed in 

reference [35]. The main drawbacks of the Newton iteration method are: 

⎯ The initial value 𝜆0 needs to be close to the actual value to ensure high computational accuracy. 
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⎯ The method requires the inversion of matrices during iterations, which is computationally complex and 

requires non-singular matrices. 

⎯ When elements in the allocation matrix 𝑃𝑖𝑗
𝑎  approach zero, it can lead to ill-conditioned matrices, causing 

the solution to fail. 

2) Advantages of solving the maximum entropy OD reverse model based on particle swarm optimisation 

The main advantages of the particle swarm optimisation algorithm are: 

⎯ It does not require complex mathematical calculations. By simply determining the objective function and 

constraints, the algorithm can search for the optimal parameter values. 

⎯ The algorithm’s computational accuracy does not depend on the initial value 𝜆0. 

⎯ The particle swarm optimisation algorithm usually achieves higher computational accuracy than the 

Newton iteration method. 

3) Steps for solving the maximum entropy OD reverse model based on particle swarm optimisation 

⎯ Step 1: Determining the objective function: the particle swarm optimisation algorithm cannot directly 

solve nonlinear equations, so preprocessing of Equation 13 is necessary. The purpose of solving the system 

of equations is to determine the values of the parameters 𝜆0, 𝜆1, ⋯ , 𝜆𝑚 when the function on the left side 

of the equation equals the value of the function on the right side. This transforms the objective function 

into the form shown in Equation 14. 

𝑚𝑖𝑛 𝑦 =

(

 
 
 
 

(

 
 
 
 (∑∑𝑒𝑥𝑝(−∑𝜆𝑎

𝑚

𝑎=1

𝑃𝑖𝑗
𝑎)

𝑛

𝑗=1

𝑛

𝑖=1

− 1)

2

+∑(∑∑𝑒𝑥𝑝(−𝜆0 −∑𝜆𝑎

𝑚

𝑎=1

𝑃𝑖𝑗
𝑎)

𝑛

𝑗=1

𝑛

𝑖=1

𝑃𝑖𝑗
𝑎 − 𝑉𝑎)

2
𝑚

𝑎=1 )

 
 
 
 

(𝑚 + 1)⁄

)

 
 
 
 

0.5

 (14) 

According to Equation 14, the closer the objective function is to 0, the closer the values on both sides of the 

nonlinear Equation 13 are, indicating that the determined parameters 𝜆0, 𝜆1,⋯ , 𝜆𝑚 are closer to the actual values. 

⎯ Step 2: Obtaining the traffic volume and allocation matrix for road segments: the traffic volume for road 

segments is obtained through actual surveys, and the allocation matrix 𝑃𝑖𝑗
𝑎  is obtained using traffic flow 

allocation methods. 

⎯ Step 3: Randomly initialise the particle swarm: randomly initialise the population, with the parameters to 

be determined as 𝜆0, 𝜆1,⋯ , 𝜆𝑚, making the dimension of each particle m+1. During the initialisation of 

the population, N vectors of dimension m+1 are generated as the initial positions of the particles and the 

initial velocities of the particles. 

⎯ Step 4: Calculation of the particle fitness value: the goal of this section is to find the values of the 

parameters 𝜆0, 𝜆1,⋯ , 𝜆𝑚 that correspond to the minimum y value. Equation 10 is used as the fitness function 

for this purpose. 

⎯ Step 5: Update the particle’s individual best vector 𝑃𝑖 and the global best vector 𝑃𝑔: the update of the 

individual best vector 𝑃𝑖 and the global best vector 𝑃𝑔 is done as described in the previous section. 

⎯ Step 6: Update the particle’s velocity and position. The methods for updating particle velocity and position 

are detailed in references [35, 37]. 

⎯ Step 7: Termination criterion: repeatedly execute Steps 4 to 6, setting the number of iterations based on 

the convergence curve to determine and output the values of parameters 𝜆0, 𝜆1,⋯ , 𝜆𝑚 that correspond to 

the minimum y value. 

⎯ Step 8: Calculation of the OD matrix: the parameters 𝜆0, 𝜆1,⋯ , 𝜆𝑚 obtained are substituted into Equation 

12 along with the allocation matrix to calculate the OD matrix. 

4. OPTIMISED RANDOM USER EQUILIBRIUM ALLOCATION MODEL  

A stochastic user equilibrium assignment model based on path-length-corrected logit was developed. 

Through theoretical proof, it was demonstrated that the stochastic user equilibrium assignment model with 

path-length correction is equivalent to the path choice model. The model was formulated using path traffic 

flow as the variable, and the path-length-corrected logit stochastic user equilibrium assignment model was 

solved using a genetic algorithm. 
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4.1 Path length-corrected logit path choice model 

Traditional deterministic allocation models assume that road users are fully aware of the actual road 

conditions. However, in practice, road users often do not have complete information about the road conditions, 

which can lead to discrepancies between deterministic models and real-world conditions. To make the model 

more consistent with actual road conditions, this study proposes a random user equilibrium model based on a 

path length-corrected logit model. Traditional random allocation methods use the logit model to determine the 

probability of each path being chosen, with the main calculation method shown in Equation 15 [36] 

𝑝𝑘
𝑟𝑠 = 𝑒−𝜃⋅𝑐𝑘

𝑟𝑠
∑ 𝑒−𝜃⋅𝑐𝑙

𝑟𝑠

𝑙∈𝐾𝑟𝑠

⁄  (15) 

where −𝜃 ⋅ 𝑐𝑘
𝑟𝑠 represents the utility function in the logit model, and 𝑝𝑘

𝑟𝑠 denotes the probability of path k being 

chosen for the OD pair rs; 𝑐𝑘
𝑟𝑠 is the expected perceived travel cost for path k between rs (typically replaced 

by path travel time); 𝐾𝑟𝑠 represents the set of paths for the OD pair rs, and l denotes any path for the OD pair 

rs; 𝜃 is a positive dispersion coefficient parameter. 

From the model, it can be observed that the smaller the path travel time 𝑐𝑘
𝑟𝑠, the larger the probability 𝑝𝑘

𝑟𝑠 

of choosing that path, which aligns with real-world road conditions. However, traditional random allocation 

models’ utility functions only consider travel time’s effect on path choice. To address this, this study includes 

path length as a factor in the utility function and proposes a new path choice probability as follows: 

𝑝𝑘
𝑟𝑠 = 𝑒−𝜃⋅𝑐𝑘

𝑟𝑠−𝛾⋅𝑑𝑘
𝑟𝑠

∑ 𝑒−𝜃⋅𝑐𝑙
𝑟𝑠−𝛾⋅𝑑𝑙

𝑟𝑠

𝑙∈𝐾𝑟𝑠

⁄  (16) 

where 𝑑𝑘
𝑟𝑠 represents the distance of path k between the OD pair rs; 𝛾 is the estimated parameter that indicates 

the importance of path distance in the utility function. From the model, it can be seen that the smaller the path 

distance 𝑑𝑘
𝑟𝑠, the larger the probability 𝑝𝑘

𝑟𝑠 of choosing that path, which aligns with real-world road conditions. 

4.2 Construction of the path length-corrected logit random user equilibrium allocation model 

This study constructs the random user equilibrium model based on the path length-corrected logit model as 

shown in Equation 17: 

𝑚𝑖𝑛𝑍 =∑∫ 𝑡𝑎

𝑥𝑎

0𝑎

(𝑤)𝑑𝑤 + 1 𝜃⁄ ⋅∑∑𝑓𝑘
𝑟𝑠

𝑘𝑟𝑠

𝐼𝑛(𝑓𝑘
𝑟𝑠) + 𝑟 𝜃⁄ ⋅∑∑𝑑𝑘

𝑟𝑠 ⋅ 𝑓𝑘
𝑟𝑠

𝑘𝑟𝑠

 (17) 

∑𝑓𝑘
𝑟𝑠 = 𝑞𝑟𝑠

𝑘

 (18) 

𝑓𝑘
𝑟𝑠 ≥ 0 (19) 

𝑥𝑎 =∑∑∑𝑓𝑘
𝑟𝑠

𝑘𝑠𝑟

𝛿𝑎,𝑘
𝑟𝑠  (20) 

where 𝑓𝑘
𝑟𝑠 represents the flow on the k-th path between origin r and destination s in the OD pair. 𝑡𝛼() denotes 

the actual impedance of link a, the computational method is described in Step 8 of Section 4.3. 𝑞𝑟𝑠 indicates 

the traffic demand for the OD pair from origin r to destination s. 𝛿𝛼,𝑘
𝑟𝑠  is a 0-1 variable representing the 

relationship between the link and the path. If link a belongs to the k-th path of the OD pair from origin r to 

destination s, then 𝛿𝛼,𝑘
𝑟𝑠 =1; otherwise, 𝛿𝛼,𝑘

𝑟𝑠 =0. xa denotes the traffic volume on link a. 𝑑𝑘
𝑟𝑠 represents the 

distance of path k between OD pair rs. 𝛾 is the path parameter, and 𝜃 is a positive dispersion coefficient. 

Here, Equation 17 represents the objective function to be minimised; Equation 18 describes the relationship 

between path flow and OD demand; Equation 19 represents the non-negativity constraint on path flow; and 

Equation 20 defines the relationship between path flow and segment flow. 
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Theorem 1: The random user equilibrium flow allocation and path choice model based on the path length-

corrected logit model are equivalent, that is, 𝑝𝑘
𝑟𝑠 = 𝑒−𝜃⋅𝑐𝑘

𝑟𝑠−𝛾⋅𝑑𝑘
𝑟𝑠
∑ 𝑒−𝜃⋅𝑐𝑙

𝑟𝑠−𝛾⋅𝑑𝑙
𝑟𝑠

𝑙∈𝐾𝑟𝑠⁄ . 

Proof: Construct the Lagrangian function for Equation 17 as shown in Equation 21: 

𝐿 =∑∫ 𝑡𝑎

𝑥𝑎

0𝑎

(𝑤)𝑑𝑤 + 1 𝜃⁄ ⋅∑∑𝑓𝑘
𝑟𝑠

𝑘𝑟𝑠

𝐼𝑛(𝑓𝑘
𝑟𝑠) + 𝑟 𝜃⁄ ⋅∑∑𝑑𝑘

𝑟𝑠 ⋅ 𝑓𝑘
𝑟𝑠

𝑘𝑟𝑠

+∑𝜆𝑟𝑠
𝑟𝑠

(𝑞𝑟𝑠 −∑𝑓𝑘
𝑟𝑠

𝑘

) (21) 

where 𝜆𝑟𝑠 is the Lagrange multiplier for the constraint. Equation 21 satisfies the Kuhn-Tucker conditions, 

meaning that it meets 𝑓𝑘
𝑟𝑠 ⋅ 𝜕𝐿 𝜕⁄ 𝑓𝑘

𝑟𝑠 = 0 and 𝜕𝐿 𝜕⁄ 𝑓𝑘
𝑟𝑠 ≥ 0 conditions. From this, Equations 22 and 23 can be 

derived. 

𝑓𝑘
𝑟𝑠 ⋅ (𝐶𝑘

𝑟𝑠 + 1 𝜃⁄ ⋅ (𝐼𝑛(𝑓𝑘
𝑟𝑠) + 1) + 𝛾 𝜃⁄ ⋅ 𝑑𝑘

𝑟𝑠 − 𝜆𝑟𝑠) = 0 (22) 

𝐶𝑘
𝑟𝑠 + 1 𝜃⁄ ⋅ (𝐼𝑛(𝑓𝑘

𝑟𝑠) + 1) + 𝛾 𝜃⁄ ⋅ 𝑑𝑘
𝑟𝑠 − 𝜆𝑟𝑠 ≥ 0 (23) 

For each valid path k between the OD pair rs where 𝑓𝑘
𝑟𝑠 > 0, it follows that: 

𝐶𝑘
𝑟𝑠 + 1 𝜃⁄ ⋅ (𝐼𝑛(𝑓𝑘

𝑟𝑠) + 1) + 𝛾 𝜃⁄ ⋅ 𝑑𝑘
𝑟𝑠 − 𝜆𝑟𝑠 = 0 (24) 

Solving for 𝑓𝑘
𝑟𝑠 according to Equation 24 yields the following expression: 

𝑓𝑘
𝑟𝑠 = 𝑒𝜃𝜆𝑟𝑠−1 ⋅ 𝑒−𝜃𝑐𝑘

𝑟𝑠−𝑟𝑑𝑘
𝑟𝑠

 (25) 

Summing over all paths between the OD pairs in Equation 24 yields: 

∑𝑓𝑘
𝑟𝑠

𝑙

=∑𝑒𝜃𝜆𝑟𝑠−1 ⋅ 𝑒−𝜃𝑐𝑙
𝑟𝑠−𝛾𝑑𝑙

𝑟𝑠

𝑙

 (26) 

Based on Equations 25 and 26, the path choice probability for the path length-corrected logit model is given 

by the following expression. 

𝑝𝑘
𝑟𝑠 = 𝑓𝑘

𝑟𝑠 𝑞𝑟𝑠⁄ = 𝑒−𝜃𝑐𝑘
𝑟𝑠−𝑟𝑑𝑘

𝑟𝑠
∑𝑒−𝜃𝑐𝑙

𝑟𝑠−𝛾𝑑𝑙
𝑟𝑠

𝑙

⁄  (27) 

From Equation 17 and the proven result in Equation 27, it is demonstrated that the random user equilibrium 

flow allocation and path choice model based on the path length-corrected logit model are equivalent, thus 

proving the equivalence. 

4.3 Solving the random user equilibrium allocation model based on genetic algorithms 

⎯ Step 1: Determination of the objective function 

Substitute the road segment traffic volume calculation equation into the objective function, using path 

traffic volume as the variable. The modified objective function is given by Equation 28. 

𝑚𝑖𝑛𝑍 =∑∫ 𝑡𝑎

∑ ∑ ∑ 𝑓𝑘
𝑟𝑠

𝑘𝑠𝑟 𝛿𝑎,𝑘
𝑟𝑠

0𝑎

(𝑤)𝑑𝑤 + 1 𝜃⁄ ⋅∑∑𝑓𝑘
𝑟𝑠

𝑘𝑟𝑠

𝐼𝑛(𝑓𝑘
𝑟𝑠) + 𝛾 𝜃⁄ ⋅ 𝑑𝑘

𝑟𝑠 ⋅ 𝑓𝑘
𝑟𝑠 (28) 

⎯ Step 2: Determination of parameters related to the objective function 

Identify the length of each road segment in the network, the set of all paths between OD points, and the 

free-flow travel time and capacity of each road segment. 

⎯ Step 3: Chromosome encoding 

The variables in this study are the traffic volumes for each path. To facilitate operations such as selection, 

crossover and mutation, binary encoding is used. The accuracy of the encoding for each value, denoted as τ, 

can be determined using Equation 29 
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𝜏 =
𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛
2𝜛 − 1

 (29) 

where ϖ represents the encoding length of a binary number; 𝜎𝑚𝑖𝑛𝑚𝑎𝑥 indicates the range of the decimal values 

for the parameters to be determined. After converting the binary number to a decimal, multiplying by the 

encoding precision yields the decimal value represented in the genetic algorithm. 

⎯ Step 4: Initial population generation 

Create N initial populations at random, where the population size generally ranges from ω to 2ω. 

⎯ Step 5: Fitness calculation 

Calculate the fitness of each individual in the population. This is usually the objective function of the 

genetic algorithm, and the fitness function serves as the main criterion for “survival of the fittest”. An 

individual with higher fitness has a greater probability of being passed on to the next generation, while an 

individual with lower fitness has a lower probability of being inherited. The goal of this study is to find the 

traffic volumes for each path that minimise the objective function, as shown in Equation 28. 

– Step 6: Selection, crossover and mutation operations 

1) Individuals with higher fitness are generally given more opportunities to be passed on to the next 

generation. This study employs the Monte Carlo method to determine each individual’s survival 

probability, thereby establishing the connection between fitness and survival likelihood. The Monte Carlo 

method acts as a bridge between fitness and survival probability, with the calculation provided in Equation 

30 

𝑃𝑗 =
𝑓𝑗

∑ 𝑓𝑖
𝑁
𝑖=1

𝑗 = 1,2,⋅⋅⋅, 𝑁 (30) 

where 𝑃𝑗 represents the survival probability of the j-th individual, 𝑓𝑗 denotes the fitness function value of the 

j-th individual, and N is the number of individuals in the population. 

2) Crossover: crossover refers to the operation of replacing and recombining parts of two parent individuals 

to generate new individuals. The crossover operator plays a core role in genetic algorithms. To reduce the 

time complexity of the crossover process, single-point crossover is used, with a crossover probability 

typically ranging from 0.4 to 0.99. The specific process for crossover is as follows. For any two adjacent 

individuals, first determine whether crossover will occur based on probability. If crossover does not occur, 

the two individuals remain unchanged; if crossover does occur, select a crossover point and exchange the 

encoding beyond that point. 

3) Mutation: mutation entails altering gene values at specific locations within individual strings in the 

population to preserve genetic diversity and avoid the algorithm becoming trapped in local optima. The 

mutation probability, pm, generally ranges between 0.0001 and 0.1. The mutation process typically 

involves selecting individuals for mutation based on probability, identifying mutation points on these 

individuals and flipping the gene values – changing 1 to 0 and vice versa. 

⎯ Step 7: Termination criteria 

Repeatedly perform fitness calculation, selection, crossover and mutation operations until a satisfactory 

solution is obtained or the pre-set number of iterations T is reached. Output the path traffic volumes 

corresponding to the minimum objective function value. 

⎯ Step 8:  Output of path traffic volumes 

Output the traffic volumes for each path after allocation. Use Equation 20 to calculate the traffic volumes for 

each road segment. Based on the segment traffic volumes and using the BPR function, determine the road 

segment travel times. The BPR function, developed by the U.S. Federal Highway Administration, is shown 

below. Compare the traffic volumes and travel times before and after allocation to verify the effectiveness of 

the traffic flow distribution proposed in this study. To ensure that the BPR function accurately reflects the real 

road conditions in Huai’an, the parameters 𝑎 and 𝛽 in Equation 31 were calibrated according to the method in 

reference [37], resulting in the new BPR function as shown in the following Equation 32 

𝑡/𝑡0 = 1 + 𝑎(𝑄 𝐶⁄ )𝛽 (31) 

𝑡/𝑡0 = 1 + 0.3915(𝑄 𝐶⁄ )1.1515 (32) 
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where t is the road segment travel time and denotes the actual impedance, 𝑡0is the free-flow travel time of the 

segment (the road travel time with no other vehicles affecting it), Q is the traffic volume of the segment, and 

C is the capacity of the segment; and 𝑎 and 𝛽 are for undetermined parameters. 

5. HUAI’AN ROAD NETWORK INCLUDING EXPRESSWAY CONSTRUCTION ZONES 

The rapid road construction area in Huai’an City was analysed. The study area of the road network was 

determined based on the construction sections, and the traffic volume on the road network links was surveyed. 

The traffic capacity of each link was calculated, and the OD matrix was obtained using the maximum entropy-

based OD estimation model. Finally, the OD matrix was assigned, and the road traffic parameters before and 

after the assignment were compared. 

5.1 Selection of the road network including construction zones regarding the traffic volume 

The construction of expressways can significantly impact the travel of residents in the surrounding areas. 

This chapter selects the road network enclosed by the construction sections of the Huai’an expressway to study 

the traffic conditions within this network. The construction road network is illustrated in Figure 1. 

 
Figure 1 – Selection of construction road network and road conditions 

According to Figure 1, the construction area includes Huanghe Road, Ninglian Road, Xi’an Road and Yan’an 

Road. Based on field surveys, among these construction sections, only Yan’an East Road (between Huaihai 

South Road and Chengde South Road) has traffic capacity. Other construction sections are either completely 

closed or partially closed. The partially closed roads are in poor condition and have essentially lost their traffic 

capacity. Fully closed sections are represented by blue lines, and partially closed sections by red lines. 

This study does not consider sections that have lost their traffic capacity and primarily focuses on the 

distribution of traffic flow across the road network, including the construction area. The network comprises 29 

major nodes and 37 road sections, considering only one-way traffic. Green lines represent primary roads, and 

yellow lines represent secondary roads. Basic road segment information is shown in Table 1, and the network 

topology is illustrated in Figure 2. The survey was conducted on 13 March 2019, from 17:00 to 18:00, covering 

the evening peak period. Traffic volume data for various vehicle types on all 37 road sections were collected, 

as shown in Figure 3. 
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Table 1 – Road segment information in the network 

Road 

section 

number 

Road section 

name 
Road section location 

Number of lanes 

(one-way) 

Road 

length 

(km) 

Transportation form 

1 
Beijing North 

Road 

Huanghe Road - Health 

Road 
Two lanes 1.26 separating motor and non-motor 

2 
Huaihai North 

Road 

Huanghe Road - Health 

Road 
Three lanes 1.35 separating motor and non-motor 

3 
Chengde North 

Road 

Huanghe Road - Health 

Road 
Two lanes 1.44 separating motor and non-motor 

4 
Xiangyu North 

Road 

Huanghe Road - Health 

Road 
Two lanes 1.58 separating motor and non-motor 

5 
Healthy West 

Road 

Xi'an Road - Beijing 

Road 
Two lanes 0.72 separating motor and non-motor 

6 
Healthy West 

Road 

Beijing Road- Huaihai 

Road 
Two lanes 1.05 separating motor and non-motor 

7 Healthy East Road 
Huaihai Road Chengde 

Road 
Two lanes 1.09 separating motor and non-motor 

8 Healthy East Road 
Chengde Road-Xiangyu 

Road 
Two lanes 1.03 separating motor and non-motor 

9 
Beijing North 

Road 

Health Road - Huaihai 

Road 
Two lanes 1.65 separating motor and non-motor 

10 
Huaihai North 

Road 

Health Road - Huaihai 

Road 
Three lanes 1.42 separating motor and non-motor 

11 
Chengde North 

Road 

Health Road - Huaihai 

Road 
Two lanes 0.826 separating motor and non-motor 

12 
Xiangyu North 

Road 

Health Road - Huaihai 

Road 
Three lanes 0.464 separating motor and non-motor 

13 
Nanchang North 

Road 

Huanghe Road -

Shuidukou Road 
Two lanes 1.89 separating motor and non-motor 

14 
Huaihai West 

Road 

Xi'an Road - Beijing 

Road 
Two lanes 0.664 separating motor and non-motor 

15 
Huaihai West 

Road 

Beijing Road-Huaihai 

Road 
Two lanes 1.56 separating motor and non-motor 

16 Huaihai East Road 
Huaihai Road-Chengde 

Road 
Three lanes 0.964 separating motor and non-motor 

17 Huaihai East Road 
Chengde Road-Xiangyu 

Road 
Three lanes 0.850 separating motor and non-motor 

18 Shuidukou Road 
Xiangyu Road-Nanchang 

Road 
Two lanes 1.82 separating motor and non-motor 

19 Shuidukou Road 
Nanchang Road -Hefei 

Road 
Two lanes 1.15 separating motor and non-motor 

20 Shuidukou Road 
Hefei Road-Ninglian 

Road 
Two lanes 1.36 separating motor and non-motor 

21 
Beijing North 

Road 

Huaihai Road-Jiefang 

Road 
Two lanes 1.87 separating motor and non-motor 

22 
Huaihai South 

Road 

Huaihai Road-Jiefang 

Road 
Three lanes 1.95 separating motor and non-motor 

23 
Chengde South 

Road 

Huaihai Road-Jiefang 

Road 
Two lanes 2.36 separating motor and non-motor 

24 Xiangyu Road 
Huaihai Road-Jiefang 

Road 
Four lanes 2.5 separating motor and non-motor 
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Road 

section 

number 

Road section 

name 
Road section location 

Number of lanes 

(one-way) 

Road 

length 

(km) 

Transportation form 

25 Nanchang Road 
Shuidukou Road - 

Shenzhen Road 
Two lanes 1.3 separating motor and non-motor 

26 Hefei Road 
Shuidukou Road - 

Shenzhen Road 
Three lanes 1.23 separating motor and non-motor 

27 Jiefang West Road 
Beijing Road -Huaihai 

Road 
Two lanes 1.73 separating motor and non-motor 

28 Jiefang East Road 
Huaihai Road- Chengde 

Road 
Two lanes 0.9 separating motor and non-motor 

29 
Jiefang East Road 

+ Tianjin Road 

Chengde Road -Xiangyu 

Road 
Two lanes 1.99 separating motor and non-motor 

30 Shenzhen Road 
Xiangyu Road -

Nanchang Road 
Two lanes 0.99 separating motor and non-motor 

31 Shenzhen Road 
Nanchang Road- Hefei 

Road 
Three lanes 1.15 separating motor and non-motor 

32 Shenzhen Road 
Hefei Road -Ninglian 

Road 
Two lanes 1.53 separating motor and non-motor 

33 
Beijing South 

Road 

Jiefang Road-Yan'an 

Road 
Two lanes 0.568 separating motor and non-motor 

34 
Huaihai South 

Road 

Jiefang Road-Yan'an 

Road 
Three lanes 0.682 separating motor and non-motor 

35 
Chengde South 

Road 

Jiefang Road-Yan'an 

Road 
Three lanes 0.712 separating motor and non-motor 

36 Tianjin Road 
Jiefang Road-Yan'an 

Road 
Two lanes 0.754 separating motor and non-motor 

37 Yan'an East Road 
Huaihai Road- Chengde 

Road 
One lane 0.81 mixed traffic 

 

 
Figure 2 – Network topology diagram 
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Figure 3 – Traffic volume data by vehicle type for each road section during the evening peak period 

It is known that various vehicle types are present on the roads. To reduce the complexity of the assignment 

model and standardise the processing of traffic volume data, it is necessary to convert the above vehicle types 

into standard vehicle types to obtain the equivalent standard vehicle count for each road section. The 

conversion factors are determined based on the road occupancy level of each vehicle type. The specific 

conversion standards are shown in Table 2. 

Table 2 – Traffic volume survey vehicle classification and vehicle conversion factor (TRB 2010) 

Classification Load capacity Conversion factor Vehicle type 

Motor 

vehicle 

Truck 

Small truck Loading ≤ 2 tons 1.0 Small 

Medium truck 2 tons < Loading ≤ 7 tons 1.5 Medium 

Large truck 7 tons < Loading ≤ 14 tons 2.0 Large 

Extra-large truck Loading＞14 tons 3.0 N/A 

Trailers, 

container truck 
 3.0 N/A 

Bus 

Minibus Number of seats ≤ 19 seats 1.0 Small 

Large bus Number of seats＞19 seats 1.5 Medium 

Motorcycle  0.5 N/A 

 

The surveyed road sections are located in urban areas and do not include vehicles such as large trucks, 

trailers or container trucks. The table provides three vehicle categories: small vehicles, medium vehicles and 

large vehicles, along with their corresponding conversion factors. Using the traffic volume data for each 

vehicle type obtained from Figure 3 and calculating based on the formula below, the total traffic volume data 

for each road section are shown in Figure 4. 

𝑄total = 𝑄𝑠𝑚𝑎𝑙𝑙 + 𝜌 ∙ 𝑄𝑚𝑒𝑑𝑖𝑢𝑚 + 𝜇 ∙ 𝑄𝑙𝑎𝑟𝑔𝑒 (33) 

where 𝑄total is the total traffic volume, ρ is the conversion factor for medium-sized vehicles (1.5 has been 

applied), μ is the conversion factor for large vehicles, which is taken as 2 for this study, 𝑄𝑠𝑚𝑎𝑙𝑙 is the traffic 

volume of standard cars, 𝑄𝑚𝑒𝑑𝑖𝑢𝑚 is the traffic volume of medium-sized vehicles, and 𝑄𝑙𝑎𝑟𝑔𝑒 is the traffic 

volume of large vehicles. 
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Figure 4 – Traffic volume data for road segments during the evening peak hour 

According to Figures 1, 2 and the actual road network conditions, nodes 1, 2, 3, 4 and 5 are located on 

Huanghe Road, which is fully closed, and there are no road segments connecting the construction points. Nodes 

6 and 11 are located on Xi’an Road, which is partially closed with minimal vehicle traffic. The traffic between 

Node 6 and Node 11 primarily consists of local residents traveling to and from their homes and does not serve 

the function of a main road. The traffic volume is relatively low, so it is determined that Node 6 and Node 11 

are not connected. Nodes 18 and 25 are located on Ninglian Highway, which is fully closed, with no road 

segments connecting the construction points. Nodes 26, 27, 28 and 29 are located on Yan’an Road; apart from 

the connection between nodes 27 and 28, other nodes are not connected. Conditions with partially semi-

enclosed traffic volumes are as shown in Figure 5. 

 
(a) 

 
(b) 

Figure 5 – Partial semi-enclosed road condition: a) Xi’an Road conditions; b) Yan’an Road conditions (excluding the section 

between Huaihai South Road and Chengde South Road) 

This study uses nodes 1, 2, 3, 4, 5, 6 and 11 as the starting points, and nodes 18, 25, 26, 27, 28 and 29 as 

the endpoints, considering only unidirectional traffic. There are 32 effective OD pairs, with a total of 152 valid 

paths between the OD pairs. The traffic volumes for each segment before allocation are shown in Figure 4. 

Using the step-by-step point selection method, the 9 segments to be surveyed are identified as segments 1, 

12, 19, 21, 22, 23, 32, 36 and 37. The peak hour traffic volumes for these 9 segments are shown in Table 3. In 

the OD estimation and traffic flow distribution, the segment impedance function uses Equation 31. The free-flow 

travel time for each segment is shown in Figure 6. 



Promet – Traffic&Transportation. 2025;37(5):1354-1375.  Engineering and Infrastructure  

1369 

Table 3 – Segment traffic volumes survey 

 
Segment number 

1 12 19 21 22 23 32 36 37 

Volume 

(pcu/h) 
720 1158 760 930 1020 750 815 800 355 

 

 
Figure 6 – Free-flow travel time for each segment 

5.2 Calculation of traffic capacity for road sections within the network 

To determine the traffic capacity of each road section, urban road sections are categorised into construction 

and non-construction sections. The traffic capacity of non-construction sections is primarily influenced by 

factors such as the number of lanes, lane width, proportion of non-motorised vehicles, proportion of large 

vehicles, intersection spacing and the number of intersections. 

For construction sections, in addition to the above factors, roadwork also reduces road capacity. The 

influencing factors include the type of lane closures, the length of the construction area and the speed limit 

within the construction zone. 

These influencing factors can be quantified using VISSIM simulation software. The traffic capacity of road 

sections can then be calculated based on a multiplicative adjustment method, as shown in the equations below 

[38]. 

Formula for calculating traffic capacity of non-construction sections 

The traffic capacity of urban non-construction road sections is calculated using Equation 34 

𝑁𝑎 = 𝑁0 ⋅ 𝑓𝑊 ⋅ 𝑓𝐶 ⋅ 𝑓𝑍 ⋅ 𝑓𝐻𝑉 (34) 

where 𝑁𝑎  represents the actual capacity of the road, 𝑁0  represents the basic capacity of the road (pcu/h), 

determined by the impact of intersection spacing on the road segment’s capacity, 𝑓𝑊 represents the reduction 

factor for lane width, 𝑓𝐶 represents the reduction factor for intersections, 𝑓𝑍 represents the reduction factor for 

non-motorised vehicles on the road segments, and 𝑓𝐻𝑉 represents the reduction factor for heavy vehicles in the 

work zone. 

Calculation formula for traffic capacity of construction sections 

The traffic capacity of urban construction sections is calculated using Equation 35 

𝑁𝑎 = 𝑁0 ⋅ 𝑓𝑊 ⋅ 𝑓𝐶 ⋅ 𝑓𝑍 ⋅ 𝑓𝐻𝑉 ⋅ 𝑓𝑉 ⋅ 𝑓𝐿 (35) 

where 𝑓𝑉 represents the reduction factor for speed limits in the work zone, and 𝑓𝐿 represents the reduction 

factor for the length of the construction zone. 
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Taking Yan’an East Road between Huaihai South Road and Chengde South Road as an example, Yan’an 

East Road is a construction section. According to the method described in the literature [38], the basic traffic 

capacity of a two-lane road with one lane closed is 1,430 pcu/h. The reduction factor for lane width is 75%, 

the reduction factor for non-motorised vehicles is 80%, the reduction factor for the proportion of heavy vehicles 

is 96%, the reduction factor for speed limits in the construction zone is 92%, and the reduction factor for the 

length of the construction zone is 99%. Substituting these factors into Equation 35, the calculated traffic capacity 

of Yan’an East Road is 750 pcu/h. The results for other road segments are shown in Figure 7. 

 
Figure 7 – Segment capacity 

5.3 Calculation of the OD estimation matrix and analysis of the OD assignment results 

First, set the initial demand for 32 OD pairs to 100 pcu/h. Use the incremental allocation method to 

sequentially allocate the traffic across the 152 valid paths between the OD points, resulting in traffic allocation 

outcomes 𝑇𝑖𝑗, where i and j represent the rows and columns of the allocation results, respectively. Calculate 

the proportion based on the traffic flow allocation results and Equation 2 to obtain the allocation matrix 𝑃𝑖𝑗
𝑎 . 

Using the step-by-step point selection method, select the 9 segments with the most significant information and 

survey their peak hour traffic volumes. Form a new allocation matrix 𝑃𝑖𝑗
𝑎  by including the rows from the 

incremental allocation method matrix for segments 1, 12, 19, 21, 22, 23, 32, 36 and 37. Use the survey traffic 

volumes and the allocation matrix 𝑃𝑖𝑗
𝑎  to determine the undetermined parameter values with the maximum 

entropy OD estimation model, as shown in Table 4. The estimated OD results based on these parameters are 

shown in Table 5. 

Table 4 – Parameter values 

Parameter 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 𝜆7 𝜆8 𝜆9 𝜆0 

Values 0.17 -0.314 2.945 1.63 2.694 0.643 1.774 2.385 -0.75 -7.24 

Table 5 – Parameter values 

Number OD point OD estimation result Number OD point OD estimation result 

1 1-18 62 17 4-25 98 

2 1-25 85 18 4-29 129 

3 1-26 231 19 5-18 74 

4 1-27 80 20 5-25 73 

5 1-28 154 21 6-18 74 

6 1-29 109 22 6-25 177 

7 2-18 74 23 6-26 274 
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Number OD point OD estimation result Number OD point OD estimation result 

8 2-25 132 24 6-27 95 

9 2-27 95 25 6-28 148 

10 2-28 138 26 6-29 129 

11 2-29 129 27 11-18 101 

12 3-18 74 28 11-25 153 

13 3-25 98 29 11-26 375 

14 3-28 735 30 11-27 144 

15 3-29 129 31 11-28 210 

16 4-18 74 32 11-29 176 

 

Use the path-length-corrected logit random user equilibrium model to allocate traffic flow for the 32 OD 

pairs mentioned above. In the logit model, set the parameter θ to 2 and γ to 1. The allocated traffic for each 

path is shown in Figure 8. The traffic volume, average impedance and total vehicle travel time for each segment 

before and after allocation are shown in Figure 8. 

 
Figure 8 – Traffic volumes for each path after network allocation 

 
Figure 9 – Traffic volume for each segment before and after allocation 



Promet – Traffic&Transportation. 2025;37(5):1354-1375.  Engineering and Infrastructure  

1372 

 
Figure 10 – Average impedance for each segment before and after allocation 

 
Figure 10 – Total travel time for each segment before and after allocation 

According to Figure 9, there are significant changes in traffic volume for each segment before and after 

allocation, but the total traffic volume across all segments does not vary much. Specifically, traffic volumes 

on segments 3, 4, 6, 7, 8, 9, 11, 12, 13, 15, 18, 19, 20, 22, 24, 25, 26, 27, 30 and 37 show a notable decrease; 

traffic volumes on segments 1, 10, 21, 28, 29, 32 and 36 remain relatively unchanged; while traffic volumes 

on other segments show a significant increase. Overall, the changes in traffic volume after allocation are mainly 

influenced by the combined effect of free-flow impedance. Segments with smaller free-flow impedance and 

higher capacity receive more traffic, whereas segments with larger free-flow impedance have their traffic 

redirected to other segments. 

According to Figure 10, the average impedance for each segment before and after allocation remains 

relatively stable. This is because the traffic volume on each segment is less than its capacity, meaning that 

changes in traffic volume have a minimal impact on travel time when the volume is below capacity. According 

to Equation 31, this study only considers the effect of segment traffic volume on travel time, so the changes in 

average impedance before and after allocation are consistent with the changes in traffic volume as shown in 

Figure 9. Specifically, for the same segment, a higher traffic volume leads to longer travel time, and a lower 

traffic volume leads to shorter travel time, approaching free-flow travel time. 

Figure 11 shows the total travel time for each segment, calculated as the product of traffic volume and average 

impedance. The objective of this study is to reduce the overall network travel time. From Figure 11, it can be 

seen that for some segments, the total travel time increased after allocation, while for others, it decreased. 

However, the total travel time for segments 9, 13, 15 and 18 showed a notable reduction before allocation. 

This indicates that traffic flow allocation significantly alleviated congestion in these segments. The total 
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network travel time before allocation was 4,050,327.517 seconds, while after allocation it was 3,478,967.635 

seconds, representing a 14.11% reduction. This suggests that the optimised traffic flow allocation method can 

improve traffic conditions during peak hours in construction areas. 

6. CONCLUSION 

In the study of traffic flow allocation for construction zone networks, many scholars have developed a 

substantial body of research. Building on previous studies, this study proposes an OD estimation model without 

a priori matrices. Based on the original OD matrix obtained through OD estimation, a random user equilibrium 

allocation model with path length correction logit is used for allocation research. Taking the road network in 

Huai’an City, which includes a construction zone on a freeway, as a case study, the results show that the overall 

network travel time was reduced by 14.11%, indicating that the random user equilibrium allocation model with 

path length correction logit can decrease vehicle travel time across the network. 

However, some limitations of this study need to be acknowledged, and improvements can be made through 

more comprehensive work. The road travel time in the traffic flow allocation used the BPR function proposed 

by the American Highway Administration. Since the conditions of urban road segments in the U.S. differ 

significantly from those in China, although parameters were recalibrated, the study only considered the impact 

of segment traffic volume on travel time. Future research will focus on optimising the impedance function 

based on actual road conditions and incorporating more influencing factors into the impedance function 

calculation. Additionally, to reduce computational complexity, this study used the average impedance during 

peak hours as the average travel time for segments. However, traffic volumes change rapidly during peak 

hours, and traffic conditions vary significantly across different time periods, leading to substantial changes in 

travel time. Future studies will need to conduct traffic volume surveys by time periods and use appropriate 

mathematical methods to determine the segment impedance during peak hours, making the allocation results 

more aligned with actual conditions. 
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