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ABSTRACT 

In the context of diagnosis related groups (DRG) payment systems, hospitals are facing dual 

pressures of controlling medical costs and improving service quality. The supply, processing 

and distribution (SPD) process of medical consumables is an important component of 

hospital operations, and optimising this supply chain can help achieve cost savings and 

efficiency improvements. This article proposed a medical consumables SPD supply chain 

optimisation model based on mixed integer programming (MIP), aiming to optimise the 

procurement, inventory and transportation strategies of medical consumables through 

scientific decision-making methods. The model construction comprehensively considered 

the cost control requirements and various constraints under the DRG system, including 

demand fulfilment, inventory capacity, supplier supply capacity and logistics transportation 

capacity. By using the solver CPLEX to solve the model, the results showed that the 

optimised supply chain strategy could significantly reduce total costs while improving supply 

chain service levels, with a demand fulfilment rate of up to 97%. The research in this article 

provides an effective optimisation tool for hospitals’ medical consumables supply chain 

management under the DRG payment system, with significant theoretical significance and 

practical application value. 
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1. INTRODUCTION 

As the healthcare industry focuses on cost control and quality of service, hospitals are facing increasing 

challenges in their operations, especially in the supply, processing and distribution (SPD) of medical 

consumables [1, 2]. Conventional SPD supply chain management for medical consumables [3, 4] relies on 

empirical and intuitive decision-making methods, and suffers from insufficient and inaccurate data as well as 

modelling complexity, which not only affects supply chain efficiency and cost control but also makes it 

difficult for hospitals to formulate scientific and effective strategies to cope with changing demands and cost 

pressures. Supply chain management in hospitals is facing new challenges due to the application of diagnosis-

related group (DRG) payment systems [5, 6]. These systems provide fixed reimbursement for each patient in 

a hospital on a case-by-case basis, requiring hospitals to control healthcare costs and provide high-quality 

services. Conventional optimisation methods cannot cope with these complex problems because of the demand 

for medical consumables and the higher requirements of supply chain management. 

To address the aforementioned issues, a medical consumables SPD supply chain optimisation model based 

on mixed integer programming (MIP) [7, 8] is proposed. Specifically, this article incorporates considerations 
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of reimbursement policies and performance indicators in the model construction to ensure compliance with the 

DRG system’s cost control and expense reimbursement requirements while optimising the supply chain 

strategy. The model not only considers the cost control demand under the DRG payment system but also 

considers various constraints in the supply chain [9, 10], such as demand fulfilment, inventory capacity, 

supplier’s supply capacity and logistics and transportation capacity. By solving the model, this article aims to 

achieve the optimal strategy for medical consumables procurement, inventory and transportation, reduce total 

costs, improve supply chain efficiency, and ensure maximum service level and resource utilisation of hospitals 

under the DRG system. The construction of the model is detailed, involving decision variables, objective 

functions and constraints. Additionally, the methods for solving the model and the experimental results are 

discussed, along with an analysis of the model’s effectiveness and practical significance in reducing costs and 

improving service levels. Finally, the research findings are summarised, and prospects for future research 

directions are proposed. 

2. RELATED WORK 

 In the field of medical consumables supply chain management, research mainly focuses on optimising 

inventory management [11, 12], procurement strategies [13, 14] and logistics distribution [15, 16]. Traditional 

methods such as linear programming [17, 18], dynamic programming [19, 20] and heuristic algorithms [21, 

22] have been widely applied and achieved results. However, with the increasing complexity of the medical 

environment, such as the application of DRG payment systems, hospitals are facing new challenges in 

controlling costs and improving service quality. The DRG system controls medical expenses through unified 

payment standards, improving resource utilisation efficiency, but at the same time, it also increases the 

difficulty of supply chain optimisation. To address these challenges, researchers have begun exploring more 

advanced optimisation methods. Liu Wei et al. [23] evaluated the effectiveness of SPD-based medical 

consumables management methods in reducing management costs, solving management problems and 

improving consumables information traceability capabilities through literature review and questionnaire 

surveys. The results showed that it was superior to traditional models. Chen Jingtao et al. [24] developed a 

medical device information management system based on C# and SQL Server databases, which improved 

management efficiency and reduced loss and return rates. Zhang Lei et al. [25] further constructed a full 

process supervision system for medical consumables by integrating advanced technologies such as QR (quick 

response) codes, barcodes and chip scanning, achieving intelligent management and cost monitoring, and 

ensuring the safe, reliable and low-cost use of medical consumables. 

In recent years, significant progress has been made in inventory management, procurement strategies and 

logistics distribution in the supply chain management of medical consumables. In addition to traditional linear 

programming and dynamic programming methods, inventory management has begun to incorporate more 

advanced optimisation techniques [26, 27] and data-driven strategies, such as inventory prediction models 

based on machine learning algorithms, which can accurately predict demand fluctuations and reduce inventory 

backlog and shortage risks. At the same time, the secondary warehouse management system for medical low-

value consumables in SPD mode optimises inventory distribution through intelligent allocation, improving 

turnover and response speed [28, 29]. The procurement strategy is transitioning towards multi-objective 

optimisation [30, 31] and supply chain collaboration. The multi-objective decision support system 

comprehensively considers cost, quality and supplier reliability to ensure the scientific and comprehensive 

nature of procurement decisions [32, 33]. In addition, the SPD-based full process precise management mode 

enhances the transparency and traceability of the procurement process, improves efficiency and reduces 

management costs. As a key link, logistics distribution is also highly valued for optimisation. Researchers have 

conducted in-depth optimisation of the joint distribution path of medical consumables under SPD mode [34, 

35] and achieved more efficient logistics distribution strategies by constructing a multi-vehicle multi-objective 

model. 

With the development of technology, MIP has gradually become an important tool for supply chain 

optimisation. Maimaiti Hailili [36] and Yu Guoqing et al. [37] respectively used Gurobi software and the MIP 

model for supply chain optimisation, verifying their effectiveness and feasibility. Particularly, the study of Yu 

Guoqing et al. maximised the overall benefit by constructing a multi-link supply chain optimisation model, 

showing the potential of MIP in the overall optimisation of the supply chain. Although some studies have 

introduced machine learning algorithms to predict demand fluctuations or transform procurement strategies to 

multi-objective optimisation, they have not effectively combined the characteristics of the DRG system, 
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resulting in limited applicability of existing models in practice. To address this gap, the current study proposed 

a medical consumables supply chain optimisation model based on mixed integer programming, aiming to 

scientifically solve problems such as insufficient data, high model complexity and insufficient consideration 

of the impact of the DRG system. 

3. MODEL CONSTRUCTION 

The construction of the MIP model is an important component of optimising the supply chain for medical 

consumables SPD. The MIP model is employed to optimise the procurement, inventory management and 

distribution strategies of medical consumables, aiming to achieve cost control and service level optimisation 

within the DRG payment system. In the SPD supply chain management of medical consumables, the 

challenges and complexities are constantly increasing, especially in the context of DRG payment systems. The 

DRG payment system forces hospitals to operate efficiently within strict budget constraints by providing fixed 

payments for different diseases and treatment processes. Therefore, the optimisation of the SPD supply chain 

for medical consumables is particularly important. 

3.1 Problem definition 

Supply chain structure and process 

The supply chain structure of medical consumables is complex, covering the entire process from supplier 

raw material procurement to final distribution in various departments of the hospital, including the three core 

links of SPD, as shown in Figure 1. Suppliers are responsible for producing, inspecting and initially distributing 

consumables to the hospital’s warehouse or distribution centre. The selection and procurement decisions at 

this stage directly affect subsequent management. The warehouse receives, inspects, classifies and stores 

consumables and conducts quality inspections, label processing and special storage according to demand while 

implementing systematic inventory management to balance supply and demand. Subsequently, consumables 

are delivered to various departments of the hospital through an efficient and accurate delivery process, ensuring 

the quality and efficiency of medical services. The entire supply chain needs to coordinate various links, use 

information technology to improve management efficiency and respond to changes in demand, especially 

under the DRG payment system. Optimising management is particularly crucial for hospital cost control and 

service quality assurance. 

 
Figure 1 –  Supply chain structure 

Optimisation objectives 

The optimisation objectives mainly include minimising the total cost and improving the service level, as 

shown in Table 1. The minimisation of total cost is the main optimisation objective, covering all relevant cost 

components in the supply chain. The total cost usually includes procurement costs, inventory holding costs 

and transportation costs. The procurement cost includes purchasing medical consumables from suppliers, 

which is influenced by the procurement volume, supplier pricing strategy and negotiation ability. The 

inventory holding cost includes storing medical consumables in the warehouse, which includes storage costs, 

insurance costs and the cost of expired or damaged inventory. By reducing these costs, the entire supply chain 

can be more economical. 
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In addition to minimising the total cost, one of the optimisation goals is to maximise the service level. The 

maximisation of service level involves multiple aspects, among which the most important are inventory 

availability and order fulfilment rate. The order fulfilment rate is the proportion of hospital orders completed 

within a specified time frame, which reflects the response speed and efficiency of the supply chain. Inventory 

availability refers to the quantity of medical consumables available in the warehouse to ensure the timely 

fulfilment of the hospital’s needs. Optimising service levels not only helps improve hospital satisfaction but 

also reduces operational risks caused by stockouts or delayed deliveries. By improving service levels, hospitals 

can ensure timely access to necessary medical consumables, thereby improving the quality and efficiency of 

medical services. 

Table 1 – Optimisation objectives table 

Constraints 

The setting of constraints involves ensuring that the medical consumables supply chain is feasible in 

practical operations and meets various business needs and limitations. The main constraints include demand 

fulfilment, inventory capacity, supplier supply capability and logistics transportation capability. These 

conditions not only ensure the normal operation of various links in the supply chain but also ensure the 

feasibility of the model in reality. The specific expressions and symbolic representations of each constraint 

condition are shown in Table 2. 

Table 2 –  Constraints 

Constraint Definition 
Mathematical 

expression 
Symbol definition 

Demand fulfilment 

constraint 
Satisfy hospital demand 𝑥𝑗𝑘 − 𝐷𝑘 ≥ 0 

𝑥𝑗𝑘: Shipment quantity from warehouse 𝑗 to 

hospital 𝑘 

𝐷𝑘: Demand of hospital 𝑘 

Inventory capacity 

constraint 

Inventory does not exceed 

warehouse capacity 
𝐼𝑗 − 𝐶𝑗 ≤ 0 

𝐼𝑗: Inventory level in warehouse 𝑗 

𝐶𝑗: Maximum storage capacity of warehouse 𝑗 

Supplier capacity 

constraint 

Supply does not exceed 

supplier capacity 
𝑦ij − 𝑆𝑖 ≤ 0 

𝑦ij: Procurement quantity from supplier 𝑖 to 

warehouse j 

𝑆𝑖: Maximum capacity of supplier 𝑖 

Transportation capacity 

constraint 

Transportation does not 

exceed warehouse capacity 
𝑥𝑗𝑘 − 𝑇𝑗 ≤ 0 

𝑇𝑗: Maximum transportation capacity of 

warehouse 𝑗 

 

Table 2 shows the mathematical expressions and definitions of related symbols for each constraint condition. 

Requirement satisfaction constraints ensure that the needs of each hospital are met, thereby avoiding situations 

of insufficient supply; inventory capacity constraints prevent warehouse inventory from exceeding its storage 

capacity; supplier supply capacity constraints ensure that suppliers do not exceed their supply capacity; the 

logistics transportation capacity constraint ensures that the transportation volume is within the warehouse’s 

capacity range. Non-negative constraints ensure that all decision variables are non-negative values to maintain 

the logical consistency and operability of the model. 

Optimisation objective Key element Specifics Strategies 

Total cost min. 

Procurement cost Cost of supplies from supp 
Centralised purchasing, negotiation, 

long-term partnerships 

Inventory cost Storage, insurance, wastage Lean management, inventory systems 

Transportation cost Delivery costs Optimise routes, mode selection, sharing 

Service level 

enhancement 

Order fulfilment Timely order completion Automate processing, rapid response 

Inventory avail. Stock levels for demand 
Real-time monitoring, safety stock, 

multi-source suppliers 
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3.2 Decision variables 

In the optimisation model of the medical consumables supply chain, the setting of decision variables is 

crucial to ensure the feasibility and effectiveness of the model. These decision variables include purchase 

quantity, inventory quantity, transportation quantity, temporary demand quantity and emergency purchase 

quantity. Table 3 summarises these decision variables and their related constraints. 

Table 3 –  Decision variables 

Decision variable Definition Symbol Constraint 

Purchase quantity Quantity purchased from supplier 𝑖 to warehouse 𝑗 𝑥𝑖𝑗  ∑ 𝑥𝑖𝑗 ≤ 𝑆𝑖

𝑗

 

Inventory level Quantity of medical supplies stored in warehouse 𝑗 𝐼𝑗  

𝐼𝑗 ≤ 𝐶𝑗 

𝐼𝑗 = ∑ 𝑥𝑖𝑗

𝑖

− ∑ 𝑦𝑗𝑘

𝑘

 

Transportation volume Quantity transported from warehouse 𝑗 to hospital 𝑘 𝑦𝑗𝑘 ∑ 𝑦𝑗𝑘 ≥ 𝐷𝑘 + 𝑧𝑘

𝑗

 

Temporary demand Unexpected demand from hospital 𝑘 𝑧𝑘 - 

Emergency purchase Additional purchase from supplier 𝑖 to warehouse 𝑗 in emergencies 𝑥𝑖𝑗
′ ′ - 

 

The purchase quantity represents the purchase quantity from the supplier to the warehouse. Its optimisation 

not only affects inventory levels and distribution plans but also reduces total costs and ensures the timely 

satisfaction of hospital needs while also meeting the maximum supply capacity limit of suppliers. The 

inventory level represents the medical consumables inventory in the warehouse, which directly affects the 

inventory holding cost and supply chain service level. The inventory level must be within the capacity of the 

warehouse and balance the demand for consumables purchased from suppliers and transportation to hospitals. 

The transportation volume variable determines the total weight of goods from the warehouse to the hospital. 

Optimising transportation volume can reduce delivery costs and ensure that hospital needs, including sudden 

demands, are met. Temporary demand is used to describe the hospital’s sudden demand to respond to 

emergency situations and ensure supply chain flexibility. Emergency purchase quantity refers to the quantity 

of additional goods purchased from suppliers to warehouses in emergency situations, which is used to respond 

to unexpected situations in the supply chain in order to quickly meet demand in emergency situations. The 

emergency purchase quantity cannot exceed the remaining supply capacity of the supplier. 

3.3 Objective function 

In the optimisation model of the medical consumables supply chain, the core task of the objective function 

is to minimise the total cost. The objective function integrates procurement costs, inventory holding costs and 

transportation costs to achieve cost control and benefit optimisation. Its basic form can be expressed as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑍 = ∑
𝑖

∑
𝑗

𝑐𝑖𝑗𝑥𝑖𝑗 + ∑
𝑗

ℎ𝑗𝐼𝑗 + ∑
𝑗

∑
𝑘

𝑡𝑗𝑘𝑦𝑗𝑘 (1) 

Among them, Z  represents the total cost. The procurement cost cij  is the unit procurement cost; the 

inventory holding cost hj is the unit inventory cost; the transportation cost tjk is the unit transportation cost. 

The calculation formula for the procurement cost: 

Procurement cost= ∑
𝑖

∑
𝑗

𝑐𝑖𝑗𝑥𝑖𝑗               (2) 

Among them, cij is the unit procurement cost, and xij is the procurement quantity. 

The calculation formula for the inventory holding cost: 

𝑆𝑡𝑜𝑐𝑘ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = ∑
𝑗

ℎ𝑗𝐼𝑗         (3) 

Among them, hj is the unit inventory holding cost, and Ij is the inventory quantity. 
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The formula for calculating transportation costs: 

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 = ∑
𝑗

∑
𝑘

𝑡𝑗𝑘
y  𝑗𝑘                  (4) 

Among them, tjk is the unit transportation cost, and y  jk  is the transportation volume. 

In considering the impact of the DRG system, the objective function needs to take into account both cost 

control and expense reimbursement requirements. Since the DRG system has strict standards for controlling 

healthcare costs, the model must not only reduce procurement, inventory and transportation costs but must 

also ensure compliance with cost control requirements under the DRG system, including cost control, expense 

reimbursement policies and performance metrics. These combined considerations can help improve the overall 

performance of the supply chain. 

4. MODEL SOLVING 

4.1 Data collection and processing 

Data source 

The data sources for the SPD supply chain optimisation model of medical consumables are extensive. These 

data come from hospital information systems, supplier cooperation data, market analysis reports and medical 

insurance systems, covering the period from January 2022 to December 2023, ensuring the timeliness and 

coverage of the data. Table 4 provides a detailed list of the composition, sources and main uses of the dataset, 

providing a solid foundation for model construction and optimisation. 

Table 4 –  Dataset composition 

Data type Description Source Time frame 

Hospital data 

Demand history Usage records of medical supplies Hospital system 

Jan 2022 – 

Dec 2023 

Procurement data Purchase quantities and costs Procurement dept. 

Inventory data Stock levels and holding costs Warehouse system 

Transportation data Supply transport records and costs Logistics system 

Market data 

Supplier capacity Supplier capabilities and historical supply data Supplier partnerships 

Jan 2022 – 

Dec 2023 
Market prices Medical supplies market prices Market reports 

Logistics capacity Transport capacity and costs Logistics providers 

DRG data 

Cost standards DRG-related cost standards Healthcare system 

Jan 2022 – 

Dec 2023 
Reimbursement policies DRG reimbursement rates and conditions Healthcare system 

DRG group data Disease classifications and DRG groups Hospital system 

Data processing 

In data processing, statistical methods (box plots) and data analysis tools are employed for data cleaning, 

removing outliers, duplicate values and erroneous records to ensure data quality. Subsequently, multiple 

sources of data are merged into a unified format and logically consistent dataset using data integration 

techniques, with a focus on temporal consistency to avoid computational errors. Finally, the programming 

language Python is used for data format conversion to meet the requirements of the solver, and the conversion 

process strictly ensures the integrity and accuracy of the data. 

To visually demonstrate the impact of outlier handling on data quality, box plots before and after outlier 

handling are presented, as shown in Figure 2. The left box plot shows the data distribution before outlier 

processing, with some data points deviating from the box range, indicating the presence of outliers. These 
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outliers may mislead subsequent analyses and affect the accuracy of the model. The box plot on the right shows 

the distribution of processed data, with outliers removed and data points concentrated within the box. This 

indicates that data cleaning effectively improves the quality and consistency of the data, providing a reliable 

foundation for model construction. 
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Figure 2 – Display of outlier handling 

The impact of assumptions in data collection and processing 

When constructing a medical consumables SPD supply chain optimisation model based on mixed integer 

programming (MIP), assumptions made during data collection and processing become key factors that have a 

potential impact on the accuracy of the model results. Assuming data integrity means that all data from hospital 

information systems, supplier cooperation, market analysis and medical insurance systems are complete and 

not missing. However, in practice, incomplete data may occur due to system failures, losses or recording errors, 

which can affect the completeness of model inputs and the accuracy of final results. At the same time, data 

accuracy is also an important assumption. Although it is assumed that the collected data truly reflect the 

demand, procurement, inventory and transportation of consumables, the presence of errors or outliers may 

mislead the model analysis and reduce optimisation efficiency. In addition, the assumption of data timeliness 

cannot be ignored. We analysed the data from January 2022 to December 2023 and believe that it can represent 

future trends. However, the dynamic changes in the market environment may prevent historical data from fully 

reflecting the true situation in the future, thereby affecting the predictive ability of the model. 

4.2 Solution methods 

Selection of solver 

The research utilises IBM ILOG CPLEX Optimisation Studio as the solver. CPLEX is a widely used 

optimisation tool in the industry, specifically designed to address large-scale linear programming, integer 

programming and mixed integer programming problems [38-39]. Its main advantages include powerful solving 

ability, high efficiency and stability in handling large-scale problems. In addition, CPLEX has flexible 

interfaces that support multiple programming languages and integrated development environments, making it 

easy to integrate with practical application systems. 

Solution process 

In the process of using CPLEX to solve the optimisation model of the medical consumables supply chain, 

the entire solving process is shown in Figure 3. When using CPLEX for solving, the study accurately inputs the 

decision variables, objective function and constraints of the model into CPLEX through the Python API 

(application programming interface). The decision variables are set to non-negative integers to ensure practical 

significance, and the objective function is defined as minimising the total cost, covering procurement, 

inventory and transportation costs. The constraints include demand fulfilment, inventory capacity and 

transportation capacity limitations. Afterwards, the solver parameters are optimised to improve the solution 

efficiency and accuracy. A solution time limit of 3,600 seconds is also set, and the RINS (relaxation induced 

neighbourhood search) heuristic algorithm [40] is enabled to speed up the initial solution. A relative error limit 

of 0.01 and an absolute error limit of 0.001 are also set to ensure the accuracy of the results. During the solution 
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process, CPLEX uses advanced algorithms such as branch-and-bound and interior-point methods for iterative 

optimisation to monitor the changes of objective function values and constraints in real time. At the same time, 

the solution parameters are adjusted as necessary to avoid falling into local optimal solutions. Finally, after 

multiple iterations and parameter tuning, CPLEX returns the optimal solution and verifies the results to ensure 

that it meets the actual requirements. By further verifying the robustness of the solution through sensitivity 

analysis, the optimised results provide scientific support for the hospital’s medical consumables procurement, 

inventory management and logistics arrangements, meeting the requirements of the DRG system. 

Model Input

Define 
Constraints

Set Objective 
Function

Define Decision 
Variables

Configure CPLEX Solver 
Parameters

Set Time 
Limit:3600 

seconds

Enable RINS 
Heuristic 

Algorithm

Set Relative 
Tolerance:0.01

Set Absolute 

Tolerance：

0.001

Run CPLEX to Solve 
Model

Iterative Optimisation

Monitor Objective 
Function Value and 

Constraints

Adjust Parameters 

and Optimise 
Solution

CPLEX Returns 
Optimal Solution

Result Validation and 
Sensitivity Analysis

 
Figure 3 –  CPLEX solving process 

Based on the model solution results, formulate procurement, inventory and transportation strategies, and 

adjust the strategies according to actual operational conditions. This includes determining monthly purchase 

quantities, inventory levels and transportation routes. 

4.3 Experimental design and methods 

Experimental design 

The performance of the medical consumables SPD supply chain optimisation model based on mixed integer 

programming under DRG background is tested by accurately setting conditions. The core of the experiment is 

to build an environment that reflects the actual medical consumables supply chain and improve the overall 

efficiency of the supply chain through optimising the model. The experimental objective is to evaluate the 

model’s ability to control total costs, optimise inventory management and improve service levels. To this end, 

multiple experimental scenarios are set up and simulated using real data, and the optimisation effects of the 

models are compared. 

Table 5 – Demand quantity 

Medical supply Average demand (per day) Demand fluctuation range Procurement cycle (days) 

Medical dressings 487 dressings/day 437-537 dressings/day 3 days 

Syringes 311 syringes/day 281-341 syringes/day 2 days 

Medicines 204 doses/day 184-224 doses/day 5 days 

Gloves 394 pairs/day 354-434 pairs/day 4 days 
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Table 5 shows the daily average demand, demand fluctuation range, safety stock level and procurement cycle 

of medical consumables involved in the experiment. By selecting commonly used consumables such as 

medical dressings, syringes, medicines and gloves, data can comprehensively reflect the demand situation in 

actual medical operations. These four items were chosen due to their high usage frequency and critical role in 

patient care, ensuring that the demand data provide a practical basis for optimising the model to accurately 

reflect the hospital’s actual needs. 

Table 6 – Suppliers 

Supplier A B C 

Medical dressings price (yuan/dressing) 1.20 1.15 1.35 

Syringes price (yuan/syringe) 0.80 0.78 0.87 

Medicines price (yuan/dose) 2.50 2.45 2.65 

Medical dressings supply capacity (dressings/month) 10,000 12,200 8,500 

Syringes supply capacity (syringes/month) 6,000 7,200 5,200 

Medicines supply capacity (doses/month) 4,000 4,600 3,200 

 

Table 6 lists the quoted prices of the three main suppliers and their supply capacity. Supplier price and 

availability data are critical to the optimisation model because these factors directly affect purchasing decisions 

and supply chain costs. By comparing supplier quotes and delivery capabilities, sourcing strategies can be 

optimised to reduce overall costs and ensure supply chain stability. 

Table 7 – Transport vehicles 

Vehicle Maximum load (tons) 
Daily transportation 

capacity (km) 

Transportation cost 

(yuan/km/ton) 

A 12 520 105 

B 16 610 100 

C 18 470 125 

D 22 540 115 

 

Table 7 presents information on the maximum capacity of the trucks, the daily transportation capacity and 

the transportation costs. Transportation costs are a key factor affecting the total cost of the supply chain, and 

data on the capacity of the trucks are useful for assessing the cost and efficiency of different transportation 

conditions. Therefore, these data are essential for optimising transportation scheduling and cost control. 

Table 8 – Inventory of medical consumables 

Medical supply Maximum inventory (units) Minimum inventory (units) Holding cost (yuan/unit/month) 

Medical dressings 1,050 dressings 220 dressings 0.55 yuan/dressing/month 

Syringes 1,050 syringes 210 syringes 0.52 yuan/syringe/month 

Medicines 1,020 doses 220 doses 0.48 yuan/dose/month 

Surgical masks 520 masks 110 masks 0.32 yuan/mask/month 

 

Table 8 shows the maximum and minimum inventory levels for each medical consumable, as well as the 

holding cost per unit of inventory. These data are used to evaluate the effectiveness of inventory management 

and optimise the practical application of strategies. By setting inventory limits and holding costs, inventory 

levels can be optimised to balance holding costs and supply risks. 
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To comprehensively evaluate the performance and adaptability of the optimised model, the experimental 

scenarios established for this study include baseline scenarios and multiple changing scenarios. The baseline 

scenario represents the supply chain situation under standard operating conditions. In this scenario, the 

demand, supplier quotes and transportation costs remain unchanged, providing a baseline reference point for 

evaluating the performance of the optimisation model under normal conditions. The demand fluctuation 

scenario simulates the demand changes in the actual environment. The experimental scenario data for demand 

quantity are shown in Figure 4. During peak demand periods, the demand for medical dressings increases by 

20% to 585 units per day; the demand for syringes increases by 15% to 358 units per day; the demand for 

medicines increases by 10% to 225 units per day. During the low demand period, the demand decreases by 

15%, 10% and 5%, respectively. This scenario is used to test the adaptability and robustness of the model in 

the face of demand fluctuations. 
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Figure 4 – Experimental scenario of demand quantity 

The impact of changes in supplier quotes and supply capabilities on optimisation results is tested in the 

scenario of supplier changes, as shown in Figure 5. In the baseline scenario, Supplier A quotes 1.20 yuan/unit 

for medical dressings, 0.80 yuan/unit for syringes and 2.50 yuan/unit for medicines, with corresponding supply 

capacities of 10,000 units/month, 6,000 units/month and 4,000 units/month, respectively. In this scenario, 

Supplier A’s quotation is adjusted to 1.21 yuan/unit for medical dressings, 0.88 yuan/unit for syringes and 2.75 

yuan/unit for medicines. At the same time, the supply capacity is also adjusted. The supply capacity of medical 

dressings is adjusted to 8,330 units/month, syringes to 4,930 units/month and medicines to 3,230 units/month. 
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Figure 5  – Supplier experimental scenario 

The scenario of inventory capacity adjustment leads to changes in inventory capacity. The maximum 

inventory level has increased from 1050 to 1100 units, while the minimum inventory level has decreased to 

190 from 195 units. The purpose of this adjustment is to evaluate the performance of the model when inventory 

capacity changes to ensure that the model remains effective under various inventory constraints. The scenario 

of transportation cost changes simulates the increase in transportation costs, raising them from 105 to 110 

yuan/kilometre/ton. This scenario is used to evaluate the impact of changes in transportation costs on logistics 

strategies and total costs. How the model adjusts during fluctuations in transportation costs is also tested. 
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During the experiment, the MIP solver CPLEX is used to input the model and data, perform the optimisation 

process and record the results of each experimental scenario, including indicators such as total cost, inventory 

level and service level. The variables in the procurement cost formula include purchase unit price, purchase 

quantity and possible discounts or preferential conditions. These variables collectively determine the hospital’s 

procurement cost. In practice, the procurement unit price is usually determined through market inquiry or 

bidding methods. The procurement quantity is adjusted according to the actual needs and inventory strategy 

of the hospital. Discounts or preferential conditions may be provided by suppliers or linked to the purchase 

quantity. By using models, the optimisation effects in different scenarios are evaluated, and the advantages 

and disadvantages of the optimisation scheme are compared with traditional methods. 

Experimental methods 

Experiments are conducted to run optimisation algorithms using an MIP solver to determine the optimal 

policy for various scenarios. First, six months’ worth of procurement data are collected and organised, 

including transportation costs, inventory levels, purchase quantities and procurement quantities of each 

material. Based on these data, the input parameters of the optimisation model are constructed, which aim to 

reduce the total cost and maintain a reasonable inventory level. The study takes into account multiple factors, 

such as supplier reputation, product quality, on-time delivery, price competitiveness and after-sales service. 

By comprehensively evaluating these factors, we selected representative suppliers that meet the hospital’s 

needs as model inputs. Based on these inputs, the optimisation algorithm then calculates the types and 

quantities of materials that should be purchased each month. The optimisation algorithm also takes into account 

transportation costs and inventory holding costs to ensure that demand is met while minimising costs. During 

the optimisation process, the algorithm also takes into account changes in circumstances, such as changes in 

supplier quotations, fluctuations in demand and adjustments in inventory capacity. After running the model, 

the algorithm outputs specific procurement plans, inventory levels and transportation arrangements. 

The study takes into account multiple performance indicators, such as total cost, demand fulfilment rate, 

maximum inventory and minimum inventory, to ensure that the optimised supply chain strategy can enhance 

economic efficiency while meeting the hospital’s service quality requirements. The total cost includes 

procurement, inventory holding and transportation expenses. These data are summarised through optimisation 

models, and their effectiveness in reducing costs is evaluated; a lower total cost indicates good resource 

allocation and cost control; a high satisfaction rate indicates that the model can effectively meet demand, while 

a low satisfaction rate indicates insufficient supply. The inventory shortage rate displays the frequency of 

unmet demand due to insufficient inventory. A low shortage rate indicates good inventory management, while 

a high shortage rate indicates management issues. Inventory management analysis uses average, maximum 

and minimum inventory levels to evaluate the performance of the model in controlling inventory backlog and 

maintaining reasonable inventory levels. Reasonable inventory levels and low inventory backlog indicate the 

effectiveness of the model; excessive or insufficient inventory may lead to low management efficiency or a 

decline in service level. 

To verify the stability of the model, a sensitivity analysis is conducted by adjusting key parameters such as 

demand fluctuations, transportation costs and inventory capacity. Changes in the results are observed, and their 

sensitivity and robustness to parameter changes are evaluated. If the performance remains good under different 

conditions, it indicates that the model has robustness, and a significant decrease indicates high sensitivity. 

5. RESULTS 

5.1 Optimisation effect evaluation 

Cost 

The experimental results are shown in Figure 6, and the optimised model significantly reduces the total cost. 

Before the optimisation implementation, the total cost was relatively high, mainly due to higher procurement 

and inventory holding costs. After optimisation, these costs are significantly reduced, especially the significant 

decrease in procurement costs, demonstrating the effectiveness of the model in resource utilisation and cost 

control. The transportation cost remains unchanged, indicating that optimisation is mainly focused on 

procurement and inventory management. The line graph of the total cost clearly shows a significant decrease 

after optimisation, further verifying the optimisation effect of the model. 
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Comparison of Cost Components and Total Costs
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Figure 6  – Cost analysis 

Service level improvement 

The improvement of service level is measured by two indicators: demand fulfilment rate and inventory 

shortage rate. From Figure 7, it can be seen that the demand fulfilment rate has generally improved after 

optimisation, especially reaching 96%, 96% and 97% in the second, fourth and fifth months, respectively, 

while the lowest value before optimisation was 84%. The inventory shortage rate significantly decreased after 

optimisation, especially dropping to 3% in the fifth month. A lower inventory shortage rate and a higher 

demand fulfilment rate are of great significance in the medical supply chain. A low inventory shortage rate 

indicates that medical supplies can be supplied in a timely manner, reducing treatment delays or interruptions 

caused by shortages and ensuring timely treatment and care for patients. A higher demand fulfilment rate 

indicates that supply chain management can effectively predict and meet actual demand, reducing the waste 

of medical resources caused by insufficient supply. 
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Figure 7 – Service level 
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Improvement of inventory level 

Comparison of Inventory Management Levels
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Figure 8  – Inventory management level 

A regional chart is utilised to compare and analyse the maximum and minimum inventory of the hospital’s 

stock warehouse over a six-month period, as illustrated in Figure 8. Within the six months after optimisation, 

the overall inventory level shows a downward trend, especially with a significant decrease in the maximum 

inventory level, indicating that the implementation of optimisation algorithms effectively reduces inventory 

holdings and inventory costs. In addition, the optimised minimum inventory level also slightly decreases, 

indicating that while reducing inventory backlog, the accuracy of inventory management has been improved. 

Overall, the optimisation strategy has successfully reduced the total cost while ensuring the efficiency of 

inventory management and the stability of the supply chain. 

5.2 Model sensitivity 

In order to verify the stability and adaptability of the model, this paper conducted a detailed sensitivity 

analysis, particularly considering the dynamics of the healthcare market and supply chain. By adjusting key 

parameters such as demand fluctuations, transportation costs and inventory capacity, this article observed the 

changes in model results and evaluated their sensitivity and robustness to parameter changes. In Figure 9, under 

standard operating conditions, the total cost of the baseline scenario is 5 million. The total cost of demand 

fluctuation scenarios increases to 5.2 million. The total cost of the supplier change scenario is the highest, 

reaching 5.4 million, mainly due to the increase in supplier quotations and the decrease in supply capacity, 

resulting in an overall increase in procurement and transportation costs. The total cost of the inventory capacity 

adjustment scenario is 5.1 million, indicating that the model can effectively adjust when inventory capacity 

changes. The total cost of the transportation cost change scenario is 5.3 million, indicating the impact of 

increased transportation costs on overall logistics costs. The demand satisfaction rate of the supplier change 

scenario is the highest, reaching 96%, indicating that the model can better meet the demand when dealing with 

changes in supplier conditions. The demand fulfilment rates for both the baseline scenario and the demand 

fluctuation scenario are 95%, indicating the stability of the model under both normal and demand fluctuation 

conditions. The demand fulfilment rate of inventory capacity adjustment and transportation cost change 

scenarios is 94%, slightly lower than other scenarios, which may be due to the impact of inventory adjustment 

and transportation cost increase on demand fulfilment rate. When demand fluctuates, the model maintains a 

high demand satisfaction rate by adjusting procurement quantities and inventory levels, thereby ensuring the 

stable operation of the supply chain. In the scenario of supplier change, the model can quickly identify and 

optimise new supplier combinations to reduce costs and improve service levels. Inventory capacity adjustment 

demonstrates the flexibility of the model in responding to changes in inventory constraints by adjusting 

inventory strategies to balance costs and service levels. Changes in transportation costs directly affect logistics 

strategies, and the model reduces transportation costs by optimising transportation routes and batches. 

Hospitals should establish a diversified supplier system, reduce reliance on a single supplier, and strengthen 

supplier evaluation and negotiation to strive for more favourable procurement prices and supply conditions. 

Hospitals should scientifically set inventory upper and lower limits based on actual demand and market 

forecasts to avoid inventory backlog and stockouts. Meanwhile, adopting advanced inventory management 

systems and lean management strategies can further improve inventory turnover and reduce inventory costs. 

As transportation costs increase, the total cost also increases accordingly. Therefore, hospitals should optimise 

their logistics transportation network, choose more cost-effective transportation methods and partners to 
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reduce transportation costs. In summary, the sensitivity analysis results show the changes in total costs under 

different scenarios and the management implications behind them. Hospital managers should closely monitor 

changes in key factors such as market demand, supplier dynamics, inventory capacity and transportation costs, 

and develop flexible operational decisions and management strategies accordingly. 
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Figure 9 – Sensitivity analysis of the model 

The time and memory consumption required for model solving in different experimental scenarios were 

recorded using IBM ILOG CPLEX Optimisation Studio as the solver. Specifically, under standard operating 

conditions (i.e. baseline scenario), the model solution time is approximately 5 minutes, and the memory usage 

is 133 MB. In complex scenarios such as demand fluctuations, supplier changes, inventory capacity 

adjustments and transportation cost changes, the solution time has increased, but it is within an acceptable 

range, and the memory usage remains stable. These analyses indicate that despite the high complexity of MIP 

models, they can still be effectively solved and applied to the optimisation of actual medical consumables SPD 

supply chains with reasonable computing resources. 

The medical consumables SPD supply chain optimisation model based on mixed integer programming 

(MIP) significantly reduces total costs and improves service levels in the context of DRG payment systems. 

To comprehensively evaluate its advantages, comparisons with other optimisation methods are explored. The 

genetic algorithm (GA), a heuristic search algorithm, is well-suited for addressing complex, large-scale and 

nonlinear problems. It has high flexibility and does not require precise mathematical models but may face 

premature convergence and speed issues, and the quality of results is affected by the initial population and 

genetic operations. On the other hand, machine learning methods, especially deep learning, utilise big data to 

predict demand and optimise strategies in supply chain management but rely on large amounts of historical 

data and lack explicit mathematical models in the decision-making process, which affects precise control and 

transparency. In contrast, the mixed integer programming method employed here combines the accuracy of 

linear programming with the discreteness of integer programming, effectively handling complex constraints 

while ensuring scientific and accurate decision-making. This approach offers a valuable tool for optimising 

the supply chain of medical consumables in the SPD process. 

6. CONCLUSIONS 

The research has established an optimised medical consumables supply chain model using MIP, leading to 

cost savings and service improvements. To further refine the model’s scalability and efficiency, we plan to 

incorporate advanced MIP techniques and metaheuristic methods. Decomposition algorithms and multi-

objective optimisation are considered, with the former simplifying complex problems into smaller, more 

manageable sub-problems and the latter balancing multiple objectives to achieve comprehensive optimisation. 

In the context of the medical SPD supply chain, MIP can integrate with decomposition algorithms to address 

procurement, inventory and transportation sub-problems individually, then synthesise solutions through 

coordination mechanisms. Additionally, multi-objective optimisation could consider factors like cost, service 

levels, inventory levels and supply chain agility to meet hospital needs. 
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This MIP-based model addresses cost control and service levels by considering various factors, yet it faces 

limitations in demand and supplier capacity forecasting. To enhance prediction accuracy, we propose 

integrating machine learning techniques like SVM, random forests or deep learning models. These algorithms 

can process large datasets, identify complex patterns and adjust predictions in real time, improving demand 

forecasting and aiding in the development of procurement and inventory plans. Supplier capabilities 

significantly impact supply chain stability. Traditional models struggle with the uncertainties and complexities 

of supplier reliability. Machine learning can construct a prediction model to analyse real-time production data 

and historical records, dynamically assessing supplier capabilities and risks, thus ensuring supply chain 

continuity and stability. 

A medical consumables SPD supply chain optimisation model based on mixed integer programming (MIP) 

has been successfully developed in the context of DRG. This model significantly reduced the total cost of the 

medical consumables supply chain and effectively improved service levels by deeply considering cost control 

requirements and various constraints. The model achieved the optimisation of various links in the supply chain 

by finely managing key decision variables such as procurement volume, inventory level and transportation 

volume. The experimental results showed that the model performed well in dealing with complex scenarios 

such as demand fluctuations, supplier changes and transportation cost changes, ensuring the stability and 

efficient operation of the supply chain. Although the mixed integer programming model proposed in this study 

has achieved significant results in optimising the supply chain of medical consumables SPD, there are still data 

limitations and room for further research. The current model mainly relies on internal hospital system data, 

which limits its data volume and quality to a certain extent. To overcome this limitation, future research can 

explore the integration of more external data sources, such as market dynamics, policy changes, etc., to enhance 

the universality and accuracy of the model. In addition, models that can adaptively adjust to the complex and 

ever-changing medical environment should be developed. In addition, with the continuous development of 

technology, it is also possible to consider integrating emerging technologies such as artificial intelligence and 

big data into models to further enhance the intelligence level and decision support capabilities of supply chain 

management. 
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王涛，陈玉俊 

DRG背景下基于混合整数规划的医疗耗材 SPD供应链优化模型 

摘要 

在诊断相关组（DRG）支付体系的背景下，医院正面临控制医疗成本与提升服务质

量的双重压力。医疗耗材的供应、处理与分发（SPD）流程是医院运营的重要组成部

分，优化这一供应链可帮助实现成本节约与效率提升。本文基于混合整数规划（IP

）提出了一种医疗耗材 SPD 供应链优化模型，旨在通过科学方法优化医疗耗材的采

购、库存及运输策略，从而提升供应链整体效率。本文提出了一种基于混合整数规

划（IP）的医疗耗材 SPD供应链优化模型，旨在通过科学决策方法优化医疗耗材的

采购、库存和运输策略。该模型构建综合考虑了 DRG 系统下的成本控制要求及各类

约束条件，包括需求满足、库存容量、供应商供货能力及物流运输能力。模型构建

全面考虑了 DRG 系统下的成本控制要求及各类约束条件，包括需求满足率、库存容

量、供应商供货能力及物流运输能力。通过 CPLEX 求解器对模型进行求解，结果显

示优化后的供应链策略可显著降低总成本并提升供应链服务水平，需求满足率最高

可达 97%。本文研究为 DRG 支付体系下医院医疗耗材供应链管理提供了有效的优化

工具，具有重要的理论意义和实践应用价值。本文研究为医院在 DRG 支付系统下医

疗耗材供应链管理提供了有效的优化工具，具有重要的理论意义和实践应用价值。 
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