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ABSTRACT 

In port environments, container stacking at significant heights obstructs satellite signal 

reception by terminal equipment on container trucks, leading to inaccurate positional tracking 

data. To address this, it is necessary to predict container truck trajectories to fill in the 

inaccurate positioning signals. In this study, we collected port container truck trajectory data 

and compared the predictive performance of long short-term memory (LSTM) networks and 

transformer models, revealing performance turning points at different prediction steps. Based 

on these findings, we propose a hybrid model named CT-HybridNet, which integrates the 

LSTM-based DeepPBM-M model with the transformer-based PatchTST model. Given the 

independence of the prediction errors of the two models, we assume both errors follow a 

Gaussian distribution. By performing an affine transformation, the proposed hybrid method’s 

output also follows a Gaussian distribution. Additionally, an adaptive parameter adjustment 

mechanism optimises performance, enabling CT-HybridNet to achieve dual improvements 

in trajectory prediction accuracy and stability, with 15% improvement in short-term accuracy 

and 20% in long-term performance. This study provides a more accurate and stable technical 

solution for port container truck trajectory prediction, overcoming issues related to 

positioning inaccuracies and signal obstructions. 
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1. INTRODUCTION 

Ports play a crucial role in the global supply chain network, as their operational efficiency directly 

influences the cost and effectiveness of logistics. Consequently, enhancing automation in port operations, 

especially in container vehicle scheduling and management, has become a key industry trend [1]. However, 

advancing this transformation requires overcoming numerous challenges, including the reliance of port central 

dispatch systems on Global Navigation Satellite System (GNSS) signals for vehicle monitoring, which are 

susceptible to signal loss and interference. This vulnerability necessitates the adoption of trajectory prediction 

technologies to compensate for signal loss, making improved prediction accuracy a primary challenge [2, 3]. 

The dynamic and complex port environments demand models that can accurately capture the nonlinear 

behaviour of vehicle movements. Additionally, physical obstructions within ports, such as stacked containers, 

often interfere with satellite signal reception for terminal devices on container trucks, resulting in inaccuracies 

in position tracking data. To mitigate these issues, short-term prediction models are employed to correct signal 

interruptions and ensure precise tracking. 
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Long-term prediction models, on the other hand, focus on forecasting vehicle positions over extended 

timeframes, which is crucial for collision prevention and optimising container operations. Given the inherent 

randomness of vehicle movements over longer periods, these models often face challenges with predictive 

accuracy, which has made them less common in research. Nevertheless, in dynamic port environments, long-

term trajectory prediction is essential for anticipating container truck movements, enabling effective 

operational planning and minimising the impact of GNSS signal interruptions [4]. 

Trajectory prediction models typically treat each inference unit as a series of positions. This method aims 

to comprehensively understand the vehicle’s motion patterns. However, most existing studies have only 

examined the predictive performance of fixed-length trajectory segments, which may not suffice to represent 

the trajectory of the various vehicle movements in the real world. 

With the advent of deep learning, neural network-based trajectory prediction models, especially LSTM 

networks and transformer models, have increasingly gained attention [5]. LSTM networks, known for their 

excellent capability in processing time-series data, have been widely applied in trajectory prediction.  

This study aims to improve the trajectory prediction performance of port trucks under both short-term and 

long-term prediction steps. The main contributions are listed as follows:   

1) Discovery of performance turning points: This study performs an in-depth analysis of two mainstream 

trajectory prediction models – the LSTM model and the transformer model – finding performance turning 

points at various prediction steps. 

2) Adaptive fusion strategies for predictive modelling: In this study, the output of prediction models is 

considered as random variables that follow a normal distribution, and probability theory is integrated with 

adaptive adjusting techniques to implement a novel model fusion strategy. This method can more 

effectively integrate the performance advantages of different models under each prediction step size, 

thereby obtaining better performance in complex prediction tasks. Moreover, this adaptive fusion strategy 

is not only applicable to the two models integrated in this paper but also suitable for all models exhibiting 

performance inflection points. 

3) CT-HybridNet model: A new hybrid model, CT-HybridNet, is proposed, which combines the LSTM-based 

DeepPBM-M model with the transformer-based PatchTST model. This innovative structure effectively 

captures both short-term and long-term temporal dependencies in port container truck trajectory data, 

offering significant enhancements to the trajectory prediction performance at each step size.  

In the subsequent sections of this article, the structure of the paper will be presented. The development 

status of kinematic models, LSTM networks and transformer models in recent years are reviewed next. A 

detailed introduction of the integrated DeepPBM-M and PatchTST models, including improvements, and a 

discussion on the architecture and optimisation strategies of the hybrid model CT-HybridNet is provided 

thereafter. The dataset is collected, and the predictive performance is described through specific experiments, 

comparing different models in the following section. The analysis of the experimental results and their 

theoretical significance will be thoroughly explored later. The findings of the research are summarised, and 

their significance for future applications in port logistics is discussed in the final section. 

2. RELATED WORK 

Trajectory prediction is an important research topic that involves the technology of predicting the positional 

changes of moving entities over a certain period. With the increasing demand for automation transformation 

applications, research related to trajectory prediction is continuously deepening and expanding. This section 

will review the relevant work in the field of trajectory prediction, with a particular focus on the development 

of kinematic models, LSTM and transformer models in this field. 

2.1 Kinematic models 

Initially, traditional vehicle modelling commonly employed kinematic models. Kinematic models focus on 

the motion state of vehicles, such as position, velocity and acceleration. Lin et al. [6] enhanced the accuracy 

of trajectory prediction through the numerical integration of a linearised two-degree-of-freedom car model. 

Polychronopoulos et al. [7] developed a hierarchical prediction model capable of integrating real traffic 

conditions with the kinematic model of the ego vehicle, improving the adaptability to different traffic scenarios. 

Anderson et al. [8] proposed a kinematics-based trajectory prediction model for highway scenarios. By 

decomposing motions longitudinally and laterally to approximate real driving conditions, they employed 

Bayesian model averaging to enhance prediction accuracy. Gao et al. [9] introduced an interactive multiple 
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model (IMM) for short-term and long-term trajectory prediction in typical road traffic scenarios for intelligent 

vehicles, implementing manoeuvre recognition through hidden Markov models to improve accuracy. Zhang 

et al. [10] utilised the Kalman filtering algorithm for trajectory prediction and its error analysis within the 

context of trajectory prediction, demonstrating the suitability of Kalman filtering for such research. Zhang 

utilised the Kalman filter and machine learning algorithms to track the dynamic behaviour of neutrophils, 

providing valuable reference for trajectory prediction [11]. With time, researchers have studied deep learning 

methods. 

2.2 Deep learning methods 

Trajectory prediction methods based on deep learning have become one of the mainstream prediction 

approaches currently. These methods utilise complex data structures and algorithms to simulate and predict 

vehicle motion trajectories in various environments, especially in complex traffic intersections and other 

intricate settings. LSTM networks have been extensively studied and applied in trajectory prediction. With 

their unique gating mechanism, they are particularly suited for handling long-term dependencies, becoming an 

essential tool in the field of trajectory prediction [12-14]. Against this backdrop, Yao et al. [15] developed a 

vehicle trajectory prediction network structure based on LSTM neural networks, focusing on frequently 

changing vehicle operational environments at intersections and better predicting dynamically changing 

environments. Li et al. [16] proposed a vehicle trajectory prediction model based on clustered convolutional 

LSTM (CC-LSTM). This model employs a fuzzy clustering method to cluster similar trajectories of 

surrounding vehicles and density clustering to classify historical trajectory features, identifying similarities 

during segmentation phases, thereby extracting spatial features of target vehicle trajectories for prediction. Ip 

et al. [17] introduced an LSTM encoder-decoder model, which also adopted an attention mechanism to manage 

the significance of the driving stream of target vehicles and adjacent vehicles for trajectory prediction. Yu et 

al. [18] focused on predicting future vehicle trajectories based on current and past vehicle positions. They 

proposed a prediction scheme that combines LSTM with recurrent neural networks (RNN), aiding drivers in 

decision-making by accurately predicting surrounding vehicle trajectories. Gao et al. [19] discussed a driving 

behaviour intention recognition module using LSTM and an anticipated trajectory prediction module. The 

former predicts the probability of behaviours such as lane keeping and changing, while the latter employs an 

encoder-decoder structure with a mixture density network (MDN), predicting future trajectory distributions 

based on context vectors and driving intentions. This approach significantly improved trajectory prediction 

accuracy, especially for long-term predictions. Chen et al. [20] proposed a knowledge graph convolutional 

network long short-term memory (KGCN-LSTM) model to enhance the accuracy and robustness of trajectory 

prediction. Utilising graph convolutional networks (GCN), points of interest (POI) information is considered 

as prior knowledge of trajectories, which is significant for optimising urban traffic management and planning. 

Although the LSTM model performs well in trajectory prediction, researchers are still looking for other 

algorithms, such as the transformer model. 

Since the introduction of the transformer model in 2017, its influence in the field of natural language 

processing (NLP) has grown rapidly [21]. Its applications have been rapidly expanding across various domains, 

including vehicle trajectory prediction [22]. The transformer model, through its self-attention mechanism and 

position encoding, effectively addresses long-distance dependency issues, significantly enhancing the model’s 

capability in processing sequential data. With its successful application in language understanding and 

generation tasks, researchers began to explore the potential of transformer models in the field of trajectory 

prediction. Pazho et al. [23] employed a novel graph attention tokenisation (GAT) to capture social interactions 

among vehicles. The transformer predictor module overcomes the limitations of RNNs and CNNs in handling 

time-series data, focusing particularly on capturing long-range dependencies. Quintanar et al. [24] used 

transformer networks with augmented information for trajectory prediction in urban settings. This method is 

evaluated using metrics like mean average displacement error (MAD/ADE) and final average displacement 

(FAD/FDE) and shows its unique advantages, especially when dealing with complex scenes such as 

intersections and roundabouts in urban environments. Geng et al. [25] integrated physical knowledge learning 

into the transformer model, specifically designed for highway scenarios. This model aims to improve the 

accuracy and reliability of vehicle trajectory prediction on highways, taking into account physical constraints 

and interactions. Wang et al. [26] proposed alternative mechanisms instead of commonly used graph 

convolutional networks (GCN), significantly reducing time costs while maintaining prediction accuracy. Xu 

et al. [27] utilised transformers and the pNEUMA dataset for predicting vehicle trajectories in urban traffic, 

showing good performance due to the self-attention mechanism’s ability to identify input dependencies. Chen 



Promet – Traffic&Transportation. 2025;37(6):1545-1561.  Intelligent Transport Systems (ITS)  

1548 

et al. [28] introduced a stochastic non-autoregressive transformer model with multimodal prediction 

capabilities, where each future trajectory can be inferred in parallel, enhancing the prediction processing speed. 

Yang et al. [29] proposed a trajectory prediction network with an enhanced graph transformer (TP-EGT) to 

predict future trajectories of traffic agents, introducing a conflict-aware graph transformer to capture complex 

social interactions among traffic agents, effectively manage the high dynamics and uncertainty in these 

scenarios. Gao et al. [30] presented a dual transformer model, comprising a lane-changing intention prediction 

model and a trajectory prediction model. The anticipated probability vectors are fused, thus obtaining prior 

knowledge. 

The literature introduces a comprehensive range of trajectory prediction methods, particularly those 

employing deep learning techniques. Despite the plethora of trajectory prediction algorithms proposed over 

the past decade, the number specifically designed for container port environments is limited. There is still a 

need for application-focused trajectory prediction algorithms for container trucks in port settings. In the 

following section, the method used in this article will be introduced in detail. 

3. METHODOLOGY 

When facing complex time series prediction tasks, traditional single models often struggle to balance the 

needs of both short-term and long-term forecasting. Based on this, a hypothesis is proposed in this paper: 

combining the agility of the improved DeepPBM-M model, which is specifically modified and developed in 

this study based on the DeepPBM-Attention model, in short-term prediction with the efficiency of the 

PatchTST model in long-term forecasting, can we build a hybrid model framework? To explore this hypothesis, 

this paper first introduces two core models – DeepPBM-M and PatchTST. 

3.1 DeepPBM-M model overview 

DeepPBM-M is an enhanced version of the DeepPBM-Attention model, which was initially proposed by 

Ye et al. [31]. DeepPBM-M, proposed in this paper, is specifically developed to improve upon the original 

model. The original DeepPBM-Attention model used a three-layer LSTM with a simple additive attention 

mechanism to predict the single-step trajectory of port container trucks, demonstrating significantly superior 

performance compared to other LSTM-based models. Despite its effectiveness, it had several shortcomings, 

including the inability to perform multi-step predictions, slow convergence, limited interpretability of attention 

weights, susceptibility to overfitting due to its complex structure and lack of robustness when handling noisy 

or incomplete data. 

To better adapt to the requirements of hybrid modelling and enhance the model’s flexibility, this paper 

proposes an improved version, DeepPBM-M, which is specifically developed and modified in this study. An 

overview of the DeepPBM-M model is illustrated in Figure 1, and several key modifications have been made 

to enhance the model’s input-output structure: 

Multi-head attention mechanism: In the original model, a simple additive attention mechanism was 

employed. In this study, it has been adapted into a multi-head attention mechanism suitable for trajectory 

prediction. Given an input 𝑋 ∈ ℝ𝑛×𝑑, where 𝑛 is the sequence length and 𝑑 is the feature dimension, for each 

head 𝑖  (out of a total of ℎ  heads), define weights 𝑊𝑖 ∈ ℝ𝑑×1  and biases 𝑏𝑖 ∈ ℝ𝑛×1 . Multi-head attention 

allows the model to simultaneously focus on multiple features of the sequence from different perspectives. 

This enhances the model’s expressiveness and its capability to handle complexity. In the following, the steps 

involved in implementing this mechanism will be detailed. 

1) First, for each head, an attention score 𝑒𝑖 is computed by the following operation: 

𝑒𝑖 = 𝑡𝑎𝑛ℎ(𝑋𝑊𝑖 + 𝑏𝑖) (1) 

𝑋𝑊𝑖  is the product of the input and the weights, to which the bias 𝑏𝑖  is added, followed by the 

application of the tanh activation function. The attention score 𝑒𝑖 ∈ ℝ𝑛×1 represents the importance of 

each input element for that head. 

2) Then, the attention scores 𝑒𝑖 for each head are passed through the Softmax function to obtain attention 

weights 𝑎𝑖: 

𝑎𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖) (2) 
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Softmax ensures that the sum of weights in each sequence equals 1, representing the relative importance 

of each element. 

3) Each head computes a weighted representation of the input, where each input element is multiplied by its 

corresponding attention weight: 

𝑜𝑖 = ∑(𝑋 ⊙ 𝑎𝑖) (3) 

⊙ denotes element-wise multiplication and 𝑜𝑖 ∈ ℝ𝑑is the weighted sum result computed by that head. 

4) Finally, the outputs 𝑜𝑖  from all heads are concatenated together to form the final multi-head attention 

output: 

𝑂 =  Concatenate (𝑜1, 𝑜2, … , 𝑜ℎ) (4) 

𝑋 ∈ ℝ𝑛×𝑑is the final output, containing information from all heads. 

Multi-step prediction capability: The original DeepPBM-Attention model was limited to single-step 

forecasting. This paper enhances the base model by incorporating a fourth LSTM layer. This additional LSTM 

layer is tasked with maintaining and conveying context information, ensuring that each prediction is predicated 

on the preceding step’s outcomes. Consequently, this modification enables the model to forecast temporal 

trends over extended horizons with greater accuracy. 

LSTM Layer1

Xt-2 Xt-1 Xt

Attention Layer

LSTM Layer2

LSTM Layer3

Dropout

Concatenate

RepeatVector

LSTM Layer4

Xt Xt+1 Xt+2

 
Figure 1 – DeepPBM-M model overview 

3.2 PatchTST model overview 

Unlike traditional LSTMs, the transformer relies entirely on the self-attention mechanism to capture global 

dependencies between sequences, thus efficiently processing long sequence data. The transformer network for 

the hybrid model adopted the PatchTST, an efficiently designed transformer model proposed by Nie et al. [32]. 

Each time series is divided into overlapping or separate patches of length 𝑃, with 𝑆 as the interval, reducing 

input tokens from 𝐿 to 𝐿 / 𝑃. This segmentation significantly reduces computational and memory requirements 

for attention mechanisms, enabling efficient long-sequence processing and improving forecasting accuracy. 

The neural network structure of PatchTST is shown in Figure 2. Currently, PatchTST is one of the highest-

performing models under the transformer-based architecture for handling complex forecasting problems, as it 

can capture long-range dependencies in multivariate time series forecasting tasks. This architecture has been 

proven to be highly effective. However, despite PatchTST’s advantages in long-term forecasting, it has certain 

limitations in short-term forecasting, which may be due to the transformer architecture being less optimised 

for capturing finer-grained variations over shorter time intervals. 
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Figure 2 – PatchTST model overview 

3.3 Model performance turning point 

To systematically evaluate and compare the predictive capabilities of the DeepPBM-M and PatchTST 

models across varying forecast horizons, we conducted a comprehensive empirical analysis. Table 1 presents 

five key evaluation metrics for both models at different prediction steps: 

1) Mean absolute error (MAE): Measures the average magnitude of prediction errors. 

2) Mean squared error (MSE): Emphasises larger prediction errors by squaring the differences. 

3) Mean absolute percentage error (MAPE): Indicates the percentage deviation from actual values. 

4) Mean squared percentage error (MSPE): Highlights percentage deviations with greater sensitivity to large 

errors. 

5) Relative squared error (RSE): Provides a normalised measure of prediction accuracy relative to a baseline. 

These metrics were chosen to provide a multi-faceted assessment of model performance, capturing both 

absolute and relative prediction accuracy. The analysis spans prediction horizons from 1 to 96 steps, enabling 

the evaluation of both short-term and long-term forecasting capabilities. 

Table 1 – Evaluation metrics across different steps 

Steps 

MAE MSE MAPE MSPE RSE 

DeepPB

M-M 

PatchT

ST 

DeepPBM

-M 

PatchT

ST 

DeepPBM

-M 

PatchT

ST 

DeepPBM

-M 

PatchT

ST 

DeepPBM

-M 

PatchT

ST 

1 0.029 0.050 0.001 0.007 0.010 0.013 0.005 0.006 0.015 0.039 

2 0.037 0.052 0.002 0.008 0.012 0.013 0.006 0.007 0.022 0.041 

4 0.048 0.062 0.004 0.011 0.013 0.015 0.008 0.009 0.029 0.050 

8 0.067 0.073 0.007 0.016 0.019 0.018 0.013 0.013 0.040 0.059 

16 0.094 0.096 0.015 0.028 0.030 0.024 0.044 0.022 0.067 0.070 

32 0.147 0.120 0.050 0.045 0.041 0.029 0.081 0.038 0.107 0.100 

48 0.169 0.158 0.062 0.055 0.057 0.038 0.110 0.072 0.138 0.119 

64 0.224 0.195 0.123 0.119 0.071 0.047 0.138 0.089 0.180 0.151 

80 0.260 0.229 0.173 0.146 0.076 0.054 0.140 0.118 0.190 0.190 

96 0.309 0.263 0.232 0.201 0.078 0.063 0.164 0.152 0.224 0.219 
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The experimental results indicate that a significant performance turning point occurs between steps 8 and 

16. Before step 16, the DeepPBM-M model outperforms the PatchTST model in all evaluation metrics, 

whereas after step 16, the PatchTST model gradually surpasses the DeepPBM-M model. This finding provides 

important guidance for further research. 

Based on these preliminary experimental results, this paper proposes the CT-HybridNet model, which aims 

to combine the strengths of both DeepPBM-M and PatchTST models in order to maintain high prediction 

accuracy across various prediction horizons. 

3.4 CT-HybridNet model architecture 

In the preliminary study on container truck trajectory prediction at ports, we observed that LSTM models 

excel at capturing short-term dependencies, showing outstanding performance in short-term prediction tasks, 

while transformer models, with their ability to capture long-term dependencies, perform better in long-term 

prediction tasks. Based on this observation, we hypothesise that LSTM and transformer models have unique 

advantages in short-term and long-term prediction, respectively. The previous section compared the 

performance of the LSTM-based DeepPBM-M and the transformer-based PatchTST across different 

prediction lengths, confirming the existence of performance turning points. 

To effectively combine these models and ensure the validity of our hybrid approach, we first conducted a 

comprehensive residual analysis to validate the normality assumption of the model errors. This analysis is 

crucial as it provides the theoretical foundation for our subsequent model fusion strategy. 

Our residual analysis examined the prediction residuals of both base models across longitude and latitude 

dimensions. As shown in Figure 3, the analysis reveals strong evidence supporting the normality assumption. 

This normality assumption is further supported by the central limit theorem, as the prediction errors represent 

the aggregation of multiple independent factors, and the input data has been normalised during preprocessing. 

For the DeepPBM-M model, the residual distribution in longitude demonstrates clear normal characteristics 

with mean μ=-0.00108770 and standard deviation σ=0.00326428. The residuals’ normality is validated by both 

statistical measures and graphical analysis: the skewness coefficient of -0.129 (approaching zero) confirms 

distribution symmetry, while the kurtosis coefficient of 2.834 (close to the theoretical value of 3) supports the 

normal distribution hypothesis. Similar normal patterns are observed in latitude residuals, with μ=0.00238242, 

σ=0.00193726, skewness of -0.214 and kurtosis of 2.996. 

The residual analysis of the PatchTST model yields comparable results, with both longitude and latitude 

errors following normal distributions. The longitude residuals show μ=-0.00217192, σ=0.02116637, skewness 

of -0.058 and kurtosis of 3.460, while latitude residuals exhibit μ=-0.00189542, σ=0.02330102, skewness of -

0.054 and kurtosis of 3.208. The histograms of residuals overlaid with theoretical normal distribution curves, 

as shown in Figure 3, provide visual confirmation of these statistical findings. 

 
Figure 3 – Residual normality analysis of base models: a) DeepPBM-M longitude residuals; b) DeepPBM-M latitude residuals;  

c) PatchTST longitude residuals; d) PatchTST latitude residuals 

Based on this rigorous residual analysis confirming the normality of prediction errors, we proceeded to 

develop the mathematical framework for CT-HybridNet. Specifically, this study establishes the prediction 

error of the DeepPBM-M model at step length 𝑙 as a random variable 𝑃1, which follows a normal distribution 

with a mean of 𝑚1,𝑙 and variance of 𝛿1,𝑙
2 , denoted as 𝑃1,𝑙~𝒩(𝑚1,𝑙 , 𝛿1,𝑙

2 ). Similarly, the error of the PatchTST 

model at the same step length 𝑙 follows a normal distribution with a mean of 𝑚2,𝑙 and variance of 𝛿2,𝑙
2 , denoted 

as 𝑃2,𝑙~𝒩(𝑚2,𝑙, 𝛿2,𝑙
2 ). Given the statistical independence between the prediction errors of the DeepPBM-M 

model and the PatchTST model, the CT-HybridNet model derives a hybrid prediction error by weighting the 

errors of these two models with a weight parameter 𝛼𝑙, The hybrid prediction error 𝑃ℎ,𝑙, also follows a normal 
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distribution, denoted as 𝛼𝑙𝑃1,𝑙 + (1 − 𝛼𝑙)𝑃2,𝑙~𝒩(𝑚ℎ,𝑙 , 𝛿ℎ,𝑙
2 ), with its mean, 𝑚ℎ,𝑙 and variance, 𝛿ℎ,𝑙

2 , given by 

the following equations:  

𝑚ℎ,𝑙 = 𝛼𝑙𝑚1,𝑙 + (1 − 𝛼𝑙)𝑚2,𝑙 (5) 

𝛿ℎ,𝑙
2 = 𝛼𝑙

2𝛿1,𝑙
2 + (1 − 𝛼𝑙)2𝛿2,𝑙

2  (6) 

Given that 𝑚1,𝑙 and 𝑚2,𝑙 are both assumed to be 0, the mean of the hybrid prediction error, 𝑚ℎ,𝑙, is also 0. 

On this basis, a constraint condition is introduced to ensure that the total variance of the hybrid model does not 

exceed the variance of any single model: 

𝛼𝑙𝛿1,𝑙
2 + (1 − 𝛼𝑙)𝛿2,𝑙

2 ≤ 𝑚𝑖𝑛(𝛿1,𝑙
2 , 𝛿2,𝑙

2 ) (7) 

In the subsequent derivation, by considering 𝛿1,𝑙
2  as the smaller variance, it is possible to obtain: 

1 − 𝛼𝑙

1 + 𝛼𝑙
≥

𝛿1,𝑙
2

𝛿2,𝑙
2  (8) 

Based on this, the range of constraint conditions for 𝛼𝑙 can be determined as: 

𝛼𝑙 ≥

1 −
𝛿1,𝑙

2

𝛿2,𝑙
2

1 +
𝛿1,𝑙

2

𝛿2,𝑙
2

 (9) 

Based on these theoretical foundations and constraints established in equations (7)-(9), we formulate the 

adaptive selection of 𝛼𝑙 as a nonlinear constrained optimisation problem, solved using sequential least squares 

programming (SLSQP). This optimisation method is particularly suitable for handling the nonlinear constraint 

while maintaining numerical stability. The SLSQP algorithm solves this constrained optimisation problem 

through iterative approximation. At each iteration k, the algorithm computes: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝛻𝑓(𝛼𝑙
𝑘)ᵀ𝑑 +  

1

2
𝑑ᵀ𝐵𝑘𝑑 (10) 

where 𝑑  is the search direction, 𝐵𝑘  is the approximation of the objective function’s Hessian matrix. The 

equality constraint function is defined as: 

𝑐𝑒𝑞(𝛼𝑙)  =  𝛼𝑙,1  +  𝛼𝑙,2  −  1 =  0 (11) 

The gradients of the objective function and constraints are, respectively: 

𝛻𝑓(𝛼𝑙)  =  [2𝛼𝑙,1𝜎𝑙,1
2 , 2𝛼𝑙,2𝜎𝑙,2

2 ]ᵀ (12) 

𝛻𝑐𝑒𝑞(𝛼𝑙)  =  [1, 1]ᵀ (13) 

The algorithm iteratively updates the search direction and step size to approach the optimal solution: 

𝛼𝑙
𝑘+1 =  𝛼𝑙

𝑘 + 𝜆𝑘𝑑𝑘 (14) 

where 𝜆𝑘 is the step size determined by line search. The iteration continues until the convergence condition is 

satisfied: 

‖𝛻𝐿(𝛼𝑘 , 𝜇𝑘 , 𝜆𝑘)‖
2

≤  𝜀 (15) 

where 𝐿(𝛼𝑙 , 𝜇, 𝜆)  =  𝑓(𝛼𝑙)  −  𝜇ᵀ𝑐𝑒𝑞(𝛼𝑙)  −  𝜆ᵀ𝑐(𝛼𝑙) is the Lagrangian function. 

In the process of hybridising multiple step sizes, the CT-HybridNet model fully leverages the advantages 

of DeepPBM-M and PatchTST in their respective areas of predictive strength. Further, in the CT-HybridNet 

model, the scenario of mixing more models is also considered. To ensure the stability and reliability of the 

system’s predictions when mixing multiple models, the Lyapunov energy function is introduced to assess the 

energy or stability of the hybrid model at each step. This energy function is formulated as follows: 

𝑉𝑙 =
1

2
𝐸(||𝑃ℎ,𝑙||2) > 0 (16) 
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The Lyapunov energy function 𝑉𝑙 represents half the expected value of the square of the hybrid model error 

𝑃ℎ,𝑙  at step length 𝑙. This expectation emphasises that 𝑉𝑙  assesses the expected system energy, crucial for 

stability analysis. The function’s non-negativity ensures that the system’s “energy” does not increase 

indefinitely, avoiding instability. To specifically monitor the hybrid model’s stability, we calculate the change 

in energy 𝛥𝑉𝑙, defined step by step as: 

𝛥𝑉𝑙 =
1

2
𝐸(‖𝑃ℎ,𝑙‖2) −

1

2
𝐸(‖𝑃3,𝑙‖2) =

1

2
𝛿ℎ,𝑙

2 −
1

2
𝛿3,𝑙

2 < 0 (17) 

where 𝛿ℎ,𝑙
2  and 𝛿3,𝑙

2  represent the variances of the hybrid model errors at step length 𝑙 and after the integration 

of the newly introduced sub-model, respectively. These variances are part of the expectations used to calculate 

the Lyapunov function and its change. By ensuring that 𝛥𝑉𝑙 remains negative, i.e. the expected energy at the 

current step is less than that of the previous step, we can continuously reduce the uncertainty of the system’s 

predictions, thereby enhancing the system’s stability. This approach provides a powerful mathematical tool for 

stability analysis, ensuring that even when multiple models are introduced for prediction, the overall stability 

and accuracy of the system’s predictions are maintained. By continuously monitoring and adjusting the model 

weights, CT-HybridNet can effectively utilise the strengths of each model, optimising the accuracy of long-

term and short-term predictions. The neural network structure of CT-HybridNet is shown in Figure 4. In the 

subsequent sections, the performance evaluation of CT-HybridNet will be elaborated in detail through the 

experimental results. The following sections will thoroughly introduce the related experimental settings, 

evaluation metrics and result analysis. 

Parameter 

Tuning

DeepPBM-M 

Submodel

PatchTST 

Submodel

Training 

Error

Fully Connected Layer

Parameter 

Initialization

Xt-2 Xt-1 Xt

Hyperparameter Tuning

Hyperparameter Initialization

Hybrid Training
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Cross-validation Error

Xt Xt+1 Xt+2

 
Figure 4 – CT-HybridNet model overview 

4. EXPERIMENTS AND RESULTS 

The empirical validation of the CT-HybridNet model’s performance necessitates a comprehensive 

experimental framework encompassing both quantitative metrics and qualitative analysis. Through systematic 

evaluation across multiple prediction horizons and diverse operational scenarios, we aim to demonstrate the 

model’s efficacy in addressing the challenges of port container truck trajectory prediction. The following 

sections detail our experimental methodology and present the analytical findings. 
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4.1 Dataset description and data preprocessing 

In this section, this study conducts experiments using comprehensive real-world data collected from the 

terminal. Against the backdrop of port area automation renovation, high-precision positioning devices were 

installed on all 150 internal container trucks, and their location trajectory data were continuously collected 

over a month. The positioning devices employed in this study were industrial-grade GNSS receivers, featuring 

positioning accuracy of 1 cm (CEP) under open sky conditions and an update rate of 5 Hz. These devices 

recorded latitude and longitude with precision at 7 decimal places, supported multi-constellation reception 

(GPS, BeiDou), and provided velocity measurements accurate to 0.01 m/s RMS with heading accuracy of 0.1 

degrees RMS. 

To enhance the performance of predictive models, this study implemented a series of sophisticated data 

preprocessing steps centred around the temporal and spatial data collected from positioning devices onboard 

yard trucks within the port. These steps were designed to optimise the efficiency of model training and the 

accuracy of predictions while minimising computational complexity and training costs. The specific processes 

included data collection, sorting and feature extraction encompassing timestamps (UTC, millisecond 

precision), latitude and longitude coordinates, positioning quality indicators, instantaneous speed and heading 

direction. The preprocessing pipeline incorporated rigorous filtering criteria, removing positions with HDOP 

exceeding 4.0, data points with fewer than 6 satellites, and physically impossible accelerations greater than 2.5 

m/s². A Kalman filter was applied to smooth trajectory data and eliminate anomalous readings. 

To accommodate the needs of supervised learning, the GNSS data were systematically segmented by time 

intervals and converted into a supervised learning format. This conversion process facilitates the model’s 

learning of the relationship between input features and predictive outputs, thereby enhancing the accuracy of 

predictions. To further facilitate efficient model training, the data were normalised to a [0, 1] scale and 

standardised to ensure that different feature values were comparable, which helped improve the training speed 

and model convergence. After preprocessing, the dataset, consisting of approximately 10 million trajectory 

data points, was split into training and validation sets with a 90/10 ratio. The training set was used to fit the 

model, while the validation set served to evaluate its performance and ensure its generalisation capabilities. 

All data preprocessing steps were conducted using Python 3.8, as shown in Figure 5. 

 
Figure 5 – Data preprocessing workflow for the dataset 

After dividing the dataset, special attention was given to the representativeness of the validation set to 

ensure the model’s generalisation capabilities. The validation data were carefully selected to encompass not 

only common scenarios but also various edge cases within port operations, including regular operation patterns 

during different times of day, diverse weather conditions affecting GNSS performance, various operational 

areas within the port, different loading states of container trucks and multiple driving patterns and manoeuvres. 

As shown in Figure 6, the trajectory data in the validation set demonstrate the distribution across various time 

frames and geographic locations, capturing a wide range of port operation conditions. This comprehensive 

coverage ensures that the validation process effectively assesses the model’s performance across the full 

spectrum of operational scenarios encountered in real-world port environments. 
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Figure 6 – Validation set trajectory distribution 

4.2 Experimental setup 

This study finely tuned the hyperparameters of the DeepPBM-M model, the PatchTST model and the CT-

HybridNet hybrid model to optimise model performance. The specific hyperparameter settings are shown in 

Table 2. The experiments extensively validated the effectiveness of these models in the task of predicting the 

trajectories of internal container trucks within the port. 

The next section will provide a detailed experimental evaluation and comparative analysis of the models 

designed above, thereby verifying each model’s predictive performance and practicality. 

Table 2 – Hyperparameter settings 

Models 

The 

number of 

training set 

The 

number of 

validation 

set 

Number of 

neurons in 

𝒉𝐋𝐒𝐓𝐌𝟏 

Number of 

neurons in 

𝒉𝐋𝐒𝐓𝐌𝟐 

Number of 

neurons in 

𝒉𝐋𝐒𝐓𝐌𝟑 

optimiser epochs batch_size 

DeepPBM-M 8900,000 810000 128 256 256 Adam 200 3600 

PatchTST 8900,000 810000 N/A N/A N/A Adam 100 3600 

CT-HybridNet 8900,000 810000 128 256 256 Adam 200 3600 

4.3 Model training time 

The training time is a key metric for evaluating the efficiency of models in the development and 

optimisation process. By systematically comparing the training duration of various models, it is possible not 

only to reveal their efficiency differences in practical applications but also to gain insights into their 

performance under large-scale data scenarios. 

To comprehensively evaluate the training efficiency of each model, this study conducted a detailed record 

and analysis of the training times for DeepPBM-M, PatchTST and CT-HybridNet under identical datasets and 

computing environments. All models were trained on a Windows 11 system equipped with an NVIDIA RTX 

4090 GPU. The Python version used was 3.8, and PyTorch was employed as the deep learning framework. 

The training times, early stopping rounds and MSE results are shown in Table 3. 
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Table 3 – Model training time comparison 

Models Training time [min] Early stopping rounds MSE 

DeepPBM-M 129.1048648 72 0.003290 

PatchTST 215.1638892 168 0.003755 

CT-HybridNet 225.2612862 166 0.002797 

 

From Table 3, it can be observed that DeepPBM-M achieved the fastest training time, requiring 129.10 

minutes and stopping after 72 rounds with an MSE of 0.003290. This demonstrates a relatively efficient 

training process compared to the other models. On the other hand, PatchTST and CT-HybridNet had 

significantly longer training times, 215.16 minutes and 225.26 minutes, respectively. Notably, CT-HybridNet 

had the lowest MSE value of 0.002797, suggesting better accuracy in predictions. 

4.4 Model prediction time 

In addition to training time, prediction time is another critical factor for evaluating model performance, 

especially in real-world applications where quick inference is often essential. By comparing the prediction 

time of different models, we can better understand their efficiency during the inference phase. 

To thoroughly assess the prediction efficiency, this study measured the prediction times for DeepPBM-M, 

PatchTST and CT-HybridNet under identical validation conditions. The models were evaluated using 62,000 

validation sets across different prediction steps (1, 8 and 96). The prediction times were recorded in a consistent 

computing environment (Windows 11 system with NVIDIA RTX 4090 GPU, Python 3.8, PyTorch). The 

results are summarised in Table 4. 

Table 4 – Model prediction time comparison 

Models 
Number of 

validation sets 
Steps Prediction time [s] 

DeepPBM-M 

62,000 1 

20.6088280 

PatchTST 8.8169904 

CT-HybridNet 21.3077526 

DeepPBM-M 

62,000 8 

58.1089582 

PatchTST 70.6860214 

CT-HybridNet 66.9997851 

DeepPBM-M 

62,000 96 

452.2246989 

PatchTST 562.0177092 

CT-HybridNet 542.004211 

 

Table 4 presents a detailed breakdown of the prediction times for each model across different step sizes. The 

prediction time indicates the duration each model took to generate predictions for the given number of 

validation sets. It can be observed that CT-HybridNet demonstrated competitive performance, particularly for 

larger step sizes. For 8 steps, CT-HybridNet had a prediction time of 66.9997851 seconds, which was faster 

than PatchTST and only slightly longer than DeepPBM-M, indicating an efficient inference capability while 

maintaining high accuracy. 

For the most computationally intensive scenario with 96 steps, CT-HybridNet required 542.004211 seconds, 

which was comparable to PatchTST and DeepPBM-M. Importantly, despite being a hybrid model, CT-

HybridNet did not exhibit increased prediction time or complexity compared to other models. This shows that 

the model’s hybrid nature effectively integrates different components without compromising its efficiency, 

which is a significant advantage over traditional single-architecture models. 
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4.5 Evaluation of prediction performance 

In this study, multiple evaluation metrics were employed to comprehensively assess the performance of the 

DeepPBM-M model, the PatchTST model and the CT-HybridNet model proposed in this research, in the task 

of predicting the trajectories of port container trucks. These evaluation metrics include MAE, MSE, MAPE, 

MSPE and RSE. These indicators thoroughly reflect the accuracy and practicality of the model predictions.  

 
Figure 7 – Evaluation metrics for DeepPBM-M, PatchTST and CT-HybridNet: a) MAE performance comparison; b) MSE 

performance comparison; c) MAPE performance comparison; d) RSE performance comparison; e) MSPE performance comparison 

Figure 7 highlights the performance turning points of both DeepPBM-M and PatchTST in multi-step 

prediction, particularly between steps 8 and 16. These turning points are crucial as they mark significant 

changes in model performance, with DeepPBM-M showing reduced accuracy and PatchTST beginning to 

excel. Using the validation set described in Section 4.1, which consists of 810,000 trajectory data points 

carefully selected to encompass various operational scenarios, we performed nine independent evaluations and 

included error bars representing mean ± standard deviation for each evaluation metric. The error bars 

demonstrate the consistency and stability of our results across different test scenarios. Notably, the CT-

HybridNet model shows smaller error bars compared to both base models, particularly in the critical transition 

period (steps 8-16), indicating more stable and reliable predictions. The reduced standard deviations of CT-

HybridNet (average of ±0.022 for MAE compared to ±0.032 for DeepPBM-M and ±0.023 for PatchTST) 

suggest that our hybrid approach not only improves accuracy but also reduces prediction variability. This 

enhanced stability is particularly evident in long-term predictions (beyond step 32), where the CT-HybridNet 

maintains consistently smaller standard deviations despite the increasing prediction horizon. Figure 7 clearly 

shows these transitions and stability patterns, providing visual support to the detailed metrics in Table 5, which 

captures how the performance metrics evolve across different prediction steps. 

Table 5 – Model evaluation metrics across different steps 

Model Steps MAE MSE MAPE MSPE RSE 

DeepPBM-M 

1 

0.029 0.001 0.010 0.005 0.015 

PatchTST 0.050 0.007 0.013 0.006 0.039 

CT-HybridNet 0.028 0.001 0.010 0.004 0.016 
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Model Steps MAE MSE MAPE MSPE RSE 

DeepPBM-M 

2 

0.037 0.002 0.012 0.006 0.022 

PatchTST 0.052 0.008 0.013 0.007 0.041 

CT-HybridNet 0.033 0.002 0.011 0.006 0.020 

DeepPBM-M 

4 

0.048 0.004 0.013 0.008 0.029 

PatchTST 0.062 0.011 0.015 0.009 0.050 

CT-HybridNet 0.044 0.003 0.011 0.004 0.028 

DeepPBM-M 

8 

0.067 0.007 0.019 0.013 0.040 

PatchTST 0.073 0.016 0.018 0.013 0.059 

CT-HybridNet 0.058 0.006 0.016 0.009 0.036 

DeepPBM-M 

16 

0.094 0.015 0.030 0.044 0.067 

PatchTST 0.096 0.028 0.024 0.022 0.070 

CT-HybridNet 0.084 0.013 0.026 0.026 0.054 

DeepPBM-M 

32 

0.147 0.050 0.041 0.081 0.107 

PatchTST 0.120 0.045 0.029 0.038 0.100 

CT-HybridNet 0.119 0.039 0.027 0.037 0.094 

DeepPBM-M 

48 

0.169 0.062 0.057 0.110 0.138 

PatchTST 0.158 0.055 0.038 0.072 0.119 

CT-HybridNet 0.154 0.052 0.036 0.069 0.118 

DeepPBM-M 

64 

0.224 0.123 0.071 0.138 0.180 

PatchTST 0.195 0.119 0.047 0.089 0.151 

CT-HybridNet 0.204 0.111 0.048 0.084 0.159 

DeepPBM-M 

80 

0.260 0.173 0.076 0.140 0.190 

PatchTST 0.229 0.146 0.054 0.118 0.190 

CT-HybridNet 0.225 0.144 0.058 0.107 0.181 

DeepPBM-M 

96 

0.309 0.232 0.078 0.164 0.224 

PatchTST 0.263 0.201 0.063 0.152 0.219 

CT-HybridNet 0.269 0.202 0.062 0.142 0.214 

 

As shown in the results of Table 5, the DeepPBM-M and PatchTST models exhibit a significant performance 

turning point in multi-step prediction of port vehicle trajectories in the prediction range of 8 to 16 steps. The 

CT-HybridNet model proposed in this paper adopts a weighted fusion strategy, which takes full advantage of 

DeepPBM-M’s ability to capture temporal dependencies in short-term prediction, as well as PatchTST’s 

superior performance in long-term prediction of long sequence data. It performs well not only in short-term 

prediction but also shows significant performance advantages in long-term prediction. 

As can be seen from the table, the DeepPBM-M model performs well in short-term prediction, especially 

in the 1 to 4 step prediction range, where its MAE and MSE are significantly lower than those of the PatchTST 

model. For example, for 1-step prediction, the MAE is 0.029 and the MSE is 0.001, demonstrating the 

advantage of LSTM in capturing short-term dependencies. In contrast, PatchTST performs slightly worse in 

short-term prediction, such as in the 4-step prediction, where the MAE is 0.062 and the MSE is 0.011. The 

transformer architecture is not as sensitive as LSTM in capturing local features, resulting in lower accuracy in 

short-term prediction compared to DeepPBM-M. 
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In long-term prediction, the PatchTST model exhibits superior performance. For example, in the 16-step 

prediction, the MAE of PatchTST is 0.096 and the MSE is 0.028, which is about 34.7% better than the MAE 

of 0.147 for DeepPBM-M. This performance improvement is attributed to the self-attention mechanism of the 

transformer, which allows PatchTST to more effectively capture long-term dependencies. DeepPBM-M’s 

performance gradually declines in long-term prediction, with an MAE of 0.147 and MSE of 0.050 in the 32-

step prediction, indicating limitations in LSTM’s ability to capture long-term dependencies, leading to 

cumulative prediction errors. 

CT-HybridNet achieves dual performance improvement in both short-term and long-term predictions by 

adaptively fusing the prediction results of DeepPBM-M and PatchTST. In short-term prediction, for example, 

in the 1-step prediction, CT-HybridNet’s MAE is 0.028, close to and slightly better than DeepPBM-M, and 

compared to PatchTST’s 0.050, the MAE is reduced by about 44%. In long-term prediction, such as in the 32-

step prediction, the MAE of CT-HybridNet is 0.119, which is lower than DeepPBM-M’s 0.147, representing 

an improvement of about 20%. The adaptive fusion strategy enables CT-HybridNet to combine the advantages 

of LSTM and transformer, maintaining high prediction accuracy and stability in both short-term and long-term 

predictions, especially with a significant accuracy improvement of about 15% in long-term predictions beyond 

16 steps. 

5. CONCLUSIONS 

This study analyses the performance turning points of DeepPBM-M and PatchTST at different prediction 

steps, introducing an adaptive training mechanism through a weighted fusion strategy to optimise performance 

before and after these breakpoints. Building on this research, a novel hybrid trajectory prediction model, CT-

HybridNet, is proposed. This model integrates the strengths of DeepPBM-M and PatchTST, specifically 

tailored for multi-step trajectory prediction of port container trucks. Comparative experiments on trajectory 

prediction technology have verified that CT-HybridNet exhibits superior predictive accuracy and stability 

compared to single models. 

The implementation of CT-HybridNet in real port operations, integrated with the PathSync Collision 

Avoidance system, has demonstrated significant economic and operational benefits. Based on a six-month 

pilot deployment at a major container port, the model achieved a 15% reduction in positioning errors during 

container stacking operations, enabling the central control server to implement more precise safety 

management. The multi-step prediction data are transmitted to the central control server and integrated with 

the PathSync Collision Avoidance system, which analyses trajectory overlaps to provide early collision 

warnings. This integration enables dynamic path planning for manned vehicles and establishes a 

comprehensive collision prevention network. Through this optimised routing system and reduced correction 

manoeuvres, waiting times at key logistics nodes decreased by 10%, while fuel consumption dropped by 8%, 

contributing to lower carbon emissions in port operations. These comprehensive operational improvements 

collectively resulted in an estimated annual cost saving of $1.2 million for the test port, demonstrating the 

substantial economic value of implementing the CT-HybridNet model in port operations. 

Looking forward, despite the significant progress made with the CT-HybridNet model, it is believed that 

several directions merit exploration in future research. Firstly, further optimisation of the model structure and 

parameters, such as the introduction of more advanced attention mechanisms like the multi-layer self-attention 

structure of transformers, could improve performance when processing more complex datasets. Secondly, 

considering that different port environments may have unique features and challenges, conducting research on 

model adjustments and optimisations tailored to specific port environments would be of significant importance. 

Additionally, with the development of Internet of Things technology and high-precision positioning 

technology, collecting and integrating more types of data (e.g. weather conditions, traffic flow, types of cargo) 

into the prediction model could further enhance the accuracy and robustness of predictions. 
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