4 = ET AU
224 Transportation HBAC

Multi-Step Trajectory Prediction of Port Container Trucks Based on
CT-HybridNet Model

Haixiong YE?, Minggi GAO?, Xiliang ZHANG?, Zhe XU*

Original Scientific Paper I hxye@shou.edu.cn, College of Engineering Science and Technology, Shanghai Ocean University,
Submitted: 9 Oct 2024 Shanghai, China
Accepted: 7 Mar 2025 2 m220851438@shou.edu.cn, College of Engineering Science and Technology, Shanghai Ocean

University, Shanghai, China

3 Corresponding author, xlzhang@sspu.edu.cn, School of Intelligent Manufacturing and Control
Engineering, Shanghai Polytechnic University, Shanghai, China

4 xuzhe@shou.edu.cn, College of Engineering Science and Technology, Shanghai Ocean University,
Shanghai, China

GJ ABSTRACT
- In port environments, container stacking at significant heights obstructs satellite signal

This work is licensed reception by terminal equipment on container trucks, leading to inaccurate positional tracking
under a Creative data. To address this, it is necessary to predict container truck trajectories to fill in the
Commons Attribution 4.0 inaccurate positioning signals. In this study, we collected port container truck trajectory data
International Licence. and compared the predictive performance of long short-term memory (LSTM) networks and
Publisher: transformer models, revealing performance turning points at different prediction steps. Based
Faculty of Transport on these findings, we propose a hybrid model named CT-HybridNet, which integrates the
and Traffic Sciences, LSTM-based DeepPBM-M model with the transformer-based PatchTST model. Given the

University of Zagreb independence of the prediction errors of the two models, we assume both errors follow a

Gaussian distribution. By performing an affine transformation, the proposed hybrid method’s
output also follows a Gaussian distribution. Additionally, an adaptive parameter adjustment
mechanism optimises performance, enabling CT-HybridNet to achieve dual improvements
in trajectory prediction accuracy and stability, with 15% improvement in short-term accuracy
and 20% in long-term performance. This study provides a more accurate and stable technical
solution for port container truck trajectory prediction, overcoming issues related to
positioning inaccuracies and signal obstructions.
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intelligent vehicle; CT-HybridNet; hybrid model; multi-step trajectory prediction.

1. INTRODUCTION

Ports play a crucial role in the global supply chain network, as their operational efficiency directly
influences the cost and effectiveness of logistics. Consequently, enhancing automation in port operations,
especially in container vehicle scheduling and management, has become a key industry trend [1]. However,
advancing this transformation requires overcoming numerous challenges, including the reliance of port central
dispatch systems on Global Navigation Satellite System (GNSS) signals for vehicle monitoring, which are
susceptible to signal loss and interference. This vulnerability necessitates the adoption of trajectory prediction
technologies to compensate for signal loss, making improved prediction accuracy a primary challenge [2, 3].

The dynamic and complex port environments demand models that can accurately capture the nonlinear
behaviour of vehicle movements. Additionally, physical obstructions within ports, such as stacked containers,
often interfere with satellite signal reception for terminal devices on container trucks, resulting in inaccuracies
in position tracking data. To mitigate these issues, short-term prediction models are employed to correct signal
interruptions and ensure precise tracking.
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Long-term prediction models, on the other hand, focus on forecasting vehicle positions over extended
timeframes, which is crucial for collision prevention and optimising container operations. Given the inherent
randomness of vehicle movements over longer periods, these models often face challenges with predictive
accuracy, which has made them less common in research. Nevertheless, in dynamic port environments, long-
term trajectory prediction is essential for anticipating container truck movements, enabling effective
operational planning and minimising the impact of GNSS signal interruptions [4].

Trajectory prediction models typically treat each inference unit as a series of positions. This method aims
to comprehensively understand the vehicle’s motion patterns. However, most existing studies have only
examined the predictive performance of fixed-length trajectory segments, which may not suffice to represent
the trajectory of the various vehicle movements in the real world.

With the advent of deep learning, neural network-based trajectory prediction models, especially LSTM
networks and transformer models, have increasingly gained attention [5]. LSTM networks, known for their
excellent capability in processing time-series data, have been widely applied in trajectory prediction.

This study aims to improve the trajectory prediction performance of port trucks under both short-term and
long-term prediction steps. The main contributions are listed as follows:

1) Discovery of performance turning points: This study performs an in-depth analysis of two mainstream
trajectory prediction models — the LSTM model and the transformer model — finding performance turning
points at various prediction steps.

2) Adaptive fusion strategies for predictive modelling: In this study, the output of prediction models is
considered as random variables that follow a normal distribution, and probability theory is integrated with
adaptive adjusting techniques to implement a novel model fusion strategy. This method can more
effectively integrate the performance advantages of different models under each prediction step size,
thereby obtaining better performance in complex prediction tasks. Moreover, this adaptive fusion strategy
is not only applicable to the two models integrated in this paper but also suitable for all models exhibiting
performance inflection points.

3) CT-HybridNet model: A new hybrid model, CT-HybridNet, is proposed, which combines the LSTM-based
DeepPBM-M model with the transformer-based PatchTST model. This innovative structure effectively
captures both short-term and long-term temporal dependencies in port container truck trajectory data,
offering significant enhancements to the trajectory prediction performance at each step size.

In the subsequent sections of this article, the structure of the paper will be presented. The development
status of kinematic models, LSTM networks and transformer models in recent years are reviewed next. A
detailed introduction of the integrated DeepPBM-M and PatchTST models, including improvements, and a
discussion on the architecture and optimisation strategies of the hybrid model CT-HybridNet is provided
thereafter. The dataset is collected, and the predictive performance is described through specific experiments,
comparing different models in the following section. The analysis of the experimental results and their
theoretical significance will be thoroughly explored later. The findings of the research are summarised, and
their significance for future applications in port logistics is discussed in the final section.

2. RELATED WORK

Trajectory prediction is an important research topic that involves the technology of predicting the positional
changes of moving entities over a certain period. With the increasing demand for automation transformation
applications, research related to trajectory prediction is continuously deepening and expanding. This section
will review the relevant work in the field of trajectory prediction, with a particular focus on the development
of kinematic models, LSTM and transformer models in this field.

2.1 Kinematic models

Initially, traditional vehicle modelling commonly employed kinematic models. Kinematic models focus on
the motion state of vehicles, such as position, velocity and acceleration. Lin et al. [6] enhanced the accuracy
of trajectory prediction through the numerical integration of a linearised two-degree-of-freedom car model.
Polychronopoulos et al. [7] developed a hierarchical prediction model capable of integrating real traffic
conditions with the kinematic model of the ego vehicle, improving the adaptability to different traffic scenarios.
Anderson et al. [8] proposed a kinematics-based trajectory prediction model for highway scenarios. By
decomposing motions longitudinally and laterally to approximate real driving conditions, they employed
Bayesian model averaging to enhance prediction accuracy. Gao et al. [9] introduced an interactive multiple
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model (IMM) for short-term and long-term trajectory prediction in typical road traffic scenarios for intelligent
vehicles, implementing manoeuvre recognition through hidden Markov models to improve accuracy. Zhang
et al. [10] utilised the Kalman filtering algorithm for trajectory prediction and its error analysis within the
context of trajectory prediction, demonstrating the suitability of Kalman filtering for such research. Zhang
utilised the Kalman filter and machine learning algorithms to track the dynamic behaviour of neutrophils,
providing valuable reference for trajectory prediction [11]. With time, researchers have studied deep learning
methods.

2.2 Deep learning methods

Trajectory prediction methods based on deep learning have become one of the mainstream prediction
approaches currently. These methods utilise complex data structures and algorithms to simulate and predict
vehicle motion trajectories in various environments, especially in complex traffic intersections and other
intricate settings. LSTM networks have been extensively studied and applied in trajectory prediction. With
their unique gating mechanism, they are particularly suited for handling long-term dependencies, becoming an
essential tool in the field of trajectory prediction [12-14]. Against this backdrop, Yao et al. [15] developed a
vehicle trajectory prediction network structure based on LSTM neural networks, focusing on frequently
changing vehicle operational environments at intersections and better predicting dynamically changing
environments. Li et al. [16] proposed a vehicle trajectory prediction model based on clustered convolutional
LSTM (CC-LSTM). This model employs a fuzzy clustering method to cluster similar trajectories of
surrounding vehicles and density clustering to classify historical trajectory features, identifying similarities
during segmentation phases, thereby extracting spatial features of target vehicle trajectories for prediction. Ip
etal. [17] introduced an LSTM encoder-decoder model, which also adopted an attention mechanism to manage
the significance of the driving stream of target vehicles and adjacent vehicles for trajectory prediction. Yu et
al. [18] focused on predicting future vehicle trajectories based on current and past vehicle positions. They
proposed a prediction scheme that combines LSTM with recurrent neural networks (RNN), aiding drivers in
decision-making by accurately predicting surrounding vehicle trajectories. Gao et al. [19] discussed a driving
behaviour intention recognition module using LSTM and an anticipated trajectory prediction module. The
former predicts the probability of behaviours such as lane keeping and changing, while the latter employs an
encoder-decoder structure with a mixture density network (MDN), predicting future trajectory distributions
based on context vectors and driving intentions. This approach significantly improved trajectory prediction
accuracy, especially for long-term predictions. Chen et al. [20] proposed a knowledge graph convolutional
network long short-term memory (KGCN-LSTM) model to enhance the accuracy and robustness of trajectory
prediction. Utilising graph convolutional networks (GCN), points of interest (POI) information is considered
as prior knowledge of trajectories, which is significant for optimising urban traffic management and planning.
Although the LSTM model performs well in trajectory prediction, researchers are still looking for other
algorithms, such as the transformer model.

Since the introduction of the transformer model in 2017, its influence in the field of natural language
processing (NLP) has grown rapidly [21]. Its applications have been rapidly expanding across various domains,
including vehicle trajectory prediction [22]. The transformer model, through its self-attention mechanism and
position encoding, effectively addresses long-distance dependency issues, significantly enhancing the model’s
capability in processing sequential data. With its successful application in language understanding and
generation tasks, researchers began to explore the potential of transformer models in the field of trajectory
prediction. Pazho et al. [23] employed a novel graph attention tokenisation (GAT) to capture social interactions
among vehicles. The transformer predictor module overcomes the limitations of RNNs and CNNs in handling
time-series data, focusing particularly on capturing long-range dependencies. Quintanar et al. [24] used
transformer networks with augmented information for trajectory prediction in urban settings. This method is
evaluated using metrics like mean average displacement error (MAD/ADE) and final average displacement
(FAD/FDE) and shows its unique advantages, especially when dealing with complex scenes such as
intersections and roundabouts in urban environments. Geng et al. [25] integrated physical knowledge learning
into the transformer model, specifically designed for highway scenarios. This model aims to improve the
accuracy and reliability of vehicle trajectory prediction on highways, taking into account physical constraints
and interactions. Wang et al. [26] proposed alternative mechanisms instead of commonly used graph
convolutional networks (GCN), significantly reducing time costs while maintaining prediction accuracy. Xu
et al. [27] utilised transformers and the pPNEUMA dataset for predicting vehicle trajectories in urban traffic,
showing good performance due to the self-attention mechanism’s ability to identify input dependencies. Chen
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et al. [28] introduced a stochastic non-autoregressive transformer model with multimodal prediction
capabilities, where each future trajectory can be inferred in parallel, enhancing the prediction processing speed.
Yang et al. [29] proposed a trajectory prediction network with an enhanced graph transformer (TP-EGT) to
predict future trajectories of traffic agents, introducing a conflict-aware graph transformer to capture complex
social interactions among traffic agents, effectively manage the high dynamics and uncertainty in these
scenarios. Gao et al. [30] presented a dual transformer model, comprising a lane-changing intention prediction
model and a trajectory prediction model. The anticipated probability vectors are fused, thus obtaining prior
knowledge.

The literature introduces a comprehensive range of trajectory prediction methods, particularly those
employing deep learning techniques. Despite the plethora of trajectory prediction algorithms proposed over
the past decade, the number specifically designed for container port environments is limited. There is still a
need for application-focused trajectory prediction algorithms for container trucks in port settings. In the
following section, the method used in this article will be introduced in detail.

3. METHODOLOGY

When facing complex time series prediction tasks, traditional single models often struggle to balance the
needs of both short-term and long-term forecasting. Based on this, a hypothesis is proposed in this paper:
combining the agility of the improved DeepPBM-M model, which is specifically modified and developed in
this study based on the DeepPBM-Attention model, in short-term prediction with the efficiency of the
PatchTST model in long-term forecasting, can we build a hybrid model framework? To explore this hypothesis,
this paper first introduces two core models — DeepPBM-M and PatchTST.

3.1 DeepPBM-M model overview

DeepPBM-M is an enhanced version of the DeepPBM-Attention model, which was initially proposed by
Ye et al. [31]. DeepPBM-M, proposed in this paper, is specifically developed to improve upon the original
model. The original DeepPBM-Attention model used a three-layer LSTM with a simple additive attention
mechanism to predict the single-step trajectory of port container trucks, demonstrating significantly superior
performance compared to other LSTM-based models. Despite its effectiveness, it had several shortcomings,
including the inability to perform multi-step predictions, slow convergence, limited interpretability of attention
weights, susceptibility to overfitting due to its complex structure and lack of robustness when handling noisy
or incomplete data.

To better adapt to the requirements of hybrid modelling and enhance the model’s flexibility, this paper
proposes an improved version, DeepPBM-M, which is specifically developed and modified in this study. An
overview of the DeepPBM-M model is illustrated in Figure 1, and several key modifications have been made
to enhance the model’s input-output structure:

Multi-head attention mechanism: In the original model, a simple additive attention mechanism was
employed. In this study, it has been adapted into a multi-head attention mechanism suitable for trajectory
prediction. Given an input X € R™ ¢, where n is the sequence length and d is the feature dimension, for each
head i (out of a total of h heads), define weights W; € R?*! and biases b; € R™'. Multi-head attention
allows the model to simultaneously focus on multiple features of the sequence from different perspectives.
This enhances the model’s expressiveness and its capability to handle complexity. In the following, the steps
involved in implementing this mechanism will be detailed.

1) First, for each head, an attention score e; is computed by the following operation:

e; = tanh(XW; + b;) 1)

XW; is the product of the input and the weights, to which the bias b; is added, followed by the

application of the tanh activation function. The attention score e; € R™1 represents the importance of
each input element for that head.

2) Then, the attention scores e; for each head are passed through the Softmax function to obtain attention
weights a;:

a; = Softmax(e;) 2
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Softmax ensures that the sum of weights in each sequence equals 1, representing the relative importance
of each element.
3) Each head computes a weighted representation of the input, where each input element is multiplied by its
corresponding attention weight:

0=) XOa) 3)

O denotes element-wise multiplication and o; € R%is the weighted sum result computed by that head.
4) Finally, the outputs o; from all heads are concatenated together to form the final multi-head attention
output:

0 = Concatenate (04, 0y, ..., 0) (4)

X € R™4js the final output, containing information from all heads.

Multi-step prediction capability: The original DeepPBM-Attention model was limited to single-step
forecasting. This paper enhances the base model by incorporating a fourth LSTM layer. This additional LSTM
layer is tasked with maintaining and conveying context information, ensuring that each prediction is predicated
on the preceding step’s outcomes. Consequently, this modification enables the model to forecast temporal
trends over extended horizons with greater accuracy.
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Figure 1 — DeepPBM-M model overview

3.2 PatchTST model overview

Unlike traditional LSTMs, the transformer relies entirely on the self-attention mechanism to capture global
dependencies between sequences, thus efficiently processing long sequence data. The transformer network for
the hybrid model adopted the PatchTST, an efficiently designed transformer model proposed by Nie et al. [32].
Each time series is divided into overlapping or separate patches of length P, with S as the interval, reducing
input tokens from L to L / P. This segmentation significantly reduces computational and memory requirements
for attention mechanisms, enabling efficient long-sequence processing and improving forecasting accuracy.

The neural network structure of PatchTST is shown in Figure 2. Currently, PatchTST is one of the highest-
performing models under the transformer-based architecture for handling complex forecasting problems, as it
can capture long-range dependencies in multivariate time series forecasting tasks. This architecture has been
proven to be highly effective. However, despite PatchTST’s advantages in long-term forecasting, it has certain
limitations in short-term forecasting, which may be due to the transformer architecture being less optimised
for capturing finer-grained variations over shorter time intervals.
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Figure 2 — PatchTST model overview

3.3 Model performance turning point

To systematically evaluate and compare the predictive capabilities of the DeepPBM-M and PatchTST
models across varying forecast horizons, we conducted a comprehensive empirical analysis. Table 1 presents

five key evaluation metrics for both models at different prediction steps:

1) Mean absolute error (MAE): Measures the average magnitude of prediction errors.
2) Mean squared error (MSE): Emphasises larger prediction errors by squaring the differences.
3) Mean absolute percentage error (MAPE): Indicates the percentage deviation from actual values.
4) Mean squared percentage error (MSPE): Highlights percentage deviations with greater sensitivity to large
errors.
5) Relative squared error (RSE): Provides a normalised measure of prediction accuracy relative to a baseline.
These metrics were chosen to provide a multi-faceted assessment of model performance, capturing both
absolute and relative prediction accuracy. The analysis spans prediction horizons from 1 to 96 steps, enabling
the evaluation of both short-term and long-term forecasting capabilities.

Table 1 — Evaluation metrics across different steps

MAE MSE MAPE MSPE RSE
SePS | DeepPB | PatchT | DeepPBM | PatchT | DeepPBM | PatchT | DeepPBM | PatchT | DeepPBM | PatchT
M-M ST -M ST -M ST ST -M ST

1 0.029 0.050 0.001 0.007 0.010 0.013 0.005 0.006 0.015 0.039
2 0.037 0.052 0.002 0.008 0.012 0.013 0.006 0.007 0.022 0.041
4 0.048 0.062 0.004 0.011 0.013 0.015 0.008 0.009 0.029 0.050
8 0.067 0.073 0.007 0.016 0.019 0.018 0.013 0.013 0.040 0.059
16 0.094 0.096 0.015 0.028 0.030 0.024 0.044 0.022 0.067 0.070
32 0.147 0.120 0.050 0.045 0.041 0.029 0.081 0.038 0.107 0.100
48 0.169 0.158 0.062 0.055 0.057 0.038 0.110 0.072 0.138 0.119
64 0.224 0.195 0.123 0.119 0.071 0.047 0.138 0.089 0.180 0.151
80 0.260 0.229 0.173 0.146 0.076 0.054 0.140 0.118 0.190 0.190
96 0.309 0.263 0.232 0.201 0.078 0.063 0.164 0.152 0.224 0.219
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The experimental results indicate that a significant performance turning point occurs between steps 8 and
16. Before step 16, the DeepPBM-M model outperforms the PatchTST model in all evaluation metrics,
whereas after step 16, the PatchTST model gradually surpasses the DeepPBM-M model. This finding provides
important guidance for further research.

Based on these preliminary experimental results, this paper proposes the CT-HybridNet model, which aims
to combine the strengths of both DeepPBM-M and PatchTST models in order to maintain high prediction
accuracy across various prediction horizons.

3.4 CT-HybridNet model architecture

In the preliminary study on container truck trajectory prediction at ports, we observed that LSTM models
excel at capturing short-term dependencies, showing outstanding performance in short-term prediction tasks,
while transformer models, with their ability to capture long-term dependencies, perform better in long-term
prediction tasks. Based on this observation, we hypothesise that LSTM and transformer models have unique
advantages in short-term and long-term prediction, respectively. The previous section compared the
performance of the LSTM-based DeepPBM-M and the transformer-based PatchTST across different
prediction lengths, confirming the existence of performance turning points.

To effectively combine these models and ensure the validity of our hybrid approach, we first conducted a
comprehensive residual analysis to validate the normality assumption of the model errors. This analysis is
crucial as it provides the theoretical foundation for our subsequent model fusion strategy.

Our residual analysis examined the prediction residuals of both base models across longitude and latitude
dimensions. As shown in Figure 3, the analysis reveals strong evidence supporting the normality assumption.
This normality assumption is further supported by the central limit theorem, as the prediction errors represent
the aggregation of multiple independent factors, and the input data has been normalised during preprocessing.
For the DeepPBM-M model, the residual distribution in longitude demonstrates clear normal characteristics
with mean u=-0.00108770 and standard deviation 6=0.00326428. The residuals’ normality is validated by both
statistical measures and graphical analysis: the skewness coefficient of -0.129 (approaching zero) confirms
distribution symmetry, while the kurtosis coefficient of 2.834 (close to the theoretical value of 3) supports the
normal distribution hypothesis. Similar normal patterns are observed in latitude residuals, with u=0.00238242,
6=0.00193726, skewness of -0.214 and kurtosis of 2.996.

The residual analysis of the PatchTST model yields comparable results, with both longitude and latitude
errors following normal distributions. The longitude residuals show p=-0.00217192, 6=0.02116637, skewness
of -0.058 and kurtosis of 3.460, while latitude residuals exhibit u=-0.00189542, 6=0.02330102, skewness of -
0.054 and kurtosis of 3.208. The histograms of residuals overlaid with theoretical normal distribution curves,
as shown in Figure 3, provide visual confirmation of these statistical findings.

(a) DeepPBM-M (b) DeepPBM-M (c) PatchTST (d) PatchTST
Longitude Residuals Latitude Residuals Longitude Residuals Latitude Residuals

= Normal
=3 Histogra
» »
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Figure 3 — Residual normality analysis of base models: a) DeepPBM-M longitude residuals; b) DeepPBM-M latitude residuals;
c) PatchTST longitude residuals; d) PatchTST latitude residuals
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Based on this rigorous residual analysis confirming the normality of prediction errors, we proceeded to
develop the mathematical framework for CT-HybridNet. Specifically, this study establishes the prediction
error of the DeepPBM-M model at step length [ as a random variable P;, which follows a normal distribution
with a mean of m, ; and variance of 6f 1, denoted as Py ;~V (ml,,, 6f l). Similarly, the error of the PatchTST
model at the same step length [ follows a normal distribution with a mean of m,; and variance of 622,1, denoted
as P2,1~N(m2,l,522,l). Given the statistical independence between the prediction errors of the DeepPBM-M
model and the PatchTST model, the CT-HybridNet model derives a hybrid prediction error by weighting the
errors of these two models with a weight parameter «;, The hybrid prediction error Py, ;, also follows a normal
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distribution, denoted as a;P;; + (1 — al)Pz,l~N(mh,l, 6,{,), with its mean, m,, ; and variance, 6,{1, given by
the following equations:

mp; = aymq; + (1 — a)my, (5)
8y = afsi + (1 —a)?63, (6)

Given that m; ; and m;; are both assumed to be 0, the mean of the hybrid prediction error, my, ;, is also 0.
On this basis, a constraint condition is introduced to ensure that the total variance of the hybrid model does not
exceed the variance of any single model:

@62, + (1 — )63, < min(87,63)) ™
In the subsequent derivation, by considering Sﬁ ; as the smaller variance, it is possible to obtain:

1—0:1 612'1
1+al_622,l

®)

Based on this, the range of constraint conditions for «; can be determined as:

©)

Based on these theoretical foundations and constraints established in equations (7)-(9), we formulate the
adaptive selection of a; as a nonlinear constrained optimisation problem, solved using sequential least squares
programming (SLSQP). This optimisation method is particularly suitable for handling the nonlinear constraint
while maintaining numerical stability. The SLSQP algorithm solves this constrained optimisation problem
through iterative approximation. At each iteration k, the algorithm computes:

minimize Vf(a,*)"d + %dTB"d (10)

where d is the search direction, B¥ is the approximation of the objective function’s Hessian matrix. The

equality constraint function is defined as:

ceq(a) = ay; + @, —1 =0 (11)
The gradients of the objective function and constraints are, respectively:

Vf(a) = [2ay10%, 20,,05]" (12)

Veeq(ay) = [1,1]" (13)
The algorithm iteratively updates the search direction and step size to approach the optimal solution:

altt = af + Akdk (14)

where A¥ is the step size determined by line search. The iteration continues until the convergence condition is
satisfied:

[VLak, ik, A0)||* < & (15)

where L(a;, u, ) = f(a;) — u"ceq(a;) — ATc(a;) is the Lagrangian function.

In the process of hybridising multiple step sizes, the CT-HybridNet model fully leverages the advantages
of DeepPBM-M and PatchTST in their respective areas of predictive strength. Further, in the CT-HybridNet
model, the scenario of mixing more models is also considered. To ensure the stability and reliability of the
system’s predictions when mixing multiple models, the Lyapunov energy function is introduced to assess the
energy or stability of the hybrid model at each step. This energy function is formulated as follows:

1
V= EE(HPh,lHZ) >0 (16)
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The Lyapunov energy function V; represents half the expected value of the square of the hybrid model error
Py at step length [. This expectation emphasises that V; assesses the expected system energy, crucial for
stability analysis. The function’s non-negativity ensures that the system’s “energy” does not increase
indefinitely, avoiding instability. To specifically monitor the hybrid model’s stability, we calculate the change
in energy AV, defined step by step as:

1 1 1 1
4V = SE(IPwlI?) = S E(IPs1) = 587, =585, < 0 (17)

where 5,%,1 and 63?,1 represent the variances of the hybrid model errors at step length [ and after the integration
of the newly introduced sub-model, respectively. These variances are part of the expectations used to calculate
the Lyapunov function and its change. By ensuring that AV; remains negative, i.e. the expected energy at the
current step is less than that of the previous step, we can continuously reduce the uncertainty of the system’s
predictions, thereby enhancing the system’s stability. This approach provides a powerful mathematical tool for
stability analysis, ensuring that even when multiple models are introduced for prediction, the overall stability
and accuracy of the system’s predictions are maintained. By continuously monitoring and adjusting the model
weights, CT-HybridNet can effectively utilise the strengths of each model, optimising the accuracy of long-
term and short-term predictions. The neural network structure of CT-HybridNet is shown in Figure 4. In the
subsequent sections, the performance evaluation of CT-HybridNet will be elaborated in detail through the
experimental results. The following sections will thoroughly introduce the related experimental settings,
evaluation metrics and result analysis.
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Figure 4 — CT-HybridNet model overview

4. EXPERIMENTS AND RESULTS

The empirical validation of the CT-HybridNet model’s performance necessitates a comprehensive
experimental framework encompassing both quantitative metrics and qualitative analysis. Through systematic
evaluation across multiple prediction horizons and diverse operational scenarios, we aim to demonstrate the
model’s efficacy in addressing the challenges of port container truck trajectory prediction. The following
sections detail our experimental methodology and present the analytical findings.
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4.1 Dataset description and data preprocessing

In this section, this study conducts experiments using comprehensive real-world data collected from the
terminal. Against the backdrop of port area automation renovation, high-precision positioning devices were
installed on all 150 internal container trucks, and their location trajectory data were continuously collected
over a month. The positioning devices employed in this study were industrial-grade GNSS receivers, featuring
positioning accuracy of 1 cm (CEP) under open sky conditions and an update rate of 5 Hz. These devices
recorded latitude and longitude with precision at 7 decimal places, supported multi-constellation reception
(GPS, BeiDou), and provided velocity measurements accurate to 0.01 m/s RMS with heading accuracy of 0.1
degrees RMS.

To enhance the performance of predictive models, this study implemented a series of sophisticated data
preprocessing steps centred around the temporal and spatial data collected from positioning devices onboard
yard trucks within the port. These steps were designed to optimise the efficiency of model training and the
accuracy of predictions while minimising computational complexity and training costs. The specific processes
included data collection, sorting and feature extraction encompassing timestamps (UTC, millisecond
precision), latitude and longitude coordinates, positioning quality indicators, instantaneous speed and heading
direction. The preprocessing pipeline incorporated rigorous filtering criteria, removing positions with HDOP
exceeding 4.0, data points with fewer than 6 satellites, and physically impossible accelerations greater than 2.5
m/s?. A Kalman filter was applied to smooth trajectory data and eliminate anomalous readings.

To accommodate the needs of supervised learning, the GNSS data were systematically segmented by time
intervals and converted into a supervised learning format. This conversion process facilitates the model’s
learning of the relationship between input features and predictive outputs, thereby enhancing the accuracy of
predictions. To further facilitate efficient model training, the data were normalised to a [0, 1] scale and
standardised to ensure that different feature values were comparable, which helped improve the training speed
and model convergence. After preprocessing, the dataset, consisting of approximately 10 million trajectory
data points, was split into training and validation sets with a 90/10 ratio. The training set was used to fit the
model, while the validation set served to evaluate its performance and ensure its generalisation capabilities.
All data preprocessing steps were conducted using Python 3.8, as shown in Figure 5.
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Figure 5 — Data preprocessing workflow for the dataset

After dividing the dataset, special attention was given to the representativeness of the validation set to
ensure the model’s generalisation capabilities. The validation data were carefully selected to encompass not
only common scenarios but also various edge cases within port operations, including regular operation patterns
during different times of day, diverse weather conditions affecting GNSS performance, various operational
areas within the port, different loading states of container trucks and multiple driving patterns and manoeuvres.
As shown in Figure 6, the trajectory data in the validation set demonstrate the distribution across various time
frames and geographic locations, capturing a wide range of port operation conditions. This comprehensive
coverage ensures that the validation process effectively assesses the model’s performance across the full
spectrum of operational scenarios encountered in real-world port environments.

1554



Promet — Traffic&Transportation. 2025;37(6):1545-1561. Intelligent Transport Systems (ITS)

Validation set 15000 to 18000 Validation set 27000 to 30000

Validation set 0 to 3000

Latitude
Latitude
Latitude

0.0

-1 0 1 2 3 4

Toneitde

0.5 0.0

Toneinide

-1.0 -0.5 0.0 -1.5 -1.0

Tonpitude

Validation set 39000 to 42000 Validation set 54000 to 57000

0.5
VAN

Validation set 42000 to 45000

Latitude
&
3

Latitude
=
Latitude

=

05 1.0 0.5 0.0 05 10 L5
Tongitude

0.5 0.0
Tongimde

05 00 05 10 10
Tongitde

Validation set 60000 to 63000

20 15 -0

Validation set 69000 to 72000 Validation set 120000 to 123000

0.50

et

=

th
=

0.00

Latitude
Latitude
Latitude

-0.25

-0.50

o

-0.5 0.0 0.5
Tongitude

-0.5 0.0 -1.5 -1.0
Tongimde

Figure 6 — Validation set trajectory distribution
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4.2 Experimental setup

This study finely tuned the hyperparameters of the DeepPBM-M model, the PatchTST model and the CT-
HybridNet hybrid model to optimise model performance. The specific hyperparameter settings are shown in
Table 2. The experiments extensively validated the effectiveness of these models in the task of predicting the

trajectories of internal container trucks within the port.
The next section will provide a detailed experimental evaluation and comparative analysis of the models

designed above, thereby verifying each model’s predictive performance and practicality.

Table 2 — Hyperparameter settings

The The Number of | Number of | Number of

number of . . . .- .
Models number of R neurons in neuronsin | neuronsin | optimiser | epochs | batch_size
I validation
training set set hystm1 hystmz2 histms

DeepPBM-M 8900,000 810000 128 256 256 Adam 200 3600
PatchTST 8900,000 810000 N/A N/A N/A Adam 100 3600
CT-HybridNet | 8900,000 810000 128 256 256 Adam 200 3600

4.3 Model training time

The training time is a key metric for evaluating the efficiency of models in the development and

optimisation process. By systematically comparing the training duration of various models, it is possible not
only to reveal their efficiency differences in practical applications but also to gain insights into their
performance under large-scale data scenarios.

To comprehensively evaluate the training efficiency of each model, this study conducted a detailed record
and analysis of the training times for DeepPBM-M, PatchTST and CT-HybridNet under identical datasets and
computing environments. All models were trained on a Windows 11 system equipped with an NVIDIA RTX
4090 GPU. The Python version used was 3.8, and PyTorch was employed as the deep learning framework.
The training times, early stopping rounds and MSE results are shown in Table 3.
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Table 3 — Model training time comparison

Models Training time [min] Early stopping rounds MSE
DeepPBM-M 129.1048648 72 0.003290
PatchTST 215.1638892 168 0.003755
CT-HybridNet 225.2612862 166 0.002797

From Table 3, it can be observed that DeepPBM-M achieved the fastest training time, requiring 129.10
minutes and stopping after 72 rounds with an MSE of 0.003290. This demonstrates a relatively efficient
training process compared to the other models. On the other hand, PatchTST and CT-HybridNet had
significantly longer training times, 215.16 minutes and 225.26 minutes, respectively. Notably, CT-HybridNet
had the lowest MSE value of 0.002797, suggesting better accuracy in predictions.

4.4 Model prediction time

In addition to training time, prediction time is another critical factor for evaluating model performance,
especially in real-world applications where quick inference is often essential. By comparing the prediction
time of different models, we can better understand their efficiency during the inference phase.

To thoroughly assess the prediction efficiency, this study measured the prediction times for DeepPBM-M,
PatchTST and CT-HybridNet under identical validation conditions. The models were evaluated using 62,000
validation sets across different prediction steps (1, 8 and 96). The prediction times were recorded in a consistent
computing environment (Windows 11 system with NVIDIA RTX 4090 GPU, Python 3.8, PyTorch). The
results are summarised in Table 4.

Table 4 — Model prediction time comparison

Models vzﬁlil(llgltli):; gefts Steps Prediction time [s]

DeepPBM-M 20.6088280

PatchTST 62,000 1 8.8169904
CT-HybridNet 21.3077526
DeepPBM-M 58.1089582

PatchTST 62,000 8 70.6860214
CT-HybridNet 66.9997851
DeepPBM-M 452.2246989

PatchTST 62,000 96 562.0177092
CT-HybridNet 542.004211

Table 4 presents a detailed breakdown of the prediction times for each model across different step sizes. The
prediction time indicates the duration each model took to generate predictions for the given number of
validation sets. It can be observed that CT-HybridNet demonstrated competitive performance, particularly for
larger step sizes. For 8 steps, CT-HybridNet had a prediction time of 66.9997851 seconds, which was faster
than PatchTST and only slightly longer than DeepPBM-M, indicating an efficient inference capability while
maintaining high accuracy.

For the most computationally intensive scenario with 96 steps, CT-HybridNet required 542.004211 seconds,
which was comparable to PatchTST and DeepPBM-M. Importantly, despite being a hybrid model, CT-
HybridNet did not exhibit increased prediction time or complexity compared to other models. This shows that
the model’s hybrid nature effectively integrates different components without compromising its efficiency,
which is a significant advantage over traditional single-architecture models.
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4.5 Evaluation of prediction performance

In this study, multiple evaluation metrics were employed to comprehensively assess the performance of the
DeepPBM-M model, the PatchTST model and the CT-HybridNet model proposed in this research, in the task
of predicting the trajectories of port container trucks. These evaluation metrics include MAE, MSE, MAPE,
MSPE and RSE. These indicators thoroughly reflect the accuracy and practicality of the model predictions.
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Figure 7 — Evaluation metrics for DeepPBM-M, PatchTST and CT-HybridNet: a) MAE performance comparison; b) MSE
performance comparison; ¢) MAPE performance comparison; d) RSE performance comparison; €) MSPE performance comparison

Figure 7 highlights the performance turning points of both DeepPBM-M and PatchTST in multi-step
prediction, particularly between steps 8 and 16. These turning points are crucial as they mark significant
changes in model performance, with DeepPBM-M showing reduced accuracy and PatchTST beginning to
excel. Using the validation set described in Section 4.1, which consists of 810,000 trajectory data points
carefully selected to encompass various operational scenarios, we performed nine independent evaluations and
included error bars representing mean + standard deviation for each evaluation metric. The error bars
demonstrate the consistency and stability of our results across different test scenarios. Notably, the CT-
HybridNet model shows smaller error bars compared to both base models, particularly in the critical transition
period (steps 8-16), indicating more stable and reliable predictions. The reduced standard deviations of CT-
HybridNet (average of +£0.022 for MAE compared to +0.032 for DeepPBM-M and +£0.023 for PatchTST)
suggest that our hybrid approach not only improves accuracy but also reduces prediction variability. This
enhanced stability is particularly evident in long-term predictions (beyond step 32), where the CT-HybridNet
maintains consistently smaller standard deviations despite the increasing prediction horizon. Figure 7 clearly
shows these transitions and stability patterns, providing visual support to the detailed metrics in Table 5, which
captures how the performance metrics evolve across different prediction steps.

Table 5 — Model evaluation metrics across different steps

Model Steps MAE MSE MAPE MSPE RSE
DeepPBM-M 0.029 0.001 0.010 0.005 0.015
PatchTST 1 0.050 0.007 0.013 0.006 0.039
CT-HybridNet 0.028 0.001 0.010 0.004 0.016
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Model Steps MAE MSE MAPE MSPE RSE
DeepPBM-M 0.037 0.002 0.012 0.006 0.022
PatchTST 2 0.052 0.008 0.013 0.007 0.041
CT-HybridNet 0.033 0.002 0.011 0.006 0.020
DeepPBM-M 0.048 0.004 0.013 0.008 0.029
PatchTST 4 0.062 0.011 0.015 0.009 0.050
CT-HybridNet 0.044 0.003 0.011 0.004 0.028
DeepPBM-M 0.067 0.007 0.019 0.013 0.040
PatchTST 8 0.073 0.016 0.018 0.013 0.059
CT-HybridNet 0.058 0.006 0.016 0.009 0.036
DeepPBM-M 0.094 0.015 0.030 0.044 0.067
PatchTST 16 0.096 0.028 0.024 0.022 0.070
CT-HybridNet 0.084 0.013 0.026 0.026 0.054
DeepPBM-M 0.147 0.050 0.041 0.081 0.107
PatchTST 32 0.120 0.045 0.029 0.038 0.100
CT-HybridNet 0.119 0.039 0.027 0.037 0.094
DeepPBM-M 0.169 0.062 0.057 0.110 0.138
PatchTST 48 0.158 0.055 0.038 0.072 0.119
CT-HybridNet 0.154 0.052 0.036 0.069 0.118
DeepPBM-M 0.224 0.123 0.071 0.138 0.180
PatchTST 64 0.195 0.119 0.047 0.089 0.151
CT-HybridNet 0.204 0.111 0.048 0.084 0.159
DeepPBM-M 0.260 0.173 0.076 0.140 0.190
PatchTST 80 0.229 0.146 0.054 0.118 0.190
CT-HybridNet 0.225 0.144 0.058 0.107 0.181
DeepPBM-M 0.309 0.232 0.078 0.164 0.224
PatchTST 96 0.263 0.201 0.063 0.152 0.219
CT-HybridNet 0.269 0.202 0.062 0.142 0.214

As shown in the results of Table 5, the DeepPBM-M and PatchTST models exhibit a significant performance
turning point in multi-step prediction of port vehicle trajectories in the prediction range of 8 to 16 steps. The
CT-HybridNet model proposed in this paper adopts a weighted fusion strategy, which takes full advantage of
DeepPBM-M’s ability to capture temporal dependencies in short-term prediction, as well as PatchTST’s
superior performance in long-term prediction of long sequence data. It performs well not only in short-term
prediction but also shows significant performance advantages in long-term prediction.

As can be seen from the table, the DeepPBM-M model performs well in short-term prediction, especially
in the 1 to 4 step prediction range, where its MAE and MSE are significantly lower than those of the PatchTST
model. For example, for 1-step prediction, the MAE is 0.029 and the MSE is 0.001, demonstrating the
advantage of LSTM in capturing short-term dependencies. In contrast, PatchTST performs slightly worse in
short-term prediction, such as in the 4-step prediction, where the MAE is 0.062 and the MSE is 0.011. The
transformer architecture is not as sensitive as LSTM in capturing local features, resulting in lower accuracy in
short-term prediction compared to DeepPBM-M.
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In long-term prediction, the PatchTST model exhibits superior performance. For example, in the 16-step
prediction, the MAE of PatchTST is 0.096 and the MSE is 0.028, which is about 34.7% better than the MAE
of 0.147 for DeepPBM-M. This performance improvement is attributed to the self-attention mechanism of the
transformer, which allows PatchTST to more effectively capture long-term dependencies. DeepPBM-M’s
performance gradually declines in long-term prediction, with an MAE of 0.147 and MSE of 0.050 in the 32-
step prediction, indicating limitations in LSTM’s ability to capture long-term dependencies, leading to
cumulative prediction errors.

CT-HybridNet achieves dual performance improvement in both short-term and long-term predictions by
adaptively fusing the prediction results of DeepPBM-M and PatchTST. In short-term prediction, for example,
in the 1-step prediction, CT-HybridNet’s MAE is 0.028, close to and slightly better than DeepPBM-M, and
compared to PatchTST’s 0.050, the MAE is reduced by about 44%. In long-term prediction, such as in the 32-
step prediction, the MAE of CT-HybridNet is 0.119, which is lower than DeepPBM-M’s 0.147, representing
an improvement of about 20%. The adaptive fusion strategy enables CT-HybridNet to combine the advantages
of LSTM and transformer, maintaining high prediction accuracy and stability in both short-term and long-term
predictions, especially with a significant accuracy improvement of about 15% in long-term predictions beyond
16 steps.

5. CONCLUSIONS

This study analyses the performance turning points of DeepPBM-M and PatchTST at different prediction
steps, introducing an adaptive training mechanism through a weighted fusion strategy to optimise performance
before and after these breakpoints. Building on this research, a novel hybrid trajectory prediction model, CT-
HybridNet, is proposed. This model integrates the strengths of DeepPBM-M and PatchTST, specifically
tailored for multi-step trajectory prediction of port container trucks. Comparative experiments on trajectory
prediction technology have verified that CT-HybridNet exhibits superior predictive accuracy and stability
compared to single models.

The implementation of CT-HybridNet in real port operations, integrated with the PathSync Collision
Avoidance system, has demonstrated significant economic and operational benefits. Based on a six-month
pilot deployment at a major container port, the model achieved a 15% reduction in positioning errors during
container stacking operations, enabling the central control server to implement more precise safety
management. The multi-step prediction data are transmitted to the central control server and integrated with
the PathSync Collision Avoidance system, which analyses trajectory overlaps to provide early collision
warnings. This integration enables dynamic path planning for manned vehicles and establishes a
comprehensive collision prevention network. Through this optimised routing system and reduced correction
manoeuvres, waiting times at key logistics nodes decreased by 10%, while fuel consumption dropped by 8%,
contributing to lower carbon emissions in port operations. These comprehensive operational improvements
collectively resulted in an estimated annual cost saving of $1.2 million for the test port, demonstrating the
substantial economic value of implementing the CT-HybridNet model in port operations.

Looking forward, despite the significant progress made with the CT-HybridNet model, it is believed that
several directions merit exploration in future research. Firstly, further optimisation of the model structure and
parameters, such as the introduction of more advanced attention mechanisms like the multi-layer self-attention
structure of transformers, could improve performance when processing more complex datasets. Secondly,
considering that different port environments may have unique features and challenges, conducting research on
model adjustments and optimisations tailored to specific port environments would be of significant importance.
Additionally, with the development of Internet of Things technology and high-precision positioning
technology, collecting and integrating more types of data (e.g. weather conditions, traffic flow, types of cargo)
into the prediction model could further enhance the accuracy and robustness of predictions.
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