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ABSTRACT 

As energy conservation and sustainability become key priorities in public transportation, 

optimising bus scheduling with an emphasis on energy efficiency offers a practical pathway 

toward greener transit systems. However, existing studies often treat energy consumption 

and service quality in isolation, lacking an integrated framework for regional bus dispatch 

optimisation. This study proposes a multi-objective energy-saving dispatch model that jointly 

minimises passenger waiting time and vehicle energy consumption while considering vehicle 

allocation and passenger transfers. A vehicle-specific power (VSP)-based energy estimation 

method is introduced to enhance the accuracy of energy consumption assessments under real-

world operating conditions. To solve the proposed model, we develop a two-phase 

optimisation algorithm that balances computational efficiency and solution quality. A case 

study on the Lanzhou regional transit network validates the model’s feasibility, 

demonstrating improvements in both service levels and energy consumption. The findings 

contribute to the development of more sustainable and efficient regional bus scheduling 

strategies. 
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1. INTRODUCTION 

Public transit plays a pivotal role in sustainable urban mobility, outperforming private vehicles in energy 

efficiency and environmental impact [1]. Studies indicate that optimised bus systems can reduce urban 

transport emissions by 18–22% compared to car-dominated travel patterns [2]. However, these environmental 

benefits heavily depend on operational factors, particularly vehicle occupancy rates. Data from the 

International Energy Agency (IEA) show that peak-hour bus occupancy ranges from 60% in Europe to 120% 

in Asia, while off-peak rates frequently drop below 15% [3]. When occupancy falls below 10–12%, life-cycle 

assessments reveal that buses lose their environmental advantage due to high embodied energy in 

manufacturing and low fuel utilisation rates [4]. This presents a key challenge: balancing service quality – 

frequency, comfort and reliability – with energy efficiency. Optimising vehicle allocation and operational 

planning is crucial to maintaining public transport’s energy-saving benefits while enhancing its 

competitiveness and attractiveness. 

Regional centralised scheduling is widely adopted in bus operations both domestically and internationally. 

This approach manages multiple routes within a specific area, enabling cross-line resource sharing and 

coordinated scheduling to improve efficiency [5]. Existing regional scheduling models primarily focus on 
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minimising passenger wait times [6] or maximising vehicle utilisation [7], often overlooking the trade-off 

between service quality and energy efficiency. For instance, Gkiotsalitis et al. found that increasing dispatch 

frequency reduces passenger delays by 30% but raises energy consumption by 15% when occupancy is 

suboptimal [8]. This underscores the need for integrated models that jointly optimise service quality and energy 

performance. 

Given the interdependence between operational energy use and service performance, this study proposes a 

multi-objective optimisation framework for bus scheduling that simultaneously considers energy efficiency 

and service quality. We develop a novel two-phase solution algorithm capable of handling the nonlinear 

relationships between these competing objectives. The proposed method is validated using real-world data 

from Lanzhou’s regional public transit network, which features a mix of bus rapid transit (BRT) and 

conventional buses operating in challenging terrain. Our results demonstrate measurable improvements in both 

energy efficiency and passenger service metrics, providing valuable insights for transit agencies seeking to 

balance environmental and operational performance. 

This study makes three key contributions. (1) A unified modelling framework that captures the 

interdependence between energy consumption and service quality in bus operations. (2) An efficient 

computational approach for solving the resulting multi-objective optimisation problem. (3) Empirical 

validation through a real-world case study, demonstrating the practical applicability and benefits of the 

proposed method. 

The remainder of this paper is structured as follows: Chapter 2 provides a literature review. Chapter 3 

introduces the quantitative index of energy consumption. Chapter 4 proposes the energy-saving dispatching 

model, with Section 4.1 defining the mathematical notations and Sections 4.2 and 4.3 analysing bus operational 

characteristics and formulating the multi-objective optimisation model, respectively. Chapter 5 presents the 

NSGA-II algorithm along with a comprehensive weighting method. Chapter 6 discusses the case study, 

including optimised results and sensitivity analysis. Finally, Chapter 7 concludes this paper. 

2. LITERATURE REVIEW 

At the regional level of bus scheduling optimisation, numerous studies have explored strategies to enhance 

both transit efficiency and service quality. Wei et al. developed a two-layer optimisation model that minimises 

bus purchase costs and exhaust emissions, promoting both economic and environmental sustainability [9]. 

Building on this, Lee et al. introduced reliability indicators and time-space networks, refining operational 

schedules by incorporating fixed time windows and accounting for uncertain passenger flow conditions [10]. 

Further advancing scheduling methodologies, Silva-Soto et al. focused on the time synchronisation of bus 

arrivals at overlapping stops. They formulated a mixed-integer optimisation model based on time-index 

variables and employed an improved genetic algorithm to enhance solution efficiency [11]. In a different 

approach, Zhu et al. examined public transport management strategies during disruptions, proposing a boarding 

limit strategy to ensure equitable passenger access under capacity constraints, such as during pandemics [12]. 

They also developed a reservation-based bus scheduling approach using a mixed-integer nonlinear 

programming (MINLP) model to address travel time uncertainty while optimising both passenger wait times 

and operational efficiency [13]. 

In recent years, dynamic scheduling approaches for high-frequency bus lines have gained increasing 

attention. Chen et al. proposed a novel bi-modal traffic control framework that integrates bus frequency 

optimisation with perimeter control through a three-dimensional passenger macroscopic fundamental diagram 

(3D-pMFD). Their passenger-oriented strategy regulates both private vehicle flows and public transit 

operations at the network level, significantly enhancing regional mobility efficiency [14]. In a similar vein, 

Gkiotsalitis and van Berkum developed a rolling-horizon optimisation model using convex programming to 

maintain service regularity and minimise passenger waiting times while ensuring computational efficiency. 

However, real-world operational constraints often necessitate more advanced techniques, such as heuristic 

algorithms or MINLP, to tackle scheduling complexities [15]. 

Beyond scheduling, traffic management strategies also play a crucial role in improving transit sustainability. 

Naseri et al. explored the impact of high-occupancy vehicle (HOV) lanes on urban freeway congestion. Their 

simulation-based study of the Tehran-Karaj corridor demonstrated that HOV lanes can effectively alleviate 

congestion, providing policy-relevant strategies that may also benefit bus priority systems and transit-oriented 

development [16]. This underscores the need for an integrated approach that combines vehicle-level efficiency 

improvements with system-level traffic management to enhance public transportation sustainability. 
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Although much energy efficiency research has focused on road-based transit, similar principles apply across 

various transportation and energy systems. For instance, Ghalebzade et al. examined axle load distribution in 

railway networks using Simpack, modelling articulated trains with hydraulic actuators. Their findings, which 

comply with EN14363/UIC518 standards, identified risks in curved track navigation and proposed a control 

method to mitigate axle load disparity in intercity trains, offering insights relevant to urban transit vehicle 

energy efficiency [17]. 

Moreover, energy efficiency considerations extend beyond conventional fuel consumption models to 

broader transport and mobility systems. Asemi et al. studied working fluid selection in Stirling refrigerators, 

showing that helium provides superior cooling capacity at optimal pressure compared to air. Although focused 

on cryogenic applications, this research highlights the significance of thermodynamic optimisation in energy 

management, a principle that is also relevant to electric bus battery cooling and efficiency [18]. Similarly, 

Rahim et al. conducted a lifecycle analysis of hybrid energy storage systems (HESS) for electric vehicles, 

revealing that ultracapacitor integration can significantly extend battery lifespan, reducing long-term costs 

despite a higher initial investment. Their findings provide valuable insights for the sustainable electrification 

of transit systems [19]. 

Despite extensive research on bus scheduling and energy efficiency, existing approaches often fail to 

integrate both objectives within a unified framework. Our approach incorporates real-world operational 

constraints and nonlinear interactions, ensuring practical applicability. The proposed framework is validated 

using empirical data from Lanzhou’s transit network, demonstrating its potential to enhance both service 

efficiency and sustainability. 

3. BUSES ENERGY CONSUMPTION ANALYSIS 

Consistent with the findings of Song et al. [20], who validated VSP as a more reliable energy predictor 

compared to speed and acceleration, Figure 1 illustrates the VSP-based calculation process, which includes: 

 VSP bin classification; 

 Bin-specific energy coefficients; 

 Energy consumption factor. 

 

Figure 1 – The calculation framework of energy consumption 

1) Vehicle specific power (𝑉𝑆𝑃) 

𝑉𝑆𝑃 (kw/kg) is the instantaneous output power of a motor vehicle per unit mass [20], as Equation 1: 

𝑉𝑆𝑃 = 𝑣(𝑎 ∙ (1 + 𝜀) + 𝑔 ∙ 𝑖 + 𝑔 ∙ 𝐶𝑅) +
0.5𝜌 ∙ 𝐶𝐷 ∙ 𝐴 ∙ 𝑣3

(𝑛 ∙ 𝑚 + 𝑀)
 (1) 

where 𝑣  denotes the speed, 𝑎 refers to the acceleration, 𝑖 is the road slope and take 𝑖 = 0 , 𝑔  is the 

gravitational acceleration and take 𝑔 = 9.8𝑚/𝑠2, 𝐶𝑅is the rolling resistance coefficient, 𝜌 refers to the air 

density and take 𝜌 = 1.2𝑘𝑔/𝑚3, 𝐴 and 𝑀 respectively represent the maximum frontal cross-sectional area of 

the vehicle and the unladen mass of the vehicle, 𝑚 is the average weight of passengers, taking 65. 

2) Instantaneous energy consumption (𝐸𝐶𝑅) 

𝐸𝐶𝑅(𝑔 · 𝑠−1) refers to the amount of energy consumed by a motor vehicle per second [20]. According to the 

principle of carbon conservation of fuel combustion, the exhaust emission data of automobiles are 

converted into energy consumption rate, as shown in Equation 2: 
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𝐸𝐶𝑅 = (𝐸𝑅𝐶𝑂2
∙

12

44
+ 𝐸𝑅𝐶𝑂 ∙

12

28
+ 𝐸𝑅𝐻𝐶 ∙

12

13
) ∙

1

𝐶%
 (2) 

where 𝐸𝑅𝐶𝑂2
, 𝐸𝑅𝐶𝑂 and 𝐸𝑅𝐻𝐶 are the emission rates of 𝐶𝑂2, 𝐶𝑂 and 𝐻𝐶, respectively. 𝐶% is the mass ratio of 

carbon in the fuel, which is 0.86 for diesel and 0.45 for natural gas. 

3) Average energy consumption (𝐸𝐶) 

Affected by changes in the traffic environment or the vehicle performance, the energy consumption 

corresponding to the same VSP value has a large dispersion [21]. In this paper’s case, the instantaneous 

energy consumption rate is clustered at intervals of 1 kw/kg, so 𝐸𝐶𝑅(𝑔 · 𝑠−1) of 𝑦 𝑉𝑆𝑃 bin is obtained as 

Equation 3: 

𝐸𝐶𝑦 =
∑ 𝐸𝐶𝑅𝑦𝑦

𝑛𝑦
 (3) 

where 𝑛𝑦 is the total time of the 𝑦 𝑉𝑆𝑃 bin. 

4) Energy consumption factor (𝐸𝐹) 

There is a good normal distribution fitting law between the 𝑉𝑆𝑃 distribution of the vehicle and the average 

travel speed, which can be effectively used for the energy consumption calculation of motor vehicles. In 

this paper’s case, the average speed of 60 consecutive pieces of second-by-second data is used as the 

average travel speed. 𝐸𝐹𝑣𝑘
(𝑔 · 𝑘𝑚−1) of the 𝑘 speed interval can be expressed by Equation 4: 

𝐸𝐹𝑣𝑘
=

3600 ∙ ∑ 𝐸𝐶𝑦 ∙ 𝐹𝑟𝑦,𝑘𝑦

𝑣𝑘
 (4) 

𝐹𝑟𝑦,𝑘 =
𝑇𝑦,𝑘

𝑇𝑘
 (5) 

where 𝑣𝑘(𝑘𝑚 ⋅ ℎ−1) is the average travel speed of the speed interval. 𝐹𝑟𝑦,𝑘 indicates the percentage of the 𝑦 

𝑉𝑆𝑃 bin when speed interval is 𝑘, as Equation 5, 𝑇𝑘 and 𝑇𝑦,𝑘 are the total time of the 𝑘 speed interval and the 

𝑦 𝑉𝑆𝑃 bin. 

4. MODEL OF REGIONAL BUS ENERGY SAVING DISPATCHING 

Following standard practice in transit modelling [22], we assume no vehicle overtaking occurs, as is typical 

in high-frequency systems where headway adherence is prioritised over overtaking. This aligns with our study 

system’s dispatch policies. Passenger arrivals are modelled as uniform within headways, a widely used 

assumption for short headways (<10–15 min) supported by empirical studies [23]. 

4.1 Notations 

In order to describe the running state of public transport vehicles on the road network, the variable symbols 

and relevant parameters are set in Tables 1 and 2. 

Table 1 – Variables 

Variables Meanings 

𝑓𝑏𝑙
𝑖  

The departure time of bus 𝑏𝑙
𝑖 from the parking lot 𝑠𝑙

0, decision variable, and the 

other decision variable is the vehicle type, which can be described by 𝑞𝑏𝑙
𝑖 

𝑑
𝑏𝑙

𝑖,𝑠𝑙
𝑗 The arrival time of bus 𝑏𝑙

𝑖 at station 𝑠𝑙
𝑗
 

𝑤
𝑏𝑙

𝑖,𝑠𝑙
𝑗  The dwell time of bus 𝑏𝑙

𝑖 at station 𝑠𝑙
𝑗
 

𝑧
𝑏𝑙

𝑖,𝑠𝑙
𝑗  The stranded passengers who are unable to take the bus 𝑏𝑙

𝑖 

ℎ
𝑏𝑙

𝑖,𝑠𝑙
𝑗  The total passengers who are waiting for bus 𝑏𝑙

𝑖 at station 𝑠𝑙
𝑗
 

𝐴
𝑏𝑙

𝑖,𝑠𝑙
𝑗  The actual number of boarding passengers 

𝐷
𝑏𝑙

𝑖,𝑠𝑙
𝑗  The actual number of alighting passengers 

𝐶
𝑏𝑙

𝑖,𝑠𝑙
𝑗  The number of passengers on bus 𝑏𝑙

𝑖 upon leaving the station 𝑠𝑙
𝑗
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Table 2 – Parameters 

Parameters Meanings 

𝑙 Line index, 𝑙 ∈ 𝐿, 𝐿 = {𝑙|𝑙 = 1,2,3, . . . , 𝑁}, 𝑁 is the number of regional lines 

𝑖 Vehicle index 

𝑗 Station index, j∈ 𝑆, 𝑆  is the set of regional bus stations, 𝑆 = {𝑆𝑙|𝑙 ∈ 𝐿} 

𝑆𝑙  
The station set of the line 𝑙, 𝑆𝑙 = {𝑠𝑙

0, 𝑠𝑙
1, . . . , 𝑠𝑙

𝑚𝑙} , 𝑚𝑙 is the number of the stations, 

and 𝑠𝑙
0 is parking depot 

𝑠𝑙
𝑗

 The No. 𝑗th station of the line 𝑙, 𝑠𝑙
𝑗

∈ 𝑆𝑙 

𝑆𝑡  The transfer station set, 𝑆𝑡 = {(𝑠𝑙1

𝑝
, 𝑠𝑙2

𝑞
)|𝑠𝑙1

𝑝
, 𝑠𝑙2

𝑞
∈ 𝑆, 𝑙1, 𝑙2 ∈ 𝐿}  

𝐵𝑙  
The bus set of the line 𝑙 , 𝐵𝑙 = {𝑏𝑙

1, 𝑏𝑙
2, . . . , 𝑏𝑙

𝑖 , . . . , 𝑏𝑙
𝑛𝑙}, denotes t and 𝑛𝑙 is the number 

of departures in the hypothetical time frame 

𝑏𝑙
𝑖

 The No. 𝑖th bus of the line 𝑙, 𝑏𝑙
𝑖 ∈ 𝐵𝑙 

𝛼
𝑠𝑙

𝑗  
Passenger alighting rate of station 𝑠𝑙

𝑗
, which refers to the proportion of the number of 

passengers off to all passengers on the bus 

𝛽
𝑠𝑙

𝑗  
Arrival rate of station 𝑠𝑙

𝑗
, which to the number of passengers arriving per unit time (1 

min) 

𝑡𝑟𝑠𝑙1

𝑝
,𝑠𝑙2

𝑞  Passenger transfer rate of station 𝑠𝑙1

𝑝
 of bus line 𝑙1 to station 𝑠𝑙2

𝑞
 of bus line 𝑙2 

𝑡
𝑠𝑙

𝑗−1
,𝑠𝑙

𝑗  The travel time between stations 𝑠𝑙
𝑗−1

 and 𝑠𝑙
𝑗
 

𝑞𝑏𝑙
𝑖  The capacity of bus 𝑏𝑙

𝑖 

𝑇1 and 𝑇2 The scheduling time window 

𝑡
min and 𝑡max The minimum and maximum departure intervals 

4.2 Dynamic analysis of bus operation 

Affected by the decision variables departure time and vehicle type, there are four types of auxiliary variables 

through the dynamic analysis of bus operation. 

Dwell time 

The bus’s dwell time is the sum of the platform passenger service time, the bus start-stop and bus’s doors 

opening or closing time, of which the service time for passengers is the greater time taken by passengers to get 

on or off, as represented in Equation 6. 

𝑤
𝑏𝑙

𝑖,𝑠𝑙
𝑗 = 𝑡1 + 𝑡2 ⋅ 𝑚𝑎𝑥 {𝐴

𝑏𝑙
𝑖,𝑠𝑙

𝑗 , 𝐷
𝑏𝑙

𝑖,𝑠𝑙
𝑗} (6) 

where 𝑡1 is the time for the bus to stop-start and open or close the door, 𝑡2 is the average time taken by 

passengers to get on and off. According to research statistics, the bus opening and closing time is about 1–3 s, 

the entry and stopping time is about 4–8 s, the departure start time is 6–15 s, the average boarding time per 

passenger is 2.6–3 s, the average getting off time is 1.7–2s, so set 𝑡1 = 0.27 𝑚𝑖𝑛  and 𝑡2 = 0.06 𝑚𝑖𝑛. 

Arrival time 

The arrival time is divided into two categories: the arrival time at the departure station and the arrival time 

at non-departure stations. The difference is that the arrival time at non-origin stations includes the stop time at 

the previous station. 
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𝑑𝑏𝑙
𝑖,𝑠𝑙

1 = 𝑓𝑏𝑙
𝑖 + 𝑡𝑠𝑙

0,𝑠𝑙
1 (7) 

The arrival time of the non-departure station is the sum of its arrival time at the previous station, the dwell 

time at the front station and the travel time between stations. 

𝑑
𝑏𝑙

𝑖,𝑠𝑙
𝑗 = 𝑑

𝑏𝑙
𝑖,𝑠𝑙

𝑗−1 + 𝑤
𝑏𝑙

𝑖,𝑠𝑙
𝑗−1 + 𝑡

𝑠𝑙
𝑗−1

,𝑠𝑙
𝑗 (8) 

Number of passengers alighting or boarding 

The actual number of alighting passengers is the product of the number of passengers on the bus and the 

alighting rate, which can be calculated by the following equation. 

𝐷
𝑏𝑙

𝑖,𝑠𝑙
𝑗 = 𝛼

𝑏𝑙
𝑖,𝑠𝑙

𝑗 ⋅ 𝐶
𝑏𝑙

𝑖,𝑠𝑙
𝑗−1 (9) 

The number of passengers boarding is the lesser of the number of remaining seats and waiting passengers, 

as in Equation 10, in which the number of remaining seats is the rated capacity minus the number of people on 

board when the vehicle leaves the previous station, plus the number of people getting off the bus. 

𝐴
𝑏𝑙

𝑖,𝑠𝑙
𝑗 = 𝑚𝑖𝑛 {ℎ

𝑏𝑙
𝑖,𝑠𝑙

𝑗 , 𝑄𝑏𝑙
𝑖 − 𝐶

𝑏𝑙
𝑖,𝑠𝑙

𝑗−1 + 𝐷
𝑏𝑙

𝑖,𝑠𝑙
𝑗} (10) 

The number of waiting persons consists of three groups: the number of new passengers within the headway, 

the number of passengers stranded and the number of passengers who transfer to this bus. 

ℎ
𝑏𝑙

𝑖,𝑠𝑙
𝑗 = (𝑑

𝑏𝑙
𝑖,𝑠𝑙

𝑗 − 𝑑
𝑏𝑙

𝑖−1,𝑠𝑙
𝑗) ⋅ 𝛽

𝑏𝑙
𝑖,𝑠𝑙

𝑗 + 𝑧
𝑏𝑙

𝑖−1,𝑠𝑙
𝑗 + 𝐷

𝑏𝑙1
𝑖 ,𝑠𝑙1

𝑗 ⋅ 𝑡𝑟
𝑠𝑙1

𝑗
,𝑠𝑙

𝑖 (11) 

The number of passengers on the bus 

The number of passengers on the bus refers to the passengers’ number after the bus left the station, so as to 

station 𝑗, which is the number of passengers on the bus from 𝑗 − 1 station minus the number of people getting 

off at the station, plus the number of people boarding the station, as follows segmentation in Equation 12: 

𝐶
𝑏𝑙

𝑖,𝑠𝑙
𝑗 = {

0，𝑗 = 0

𝐶
𝑏𝑙

𝑖,𝑠𝑙
𝑗−1 − 𝐷

𝑏𝑙
𝑖,𝑠𝑙

𝑗 + 𝐴
𝑏𝑙

𝑖,𝑠𝑙
𝑗，𝑗 ∈ {1,2, . . . 𝑚𝑙} (12) 

where 𝑗 = 0 indicates that the bus departs from the depot with no passengers on board. 

4.3 The multi-objective optimisation model 

Passengers waiting time 

It is assumed that passenger arrivals follow a uniform distribution, meaning that the waiting time for new 

arrivals is half of the headway. Passengers who experience delays at the stop will have to wait for the next bus, 

as shown in Figure 2. 

 
Figure 2 – New arrivals and stranded passengers waiting time 
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Regional bus transfer refers to the process in which passengers switch between different bus routes, 

typically at transportation hubs or interchange points. The passenger transfer waiting time is defined as the 

difference between the departure time of the target transfer bus and the time the passenger arrives at the transfer 

station, as illustrated in Figure 3. 

 
Figure 3 – Waiting time for transfer passengers 

Considering all platforms and vehicles in the area, the total waiting time of passengers can be obtained by 

accumulating the waiting time of passengers at all bus stops. The minimum total waiting time is the objective 

to meet passenger demand, as shown in Equation 13: 

𝑚𝑖𝑛 𝑧1 = ∑ ∑ ∑ [
(𝑑

𝑏𝑙
𝑖,𝑠𝑙

𝑗 − 𝑑
𝑏𝑙

𝑗−1
,𝑠𝑙

𝑗)2 ⋅ 𝛽
𝑏𝑙

𝑖,𝑠𝑙
𝑗

2
+ (𝑑

𝑏𝑙
𝑖+1,𝑠𝑙

𝑗 − 𝑑
𝑏𝑙

𝑖,𝑠𝑙
𝑗) ⋅ 𝑧

𝑏𝑙
𝑖,𝑠𝑙

𝑗]

𝑙∈𝐿

𝑚𝑙

𝑗=1

𝑛𝑙

𝑖=1

+ ∑ ∑ ∑ ∑ 𝐷
𝑏𝑙1

𝑖1 ,𝑠𝑙1

𝑝 ⋅ 𝑡𝑟𝑠𝑙1

𝑝
,𝑠𝑙2

𝑞 (𝑑
𝑏𝑙2

𝑖2 ,𝑠𝑙2

𝑞 + 𝑤
𝑏𝑙2

𝑖2 ,𝑠𝑙2

𝑞 − 𝑑
𝑏𝑙1

𝑖1 ,𝑠𝑙1

𝑝 )

𝑠𝑙1

𝑝
、𝑠𝑙2

𝑞
∈𝑠𝑡

𝑙1、𝑙2∈𝐿

𝑛𝑙2

𝑖2=1

𝑛𝑙1

𝑖1=1

 

(13) 

Buses energy consumption 

The energy consumption calculation method is the product of the energy consumption factor corresponding 

to each speed interval and it is travelled distance, and the total energy consumption is the sum of the energy 

consumption of all buses in the scheduling time window. The minimum energy consumption is the objective 

to meet the energy saving dimension, as shown in Equation 14: 

𝑚𝑖𝑛 𝑧2 = ∑ ∑
(𝑑

𝑠
𝑙

𝑚𝑙 ,𝑏𝑙
𝑖 − 𝑓𝑏𝑙

𝑖) ⋅ ∑ 𝐸𝐹𝑣𝑘,𝑏𝑙
𝑖 ⋅ 𝐹𝑣𝑘,𝑏𝑙

𝑖𝑘=1

1000
𝑙∈𝐿

𝑛𝑙

𝑖=1

 (14) 

where 𝐹𝑣𝑘,𝑏𝑙
𝑖 is the running distance of the bus in the speed interval. 

Average load factor rate constraint 

To quantify passenger comfort levels, we evaluate the bus load factor (defined as the ratio of actual 

passenger count to vehicle capacity). Higher load factors indicate greater crowding, which directly reduces 

passenger comfort. Following the widely adopted classification [5], we categorise comfort levels into five 

distinct tiers based on load factor thresholds, as detailed in Table 3.  

Table 3 – Passenger comfort level and load factor correspondence 

Comfort A B C D E 

Load factor rate <50% 50%-80% 80%-100% 100%-110% >110% 

In order to meet the passenger travel demand and comfort requirements during peak hours, the constraints 

are set as Formula 15: 

𝛼 ≤
∑ 𝐶

𝑏𝑙
𝑗
,𝑠𝑙

𝑗
𝑚𝑙
𝑗=1

(𝑚𝑙 − 1) ⋅ 𝑞𝑏𝑙
𝑖

≤ 𝛽 (15) 
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Departure reliability constraint 

The coefficient of variation of the headway reflects the relative fluctuations of bus services [23], which can 

be expressed as the ratio of the standard deviation of the headway to the mean, as Formula 16: 

√
1

𝑛𝑙 − 1
∑ [(𝑓𝑏𝑙

𝑖 − 𝑓𝑏𝑙
𝑖−1) − 𝐻𝑊𝑙]

2𝑛𝑙

𝑖=1

𝐻𝑊𝑙

≤ 𝛾 
(16) 

where 𝐻𝑊𝑙 represents the average of the time headway of all vehicles sent out on the line during the time 

window, the calculation method is as follows: 

𝐻𝑊𝑙 =
∑ (𝑓𝑏𝑙

𝑖 − 𝑓𝑏𝑙
𝑖−1)

𝑛𝑙
𝑖=1

𝑛𝑙
 (17) 

where 𝑛𝑙 is the total number of departures in that time window. 

In addition, Formulas 18 and 19 are time window constraints and departure interval constraints, respectively. 

𝑇1 ≤ 𝑓𝑏𝑙
𝑖 ≤ 𝑇2, 𝑖 = 1,2, . . . , 𝑛𝑙 , 𝑙 ∈ 𝐿 (18) 

𝑡𝑚𝑖𝑛 ≤ 𝑓𝑏𝑙
𝑖 − 𝑓𝑏𝑙

𝑖−1 ≤ 𝑡𝑚𝑎𝑥, 𝑖 = 2, … , 𝑛𝑙 , 𝑙 ∈ 𝐿 
(19) 

Then, the overall optimisation model of regional bus dispatching is established as Equations 13–19. 

5. TWO-PHASE ALGORITHM 

To resolve the fundamental trade-off between energy consumption minimisation and passenger waiting 

time reduction, we developed a two-stage optimisation framework (Figure 4): 

 
Figure 4 – The two-phase algorithm flow 

(1) Pareto solutions generation 

The NSGA-II algorithm, designed for multi-objective optimisation, identifies non-dominated solutions 

through three key mechanisms: non-dominated sorting to prioritise solution quality, adaptive mutation to 

maintain diversity and crowding distance computation to ensure a well-distributed Pareto front. 

𝐶𝐻𝑑 = (𝑐ℎ1, 𝑐ℎ2, . . . , 𝑐ℎ𝑁) is designed as the basic structure of chromosomes, where 𝑁 is the number of regional 

bus lines. 𝑐ℎ𝑙 = (𝑓𝑙 , 𝑞𝑙) represents a pair of interrelated genes, 𝑓𝑙 = (𝑓𝑏𝑙
1 , 𝑓𝑏𝑙

2 , . . . , 𝑓
𝑏𝑙

𝑛𝑙 ) denotes the departure time of 

each bus on line 𝑙 and 𝑞𝑙 = (𝑞𝑏𝑙
1 , 𝑞𝑏𝑙

2 , . . . , 𝑞
𝑏𝑙

𝑛𝑙 ) indicates the corresponding capacity of each bus. 𝑁 genes are linked 

to form a chromosome. 

Based on the structure of the chromosomes, to ensure that the mutated chromosomes directly satisfy the 

time window and departure interval constraints, the mutation strategy includes four cases. 
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1) Adjust the vehicle capacity 

The operation applied to genes 𝑞𝑙. Randomly select 𝑠 elements from the gene 𝑞𝑙 and change its capacity. 

The mutation process is shown in Figure 5. 

 
Figure 5 – The first mutation operator 

2) Optimise the departure time 

The operation applied to genes 𝑓𝑙. Randomly generate a mutation point 𝜌, and generate a random integer 𝑢1 

that obeys a uniform distribution 𝑢(𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥), and let 𝑓𝑏𝑙
𝜌 = 𝑓𝑏𝑙

𝜌−1 + 𝑢1, which can be divided into three cases: 

a) If 𝑓𝑏𝑙
𝜌 − 𝑓𝑏𝑙

𝜌−1 ∈ [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥], there is no need to change the genes in other positions, and just replace the 

mutation point gene with the mutated gene, as shown in Figure 6. 

b) If the vehicles 𝑏𝑙
𝜌 and 𝑏𝑙

𝜌+1 do not meet the departure interval constraint, the chromosome initialisation 

operation is repeated from this mutation point onward, as shown in Figure 7. 

c) If the newly generated departure time after mutation exceeds the time window constraint, this element 

is removed, as shown in Figure 8. 

 
Figure 6 – The second mutation operator for case a 

 
Figure 7 – The second mutation operator for case b 

 
Figure 8 – The second mutation operator for case c 

(2) Decision-making phase 

In the integrated weighting method, we employ the entropy method [9] for objective weighting to quantify 

the inherent information utility of each indicator. For subjective weighting, we adopt a multi-criteria decision-

making (MCDM) approach [10], with the number of departures selected as the primary criterion based on 

operational priorities. 

Table 4 – The corresponding table of departure frequency and subjective weight 

Departure frequency 5-6 6-7 7-8 8-9 9-10 10-11 

𝑢1 (weight) 0.7 0.6 0.5 0.4 0.3 0.2 

𝑢2 (weight) 0.3 0.4 0.5 0.6 0.7 0.8 
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6. CASE ANALYSIS  

6.1 Data preparation 

Regional bus lines 

The study covers five bus lines (a total of 85 stations) in Lanzhou, with operational data derived from 

historical statistics. Figure 9 illustrates the network schematic, where 𝑙₁ denotes the BRT corridor and others 

represent conventional routes. All vehicles are CNG-powered buses, with technical specifications detailed in 

Table 5. Transfer relationships between lines are documented in Table 6, while Table 7 summarises station 

characteristics and operational parameters collected through field surveys. The simulation evaluates the 

morning peak (7:00–8:00) with departure intervals constrained to 3–10 minutes. 

 
Figure 9 – Regional bus lines in Lanzhou 

Table 5 – Information on bus lines and vehicles 

Bus lines 𝒍𝟏 𝒍𝟐 𝒍𝟑 𝒍𝟒 𝒍𝟓 

The full length of the line /(km) 9.1 16.3 11.7 8.6 6.8 

Types of buses 12/18m BRT NBT NBT NBT NBT 

Curb weight 𝑀 /(kg) 11200/17850 11700 11700 11700 11700 

𝐴 /(𝑚2) 7.78/8.16 7.78 7.78 7.78 7.78 

𝐶𝑅 0.00917 0.00938 0.00938 0.00938 0.00938 

Rated passenger capacity 98/195 96 96 96 96 

Notes: The rated passenger capacity is measured in persons. BRT system utilises articulated buses, while the normal bus transit 

(NBT) employs single-deck buses as its fleet composition. 



Promet – Traffic&Transportation. 2025;37(6):1562-1577.  Management and Planning  

1572 

Table 6 – The basic transfer relationship of regional bus lines 

Bus lines Transfer station 
Transfer 

rate 
Bus lines Transfer station 

Transfer 

rate 
Bus lines 

Transfer 

station 

Transfer 

rate 

𝑙1 − 𝑙2 

𝑠𝑙1

9 − 𝑠𝑙2

1  0.01 𝑙1 − 𝑙4 𝑠𝑙4

13 − 𝑠𝑙1

11 0.04 𝑙2 − 𝑙5 𝑠𝑙5

15 − 𝑠𝑙2

3  0.02 

𝑠𝑙1

10 − 𝑠𝑙2

2  0.03 

𝑙1 − 𝑙5 

𝑠𝑙5

13 − 𝑠𝑙1

9  0.08 

𝑙3 − 𝑙4 

𝑠𝑙4

11 − 𝑠𝑙3

1  0.2 

𝑠𝑙1

11 − 𝑠𝑙2

3  0.10 𝑠𝑙5

14 − 𝑠𝑙1

10 0.05 𝑠𝑙4

12 − 𝑠𝑙3

2  0.05 

𝑙1 − 𝑙3 

𝑠𝑙1

9 − 𝑠𝑙3

1  0.15 𝑠𝑙5

15 − 𝑠𝑙1

11 0.03 𝑠𝑙4

13 − 𝑠𝑙3

3  0.02 

𝑠𝑙1

10 − 𝑠𝑙3

2  0.05 

𝑙2 − 𝑙4 

𝑠𝑙4

11 − 𝑠𝑙2

1  0.1 

𝑙3 − 𝑙5 

𝑠𝑙5

13 − 𝑠𝑙3

1  0.15 

𝑠𝑙1

11 − 𝑠𝑙3

3  0.03 𝑠𝑙4

12 − 𝑠𝑙2

2  0.05 𝑠𝑙5

14 − 𝑠𝑙3

2  0.05 

𝑠𝑙1

12 − 𝑠𝑙3

4  0.02 𝑠𝑙4

13 − 𝑠𝑙2

3  0.03 𝑠𝑙5

15 − 𝑠𝑙3

3  0.03 

𝑙1 − 𝑙4 
𝑠𝑙4

11 − 𝑠𝑙1

9  0.15 
𝑙2 − 𝑙5 

𝑠𝑙5

13 − 𝑠𝑙2

1  0.07 — — — 

𝑠𝑙4

12 − 𝑠𝑙1

10 0.06 𝑠𝑙5

14 − 𝑠𝑙2

2  0.04 — — — 

Table 7 – The basic operating parameters of bus stops 

𝒍 𝒔𝒍
𝒋
 𝒕

𝒔𝒍
𝒋−𝟏

,𝒔𝒍
𝒋  𝜷

𝒔𝒍
𝒋  𝜶

𝒔𝒍
𝒋 𝒍 𝒔𝒍

𝒋
 𝒕

𝒔𝒍
𝒋−𝟏

,𝒔𝒍
𝒋  𝜷

𝒔𝒍
𝒋  𝜶

𝒔𝒍
𝒋 𝒍 𝒔𝒍

𝒋
 𝒕

𝒔𝒍
𝒋−𝟏

,𝒔𝒍
𝒋  𝜷

𝒔𝒍
𝒋  𝜶

𝒔𝒍
𝒋 𝒍 𝒔𝒍

𝒋
 𝒕

𝒔𝒍
𝒋−𝟏

,𝒔𝒍
𝒋  𝜷

𝒔𝒍
𝒋  𝜶

𝒔𝒍
𝒋  

𝑙1 

𝑠𝑙1

1  1 6 0.0 

𝑙2 

 

𝑠𝑙2

7  1 1 0.10 

𝑙3 

𝑠𝑙3

4  3 2 0.1 

𝑙4 

𝑠𝑙4

7  2 2 0.1 

𝑠𝑙1

2  1 1 0.03 𝑠𝑙2

8  1 2 0.07 𝑠𝑙3

5  3 1 0.08 𝑠𝑙4

8  1.1 1 0.35 

𝑠𝑙1

3  1.75 6 0.04 𝑠𝑙2

9  1 1 0.03 𝑠𝑙3

6  2 1 0.05 𝑠𝑙4

9  2 1 0.2 

𝑠𝑙1

4  1 7 0.05 𝑠𝑙2

10 1.5 1 0.06 𝑠𝑙3

7  1.7 3 0.1 𝑠𝑙4

10 3.5 2 0.15 

𝑠𝑙1

5  1 2 0.13 𝑠𝑙2

11 1 1 0.10 𝑠𝑙3

8  2.9 1 0.15 𝑠𝑙4

11 2 1 0.6 

𝑠𝑙1

6  1 3 0.11 𝑠𝑙2

12 1.25 1 0.15 𝑠𝑙3

9  3 1 0.2 𝑠𝑙4

12 3.5 0 1 

𝑠𝑙1

7  1.5 6 0.07 𝑠𝑙2

13 1 2 0.30 𝑠𝑙3

10 3 2 0.05 

𝑙5 

𝑠𝑙5

1  1 6 0 

𝑠𝑙1

8  1.8 5 0.30 𝑠𝑙2

14 1 2 0.20 𝑠𝑙3

11 1.8 1 0.35 𝑠𝑙5

2  2 3 0.05 

𝑠𝑙1

9  1.4 8 0.35 𝑠𝑙2

15 1.75 1 0.40 𝑠𝑙3

12 4.6 1 0.15 𝑠𝑙5

3  1.5 4 0.1 

𝑠𝑙1

10 1.2 5 0.40 𝑠𝑙2

16 2 3 0.15 𝑠𝑙3

13 2.1 1 0.5 𝑠𝑙5

4  1 2 0.1 

𝑠𝑙1

11 1.8 4 0.30 𝑠𝑙2

17 1 1 0.07 𝑠𝑙3

14 1.3 1 0.65 𝑠𝑙5

5  1 3 0.2 

𝑠𝑙1

12 1.7 2 0.25 𝑠𝑙2

18 2.5 1 0.08 𝑠𝑙3

15 2 2 0.1 𝑠𝑙5

6  1.5 2 0.15 

𝑠𝑙1

13 2.8 1 0.09 𝑠𝑙2

19 1.2 1 0.1 𝑠𝑙3

16 3 1 0.3 𝑠𝑙5

7  1.25 1 0.2 

𝑠𝑙1

14 1.9 0 0.15 𝑠𝑙2

20 1.3 0 0.1 𝑠𝑙3

17 2 0 0.4 𝑠𝑙5

8  2 1 0.35 

𝑠𝑙1

15 2.2 0 1 𝑠𝑙2

21 5 1 0.08 𝑠𝑙3

18 1.5 0 1 𝑠𝑙5

9  1 2 0.25 

𝑙2 

𝑠𝑙2

1  1 7 0 𝑠𝑙2

22 3 0 0.12 

𝑙4 

𝑠𝑙4

1  1.5 4 0 𝑠𝑙5

10 1 2 0.15 

𝑠𝑙2

2  1.5 3 0 𝑠𝑙2

23 4.5 0 0.15 𝑠𝑙4

2  2 3 0.05 𝑠𝑙5

11 1 1 0.2 

𝑠𝑙2

3  3 4 0.02 𝑠𝑙2

24 1.5 0 1 𝑠𝑙4

3  1 5 0.1 𝑠𝑙5

12 2 1 0.25 

𝑠𝑙2

4  1 2 0.03 

𝑙3 

𝑠𝑙3

1  2.5 5 0 𝑠𝑙4

4  2 3 0.15 𝑠𝑙5

13 1 1 0.3 

𝑠𝑙2

5  1 2 0.06 𝑠𝑙3

2  2 4 0.04 𝑠𝑙4

5  1.2 1 0.2 𝑠𝑙5

14 3 1 0.4 

𝑠𝑙2

6  1.75 1 0.05 𝑠𝑙3

3  3.5 3 0.08 𝑠𝑙4

6  1.3 2 0.25 𝑠𝑙5

15 2 0 1 

Energy consumption calculation 

The experimental data were obtained from bus performance monitoring studies. The study fleet comprised 

three vehicle types: 12-metre BRT buses, 18-metre articulated BRT buses and conventional Yutong 

ZK6125HNG2 city buses – all utilising compressed natural gas (CNG) propulsion. Figure 10 presents the 

morning peak (7:00–8:00) speed distribution analysis, where: 

 No. denotes the bus line identifier; 

 Speed values represent 60-second rolling averages of instantaneous measurements. 
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The average energy consumption rate and energy consumption factor were calculated using Equations (1)–(5). 

Corresponding characteristic curves were generated through MATLAB simulations, including 

 Figure 11a: VSP versus average energy consumption rate;  

 Figure 11b: Speed range versus energy consumption factor. 

 
Figure 10 – Speed distribution of buses 

 
(a) 

 
(b) 

Figure 11 – a) VSP versus average energy consumption rate; b) Speed range versus energy consumption factor 

6.2 Analysis of results 

Optimised results  

The Transit Capacity and Quality of Service Manual (TCQSM) [6] classifies bus service reliability levels 

based on headway variation, where a coefficient of variation (CV) below 0.3 indicates “excellent” reliability. 

For our case study, we set the load factor threshold at 0.8–1.0 to balance fuel efficiency and service quality. 

Using the NSGA-II algorithm with parameters (population size 𝑆𝑁 = 50, crossover probability 𝑃𝑐 = 0.5 and 

mutation probability 𝑃𝑚 = 0.3), we obtained the Pareto frontier shown in Figure 12. 
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Figure 12 – The distribution of Pareto solutions 

The Pareto solutions and their corresponding comprehensive objective values are presented in Table 8. Figure 

13 illustrates the scheduling scheme (Scheme 1) derived from the optimisation. For comparative analysis, we 

evaluated Scheme 1 against a uniform interval dispatch (UID) schedule, maintaining the same number of 

departures. The service level comparison between energy-saving dispatch (ESD) and UID is summarised in 

Table 9. 

 
Figure 13 – Vehicle operation schedules for Scheme 1 

Table 8 – The Pareto solutions with higher synthesised objective values 

Scheme Wait time (min) Energy consumption (kg) The number of departures Synthesised objective values 

1 51477.14  593.9  38 0.701  

2 52160.63  593.8  38 0.701  

3 54753.39  585.0  38 0.692  

4 52687.49  585.1  38 0.691  

5 55921.59  558.8  36 0.663  

6 55485.39  558.9  36 0.663  

7 42508.14  659.2  42 0.662  

8 45478.90  657.2  42 0.662  

9 47681.19  640.2  41 0.648  

10 47214.35  640.3  41 0.647  
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Table 9 – Comparison of service level and energy consumption across bus lines 

Bus 

line 

Wait time (min) Energy consumption (kg) Maximum load factor Departure reliability 

ESD UID ESD UID ESD UID ESD UID 

1 14172.7 25144.8 112.8 114.1 1.02 1.13 0.23 0 

2 15568.4 18434.8 156.1 156.4 0.98 0.98 0.29 0 

3 9696.5 9786.7 165.2 165.6 0.99 0.99 0.27 0 

4 4861.3 5577.9 83.1 83.6 0.85 0.80 0.17 0 

5 7178.1 7299.1 76.7 77.6 0.95 1.05 0.20 0 

Total 51477 54673.3 593.9 597.3 — — — — 

Based on the case study results, the following key conclusions can be drawn: 

1) Energy-saving scheduling scheme and passenger waiting time: The optimised energy-saving scheduling 

scheme reduces passenger waiting time by adjusting departure intervals and rationally allocating vehicle 

types. This is due to the better alignment of vehicle capacity with passenger demand, which minimises 

unnecessary waiting time and optimises resource utilisation. The reduction in waiting time implies that the 

scheduling adjustments are effectively matching the peak demand periods, leading to more efficient 

operations. 

2) Energy consumption reduction: The reduction in operational energy consumption is a direct result of 

balancing the load factor across the buses within the time window. By adjusting the departure intervals 

and vehicle types, the energy-efficient allocation ensures that buses are operating closer to their optimal 

capacity, avoiding the excess energy consumption that occurs with underutilised vehicles. 

3) Load factor and passenger comfort: The decrease in the maximum load factor indicates that the optimised 

scheduling scheme leads to more evenly distributed passengers across buses, reducing overcrowding and 

improving comfort. This result suggests that by spreading passenger demand more evenly, the system can 

enhance the travel experience for passengers, especially during peak periods. 

Sensitivity analyses 

The bus scheduling plan is not a single solution but a set of solutions, offering a certain degree of flexibility 

in selection. Therefore, the sensitivity analyses of energy costs and vehicle capacity are conducted based on 

the distribution of the Pareto solution set. The energy cost coefficient is set to half and twice its original value, 

while vehicle capacity is increased and decreased by 20% of its original value. The resulting Pareto solution 

distributions are shown in Figure 14. 

For energy consumption costs, the distribution of Pareto solutions across the three scenarios remains 

consistent, which can be attributed to the influence of the non-dominated sorting algorithm. By computing the 

integrated objective values of the Pareto solutions using the second-stage algorithm, we observe that lower 

energy costs lead to top-ranked solutions with shorter passenger waiting times, emphasising social welfare. 

Conversely, higher energy costs shift the preference toward minimising operational costs. 

The sensitivity analysis of vehicle models reveals that when the vehicle capacity is reduced by 

approximately 20%, the solutions outperform those with the original capacity. However, when the vehicle 

capacity is increased by 20%, the solutions are similar to those with the current capacity. This analysis can 

provide valuable insights for decision-makers during vehicle procurement. 

 
(a) 

 
(b) 

Figure 14 – a) Different energy cost Pareto solutions; b) Different vehicle capacity Pareto solutions 
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7. CONCLUSION 

An effective departure strategy is crucial for achieving energy-efficient bus scheduling from an operational 

management perspective. This study develops a VSP-based energy consumption estimation method, 

integrating key factors such as speed, passenger load and vehicle type to improve the accuracy of energy 

consumption assessment. Based on this method, we propose a multi-objective regional bus scheduling model 

that optimises both passenger waiting time and vehicle energy consumption, while considering practical 

constraints such as time windows, departure intervals, load factors and service reliability. 

To effectively solve the proposed scheduling model, we design a two-phase optimisation framework. The 

first phase employs NSGA-II to generate a Pareto-optimal solution set, ensuring a balance between energy 

efficiency and service quality. The second phase applies an integrated weighting method to facilitate decision-

making and refine the final scheduling plan. 

A case study based on Lanzhou’s regional bus network demonstrates the feasibility and effectiveness of the 

proposed model and algorithm. The results indicate that optimising variable departure intervals and vehicle 

type allocation plays a crucial role in enhancing both energy efficiency and service performance. Compared to 

traditional fixed-interval scheduling, the proposed approach achieves a more sustainable and efficient regional 

public transport system. 

However, flexible vehicle scheduling increases labour costs for bus crews, and the sensitivity analysis in 

this paper indicates that excessively high energy costs can alter the priority of scheduling schemes. Our model 

does not account for the profitability of the bus company but instead focuses solely on maximising social 

welfare and environmental benefits. Future research on energy-saving scheduling should further explore how 

to balance these factors with economic benefits. 
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