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ABSTRACT 

Urban traffic congestion has emerged as a global challenge constraining sustainable 

development. Estimating the traffic congestion probability is crucial since it presents 

valuable information for formulating congestion mitigation strategies and improving traffic 

management. The existing studies employ deterministic models to predict congestion; 

however, they do not consider the dynamic coupling between intrinsic traffic flow 

randomness (e.g. spatiotemporal heterogeneity in vehicle arrivals) and congestion formation 

mechanisms, causing prediction biases under high-uncertainty scenarios. In this study, we 

propose a probability-based congestion estimation framework that employs the stochastic 

traffic flow theory. The traffic arrival process is described using discrete probability 

distributions owing to the stochastic nature of traffic flows. To prevent the misclassification 

of transient traffic surges as congestion, we adopt a spatiotemporal persistence criterion with 

dual thresholds (vehicle accumulation exceeding a critical level and duration surpassing a 

minimum time) for congestion identification. Additionally, we perform empirical validation 

using traffic datasets from Portland, USA, which demonstrates that there is no statistically 

significant deviation from the measured data at the 95% confidence level in the calculated 

congestion probabilities. The proposed method facilitates the development of targeted 

congestion mitigation countermeasures and presents novel insights for future transportation 

planning. 
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1. INTRODUCTION 

Traffic congestion increases fuel consumption and greenhouse gas emissions, which exacerbates urban air 

pollution and presents significant socioeconomic burdens [1, 2]. Road network expansion can provide short-

term congestion mitigation. However, it fails to resolve the systemic issues of nonlinear interaction between 

stochastic traffic flow fluctuations and the network’s capacity constraints. Therefore, it is crucial to identify 

the key factors that cause traffic congestion and estimate congestion probability for traffic management. 

The congestion probability indicates the likelihood of congestion formation based on a range of traffic-flow 

values [3,4]. Previous studies have primarily employed descriptive statistics to identify the traffic states and 

determine congestion probabilities. Ju, Sun, and Jin [5] obtained the congestion probability through parameter 

estimation of the travel time index distribution based on floating car data, and proposed a method for the online 

prediction of urban-congestion probability based on historical traffic data from the Berlin traffic management 

centre. Similarly, Xu and Chen [6] identified the congested cells and tracked the sources of congestion using 

the massive vehicle trajectory data. Laval [7] classified the traffic state into voids, capacity and jams, and 
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demonstrated that within the critical region, the traffic dynamics exhibit chaotic behaviour and become 

particularly sensitive to infinitesimal variations in the initial conditions. Various other studies have been 

conducted focusing on the global perspectives to calculate the congestion probability of an entire road network 

rather than a road section. Laval [7] and Yuangyai, Nilsang and Cheng [8] analysed the traffic-congestion 

probability of an area per period based on the ratio of the congested conditions to the entire traffic network, 

and calculated the congestion based on the total delay and traffic speed. Subsequently, Tran Quang and Bae 

[9] proposed a hybrid deep convolutional neural network method to predict the short-term traffic congestion 

index in urban networks based on probe vehicles by using gradient descent optimisation algorithms. System 

dynamics are typically adopted to depict and predict the traffic congestion probability owing to its intricate 

and dynamic nature. Andreotti et al. [10] analysed the statistical properties of traffic fluctuations within a road 

network and related the fluctuation amplitude to the congestion probability, which was evaluated using 

Kramer’s transition rate theory. They compared the probability density computed using the Monte Carlo 

method with the stochastic dynamics and demonstrated that the congestion probability of a road network could 

thus be estimated. Wang, Chen and Jim [11] employed discrete-time Markov chains and online traffic-

monitoring data to predict the congestion probability and facilitate optimal vehicle routing. Yuangyai, Nilsang 

and Cheng [8] used the historical traffic-speed data, images obtained from the Google Maps API and social-

media data (e.g. Twitter) to estimate the traffic speed and congestion probability in various areas using 

Markov-chain traffic speed assignment for allocating the ambulance bases.  

In summary, considerable advancements have been achieved in both congestion-probability calculations 

and predictions. However, these studies present various limitations, particularly in the use of macroscopic 

traffic parameters to describe the traffic conditions, thereby ignoring the randomness of traffic. Furthermore, 

standard parameters reflect the past road conditions, whereas the congestion probability must reflect the future 

conditions. Essentially, in the models that directly employ traffic-state parameters to estimate the congestion 

probability, the past traffic states cannot be used to calculate the future congestion probability. Additionally, 

most studies have used the state threshold of traffic breakdown to determine the traffic congestion, but 

disregarded the differences between the two states. Traffic breakdown indicates the transition from freely 

flowing traffic to a congested state; however, not all traffic breakdowns evolve into congestion [12]. Limited 

research has been conducted on estimating the congestion probability by considering the distinction between 

breakdown and congestion. 

Therefore, in this study, we developed a congestion-probability estimation method by considering both the 

advantages and disadvantages of the previous methods. We implemented the concept of stochasticity to traffic 

arrivals to obtain a probability density function that assesses the congestion-probability for a given traffic flow. 

The method is structured as a mathematical description of the congested conditions by combining the 

breakdown and congestion thresholds. The proposed method presents a mathematical tool for handling 

uncertainty and complexity when estimating the congestion probability. This study contributes significantly to 

the literature on congestion probability estimation in the following aspects: 

1) Based on the intrinsic correlation between traffic flow and stochastic fluctuations, we analysed the 

formation mechanisms of traffic congestion. The proposed model explicitly accounts for the essential 

relationships among complex traffic states across the road segments, thereby establishing a theoretical 

foundation for congestion probability estimation. 

2) The proposed method employs a rigorous probabilistic model that calculates the probability of complex 

traffic conditions. The proposed framework integrates the stochastic modelling of traffic arrival patterns 

to enable the quantification of the joint probability that a road segment will simultaneously satisfy the 

critical conditions of congestion. 

3) The proposed model supports an arbitrary congestion definition that can be used to calculate the congestion 

probability for any type of traffic flow. No statistical analyses have been conducted using this methodology 

or the exact combination of predictors, to the best of our knowledge. 

The remainder of this paper is organised as follows. Section 2 presents the probabilistic inference of 

congestion based on the randomness of traffic flow, describes the proposed approach, establishes the 

calculation model for congestion probability and summarises the data processing steps. Section 3 presents the 

results and discusses them. Finally, Section 4 concludes the paper and presents direction for future research. 
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2. MATERIALS AND METHODS 

2.1 Probabilistic inference of congestion 

Stochastic analysis of traffic congestion 

The generally accepted metrics of traffic congestion include traffic flow, density, speed and their variants 

or combinations. These indicators provide a relatively comprehensive description of traffic-flow states from a 

macro perspective but fail to explore their microscopic conditions. For example, the relationship between 

traffic flow, density and speed based on data obtained from the German freeway A43 is shown in Figure 1 [13]. 

A critical behaviour occurs during the transition from free-flow to congestion [7]. Such transitions are 

probabilistic because breakdown and congestion are not always observed under the same conditions. The three-

phase traffic theory describes critical behaviour as a breakdown, which is the phenomenon of phase transition 

from an initial free-flow to congestion at a bottleneck [14]. 

  
(a) Relationship between speed and density (b) Relationship between speed and flow 

Figure 1 – Traffic statuses in speed–density and speed–flow relationships 

As shown in Figure 1, traffic-state descriptions based on traffic speed typically focus on its overall change 

trend, neglecting the variability of the random parts (distribution of scatter points). Therefore, statistical indices 

comprise reference values for traffic-state descriptions; however, they can introduce significant estimation 

errors when analysing the formation mechanism or probability of traffic congestion as they conceal the 

characteristics of random variation [15]. The description differences between statistical data and random 

arrivals are illustrated in Figure 2 from a micro-perspective. From traffic density, we can obtain the number of 

vehicles per unit length but not the vehicle distribution in the road section. This implies that the traffic flow 

described by density can be considered as the state shown Scene 1 by default. However, all three scenes are 

possible because the traffic flow arrives randomly in real networks. Therefore, the traffic speed fluctuates 

significantly, even under the same density, which is consistent with the data presented in Figure 1 [16]. 
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Figure 2 – Schematic of vehicle-arrival distribution and traffic-operation states 
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A decrease in the speed of traffic flow can result in a traffic breakdown owing to the excessive accumulation 

of vehicles, as illustrated in Scene 3 (Figure 2). Other studies have shown that breakdowns occur with some 

probability at the same flow rate; however, breakdowns are stochastic in nature [14, 16]. Additionally, Figure 

1 illustrates the stochastic nature of congestion and those high flows typically, but not necessarily, lead to 

congestion [17]. Therefore, we can analyse the probability of Scenario 3 based on the law of vehicle arrival at 

a road section, which adds a probabilistic characteristic to the formation of congestion. 

Probability inference of congestion based on randomness of traffic flow 

Although the aforementioned analysis verifies the stochastic nature of traffic congestion, its mechanism or 

trigger requires further discussion [17, 18]. According to the three-phase traffic theory, the traffic state is 

categorised into three states based on breakdown and congestion thresholds: free flow, synchronised flow and 

wide moving jam [12, 19]. Therefore, the congestion trigger satisfies the following critical conditions: (1) the 

system moves from free to synchronised flow (breakdown threshold) and (2) then from synchronised to 

congested flow (congestion threshold). Therefore, the probability of traffic congestion is determined based on 

the probability of traffic breakdown and that of the breakdown turning into congestion [20]. 

Empirical studies on vehicular traffic have shown that the average speed of vehicles decreases when the 

number of vehicles travelling on the road increases [5, 21]. According to the general traffic-flow model, a 

traffic breakdown occurs when the number of vehicles exceeds a critical condition [22]. This study formulated 

traffic breakdown as a binary decision problem of whether the number of vehicles exceeded a predefined 

threshold [23]. High and sustained flows in real traffic data are likely to result in congestion [14, 17]. Thus, 

we determined the congestion probability based on two criteria: (1) the probability that the number of arriving 

vehicles exceeds the critical value, and (2) the probability that the duration of criteria (1) exceeds the critical 

period. The criteria proposed in this study ensure that disturbances caused by transient peak flows are not 

misclassified as congestions. The stochastic nature of traffic critically influences the probability of random 

transitions between states [14]. Applying the concept of stochasticity to vehicle arrivals results in a probability 

density function that provides the congestion probability for a given traffic flow [24]. 

It must be noted that we do not provide a concrete decision regarding whether congestion would occur but 

only the probability of its occurrence. Additionally, the scope of this study included congestion caused by 

heavy traffic, regardless of incidents, accidents, roadwork and weather conditions. 

2.2 Research approach 

Uncertain traffic-arrival rates 

Understanding the traffic-arrival process and its patterns is vital for traffic-flow analysis, which is the 

foundation for determining the congestion probability [25]. Following classical traffic-congestion-estimation 

models, we made the following assumptions regarding computational tractability [26]. Let  

represent the pattern of traffic-arrival-rate vector. The arrival rate at ith time t is denoted as . The variable t 

is a suitable time interval for traffic investigation and analysis to meet the traffic-planning accuracy 

requirements and avoid resource wastage. Instead of deterministic values, actual arrival rates of traffic flows 

are often uncertain in practical applications. We describe fluctuations in uncertain traffic flows from the 

following three aspects. 

First, traffic-arrival rates may vary, which can make it difficult to predict the actual variations. The upper 

bounds of the traffic flow can be obtained based on the limitation of road capacity, which is expressed as 

follows: 

 (1) 

where C
t
 denotes a given parameter representing the road capacity within the time interval t. 

Second, the traffic-arrival process is generally considered a renewable process, which means that vehicles 

on the road are independent random variables. Therefore, the arrival of each vehicle was regarded as a 

probabilistic process: 

 
(2) 
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Third, it is possible to estimate vehicle arrival rates based on the observations of vehicle arrivals in each 

approaching lane [25]. The average arrival rate in time interval t is calculated as follows: 

 

(3) 

where m represents the number of units in t, j =1,2,…m, and  denotes the number of vehicles that arrive on 

the road during the jth unit of time. 

Based on the above, the uncertainty set of traffic-arrival rates is defined as follows: 

 
(4) 

Probability of traffic congestion based on traffic-arrival rates 

Roads with a reasonable arrival rate and favourable network performance can effectively help clear the 

traffic. Otherwise, the number of vehicles on these roads will increase rapidly. However, traffic breakdowns 

can occur under any traffic-flow level [20, 27]. Andreotti et al. [10] found that the densities of some roads are 

higher than the critical value, even if the average density is below the critical value. The occurrence of 

breakdowns in various traffic flows can be described using the probability theory [28, 29]. The traffic flow 

breaks down when the actual number of arriving vehicles exceeds the capacity of the road section. Therefore, 

the breakdown probability is equal to the probability that the number of vehicles is higher than the 

threshold. According to the characteristics of random arrival, the breakdown probability during analysis period 

t when the number of arriving vehicles exceeds the number of vehicles ( ) can be obtained directly as 

follows: 

 

(5) 

where  is the threshold representing the number of vehicles corresponding to the traffic breakdown, which 

occurs if the number of arriving vehicles exceeds a predefined threshold . Different countries adopt 

different indicators that to determine the traffic status, such as average speed, flow and density [30]. Any index 

can be transformed into threshold  and combined using the proposed method. Because the methods 

employed by various countries are not the focus of this study, this will not be further elaborated upon. 

 is the probability that the number of vehicles arriving at a road section is equal to k under a traffic-

arrival rate , which conforms to Definition (4).  is a probability function determined using a traffic-

flow arrival distribution rule. 

The slow traffic owing to a breakdown in the road section may be restored to free-flow after a small 

disturbance and may also be affected by subsequent vehicles in the congested state [12, 17]. The occurrence 

of congestion depends not only on the number of arrivals causing the traffic breakdown but also on the duration 

of the speed drop. To avoid recording short-term speed fluctuations as congestion, traffic congestion was 

assumed to occur when the number of arriving vehicles over the congestion threshold was sustained for at least 

a time period T based on the occurrence of a traffic breakdown [28, 31]. T is a suitable analysis period for 

traffic investigation and analysis. Considering the above, the congestion probability is defined as follows: 
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where  denotes the probability that more than  vehicles arrive at the section within the period , 

e=1,2,…E. E denotes the number of analysis periods t required during the congestion state, , whereas 

 denotes the number of vehicles corresponding to the congestion threshold that makes the speed drop 

caused by the breakdown sustainable.  denotes the congestion probability during the analysis period and is 

expressed as follows: 

 

(8) 

2.3 Data collection and pre-processing 

In our experiments, we used actual publicly available historical traffic data collected from 1 October 2011 

to 31 October 2011 by dual-loop detectors deployed on the mainline and ramps of a freeway in Portland, 

wherein the traffic information for sections I-205 NB and I-205 SB were recorded. Each record comprised the 

time, detector ID, road section ID, flow, occupancy and speed. 

To use the dataset with our model, we converted the data from the given format to a custom format. The 

pre-processing phase comprised the following phases: 

1) Data filtering: Let  represent the ith record in the dataset in a chronological order, and Si and Fi represent 

the mean speed and traffic flow of traffic item , respectively, denoted as . We verified the data 

and observed no traffic flow at some temporal points. To ensure the reliability of the results, we deleted 

entries with missing information. If  or , then the data from  was removed without further 

processing and denoted as . 

2) Data reconstitution: The proposed method involves determining the breakdown-analysis period and 

congestion duration. Based on the characteristics of the raw data, we can determine that the breakdown 

duration is 10 min (i.e. t). The raw data were converted to grouped sets with a period of  (i.e. T) based 

on the analysis accuracy. Therefore, the raw data were reorganised as 

, . Note that  was deleted if any 

observed value of mean speed and traffic flow was 0 in the group . 

3) Data grouping and sequencing: Let  and  represent the flow rate and average speed of group , 

respectively, and let . The reorganised data were grouped using 

, which encodes categorical features, and sorted in order. 

4) Traffic-condition binarisation: The thresholding of numerical features to obtain Boolean values is called 

condition binarisation. Therefore, a binary variable was used to define the traffic state: if a section was 

congested during an interval, the traffic state was denoted as 1; otherwise, it was denoted as 0. 

5) Threshold setting: Researchers often assign a response variable, such as travel time, speed and road 

occupancy, as a threshold to distinguish between congested and free-flowing traffic [32]. We set a critical 

threshold to represent the traffic conditions by referring to previous studies. 

6) Probability calculation: The congestion probability was calculated as the ratio of the number of times 

traffic-congestion occurred in a certain flow range to the total number of times the flow was observed 

within the same range during the same period. 

In the first part of Section 3.1, we evaluate whether the traffic-congestion probability provided by the 

proposed method is effective under different breakdown and congestion thresholds based on data from a traffic 

dataset of Portland, Oregon. In the second part, we examine the statistical significance between the congestion 

probability based on the measured dataset and that returned by the proposed model using a quantitative 

description based on a paired-sample t-test. Subsequently, in Section 3.2, we explore the effects of different 

breakdown and congestion thresholds on congestion probability by visualising their variation tendencies. 
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3. RESULTS AND DISCUSSION 

In this section, we evaluate the effectiveness of the proposed method for estimating the traffic-congestion 

probability through a case study. During the evaluations, we focused on the accuracy of the congestion 

probability calculated using the mathematical estimation and that of the real traffic data. Specifically, we 

examined the extent to which the results estimated by the proposed method correctly characterised the traffic 

congestion. Finally, we present quantitative discussions by analysing the effects of the breakdown and 

congestion threshold parameters on the model performance. 

3.1 Comparing the calculated values with actual traffic data 

This study was performed as a function of the breakdown and congestion threshold values as they affect 

the output. In this section, we empirically examine the outputs to analyse the effectiveness of the proposed 

congestion-probability-estimation method under several threshold settings based on historical traffic data. The 

breakdown thresholds were set to 15, 25 or 35 mph/h based on the traffic conditions in Oregon [33]. 

Subsequently, to examine the effect of the breakdown threshold on model performance, we fixed the 

congestion threshold to 20 min, i.e. S=2. Finally, the arrival-rate was assumed to be a Poisson arrival 

distribution, which conforms to the findings of mainstream studies [33, 35]. We used the absolute error (AE) 

as the evaluation metric to determine the absolute difference between the congestion probability measured 

from the dataset and those returned by the proposed model [4]. Figure 3 shows the estimated congestion 

probabilities and ground truths under various breakdown thresholds. Table 1 presents the match ratio of different 

probability thresholds. 

 

Figure 3 – Comparisons of measured data and results of the proposed model under a congestion threshold of 20 minutes and 

breakdown thresholds of 15 mph/h, 25 mph/h and 30 mph/h 

Table 1 – Match ratio of different breakdown thresholds 

Items 15 mph/h 25 mph/h 35 mph/h 

±5% error 60.43% 87.66% 93.19% 

±10% error 80.00% 97.87% 98.72% 

 

Each point in Figure 3 represents the ratio of the number of traffic-congestion occurrences in a certain flow 

range to the total number of occurrences, indicating the reliability of the model predictions with the AEs under 

different thresholds. The curves in the figure (including solid, dashed and dash-dotted lines) represent the ideal 
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reference outcomes. The closer the measured data points are to these curves, the smaller the discrepancy 

between the observed values and model predictions. Furthermore, the dark and light shaded regions correspond 

to the 5% and 10% error bands, respectively. Across all threshold configurations, at least 60.43% of the data 

points lies within the 5% error band, while 80.00% reside within the 10% error band. This demonstrates that a 

significant portion of the predicted probabilities conform to the allowable tolerance margins. For these cases, 

the best result of 98.72% was obtained under a breakdown threshold of 35 mph, confirming that the predictions 

of our empirical model are close to reality and thus, validating its effectiveness. 

To better understand the probability curves, we prepared Figure 4, wherein the measured and estimated 

probabilities are compared for different congestion thresholds. As the curve for the breakdown threshold of 25 

mph in Figure 3 provides a relatively complete probability curve and better prediction results, the same 

breakdown threshold was used to obtain the results shown in Figure 4. Table 2 presents the match ratio of different 

probability thresholds. 

 
(a) 

 
(b) 

 
(c) 

Figure 4 – Comparisons of measured data and results of the proposed model under a breakdown threshold of 25 mph and  

congestion thresholds of: (a) 20 minutes, (b) 30 minutes, and (c) 60 minutes 

Table 2 – Match ratio of different congestion thresholds 

Items 20 min 30 min 60 min 

±5% error 87.66% 84.68% 82.13% 

±10% error 97.87% 97.45% 90.64% 
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Figure 4 shows the specific probability of the traffic flow for different congestion thresholds. Evidently, the 

prediction performance was relatively unsatisfactory under the congestion threshold of 60 minutes. Compared 

with the other subpanels in Figure 4, larger errors are typically evident for cases wherein the corresponding 

dataset contains fewer samples. This is because all estimations were based on the same raw data, whereas 

different congestion thresholds correspond to different data. As more traffic data are available for smaller 

congestion thresholds (e.g. 20 minutes), the results are more reliable. By contrast, the performance deteriorates 

under larger congestion thresholds owing to data sparsity. In general, the higher the amount of data, the more 

accurate the congestion-probability predictions. 

Additionally, we conducted a paired-sample t-test to determine whether the congestion probability differs 

significantly between the measured values and the model predictions. The results confirmed that the 

differences were not statistically significant at 5% significance level, as presented in Table 3. 

Table 3 – Results of the paired sample t-test 

Items 

Breakdown threshold (mph) Congestion threshold (min) 

15 25 35 20 30 60 

Measured values Mean 0.4495 0.7531 0.9040 0.7531 0.7447 0.7547 

Standard deviation 0.4093 0.3569 0.2103 0.3569 0.3656 0.3736 

Standard error  0.0267 0.0233 0.0137 0.0233 0.0238 0.0244 

Results Mean 0.4511 0.7522 0.9045 0.7522 0.7475 0.7485 

Standard deviation 0.4423 0.3472 0.2015 0.3472 0.3626 0.3814 

Standard error  0.0289 0.0226 0.0131 0.0226 0.0237 0.0249 

Paired mean 

different 

Mean -0.0016 0.0008 -0.0005 0.0008 -0.0029 0.0063 

Standard deviation 0.0855 0.0330 0.0251 0.0330 0.0347 0.0628 

Standard error 0.0056 0.0022 0.0016 0.0022 0.0023 0.0041 

Correlation 0.9828 0.9960 0.9935 0.9946 0.9960 0.9864 

Significance level  5.3704E-173 3.8602E-231 6.2976E-222 3.1754E-231 3.8602E-231 1.4133E-184 

95% Confidence 

Interval 

Lower limit -0.0126 -0.0034 -0.0037 -0.0034 -0.0073 -0.0018 

Upper limit 0.0094 0.0051 0.0027 0.0051 0.0016 0.0144 

t-value -0.2873 -0.3903 -0.3137 -0.3960 -0.3903 1.5328 

Degrees of freedom 234 234 234 234 234 234 

Sig. (two-tailed test) 0.7741 0.6966 0.7540 0.6925 0.6966 0.1267 

 

Based on these results, we can conclude that the proposed model can adequately estimate the congestion 

probability as it captures the randomness of traffic flow. From the perspective of a traffic administrator, the 

predictions of the proposed method can be practically employed owing to the low error margins. Traffic 

infrastructure that provides appropriate interventions (e.g. tuning traffic lights, variable message signs, 

congestion warnings or diversions) can be prepared for congestion-prone sections to alleviate congestion or 

prevent it from occurring [26]. Limiting the number of vehicles entering a road section is also an effective 

strategy for preventing recurrent congestion [17, 36]. 

3.2 Further analysis and discussion 

We conducted a sensitivity analysis by adjusting the threshold values to evaluate the effects of the threshold 

values and analyse the characteristics of congestion probability. Figure 5 shows the estimated congestion 

probabilities for various breakdown and congestion thresholds. 
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(b) 

Figure 5 – Congestion-probability predictions under different (a) breakdown and (b) congestion thresholds 

Based on our proposed model, ‘S’ shaped curves were obtained to represent congestion probability for 

observed traffic flows, which aligned with the actual results for Portland data and those of widely cited studies 

[17, 20, 27]. In other words, the changes in congestion probability for a one-unit increase in flow vary. 

Moreover, although the congestion probabilities of relatively low traffic flows were less severe than those of 

high traffic flows, traffic congestion was still observed under all traffic flows. 

From the results presented in Figure 5(a), it is evident that the congestion-probability predictions are affected 

by threshold variations. The probability curves change significantly with changes in breakdown threshold. The 

number of congested items followed an upward trend as the congestion threshold increased. This trend was 

expected because an increasing number of traffic statuses are considered as congestion [7, 32]. Thus, the 

breakdown threshold setting is inconsistent with the actual traffic conditions, which presents a significant error 

in the congestion probability. In particular, heavy congestion is associated with low threshold values, whereas 

light congestion is associated with high threshold values. These patterns strongly concur with the results of a 

previous study [5, 16]. 

Compared with the breakdown threshold, the congestion threshold had considerably lower effect on the 

model performance. It is evident from Figure 5(b) that the probability curves are similar; however, as we have 

added more details to the diagram, the trends of the curves differ. Under low-flow conditions, it is easier to 

identify congestion by using a smaller congestion threshold. However, as the traffic flow increases, the curve 

for the higher threshold increases rapidly and exhibits the highest congestion probability, as shown in the two 

right-hand panels of Figure 5(b). The total traffic flow with a long duration easily exceeded the preset threshold 

and exhibited instability as the flow increased. By contrast, congestion cannot be triggered if the flow is 

insufficient for a short duration. In these instances, an excessively large congestion threshold may render the 

model bulky and not allow it to capture congestion under low traffic. However, if an excessively low threshold 
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is employed, the instantaneous traffic peak is erroneously considered to be a congestion state. Therefore, an 

appropriate congestion threshold can be beneficial estimating congestion probability under any traffic flow. 

Thus, even though traffic flow is the primary predictor of congestion, our results indicate that breakdown 

and congestion thresholds are also vital factors. Specifically, the breakdown threshold affects the location of 

the probability curve and the congestion threshold affects its trend. 

4. CONCLUSIONS 

Handling frequent congestions in road networks is a significant challenge for traffic management 

authorities. In this study, we introduced a new method that can estimate the congestion probability under a 

certain traffic flow by applying the concept of stochasticity to traffic arrivals. In addition to introducing this 

novel method, we offered a new perspective on congestion triggers that, unlike previous solutions, does not 

rely on statistical parameters of traffic conditions and can instead estimate congestion probability based on 

breakdown and congestion thresholds. The proposed method was subjected to a detailed performance analysis 

using a dataset extracted from real road networks, wherein we examined the accuracy its congestion-

probability predictions. Our experimental results were consistent with our assumptions and offered clear 

evidence that traffic congestion can occur at any traffic-flow level. Combined with the experimental results, 

we verified that there was no significant difference between the calculated congestion probability and the 

measured data at a confidence level of 95%. This is a good result that enables traffic management to prepare 

for appropriate interventions and mitigate potential congestion situation by ensuring that arriving vehicles 

always remain well below the threshold. Although congestion cannot be completely eradicated in the short-

term, the proposed model can contribute to the development of strategic plans. 

A significant advantage of the proposed method is that it is robust and can be applied to a broader range of 

scenarios as it considers the occurrence mechanism of traffic congestion. Thus, it can serve as a general model 

for estimating congestion probabilities at diverse locations. In the future, we aim to develop methods that 

incorporate multiple sources of weather conditions, road surface status, and accident reports through Bayesian 

spatiotemporal fusion frameworks to achieve high prediction accuracy. Furthermore, the existing models fail 

to capture behavioural heterogeneity across various traffic flow states, and future works must provide a deeper 

understanding of the heterogeneous driving strategies causing the emergence of macroscopic congestion. 
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孙婉茹；崔洪军；朱敏清 

基于交通到达随机特性的交通拥堵分析与拥堵概率估计 

摘要 

城市交通拥堵已成为制约可持续发展的全球性挑战。由于交通拥堵研究可为制定缓

解拥堵策略和优化交通管理提供信息，因此，准确估计拥堵概率至关重要。现有研

究多采用确定性模型分析拥堵，未考虑交通流内在随机性（如车辆到达的时空异质

性）与拥堵形成机制间的动态耦合关系，导致在拥堵不确定性场景下的预测偏差。

本研究运用随机交通流理论，深入剖析交通拥堵形成机理，提出基于概率的交通拥

堵估计框架。针对交通流的随机特性，采用离散概率分布刻画车辆到达过程。为避

免将短期交通激增误判为拥堵状态，构建一套具有双重阈值的时空持续性拥堵判别

准则，即到达车辆的累积量需超过临界水平，且持续时间超过临界时间。通过美国

波特兰市交通数据集进行实证验证，结果表明在 95%置信水平下，模型所得拥堵概

率与实测数据无统计学显著偏差。该方法可为制定缓解拥堵对策提供支撑，并为未

来交通规划提供新思路。 
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